These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Fusarium Wilt of Orchids  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

2

Effect of combination of bio-agents and mineral nutrients for the management of alfalfa wilt pathogen Fusarium oxysporum f. sp. medicaginis  

Microsoft Academic Search

Biological and nutrient management of soil borne disease is increasingly gaining stature as a possible practical and safe approach. Inhibitory effects of fungal and bacterial antagonists were tested under in vitro conditions against the wilt pathogen of alfalfa Fusarium oxysporum f. sp. medicaginis. Trichoderma harzianum and Pseudomonas fluorescens (PI 5) were found to be effective against the alfalfa wilt pathogen.

M. Adhilakshmi; M. Karthikeyan; D. Alice

2008-01-01

3

Detection of Fusarium wilt pathogens of Psidium guajava L. in soil using culture independent PCR (ciPCR).  

PubMed

Traditional culturing methods take a long time for identification of pathogenic isolates. A protocol has been developed for the detection of Fusarium from soil samples in the early stage of infection. Seventeen soil samples from different locations were collected before the onset of rains to find out the presence of Fusarium spp. population present in the soil of guava orchards and to correlate its presence with incidence of wilt. A PCR based method was developed for the molecular characterization of Fusarium using Fusarium spp. specific primer. DNA extracted by this method was free from protein and other contaminations and the yield was sufficient for PCR amplification. The primer developed in this study was amplifying ?230 bp in all infected samples while not in healthy soil. The specificity and sensitivity of primer were tested on several Fusarium spp. and found that this primer was amplifying 10(-6) dilution of the fungal DNA. The present study facilitates the rapid detection of Fusarium spp. from infected soil samples of guava collected from different agroclimatic regions in India. A rapid detection method for pathogens and a diagnostic assay for disease would facilitate an early detection of pathogen and lead to more effective control strategies. PMID:23961219

Mishra, Rupesh K; Pandey, Brajesh K; Muthukumar, M; Pathak, Neelam; Zeeshan, Mohammad

2013-01-01

4

Integrated management strategies for tomato Fusarium wilt.  

PubMed

Fusarium wilt is caused by the fungal pathogens, Fusarium oxysporum or Fusarium solani. It is a devastating disease that affects many important food and vegetable crops and a major source of loss to farmers worldwide. Initial strategies developed to combat this devastating plant disease include the use of cultural, physical and chemical control. None of these strategies have been able to give the best results of completely ameliorating the situation except for the cultural method which is mainly preventive. A good knowledge of the nature, behaviour and environmental conditions of growth of the disease agent is very important to controlling the disease development in that case. Biological control has been shown to be an environmentally friendly alternative. It makes use of rhizospheric and endophytic microorganisms that can survive and compete favourably well with the Fusarium wilt pathogen. They include plant growth-promoting rhizobacteria (PGPR) such as Bacillus spp. and Pseudomonas spp. For PGPR to control or inhibit the growth of the Fusarium wilt pathogen, they make use of mechanisms such as indole acetic acid production, siderophore production, phosphate solublilization, systemic resistance induction and antifungal volatile production among others. PMID:24077535

Ajilogba, Caroline F; Babalola, Olubukola O

2013-01-01

5

Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease  

PubMed Central

Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana. PMID:24743270

Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

2014-01-01

6

Incidence of Fusarium wilt of cotton as affected by pathogen propagule type, age and source  

E-print Network

for field infestation, it may be of great concern in a greenhouse environment. In one study, Fusarium spores were the fifth most common fungal airborne spore, after Cladosporium, Alternaria, Penicillium and Aspergillus (31). In a study on Fusarium stem...

McEntee, James Philip

2012-06-07

7

Fusarium wilt of pigeon pea  

Microsoft Academic Search

Summary  Manganese amendment to the soil was found to reduce pigeon pea wilt to a considerable extent. In plants grown in inoculated\\u000a soil with 80 p.p.m. Mn, the pathogen colonized only in the roots. At 100 and 200 p.p.m., there was complete exclusion of the\\u000a fungus. Foliar sprays and pre-soaking of seeds gave even more encouraging results. Tracheal fluids collected from

S. Subramanian

1963-01-01

8

Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay  

Microsoft Academic Search

Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation

M. Leeman; J. A. van Pelt; F. M. den Ouden; M. Heinsbroek; P. A. H. M. Bakker; B. Schippers

1995-01-01

9

Cross Pathogenicity of Fusarium oxysporum f. sp. betae on Sugar Beet and Common Bean  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium wilt, also known as Fusarium yellows, is caused by the fungus Fusarium oxysporum. Fusarium oxysporum is a vascular pathogen with a broad host range including common bean (Phaseolus vulgaris L.) and sugar beet (Beta vulgaris L.) with formae speciales (f. sp.) defined by the ability to cause ...

10

Genome Sequence of Fusarium oxysporum f. sp. melonis Strain NRRL 26406, a Fungus Causing Wilt Disease on Melon  

PubMed Central

Horizontal chromosome transfer introduces host-specific pathogenicity among members of the Fusarium oxysporum species complex and is responsible for some of the most destructive and intractable plant diseases. This paper reports the genome sequence of F. oxysporum f. sp. melonis (NRRL 26406), a causal agent of Fusarium wilt disease on melon. PMID:25081257

Shea, Terrance; Young, Sarah; Zeng, Qiandong; Kistler, H. Corby

2014-01-01

11

Control of Fusarium wilt in banana with Chinese leek  

PubMed Central

The inhibitory effects of Chinese leek(Allium tuberosum) on Fusarium oxysporum f. sp. cubense (Foc) and on Fusarium wilt incidence were studied in order to identify a potential efficient way to control the disease. Adopting the rotation system of Chinese leek-banana reduced the Fusarium wilt incidence and disease severity index by 88 %-97 % and 91 %-96 %, respectively, improved the crop value by 36 %-86 %, in an area heavily infested by Foc between 2007 and 2009. As a result of inoculation in the greenhouse, Chinese leek treatment reduced disease incidence and the disease severity index by 58 % and 62 %, respectively in the variety Baxi (AAA) and by 79 % and 81 %, respectively in the variety Guangfen NO.1 (ABB). Crude extracts of Chinese leek completely inhibited the growth of Foc race 4 on Petri dishes, suppressed the proliferation of the spores by 91 % and caused 87 % spore mortality. The findings of this study suggest that Chinese leek has the potential to inhibit Foc growth and Fusarium wilt incidence. This potential may be developed into an environmentally friendly treatment to control Fusarium wilt of banana. PMID:23144534

Huang, Y.H.; Wang, R.C.; Li, C. H.; Zuo, C.W.; Wei, Y. R.; Zhang, L.; Yi, G.J.

2012-01-01

12

Co-infection of Wilt-Resistant Chickpeas by Fusarium oxysporum f. sp. ciceri and Meloidogyne javanica  

PubMed Central

Fusarium oxysporum f. sp. ciceri and Meloidogyne javanica are important pathogens of chickpea. Interrelationships between Fusarium oxysporum f. sp. ciceri and M. javanica were investigated on 53 Fusarium wilt-resistant chickpea genotypes in pot experiments. All of the genotypes were susceptible to M. javanica. Fusarium wilt resistance in one genotype (ICC 12275) was ineffective in the presence of M. javanica, and all the plants completely wilted. Resistance in four genotypes (ICCs 11319, 11322, 12254, 12272) was reduced in the presence of the nematode. Vascular discoloration above the collar region of the plants, an indication of susceptibility to the fungus, was observed. Wilt resistance in 48 genotypes was not modified by M. javanica. The effects of interactions between the pathogens on shoot and root weights, gall index, and galled area of root were significant only on 10-28% of the genotypes. Presence of the fungus reduced the adverse effects of nematodes on growth of 15% of the genotypes. Appraisal of wilt-resistant chickpea genotypes for their reactions to combinations of the two pathogens would help to identify and develop chickpea cultivars with wilt resistance stable in presence of M. javanica. PMID:19277336

Maheshwari, T. Uma; Sharma, S. B.; Reddy, D. D. R.; Haware, M. P.

1995-01-01

13

Characterization of antagonistic and pathogenic Fusarium oxysporum isolates by random amplification of polymorphic DNA  

Microsoft Academic Search

Fusarium oxysporum is one of the most widespread and predominant species in natural and cultivated soils among the fungal genus Fusarium. It includes saprophytes as well as plant pathogens involved in serious vascular wilts, caused by severalformae speciales and races or pathotypes (1). Morphological similarities among pathogenic and saprophytic strains of F. oxysporum hamper diagnosis and clear discrimination among formae

Q. Migheli; L. Cavallarin

1994-01-01

14

Effects of Varying Environmental Conditions on Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp.  

PubMed

ABSTRACT The influence of varying environmental and cropping conditions including temperature, light, soil type, pathogen isolate and race, and cultivar of tomato on biological control of Fusarium wilt of tomato by isolates of nonpathogenic Fusarium oxysporum (CS-20 and CS-24) and F. solani (CS-1) was evaluated in greenhouse and growth chamber experiments. Liquid spore suspensions (10(6)/ml) of the biocontrol isolates were applied to soilless potting mix at the time of tomato seeding, and the seedlings were transplanted into pathogen-infested field soil 2 weeks later. Temperature regimes ranging from 22 to 32 degrees C significantly affected disease development and plant physiological parameters. Biocontrol isolate CS-20 significantly reduced disease at all temperature regimes tested, yielding reductions of disease incidence of 59 to 100% relative to pathogen control treatments. Isolates CS-24 and CS-1 reduced disease incidence in the greenhouse and at high temperatures, but were less effective at the optimum temperature for disease development (27 degrees C). Growing plants under shade (50% of full light) versus full light affected some plant growth parameters, but did not affect the efficacy of biocontrol of any of the three bio-control isolates. Isolate CS-20 effectively reduced disease incidence (56 to 79% reduction) in four different field soils varying in texture (sandy to clayey) and organic matter content (0 to 3.2%). Isolate CS-1 reduced disease in the sandy and loamy soils (49 to 66% reduction), but was not effective in a heavy clay soil. Both CS-1 and CS-20 were equally effective against all three races of the pathogen, as well as multiple isolates of each race (48 to 66% reduction in disease incidence). Both isolates, CS-1 and CS-20, were equally effective in reducing disease incidence (66 to 80% reduction) by pathogenic races 1, 2, and 3 on eight different tomato cultivars containing varying levels of inherent resistance to Fusarium wilt (susceptible, resistant to race 1, or resistant to races 1 and 2). These results demonstrate that both these Fusarium isolates, and particularly CS-20, can effectively reduce Fusarium wilt disease of tomato under a variety of environmental conditions and have potential for further development. PMID:18944240

Larkin, Robert P; Fravel, Deborah R

2002-11-01

15

Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer  

Microsoft Academic Search

Fusarium wilt disease in melon (Cucumis melo L.) is widespread, responsible for serious economic losses. Pot and field experiments were performed to investigate the effects of different bio-organic fertilizers (BIOs) made from organic fertilizer and different antagonistic microbes. BIOs decreased the incidence of fusarium wilt disease and increased melon yield. The disease incidence of treatments with double application (BIOs applied

Qingyun Zhao; Caixia Dong; Xingming Yang; Xinlan Mei; Wei Ran; Qirong Shen; Yangchun Xu

2011-01-01

16

Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to fusarium wilt.  

PubMed

The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants. PMID:22183565

Mahdavi, F; Sariah, M; Maziah, M

2012-02-01

17

Effect of silicates and electrical conductivity on Fusarium wilt of hydroponically grown lettuce.  

PubMed

Silicon can stimulate natural defense mechanisms in plants, reducing foliar diseases like powdery arid downy mildew on several crops, including lettuce. The effect of silicate on Fusarium wilt, caused by Fusarium oxysporum f. sp. lactucae was evaluated under greenhouse conditions on lettuce grown in soilless systems. Silicon, as potassium silicate, was added at 100 mg L(-1) of nutrient solution at three levels of electrical conductivity; 1.5-1.6 mS cm(-1) (E.C.1), 3.0-3.2 mS cm(-1) (E.C.2) and 4-4.2 mS cm(-1) (E.C.3). Pots containing lettuce plants were first inoculated with F. oxysporum f. sp. lactucae (3x10(5) chlamidospores ml(-1)) 15-20 days before transplanting. Disease severity and physiological parameters, including chlorophyll content, were analyzed weekly after transplanting. The addition of potassium silicate slightly reduced Fusarium wilt, at all levels of electrical conductivity under study, compared to the control. On the contrary, the increase of electrical conductivity of the nutrient solution showed no effect on the disease. The use of silicon was previously demonstrated to significantly reduce downy mildew on lettuce in soilless systems, and in this trial it demonstrated to slightly reduce disease severity of an important soil-borne pathogen like F. oxysporum f. sp. lactucae, suggesting the possibility to apply it successfully in soilless crops. PMID:25151830

Chitarra, W; Pugliese, M; Gilardi, G; Gullino, M L; Garibaldi, A

2013-01-01

18

Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt.  

PubMed

Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management. PMID:16550458

Ajit, Naosekpam Singh; Verma, Rajni; Shanmugam, V

2006-04-01

19

Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens  

PubMed Central

The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases. PMID:21829347

Klosterman, Steven J.; Subbarao, Krishna V.; Kang, Seogchan; Veronese, Paola; Gold, Scott E.; Thomma, Bart P. H. J.; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D.; Barbara, Dez J.; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G.; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J.; Heiman, David I.; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A.; Dobinson, Katherine F.; Ma, Li-Jun

2011-01-01

20

Modified Primers for the Identification of Nonpathogenic Fusarium oxysporum Isolates That Have Biological Control Potential against Fusarium Wilt of Cucumber in Taiwan  

PubMed Central

Previous investigations demonstrated that Fusarium oxysporum (Fo), which is not pathogenic to cucumbers, could serve as a biological control agent for managing Fusarium wilt of cucumber caused by Fo f. sp. cucumerinum (Foc) in Taiwan. However, thus far it has not been possible to separate the populations of pathogenic Fo from the nonpathogenic isolates that have biological control potential through their morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In this study, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an Fo biological control agent, Fo366, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA from nonpathogenic Fo isolates that have biological control potential. The results showed that the modified primer pair, FIGS11/NPIGS-R, amplified a 500-bp DNA fragment from five of seven nonpathogenic Fo isolates. These five Fo isolates delayed symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Foc. Therefore, the modified primer pair may prove useful for the identification of Fo isolates that are nonpathogenic to cucumber which can potentially act as biocontrol agents for Fusarium wilt of cucumber. PMID:23762289

Wang, Chaojen; Lin, Yisheng; Lin, Yinghong; Chung, Wenhsin

2013-01-01

21

First record of Fusarium vascular wilt on grapevine in Egypt  

Microsoft Academic Search

During the summer season of 2003 and 2004, wilt syndromes of grapevine leaves (Cv. crimson) and vascular discolouration of roots have been observed in 2-year-old grapevine plants in the field at two sides in Gharbeia Governorate, Egypt. First, symptoms of wilt began on bottom leaves borderline as chlorosis and then these turned to necrotic spots and the leaves died. Wilt

El-Sayed H. Ziedan; El-Sayed M. Embaby; Eman S. Farrag

2011-01-01

22

Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease  

PubMed Central

The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

2011-01-01

23

Sustainable Approaches for Biological Control of Fusarium Wilt in Pigeon Pea ( Cajanus cajan L. Millspaugh)  

Microsoft Academic Search

\\u000a \\u000a Cajanus cajan (Pigeon pea) is an important crop of Indian subcontinent and African countries, cultivated in the tropics and subtropics.\\u000a Fusarium wilt is one of the major yield and growth-limiting factors of pigeon pea. Along with nematodes such as Meloidogyne incognita and Heterodera cajani, F. udum result in highly destructive wilt disease complex, which is a major constraint for the

Piyush Pandey; Abhinav Aeron; D. K. Maheshwari

24

Suppression of fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi  

Microsoft Academic Search

In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from

M. Leeman; F. M. Den Ouden; J. A. Van Pelt; C. Cornelissen; A. Matamala-Garros; P. A. H. M. Bakker; B. Schippers

1996-01-01

25

The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease  

PubMed Central

XSP10 is an abundant 10?kDa protein found in the xylem sap of tomato. The protein displays structural similarity to plant lipid transfer proteins (LTPs). LTPs are involved in various physiological processes, including disease resistance, and some are able to bind and transfer diverse lipid molecules. XSP10 abundance in xylem sap declines upon infection with Fusarium oxysporum f. sp. lycopersici (Fol), implying involvement of XSP10 in the plant–pathogen interaction. Here, the biochemical characterization of XSP10 with respect to fatty acid-binding properties is reported; a weak but significant binding to saturated fatty acids was found. Furthermore, XSP10-silenced tomato plants were engineered and it was found that these plants exhibited reduced disease symptom development upon infection with a virulent strain of Fol. Interestingly, the reduced symptoms observed did not correlate with an altered expression profile for known reporter genes of plant defence (PR-1 and WIPI). This work demonstrates that XSP10 has lipid-binding properties and is required for full susceptibility of tomato to Fusarium wilt. PMID:20974736

Krasikov, Vladimir; Dekker, Henk L.; Rep, Martijn; Takken, Frank L.W.

2011-01-01

26

Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47.  

PubMed

Nonpathogenic Fusarium oxysporum Fo47b10 combined with Pseudomonas putida WCS358 efficiently suppressed fusarium wilt of carnations grown in soilless culture. This suppression was significantly higher than that obtained by inoculation of either antagonistic microorganism alone. The increased suppression obtained by Fo47b10 combined with WCS358 only occurred when Fo47b10 was introduced at a density high enough (at least 10 times higher than that of the pathogen) to be efficient on its own. P. putida WCS358 had no effect on disease severity when inoculated on its own but significantly improved the control achieved with nonpathogenic F. oxysporum Fo47b10. In contrast, a siderophore-negative mutant of WCS358 had no effect on disease severity even in the presence of Fo47b10. Since the densities of both bacterial strains at the root level were similar, the difference between the wild-type WCS358 and the siderophore-negative mutant with regard to the control of fusarium wilt was related to the production of pseudobactin 358. The production of pseudobactin 358 appeared to be responsible for the increased suppression by Fo47b10 combined with WCS358 relative to that with Fo47b10 alone. PMID:1444411

Lemanceau, P; Bakker, P A; De Kogel, W J; Alabouvette, C; Schippers, B

1992-09-01

27

Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana  

PubMed Central

Background Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, the RFO1 QTL appears to interact with three other loci, RFO2, RFO4 and RFO6, and is attributed to the gene At1g79670. Results When resistance to FOM was mapped in a new BC1 population, in which the loss-of-function mutant of At1g79670 replaced wild type as the Col-0 parent, RFO1’s major effect and RFO1’s interaction with RFO2, RFO4 and RFO6 were absent, showing that At1g79670 alone accounts for the RFO1 QTL. Resistance of two QTLs, RFO3 and RFO5, was independent of RFO1 and was reproduced in the new BC1 population. In analysis of a third BC1 population, resistance to a second pathogen, F. oxysporum forma specialis conglutinans race 1 (FOC1), was mapped and the major effect locus RFO7 was identified. Conclusions Natural quantitative resistance to F. oxysporum is largely specific to the infecting forma specialis because different RFO loci were responsible for resistance to FOM and FOC1. The mapping of quantitative disease resistance traits in BC1 populations, generated from crosses between sequenced Arabidopsis accessions, can be a routine procedure when genome-wide genotyping is efficient, economical and accessible. PMID:24172069

2013-01-01

28

Quantitative Trait Loci for Resistance Against Fusarium Wilt Based on Three Cotton F 2 Populations  

Microsoft Academic Search

Fusarium wilt (FW) is one of the most common cotton diseases in the world. Identification of QTLs conferring resistance to FW is key for the incorporation of resistance genes into elite cultivars. Two intraspecific (cross between Gossypium hirsutum L.) and one interspecific (cross between Gossypium hirsutum L. and Gossypium bardence L.) F2 populations were constructed by using a highly resistant

Pei-zheng WANG; Li-fang SHI; Li SU; Bao-min HU

2010-01-01

29

Fusarium and Scedosporium: Emerging Fungal Pathogens  

Microsoft Academic Search

\\u000a Fusarium spp. and Scedosporium spp. have emerged as important fungal pathogens during the last decades causing significant morbidity and mortality especially\\u000a in immunocompromised patients. The two fungal genera possess several biological and clinical characteristics in common, most\\u000a notably the very high mortality of the diseases caused by them, and thus they are discussed together.\\u000a \\u000a \\u000a Fusarium spp. are ubiquitus fungi commonly

Emmanuel Roilides; John Dotis; Aspasia Katragkou

30

Phylogeny and pathogenicity of Fusarium oxysporum isolates from cottonseed imported from Australia into California for dairy cattle feed  

Technology Transfer Automated Retrieval System (TEKTRAN)

A unique biotype of the Fusarium wilt pathogen found in Australia in 1993 is favored by neutral or alkaline heavy soils and does not require nematodes to cause disease, making it a new threat to 4-6 million acres of USA Upland cotton (Gossypium hirsutum L.). In 2001-2002, several shiploads of live ...

31

Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms  

Microsoft Academic Search

Fusarium wilt of watermelon commonly occurs in locations where the crop has been grown for many seasons. Its occurrence results\\u000a in a severely decreased watermelon crop. The goal of this study was to assess the capability of a new product (bio-organic\\u000a fertilizer) to control the wilt in Fusarium-infested soil. Pot experiments were conducted under growth chamber and greenhouse\\u000a conditions. The

Hong-sheng Wu; Xin-ning Yang; Jia-qin Fan; Wei-guo Miao; Ning Ling; Yang-chun Xu; Qi-wei Huang; Qirong Shen

2009-01-01

32

Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38.  

PubMed

This study was conducted to investigate biocontrol potential of Paenibacillus ehimensis KWN38 against Fusarium oxysporum f.sp. lycopersici causing Fusarium wilt disease in tomato. Our result showed that P. ehimensis KWN38 produced extracellular organic compounds and crude enzyme to inhibit F. oxysporum f.sp. lycopersici conidial germination in in vitro assays. Tomato seedlings were treated with water (W), grass medium (G), G with P. ehimensis KWN38 inoculation (GP) and G along with synthetic fungicide (GSf). Disease symptoms were was first observed in G and W at 12 days after infection (DAI) while symptoms were noticeable in the GP and GSf treatments at 20 and 24 DAI, respectively. Tomato plants treated with P. ehimensis KWN38 or fungicide significantly reduced Fusarium wilt disease incidence and severity as compared to control tomato plants treated with water and grass medium. The similar results were also found in the root mortality of tomato plants. At 25 DAI, most plants in control treatments (W and G) wilted and the brown vascular systems of infected plants was clearly differentiable from normal green vascular system of healthy plants from GP and GSf. Plants in the GP showed higher fresh and dry weights of both root and shoots than those in W and G treatments. Leaf peroxidase and polyphenol oxidase activities of tomato plants in G and W were higher than those in GP and GSf. Root enzyme activities showed a similar pattern but the values were higher than leaf enzyme. The results clearly demonstrated that P. ehimensis KWN38 may be considered as biocontrol agent of Fusarium wilt disease in tomato. PMID:25384610

Naing, Kyaw Wai; Nguyen, Xuan Hoa; Anees, Muhammad; Lee, Yong Seong; Kim, Yong Cheol; Kim, Sang Jun; Kim, Myung Hee; Kim, Yong Hwan; Kim, Kil Yong

2015-01-01

33

[Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].  

PubMed

A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the quantities of rhizospheric bacteria and actinomyces, alter the microbial metabolic function, and decrease F. oxysporum density, being an effective measure to control the occurrence of faba bean fusarium wilt. PMID:23898671

Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

2013-04-01

34

Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea.  

PubMed

Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and ?-ketoglutarate (?-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG. PMID:23306880

Kulkarni, Guruprasad B; Sanjeevkumar, S; Kirankumar, B; Santoshkumar, M; Karegoudar, T B

2013-02-01

35

[Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].  

PubMed

Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was significantly higher than that of YM42. In conclusion, intercropping influenced the microbial activity and substrate utilization of soil microorganisms, altered the microbial community diversity in rhizosphere of faba bean, reduced the amount of F. oxysporum and disease index of faba bean fusarium wilt, and promoted faba bean growth. Effects of intercropping on disease control were influenced by the intercropped wheat variety, suggesting that the differences of root exudates of wheat were important factors that affected soil-borne diseases control in intercropping. PMID:25345048

Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

2014-07-01

36

The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum  

PubMed Central

The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

2013-01-01

37

Characterization of the formae speciales of Fusarium oxysporum causing wilts of cucurbits by DNA fingerprinting with nuclear repetitive DNA sequences.  

PubMed Central

The genetic relatedness of five formae speciales of Fusarium oxysporum causing wilts of cucurbit plants was determined by DNA fingerprinting with the moderately repetitive DNA sequences FOLR1 to FOLR4. The four FOLR clones were chosen from a genomic library made from F. oxysporum f. sp. lagenariae 03-05118. Total DNAs from 50 strains representing five cucurbit-infecting formae speciales, cucumerinum, melonis, lagenariae, niveum, and momordicae, and 6 strains of formae speciales pathogenic to other plants were digested with EcoRV and hybridized with 32P-labeled FOLR probes. The strains were clearly distinguishable at the formae specialis level on the basis of FOLR DNA fingerprints. Fifty-two fingerprint types were detected among the 56 strains by using all FOLR probes. These probes were used to infer phylogenetic relationships among the DNA fingerprint types by the unweighted pair group method using averages and parsimony analysis. The fingerprint types detected in each of the formae speciales cucumerinum, lagenariae, niveum, and momordicae were grouped into a single cluster. However, two different genetic groups occurred in the formae specialis melonis. The two groups also differed in pathogenicity: one group caused wilts of muskmelon and oriental melon, while the second was pathogenic only to muskmelon. The fingerprint types of different formae speciales pathogenic to plants other than cucurbits were distinguishable from one another and from the fingerprints of the cucurbit-infecting strains. These results suggest that the cucurbit-infecting formae speciales are intraspecific variants distinguishable at the DNA level and in their host range. Images PMID:8085813

Namiki, F; Shiomi, T; Kayamura, T; Tsuge, T

1994-01-01

38

Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt  

PubMed Central

The research work was performed to investigate the potential of Bacillus thuringiensis strain 199 to induce systemic resistance in tomato against Fusarium wilt. Roots of two-week-old seedlings of tomato plants were primed with bacterial strain. After 10 days of transplantation, some pots of tomato seedlings were provided with inoculum of Fusarium oxysporum lycopersici according to experimental design to induce disease. After 15 days of incubation period, plants challenged with F. oxysporum lycopersici alone were having obvious symptoms of Fusarium wilt. Plants that were treated with B. thuringiensis 199 + F. oxysporum lycopersici were having significant reduction of disease severity. Quantity of total phenolics increased 1.7-fold in bacterial-treated plants as compared to nontreated. Likewise, in case of defense-related enzymes, a significant increase of 1.3-, 1.8-, and 1.4-fold in polyphenol oxidase (PPO), phenyl ammonia lyase (PAL), and peroxidase (PO) was observed in comparison with untreated control. These results, hence, prove the potential of this bacterial strain for use as plant protection agent. PMID:24294498

Mahboob, Asrar; Javed, Asmat Ali

2013-01-01

39

Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt.  

PubMed

The research work was performed to investigate the potential of Bacillus thuringiensis strain 199 to induce systemic resistance in tomato against Fusarium wilt. Roots of two-week-old seedlings of tomato plants were primed with bacterial strain. After 10 days of transplantation, some pots of tomato seedlings were provided with inoculum of Fusarium oxysporum lycopersici according to experimental design to induce disease. After 15 days of incubation period, plants challenged with F. oxysporum lycopersici alone were having obvious symptoms of Fusarium wilt. Plants that were treated with B. thuringiensis 199 + F. oxysporum lycopersici were having significant reduction of disease severity. Quantity of total phenolics increased 1.7-fold in bacterial-treated plants as compared to nontreated. Likewise, in case of defense-related enzymes, a significant increase of 1.3-, 1.8-, and 1.4-fold in polyphenol oxidase (PPO), phenyl ammonia lyase (PAL), and peroxidase (PO) was observed in comparison with untreated control. These results, hence, prove the potential of this bacterial strain for use as plant protection agent. PMID:24294498

Akram, Waheed; Mahboob, Asrar; Javed, Asmat Ali

2013-12-01

40

Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.  

PubMed

Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them. PMID:23864230

Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

2013-10-01

41

Factors influencing infection of Acacia mearnsii by the wilt pathogen Ceratocystis albifundus in South Africa  

E-print Network

Factors influencing infection of Acacia mearnsii by the wilt pathogen Ceratocystis albifundus by Ceratocystis albifundus, an important wilt pathogen of Acacia mearnsii in southern and eastern Africa, under field conditions. This was performed by doing controlled inoculations on Acacia mearnsii trees

42

Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana ( Musa spp.)  

Microsoft Academic Search

Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant\\u000a to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study,\\u000a we

Wei Wang; Yulin Hu; Dequan Sun; Christian Staehelin; Dawei Xin; Jianghui Xie

43

Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.)  

Microsoft Academic Search

Fusarium wilt, caused by Fusarium oxysporum Schlecht f. sp. melonis Snyder & Hans, is a worldwide soil-borne disease of melon (Cucumis melo L.). Resistance to races 0 and 1 of Fusarium wilt is conditioned by the dominant gene Fom-2. To facilitate marker-assisted backcrossing with selection for Fusarium wilt resistance, we developed cleaved amplified polymorphic\\u000a sequences (CAPS) and restriction fragment length

X. Y. Zheng; D. W. Wolff; S. Baudracco-Arnas; M. Pitrat

1999-01-01

44

Toxic substances produced by Fusarium . VII. Control of fusarial wilt of safflower by root exudates and extractives of Ruellia tuberosa  

Microsoft Academic Search

Summary Exudates and extractives of roots ofRuellia tuberosa, containing 2,6-dimethoxyquinone, acacetin and a C16-quinone, have been shown to produce significant protective and curative actions againstFusarium oxysporum-incited wilt of safflower. The potentiality of the root extractives as a foliar fungicide is appraised.

S. Ghosal; S. Banerjee; B. K. Chattopadhyay; R. S. Srivastava; D. K. Chakrabarti

1978-01-01

45

Characterization of Fusarium wilt resistant somaclonal variants of banana cv. Rasthali by cDNA-RAPD.  

PubMed

Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is counted among the most destructive diseases of crop plants in India. In the absence of any credible control measure to manage this disease, development of resistant cultivars is the best option. Somaclonal variations arising out of long term in vitro culture of plant tissues is an important source of genetic variability and the selection of somaclones having desired characteristics is a promising strategy to develop plants with improved characters. In the present study, we isolated a group of somaclonal variants of banana cv. Rasthali which showed efficient resistance towards Foc race 1 infection in repeated bioassays. cDNA-RAPD methodology using 96 decamer primers was used to characterize these somaclonal variants. Among the four differentially amplified bands obtained, one mapping to the coding region of a lipoxygenase gene was confirmed to be down regulated in the somaclones as compared to controls by real-time quantitative RT-PCR. Our results correlated well with earlier studies with lipoxygenase mutants in maize wherein reduced expression of lipoxygenase led to enhanced resistance towards Fusarium infection. PMID:25160909

Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

2014-12-01

46

Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.  

PubMed

This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance. PMID:23199574

Vu, Hoa Q; El-Sayed, Magdi A; Ito, Shin-Ichi; Yamauchi, Naoki; Shigyo, Masayoshi

2012-11-01

47

Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.  

PubMed

Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt. PMID:25460190

Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

2014-01-01

48

Fusarium Species Pathogenic to Barley and Their Associated Mycotoxins  

Microsoft Academic Search

Salas, B., Steffenson, B. J., Casper, H. H., Tacke, B., Prom, L. K., Fetch, T. G., Jr., and Schwarz, P. B. 1999. Fusarium species pathogenic to barley and their associated mycotoxins. Plant Dis. 83:667-674. Epidemics of Fusarium head blight (FHB) occurred on barley in Minnesota, North Dakota, and South Dakota from 1993 to 1998. The Red River Valley region was

B. Salas; B. J. Steffenson; H. H. Casper; B. Tacke; L. K. Prom; T. G. Fetch; P. B. Schwarz

1999-01-01

49

Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones.  

PubMed

An efficient protocol was standardized for screening of panama wilt resistant Musa paradisiaca cv. Puttabale clones, an endemic cultivar of Karnataka, India. The synergistic effect of 6-benzyleaminopurine (2 to 6 mg/L) and thidiazuron (0.1 to 0.5 mg/L) on MS medium provoked multiple shoot induction from the excised meristem. An average of 30.10 +/- 5.95 shoots was produced per propagule at 4 mg/L 6-benzyleaminopurine and 0.3 mg/L thidiazuron concentrations. Elongation of shoots observed on 5 mg/L BAP augmented medium with a mean length of 8.38 +/- 0.30 shoots per propagule. For screening of disease resistant clones, multiple shoot buds were mutated with 0.4% ethyl-methane-sulfonate and cultured on MS medium supplemented with Fusarium oxysporum f. sp. cubense (FOC) culture filtrate (5-15%). Two month old co-cultivated secondary hardened plants were used for screening of disease resistance against FOC by the determination of biochemical markers such as total phenol, phenylalanine ammonia lyase, oxidative enzymes like peroxidase, polyphenol oxidase, catalase and PR-proteins like chitinase, beta-1-3 glucanase activities. The mutated clones of M. paradisiaca cv. Puttabale cultured on FOC culture filtrate showed significant increase in the levels of biochemical markers as an indicative of acquiring disease resistant characteristics to FOC wilt. PMID:23898552

Venkatesh; Krishna, V; Kumar, K Girish; Pradeepa, K; Kumar, S R Santosh; Kumar, R Shashi

2013-07-01

50

Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.  

PubMed

Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

2013-04-24

51

Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.  

PubMed

The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media. PMID:25149244

Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

2013-09-01

52

The Molecular Pathogenicity of Fusarium Keratitis  

PubMed Central

Purpose The pathogenic mechanisms of fungal infection during human keratomycosis were investigated in an ex vivo corneal model that used strains of Fusarium oxysporum differing in the production of a fungal transcription factor. Methods A pacC- loss-of-function mutant and a pacCc dominant-activating mutant were constructed from a wild-type isolate of F. oxysporum, and the three strains were characterized by in vitro growth kinetics. Twenty-seven human donor corneas maintained in tissue culture were superficially scarified and topically inoculated with the wild-type, the pacC- loss-of-function mutant, or the pacCc dominant-activating strain. Relative hyphal invasion into the stroma was compared histopathologically in corneal sections. Results F. oxysporum strains demonstrated comparable exponential growth rates in vitro. Wild-type F. oxysporum invaded into corneal tissue within one day and penetrated through the anterior stroma during the next 4 days. The pacC- loss-of-function mutant invaded explanted corneas significantly less than the wild-type on day 1 (P<0.0001) and on day 3 (P=0.0003). The pacCc dominant-activating strain adhered and penetrated explanted corneas similar to the wild-type strain. Conclusion The PacC pathway regulating the transcription of fungal genes allows fungal adaptation to the ocular surface and enables invasion of the injured cornea by F. oxysporum. PMID:20856109

Hua, Xia; Yuan, Xiaoyong; Di Pietro, Antonio; Wilhelmus, Kirk R.

2010-01-01

53

Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt  

Microsoft Academic Search

More effective ways of applying biocontrol products should be developed based both on the characteristics of the biocontrol\\u000a agents and the normal practices of the agricultural producer. A new system was developed to improve the biocontrol efficacy\\u000a of Fusarium wilt for watermelon production, and this system was tested in pot and field experiments. Biocontrol was achieved by applying\\u000a a novel

Ning LingChao; Chao Xue; Qiwei Huang; Xingming Yang; Yangchun Xu; Qirong Shen

2010-01-01

54

Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron.  

PubMed

Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000 microM provided as EDTA/Fe(III)] in a biological control experiment with T34 and Fol in tomato plants. The reduction of the Fusarium-infected shoot by T34 was only significant at 10 microM Fe. We hypothesized that Fe competition is one of the key factors in the biocontrol activity exerted by T34 against Fol, as an increase in Fe concentration over 10 microM would lead to the suppression of T34 siderophore synthesis and thus inhibition of Fe competition with Fol. T34 significantly reduced the populations of Fol at all the doses of Fe assayed. In contrast, Fol enhanced the populations of T34 at 1 and 10 microM Fe. Nevertheless, several plant physiological parameters like net CO(2) assimilation (A), stomatal conductance (g(s)), relative quantum efficiency of PSII (Phi(PSII)), and efficiency of excitation energy capture by open PSII reactive centers (Fv'/Fm') demonstrated the protection against Fol damage by treatment with T34 at 100 microM Fe. The first physiological parameter affected by the disease progression was g(s). Plant dry weight was decreased by Fe toxicity at 100 and 1,000 microM. T34-treated plants had significantly greater heights and dry weights than control plants at 1,000 microM Fe, even though T34 did not reduce the Fe content in leaves or stems. Furthermore, T34 enhanced plant height even at the optimal Fe concentration (10 microM) compared to control plants. In conclusion, T. asperellum strain T34 protected tomato plants from both biotic (Fusarium wilt disease) and abiotic stress [Fe(III) toxic effects]. PMID:19536588

Segarra, Guillem; Casanova, Eva; Avilés, Manuel; Trillas, Isabel

2010-01-01

55

Pathogenic variability in Ethiopian isolates of Fusarium oxysporum f. sp. ciceris and reaction of chickpea improved varieties to the isolates  

Microsoft Academic Search

Twenty-four isolates of Fusarium oxysporum f. sp. ciceris were isolated from wilted chickpea plants obtained from different districts and ‘wilt sickplots’ of central Ethiopia to assess variability in pathogenecity of the populations. Each isolate was tested on 10 different chickpea lines and eight improved chickpea varieties. Isolates showed highly significant variation in wilt severity on the differential lines and improved

Meki Shehabu; Seid Ahmed; Parshotam K. Sakhuja

2008-01-01

56

Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells  

PubMed Central

Background Fusarium wilt of banana is one of the most destructive diseases in the world. This disease has caused heavy losses in major banana production areas. Except for molecular breeding methods based on plant defense mechanisms, effective methods to control the disease are still lacking. Dynamic changes in defense mechanisms between susceptible, moderately resistant, and highly resistant banana and Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4) at the protein level remain unknown. This research reports the proteomic profile of three banana cultivars in response to Foc4 and transcriptional levels correlated with their sequences for the design of disease control strategies by molecular breeding. Results Thirty-eight differentially expressed proteins were identified to function in cell metabolism. Most of these proteins were positively regulated after Foc4 inoculation. These differentially regulated proteins were found to have important functions in banana defense response. Functional categories implicated that these proteins were associated with pathogenesis-related (PR) response; isoflavonoid, flavonoid, and anthocyanin syntheses; cell wall strengthening; cell polarization; reactive oxygen species production and scavenging; jasmonic acid-, abscisic acid-, and auxin-mediated signaling conduction; molecular chaperones; energy; and primary metabolism. By comparing the protein profiles of resistant and susceptible banana cultivars, many proteins showed obvious distinction in their defense mechanism functions. PR proteins in susceptible ‘Brazil’ were mainly involved in defense. The proteins related to PR response, cell wall strengthening and antifungal compound synthesis in moderately resistant ‘Nongke No.1’ were mainly involved in defense. The proteins related to PR response, cell wall strengthening, and antifungal compound synthesis in highly resistant ‘Yueyoukang I’ were mainly involved in defense. 12 differentially regulated genes were selected to validate through quantitative real time PCR method. Quantitative RT-PCR analyses of these selected genes corroborate with their respective protein abundance after pathogen infection. Conclusions This report is the first to use proteomic profiling to study the molecular mechanism of banana roots infected with Foc4. The differentially regulated proteins involved in different defense pathways are likely associated with different resistant levels of the three banana cultivars. PMID:24070062

2013-01-01

57

Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, strains of F. oxysporum exhibit wide host range and are pathogenic to both plant and animal species, reflecting remarkable genetic adapta...

58

Bronze Wilt of Cotton  

E-print Network

of secondary roots. Distinguishing Bronze Wilt from Other Diseases The above-ground symptoms of bronze wilt may resemble those of Fusarium and Verticillium wilts; Macrophomina and Phymatotrichum root rots; damage from root knot, reniform, stunt or lance... with Fusarium or Verticillium wilt (Fig.11, right). Fungal root rots cause discoloration and rotting, first of the bark and then of the entire root. Rhizoctonia causes girdling of the stem at the soil line and black discoloration of the pith in both the stem...

Bell, Alois A.; Nichols, Robert L.; Lemon, Robert G.

2002-02-12

59

The Brassicaceae-Specific EWR1 Gene Provides Resistance to Vascular Wilt Pathogens  

PubMed Central

Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well. PMID:24505441

Yadeta, Koste A.; Valkenburg, Dirk-Jan; Hanemian, Mathieu; Marco, Yves; Thomma, Bart P. H. J.

2014-01-01

60

A polyketide synthase gene and an aspartate kinase like gene are required for the biosynthesis of fusaric acid in Fusarium Oxysporum f. sp. Vasinfectum  

Technology Transfer Automated Retrieval System (TEKTRAN)

A genetically unique strain of the Fusarium wilt pathogen was first recognized in wilted and dead Upland cotton seedlings in Australia in 1993. Since that time the disease spread rapidly despite stringent containment practices. The Australian biotype isolates of Fusarium oxysporum f. sp. vasinfec...

61

Genetic and pathogenic variability of Fusarium oxysporum f. sp. cepae isolated from onion and Welsh onion in Japan.  

PubMed

Fusarium oxysporum f. sp. cepae (FOC) causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of FOC is very limited. In this study, FOC was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 FOC isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1? (EF-1?) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that FOC isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades. PMID:25412011

Sasaki, Kazunori; Nakahara, Katsuya; Tanaka, Shuhei; Shigyo, Masayoshi; Ito, Shin-Ichi

2014-11-20

62

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium  

SciTech Connect

Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

2010-03-18

63

Assessing the cost of an invasive forest pathogen: a case study with oak wilt.  

PubMed

Economic assessment of damage caused by invasive alien species provides useful information to consider when determining whether management programs should be established, modified, or discontinued. We estimate the baseline economic damage from an invasive alien pathogen, Ceratocystis fagacearum, a fungus that causes oak wilt, which is a significant disease of oaks (Quercus spp.) in the central United States. We focus on Anoka County, Minnesota, a 1,156 km(2) mostly urban county in the Minneapolis-Saint Paul metropolitan region. We develop a landscape-level model of oak wilt spread that accounts for underground and overland pathogen transmission. We predict the economic damage of tree mortality from oak wilt spread in the absence of management during the period 2007-2016. Our metric of economic damage is removal cost, which is one component of the total economic loss from tree mortality. We estimate that Anoka County has 5.92 million oak trees and 885 active oak wilt pockets covering 5.47 km(2) in 2007. The likelihood that landowners remove infected oaks varies by land use and ranges from 86% on developed land to 57% on forest land. Over the next decade, depending on the rates of oak wilt pocket establishment and expansion, 76-266 thousand trees will be infected with discounted removal cost of $18-60 million. Although our predictions of removal costs are substantial, they are lower bounds on the total economic loss from tree mortality because we do not estimate economic losses from reduced services and increased hazards. Our predictions suggest that there are significant economic benefits, in terms of damage reduction, from preventing new pocket establishment or slowing the radial growth of existing pockets. PMID:21331653

Haight, Robert G; Homans, Frances R; Horie, Tetsuya; Mehta, Shefali V; Smith, David J; Venette, Robert C

2011-03-01

64

A Network Approach to Predict Pathogenic Genes for Fusarium graminearum  

PubMed Central

Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum. PMID:20957229

Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

2010-01-01

65

A Fungal Symbiont of Plant-Roots Modulates Mycotoxin Gene Expression in the Pathogen Fusarium sambucinum  

Microsoft Academic Search

Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried

Youssef Ismail; Susan McCormick; Mohamed Hijri; Ching-Hong Yang

2011-01-01

66

Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.  

PubMed

The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1? sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1? genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1? region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study. PMID:25501150

Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

2014-01-01

67

Trichoderma asperellum Strain T34 Controls Fusarium Wilt Disease in Tomato Plants in Soilless Culture Through Competition for Iron  

Microsoft Academic Search

Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness\\u000a of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000?µM provided as\\u000a EDTA\\/Fe(III)] in

Guillem Segarra; Eva Casanova; Manuel Avilés; Isabel Trillas

2010-01-01

68

Multilocus phylogenetic diversity of Fusarium avenaceum pathogenic on lisianthus.  

PubMed

Fusarium avenaceum is a globally distributed fungus commonly isolated from soil and a wide range of plants. Severe outbreaks of crown and stem rot of the flowering ornamental, lisianthus (Eustoma grandiflorum), have been attributed to F. avenaceum. We sequenced portions of the translation elongation factor 1-alpha (tef) and beta-tubulin (benA) protein coding genes as well as partial intergenic spacer (IGS) regions of the nuclear ribosomal genes in 37 Fusarium isolates obtained from lisianthus and other host plants. Isolates that were previously identified morphologically as F. acuminatum were included as an outgroup. Phylogenetic analyses of tef, benA, and IGS sequences showed that F. avenaceum isolates were an exclusive group with strong bootstrap support and no significant incongruence among gene genealogies. Isolates from lisianthus were scattered within this clade and did not form distinct groups based on host species or locality. Pathogenicity tests of F. avenaceum isolates obtained from several other hosts showed an ability to cause disease on lisianthus, suggesting that F. avenaceum may be pathogenic on lisianthus regardless of its phylogenetic origin. These findings have management implications and suggest that any host that supports F. avenaceum may serve as a source of inoculum for lisianthus growers. PMID:19271989

Nalim, F A; Elmer, W H; McGovern, R J; Geiser, D M

2009-04-01

69

Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium circinatum  

PubMed Central

There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

2014-01-01

70

Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.  

PubMed

There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

2014-01-01

71

Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia  

Microsoft Academic Search

Fusarium proliferatum can occur on a wide range of economically important vegetable plants but its role in disease is not always well established.\\u000a In 2000 and 2001, from forty-one field samples of wilting onion and garlic plants in Serbia, F. proliferatum as the predominant fungal species was isolated from root and bulbs. Seventy isolates were firstly characterized for their\\u000a sexual

S. Stankovic; J. Levic; T. Petrovic; A. Logrieco; A. Moretti

2007-01-01

72

Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application  

PubMed Central

Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

2014-01-01

73

Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis.  

PubMed

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed. PMID:21281113

Kidd, Brendan N; Kadoo, Narendra Y; Dombrecht, Bruno; Tekeoglu, Mücella; Gardiner, Donald M; Thatcher, Louise F; Aitken, Elizabeth A B; Schenk, Peer M; Manners, John M; Kazan, Kemal

2011-06-01

74

Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains  

Technology Transfer Automated Retrieval System (TEKTRAN)

It has been proposed that plumbing systems might serve as a significant environmental reservoir of human pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates, and comparing...

75

Influence of Climatic Factors on Fusarium Species Pathogenic to Cereals  

Microsoft Academic Search

Fusarium head blight of small-grain cereals, ear rot of maize, seedling blight and foot rot of cereals are important diseases throughout the world. Fusarium graminearum, F. culmorum, F. poae, F. avenaceum and Microdochium nivale (formerly known as F. nivale) predominantly cause Fusarium diseases of small-grain cereals. Maize is predominantly attacked by F. graminearum, F. moniliforme, F. proliferatum and F. subglutinans.

F. M. Doohan; J. Brennan; B. M. Cooke

2003-01-01

76

THE PATHOGENICITY AND DNA POLYMORPHISM OF FUSARIUM OXYSPORUM ORIGINATING FROM DIANTHUS CARYOPHYLLUS, GYPSOPHILA SPP. AND SOIL  

Microsoft Academic Search

A number of Fusarium oxysporum pathogenic isolates originating from Dianthus caryophyllus, Gypsophila paniculata, G. repens and non-pathogenic strains obtained from soil was screened for pathogenicity and genetic variation. RAPD analysis con- ducted with arbitrary 10-mer primers gave 23 RAPD markers resulted from the DNA polymorphism. Clustering analysis based on RAPD fingerprint data revealed several distinct groups within F. oxysporum which

M. Werner; L. Irzykowska

77

Responses of Quercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetle Platypus quercivorus  

Microsoft Academic Search

Quercus serrata andQ. crispula wilt during the summer in wide areas along the Sea of Japan. Mass attacks of trees by an ambrosia beetle (Platypus quercivorus) are characteristic before appearance of the wilting symptoms. This study investigated the pathogenic effects of a fungus\\u000a detected specifically in the wilting trees. This hyphomycete fungus,Raffaelea sp., has a distribution that correlates with the

Keiko Kuroda

2001-01-01

78

Gene Genealogies and AFLP Analyses in the Fusarium oxysporum Complex Identify Monophyletic and Nonmonophyletic Formae Speciales Causing Wilt and Rot Disease.  

PubMed

ABSTRACT The monophyletic origin of host-specific taxa in the plant-pathogenic Fusarium oxysporum complex was tested by constructing nuclear and mitochondrial gene genealogies and amplified fragment length polymorphism (AFLP)-based phylogenies for 89 strains representing the known genetic and pathogenic diversity in 8 formae speciales associated with wilt diseases and root and bulb rot. We included strains from clonal lineages of F. oxysporum f. spp. asparagi, dianthi, gladioli, lilii, lini, opuntiarum, spinaciae, and tulipae. Putatively nonpathogenic strains from carnation and lily were included and a reference strain from each of the three main clades identified previously in the F. oxysporum complex; sequences from related species were used as outgroups. DNA sequences from the nuclear translation elongation factor 1alpha and the mitochondrial small subunit (mtSSU) ribosomal RNA genes were combined for phylogenetic analysis. Strains in vegetative compatibility groups (VCGs) shared identical sequences and AFLP profiles, supporting the monophyly of the two single-VCG formae speciales, lilii and tulipae. Identical genotypes were also found for the three VCGs in F. oxysporum f. sp. spinaciae. In contrast, multiple evolutionary origins were apparent for F. oxysporum f. spp. asparagi, dianthi, gladioli, lini, and opuntiarum, although different VCGs within each of these formae speciales often clustered close together or shared identical EF-1alpha and mtSSU rDNA haplotypes. Kishino-Hasegawa analyses of constraints forcing the monophyly of these formae speciales supported the exclusive origin of F. oxysporum f. sp. opuntiarum but not the monophyly of F. oxysporum f. spp. asparagi, dianthi, gladioli, and lini. Most of the putatively nonpathogenic strains from carnation and lily, representing unique VCGs, were unrelated to F. oxysporum f. spp. dianthi and lilii, respectively. Putatively nonpathogenic or rot-inducing strains did not form exclusive groups within the molecular phylogeny. Parsimony analyses of AFLP fingerprint data supported the gene genealogy-based phylogram; however, AFLP-based phylogenies were considerably more homoplasious than the gene genealogies. The predictive value of the forma specialis naming system within the F. oxysporum complex is questioned. PMID:18944511

Baayen, R P; O'Donnell, K; Bonants, P J; Cigelnik, E; Kroon, L P; Roebroeck, E J; Waalwijk, C

2000-08-01

79

Tomato Genome-Wide Transcriptional Responses to Fusarium Wilt and Tomato Mosaic Virus  

PubMed Central

Since gene expression approaches constitute a starting point for investigating plant–pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

2014-01-01

80

Stable integration and expression of wasabi defensin gene in "Egusi" melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot.  

PubMed

Production of "Egusi" melon (Colocynthis citrullus L.) in West Africa is limited by fungal diseases, such as Alternaria leaf spot and Fusarium wilt. In order to engineer "Egusi" resistant to these diseases, cotyledonary explants of two "Egusi" genotypes, 'Ejagham' and NHC1-130, were transformed with Agrobacterium tumefaciens strain EHA101 harbouring wasabi defensin gene (isolated from Wasabia japonica L.) in a binary vector pEKH1. After co-cultivation for 3 days, infected explants were transferred to MS medium containing 100 mg l(-l) kanamycin to select transformed tissues. After 3 weeks of culture, adventitious shoots appeared directly along the edges of the explants. As much as 19 out of 52 (36.5%) and 25 out of 71 (35.2%) of the explants in genotype NHC1-130 and 'Ejagham', respectively, formed shoots after 6 weeks of culture. As much as 74% (14 out of 19) of the shoots regenerated in genotype NHC1-130 and 72% (18 out of 25) of those produced in genotype 'Ejagham' were transgenic. A DNA fragment corresponding to the wasabi defensin gene or the selection marker nptII was amplified by PCR from the genomic DNA of all regenerated plant clones rooted on hormone-free MS medium under the same selection pressure, suggesting their transgenic nature. Southern blot analysis confirmed successful integration of 1-5 copies of the transgene. RT-PCR, northern and western blot analyses revealed that wasabi defensin gene was expressed in transgenic lines. Transgenic lines showed increased levels of resistance to Alternaria solani, which causes Alternaria leaf spot and Fusarium oxysporum, which causes Fusarium wilt, as compared to that of untransformed plants. PMID:20552202

Ntui, Valentine Otang; Thirukkumaran, Gunaratnam; Azadi, Pejman; Khan, Raham Sher; Nakamura, Ikuo; Mii, Masahiro

2010-09-01

81

Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt  

Technology Transfer Automated Retrieval System (TEKTRAN)

A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

82

Cytochemical Labeling for Fungal and Host Components in Plant Tissues Inoculated with Fungal Wilt Pathogens  

NASA Astrophysics Data System (ADS)

Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.

Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.

2004-08-01

83

Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt.  

PubMed

Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro

2014-03-01

84

Potential impact of a new highly virulent race of Fusarium oxysporum f. sp. niveum in watermelon in the U.S.A.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium wilt of watermelon was first reported in the United States in 1894. Although there exists variation in virulence within the pathogen population, Fusarium oxysporum f. sp. niveum, differentiation of isolates into races did not occur for 70 years. Currently, three races (0, 1, and 2) of F. ...

85

Influence of Soil Fumigation on the Fusarium-Root-knot Nematode Disease Complex of Cotton in California  

PubMed Central

For control of the root-knot nematode, Meloidogyne incognita, and the pathogenic wilt fungus, Fusarium oxysporum, on cotton, soil fumigants were applied in the field at conventional and higher rates. Conventional rates suppressed Fusarium wilt but higher rates gave quicker early growth, better stands, less stand loss over the season, a lower percentage of plants infected with wilt, fewer plants with vascular discoloration, and fewer nematodes. The best treatment about doubled the yields of untreated controls in one experiment and quadrupled them in another. PMID:19305846

Jorgenson, E. C.; Hyer, A. H.; Garber, R. H.; Smith, Shirley N.

1978-01-01

86

The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization  

Microsoft Academic Search

We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain

Christina A. Cuomo; Ulrich Güldener; Jin-Rong Xu; Frances Trail; B. Gillian Turgeon; Antonio Di Pietro; Jonathan D. Walton; Li-Jun Ma; Scott E. Baker; Martijn Rep; Gerhard Adam; John Antoniw; Thomas Baldwin; Sarah Calvo; Yueh-Long Chang; David DeCaprio; Liane R. Gale; Sante Gnerre; Rubella S. Goswami; Kim Hammond-Kosack; Linda J. Harris; Karen Hilburn; John C. Kennell; Scott Kroken; Jon K. Magnuson; Gertrud Mannhaupt; Evan Mauceli; Hans-Werner Mewes; Rudolf Mitterbauer; Gary Muehlbauer; Martin Münsterkötter; David Nelson; Kerry O'Donnell; Thérčse Ouellet; Weihong Qi; Hadi Quesneville; M. Isabel G. Roncero; Kye-Yong Seong; Igor V. Tetko; Martin Urban; Cees Waalwijk; Todd J. Ward; Jiqiang Yao; Bruce W. Birren; H. Corby Kistler

2007-01-01

87

Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae  

Technology Transfer Automated Retrieval System (TEKTRAN)

The symptoms of soybean sudden death syndrome (SDS) include leaf chlorosis and necrosis, root rot, defoliation and death. Four members of the Fusarium solani species complex are known to cause these symptoms on soybean. Thus far, three of these pathogens have only been found in South America (i.e....

88

The pathogenicities of Cylindrocarpon tonkinense and Fusarium solani in the rabbit cornea  

Microsoft Academic Search

The pathogenicity of Cylindrocarpon tonkinense in the cornea was evaluated and compared with that of Fusarium solani in rabbits. F. solani was inoculated into the right eyes of 14 rabbits and C. tonkinense was into the left eyes of same rabbits. The corneal lesions of both eyes were examined carefully by slit lamp every day for three weeks and the

Yasuhisa Ishibashi; Herbert E. Kaufman; Tadahiko Matsumoto; Saburo Kagawa

1986-01-01

89

BIOLOGICAL, PATHOGENIC, AND MOLECULAR CHARACTERIZATION OF FUSARIUM SOLANI F. SP. GLYCINES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soybean sudden death syndrome (SDS) is caused by Fusarium solani f. sp. glycines (FSG). Over the last 5 years an internationsl collection of FSG isolates has been established and maintained at the National Soybean Pathogen Collection Center. FSG isolates grew slowly and appeared reddish light blue t...

90

The Fusarium graminearum species complex comprises at least 16 phylogenetically distinct head blight pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight (FHB) or scab of cereals is one of the most economically devastating plant diseases in the world today. FHB outbreaks and epidemics of wheat and barley cause significant reduction in yields; these pathogens also frequently contaminate grain with deoxynivalenol or nivalenol trich...

91

The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization  

Technology Transfer Automated Retrieval System (TEKTRAN)

The filamentous fungus Fusarium graminearum is a major destructive pathogen of cultivated cereals. We have sequenced and annotated the F. graminearum genome, and found it includes very few repetitive sequences. We experimentally demonstrate that repeats are mutated by the process of repeat-induced p...

92

Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains ? †  

PubMed Central

It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections. PMID:21976755

Short, Dylan P. G.; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H.; Geiser, David M.

2011-01-01

93

Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae  

PubMed Central

The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting. PMID:25288974

Jung, Boknam; Lee, Sehee; Ha, Jiran; Park, Jong-Chul; Han, Sung-Sook; Hwang, Ingyu; Lee, Yin-Won; Lee, Jungkwan

2013-01-01

94

Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust.  

PubMed

In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Pińonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies. PMID:20820862

Palmero, D; Rodríguez, J M; de Cara, M; Camacho, F; Iglesias, C; Tello, J C

2011-01-01

95

The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum  

Technology Transfer Automated Retrieval System (TEKTRAN)

WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is also required for pathogenicity and expression of plant effector proteins. F. graminearum, an imp...

96

Specific PCR-based marker for detection of pathogenic groups of Fusarium oxysporum f. sp. cucumerinum in India  

Microsoft Academic Search

For the detection of Fusarium oxysporum f. sp. cucumerinum pathogenic groups, a specific PCR-based marker was developed. Specific random amplified polymorphic DNA (RAPD) markers which identified in four pathogenic groups I, II, III, and IV were cloned into PGem-Teasy vector. Cloned fragments were sequenced, and used for developing sequence characterized amplified regions (SCAR) primers for detection of pathogenic groups. F.

Mousa Najafiniya; Pratibha Sharma

2011-01-01

97

A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5.  

PubMed

Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. ciceris (Foc) is the main soil-borne disease limiting chickpea production. Management of this disease is achieved mainly by the use of resistant cultivars. However, co-infection of a Foc-resistant plant by the fungus and the root-knot nematode Meloidogyne artiellia (Ma) causes breakdown of the resistance and thus limits its efficacy in the control of Fusarium wilt. In this work we aimed to reveal key aspects of chickpea:Foc:Ma interactions, studying fungal- and nematode-induced changes in root proteins, using chickpea lines 'CA 336.14.3.0' and 'ICC 14216K' that show similar resistant (Foc race 5) and susceptible (Ma) responses to either pathogen alone but a differential response after co-infection with both pathogens. 'CA 336.14.3.0' and 'ICC 14216K' chickpea plants were challenged with Foc race 5 and Ma, either in single or in combined inoculations, and the root proteomes were analyzed by two-dimensional gel electrophoresis using three biological replicates. Pairwise comparisons of treatments indicated that 47 protein spots in 'CA 336.14.3.0' and 31 protein spots in 'ICC 14216K' underwent significant changes in intensity. The responsive protein spots tentatively identified by MALDI TOF-TOF MS (27 spots for 'CA 336.14.3.0' and 15 spots for 'ICC 14216K') indicated that same biological functions were involved in the responses of either chickpea line to Foc race 5 and Ma, although common as well as line-specific responsive proteins were found within the different biological functions. To the best of our knowledge, this is the first study at the root proteome level of chickpea response to a biotic stress imposed by single and joint infections by two major soil-borne pathogens. PMID:21640211

Palomares-Rius, Juan E; Castillo, Pablo; Navas-Cortés, Juan A; Jiménez-Díaz, Rafael M; Tena, Manuel

2011-09-01

98

Interaction of Fusarium oxysporum f. sp. ciceri and Meloidogyne javanica on Cicer arietinum  

PubMed Central

Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types. PMID:19274140

Maheswari, T. Uma; Sharma, S. B.; Reddy, D. D. R.; Haware, M. P.

1997-01-01

99

EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY, AND FUSARIUM WILT IN  

E-print Network

1 EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY compost as an antagonistic suppression approach to combat soil-borne disease effects on crop yields the effect of compost and lime on soil chemical properties, the soil microbial community (including Fusarium

Ma, Lena

100

Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).  

PubMed

Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance. PMID:25277445

Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

2015-01-01

101

A Fungal Symbiont of Plant-Roots Modulates Mycotoxin Gene Expression in the Pathogen Fusarium sambucinum  

PubMed Central

Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens. PMID:21455305

Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

2011-01-01

102

Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil.  

PubMed

Agro-industrial wastes of cattle dung, vinegar-production residue and rice straw were solid-state fermented by inoculation with Trichoderma harzianum SQR-T037 (SQR-T037) for production of bioorganic fertilizers containing SQR-T037 and 6-pentyl-?-pyrone (6PAP) to control Fusarium wilt of cucumber in a continuously cropped soil. Fermentation days, temperature, inoculum and vinegar-production residue demonstrated significant effects on the SQR-T037 biomass and the yield of 6PAP, based on fractional factorial design. Three optimum conditions for producing the maximum SQR-T037 biomass and 6PAP yield were predicted by central composite design and validated. Bioorganic fertilizer containing 8.46 log(10) ITS copies g(-1) dry weight of SQR-T037 and 1291.73 mg kg(-1) dry weight of 6PAP, and having the highest (p<0.05) biocontrol efficacy, was achieved at 36.7 fermentation days, 25.9°C temperature, 7.6% inoculum content, 41.0% vinegar-production residue, 20.0% rice straw and 39.0% cattle dung. This is a way to offer a high value-added use for agro-industrial wastes. PMID:21190841

Chen, Lihua; Yang, Xingming; Raza, Waseem; Luo, Jia; Zhang, Fengge; Shen, Qirong

2011-02-01

103

Fusarium pathogenomics.  

PubMed

Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens. PMID:24024636

Ma, Li-Jun; Geiser, David M; Proctor, Robert H; Rooney, Alejandro P; O'Donnell, Kerry; Trail, Frances; Gardiner, Donald M; Manners, John M; Kazan, Kemal

2013-01-01

104

A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum.  

PubMed

Oilseed rape (Brassica napus) is one of the major oilseed crops in the world but is vulnerable to attack by many pathogens and insect pests. In addition to the host plant genotype, micro-organisms present in the rhizosphere and within plant tissues affect the susceptibility to plant pathogens. While rapid progress has been achieved concerning the concept of plant resistance genes, information on the role of the microbial community in plant protection is less apparent. We have studied the endophytic bacterial populations present in different tissues of oilseed rape and also analysed several cultivars (Express, Libraska, Maluka and Westar), which differ in their susceptibility to the wilt pathogen Verticillium longisporum. The population diversity was studied using agar plating assay, fatty acid methyl ester analysis and functional characterisation of isolated strains. Our work shows that already in the seeds there exists diversity in populations as well as in the total microbial load between two of the four tested cultivars. About 50% of the strains isolated from cultivars Express and Libraska showed moderate to strong direct inhibition of V. longisporum. The diversity of the endophytic flora isolated from oilseed rape and its implications in crop protection are discussed. PMID:12892892

Granér, Georg; Persson, Paula; Meijer, Johan; Alström, Sadhna

2003-07-29

105

Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis  

Microsoft Academic Search

Background  \\u000a Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular\\u000a tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression\\u000a are

Sara Sestili; Annalisa Polverari; Laura Luongo; Alberto Ferrarini; Michele Scotton; Jamshaid Hussain; Massimo Delledonne; Nadia Ficcadenti; Alessandra Belisario

2011-01-01

106

Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium  

Technology Transfer Automated Retrieval System (TEKTRAN)

We determined the antibacterial activity of clove oil against seven different genera of plant pathogenic bacteria including Gram-negative Agrobacterium tumefaciens, Erwinia carotovora pv. carotovora, Pseudomonas syringae pv. syringae, Ralstonia solanacearum, and Xanthomonas campestris pv. pelargonii...

107

Distribution, Morphological Characterization and Pathogenicity of Fusarium sacchari Associated with Pokkah Boeng Disease of Sugarcane in Peninsular Malaysia  

Microsoft Academic Search

Pokkah boeng disease on sugarcane has been recorded in almost all countries where sugarcane is grown commercially. The objectives of this study were to survey the distribution of Fusarium sacchari associated with pokkah boeng disease throughout Peninsular Malaysia, to isolate and identify the causal organisms by using morphological characteristics, and to ascertain the pathogenicity of F. sacchari based on Koch's

Siti Nordahliawate; Nur Ain Izzati

108

Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.  

PubMed

Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. PMID:25418882

Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

2014-11-21

109

The Fusarium Graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization  

SciTech Connect

We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.

Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong; Trail, Frances; Turgeon, Barbara G.; Di Pietro, Antonio; Walton, Johnathan D.; Ma, Li Jun; Baker, Scott E.; Rep, Martijn; Adam, Gerhard; Antoniw, John; Baldwin, Thomas; Calvo, Sarah; Chang, Yueh Long; DeCaprio, David; Gale, Liane R.; Gnerre, Sante; Goswami, Rubella S.; Hammond-Kossack, Kim; Harris, Linda J.; Hilburn, Karen; Kennell, John C.; Kroken, Scott; Magnuson, Jon K.; Mannhaupt, Gertrud; Mauceli, Evan; Mewes, Hans Werner; Mitterbauer, Rudolf; Muehlbauer, Gary; Munsterkotter, Martin; Nelson, David; O'Donnell, Kerry; Ouellet, Therese; Qi, Weihong; Quesneville, Hadi; Roncero, M. Isabel; Seong, Kye Yong; Tetko, Igor V.; Urban, Martin; Waalwijk, Cees; Ward, Todd J.; Yao, Jiqiang; Birren, Bruce W.; Kistler, H. Corby

2007-09-07

110

Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity.  

PubMed

Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We targeted two CHSs (CHS5 and CHS7) for deletion analysis and found that both are required for normal hyphal growth and maximal disease of maize seedlings and ears. CHS5 and CHS7 encode a putative class V and class VII fungal chitin synthase, respectively; they are located adjacent to each other and are divergently transcribed. Fluorescent microscopy found that both CHS deficient strains produce balloon-shaped hyphae, while growth assays indicated that they were more sensitive to cell wall stressing compounds (e.g., the antifungal compound Nikkomycin Z) than wild type. Pathogenicity assays on maize seedlings and ears indicated that both strains were significantly reduced in their ability to cause disease. Our results demonstrate that both CHS5 and CHS7 are necessary for proper hyphal growth and pathogenicity of F. verticillioides on maize. PMID:21246198

Larson, Troy M; Kendra, David F; Busman, Mark; Brown, Daren W

2011-06-01

111

Identification of the Infection Route of a Fusarium Seed Pathogen into Nondormant Bromus tectorum Seeds.  

PubMed

ABSTRACT The genus Fusarium has a wide host range and causes many different forms of plant disease. These include seed rot and seedling blight diseases of cultivated plants. The diseases caused by Fusarium on wild plants are less well-known. In this study, we examined disease development caused by Fusarium sp. n on nondormant seeds of the important rangeland weed Bromus tectorum as part of broader studies of the phenomenon of stand failure or "die-off" in this annual grass. We previously isolated an undescribed species in the F. tricinctum species complex from die-off soils and showed that it is pathogenic on seeds. It can cause high mortality of nondormant B. tectorum seeds, especially under conditions of water stress, but rarely attacks dormant seeds. In this study, we used scanning electron microscopy (SEM) to investigate the mode of attack used by this pathogen. Nondormant B. tectorum seeds (i.e., florets containing caryopses) were inoculated with isolate Skull C1 macroconidia. Seeds were then exposed to water stress conditions (-1.5 MPa) for 7 days and then transferred to free water. Time lapse SEM photographs of healthy versus infected seeds revealed that hyphae under water stress conditions grew toward and culminated their attack at the abscission layer of the floret attachment scar. A prominent infection cushion, apparent macroscopically as a white tuft of mycelium at the radicle end of the seed, developed within 48 h after inoculation. Seeds that lacked an infection cushion completed germination upon transfer to free water, whereas seeds with an infection cushion were almost always killed. In addition, hyphae on seeds that did not initiate germination lacked directional growth and did not develop the infection cushion. This strongly suggests that the fungal attack is triggered by seed exudates released through the floret attachment scar at the initiation of germination. Images of cross sections of infected seeds showed that the fungal hyphae first penetrated the caryposis wall, then entered the embryo, and later ramified throughout the endosperm, completely destroying the seed. PMID:25389704

Franke, JanaLynn; Geary, Brad; Meyer, Susan E

2014-12-01

112

Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia.  

PubMed

The laurel wilt pathogen Raffaelea lauricola was hypothesized to have been introduced to the southeastern USA in the mycangium of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia. To test this hypothesis adult X. glabratus were trapped in Taiwan and on Kyushu Island, Japan, in 2009, and dead beetles were sent to USA for isolation of fungal symbionts. Individual X. glabratus were macerated in glass tissue grinders, and the slurry was serially diluted and plated onto malt agar medium amended with cycloheximide, a medium semiselective for Ophiostoma species and their anamorphs, including members of Raffaelea. R. lauricola was isolated from 56 of 85 beetles in Taiwan and 10 of 16 beetles in Japan at up to an estimated 10 000 CFUs per beetle. The next most commonly isolated species was R. ellipticospora, which also has been recovered from X. glabratus trapped in the USA, as were two other fungi isolated from beetles in Taiwan, R. fusca and R. subfusca. Three unidentified Raffaelea spp. and three unidentified Ophiostoma spp. were isolated rarely from X. glabratus collected in Taiwan. Isolations from beetles similarly trapped in Georgia, USA, yielded R. lauricola and R. ellipticospora in numbers similar to those from beetles trapped in Taiwan and Japan. The results support the hypothesis that R. lauricola was introduced into the USA in mycangia of X. glabratus shipped to USA in solid wood packing material from Asia. However differences in the mycangial mycoflora of X. glabratus in Taiwan, Japan and USA suggest that the X. glabratus population established in USA originated in another part of Asia. PMID:21471288

Harrington, Thomas C; Yun, Hye Young; Lu, Sheng-Shan; Goto, Hideaki; Aghayeva, Dilzara N; Fraedrich, Stephen W

2011-01-01

113

A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum.  

PubMed

A conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast Fus3/Kss1 mating/filamentation pathway is involved in the regulation of vegetative development and pathogenicity in Fusarium graminearum. However, little is known about the downstream transcription factors of this pathway. In Saccharomyces cerevisiae, the homeodomain protein Ste12 is a key transcription factor activated by Fus3/Kss1. In this study, we characterized a Ste12 orthologue FgSte12 in F.?graminearum. The FgSTE12 deletion mutant (?FgSte12) was impaired in virulence and in the secretion of cellulase and protease, although it did not show recognizable phenotype changes in hyphal growth, conidiation or deoxynivalenol (DON) biosynthesis. In addition, ?FgSte12 and the FgGPMK1 (a FUS3/KSS1-related MAPK gene) mutant shared several phenotypic traits. Furthermore, we found that FgGpmk1 controls the nuclear localization of FgSte12. Yeast two-hybrid and affinity capture assays indicated that FgSte12 interacts with the FgSte11-Ste7-Gpmk1 complex. Taken together, these results indicate that FgSte12 is a downstream target of FgSte11-Ste7-Gpmk1 and plays an important role in pathogenicity in F.?graminearum. PMID:24832137

Gu, Qin; Zhang, Chengqi; Liu, Xin; Ma, Zhonghua

2015-01-01

114

Entomogenous Fusarium species  

Microsoft Academic Search

Fusarium species are known for their abundance in nature and their diverse associations with both living and dead plants and animals. Among animals Fusarium is found primarily in relationship with insects. This literature review of the past 50 years includes both non-pathogenic and pathogenic relationships between Fusarium and insects. Special attention is given to the host range, particularly between plant-

Gertrud H. Teetor-Barsch; Donald W. Roberts

1983-01-01

115

Fusarium wilt of pigeon pea  

Microsoft Academic Search

Summary  Chlorophyll, ascorbic acid, free reducing sugars and total manganese were highest in the least susceptible variety N.P. 15\\u000a and lowest in the most susceptible N.P. 24. In the latter, total carbohydrates were more in the root than in the shoot, while\\u000a in the former, the opposite trend was observed. Fe\\/Mn ratio was found to increase with increasing susceptibility. Under pathogenesis,

S. Subramanian

1963-01-01

116

Microbiological and SYBR green real-time PCR detection of major Fusarium head blight pathogens on wheat ears.  

PubMed

Fusarium head blight (FHB) caused by several Fusarium species is one of the most serious diseases affecting wheat throughout the world. The efficiency of microbiological assays and real-time PCRto quantify major FHB pathogens in wheat ears after inoculation with F. graminearum, F. culmorum, F. avenaceum and F. poae undergreenhouse and field conditions were evaluated. The frequency of infected kernel, content of fungal biomass, disease severity and kernel weight were determined. To measure the fungal biomass an improved DNA extraction method and a SYBR Green real-time PCR were developed. The SYBR Green real-time PCR proved to be highly specific for individual detection of the species in a matrix including fungal and plant DNA. The effect of Fusarium infection on visible FHB severity, frequency of infected kernels and thousand-kernel mass (TKM) significantly depended on the Fusarium species/isolate. F. graminearum resulted in highest disease level, frequency of infected kernels, content of fungal biomass, and TKM reduction followed by F. culmorum, EF avenaceum and F. poae, respectively. The comparison of frequency and intensity of kernel colonization proved differences in aggressiveness and development of the fungi in the kernels. Only for F. graminearum, the most aggressive isolate, application of microbiological and real-time PCR assays gave similar results. For the other species, the intensity of kernel colonization was lower than expected from the frequency of infection. PMID:21090507

Moradi, M; Oerke, E C; Steiner, U; Tesfaye, D; Schellander, K; Dehne, H-W

2010-01-01

117

Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum.  

PubMed

Fusarium proliferatum is a common pathogen able to infect a broad range of agriculturally important crops. Recently, some evidence for genetic variance among the species genotypes in relation to their plant origin has been reported. Mycotoxin contamination of plant tissues is the most important threat caused by F. proliferatum and fumonisins B (FBs) are the principal mycotoxins synthesized. The toxigenic potential of the pathogen genotypes is variable and also the reaction of different host plant species on the infection by pathogen is different. The objective of present study was to evaluate the impact of the extracts on the growth and fumonisin biosynthesis by 32 F. proliferatum strains originating from different host species (A-asparagus, M-maize, G-garlic, PS-pea and P-pineapple), and how it changes the secondary metabolism measured by fumonisin biosynthesis. The average strain dry weight was 65.2 mg for control conditions and it reached 180.7 mg, 100.5 mg, 76.6 mg, 126.2 mg and 51.1 mg when pineapple, asparagus, maize, garlic and pea extracts were added, respectively. In the second experiment the extracts were added after 5 days of culturing of the representative group of strains, displaying diverse reaction to the extract presence. Also, the influence of stationary vs. shaken culture was examined. Mean biomass amounts for shaken cultures of 15 chosen strains were as follows: 37.4 mg of dry weight for control culture (C), 219.6 mg (P), 113 mg (A), 93.6 mg (M), 62 mg (G) and 48 mg (PS), respectively. For stationary cultures, the means were as follows: C-57.4 mg, P-355.6 mg, A-291.6 mg, M-191.1 mg, G-171.1 mg and PS-58.9 mg. Few strains showed differential growth when stationary/shaken culture conditions were applied. Almost all strains synthesized moderate amounts of fumonisins in control conditions-less than 10 ng/?L, regardless of the origin and host species. Few strains were able to produce over 100 ng/?L of FBs when pineapple extract was added, twelve strains synthesized more than 10 ng/?L under asparagus extract induction and the pea extract was the most efficient inhibitor of fumonisin biosynthesis. The general impact of the extracts on the fungal biomass amounts was similar, regardless of the host plant origin of the fungal genotypes studied. The evaluation of FBs content has shown differential reaction of some strains, which may contribute to their aggressiveness and pathogenicity. PMID:25462926

St?pie?, ?ukasz; Wa?kiewicz, Agnieszka; Wilman, Karolina

2015-01-16

118

The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK.  

PubMed

Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium species on malting and brewing quality of naturally infected samples, selected malting barley cultivars (Optic, Quench and Tipple) were micromalted and subjected to malt and wort analysis of key quality parameters. F. poae and M. nivale decreased germinative energy and increased water sensitivity of barley. The fungal biomass of F. poae and F. langsethiae correlated with increased wort free amino nitrogen and with decreased extract of malt. DNA of M. nivale correlated with increased malt friability as well as decreased wort filtration volume. The findings of this study indicate that the impact of species such as the newly emerging F. langsethiae, as well as F. poae and the two non-toxigenic Microdochium species should be considered when evaluating the quality of malting barley. PMID:24727381

Nielsen, L K; Cook, D J; Edwards, S G; Ray, R V

2014-06-01

119

The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK  

PubMed Central

Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium species on malting and brewing quality of naturally infected samples, selected malting barley cultivars (Optic, Quench and Tipple) were micromalted and subjected to malt and wort analysis of key quality parameters. F. poae and M. nivale decreased germinative energy and increased water sensitivity of barley. The fungal biomass of F. poae and F. langsethiae correlated with increased wort free amino nitrogen and with decreased extract of malt. DNA of M. nivale correlated with increased malt friability as well as decreased wort filtration volume. The findings of this study indicate that the impact of species such as the newly emerging F. langsethiae, as well as F. poae and the two non-toxigenic Microdochium species should be considered when evaluating the quality of malting barley. PMID:24727381

Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

2014-01-01

120

Effect of chipping on emergence of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) and recovery of the laurel wilt pathogen from infested wood chips.  

PubMed

Significant mortality ofredbay trees (Persea borbonia (L.) Spreng.) in the southeastern United States has been caused by Raffaelea lauricola, T.C. Harr., Fraedrich, & Aghayeva (Harrington et al. 2008), a fungal symbiont of the exotic redbay ambrosia beetle, Xyleborus glabratus, Eichhoff (Fraedrich et al. 2008). This pathogen causes laurel wilt, which is an irreversible disease that can kill mature trees within a few weeks in summer. R. lauricola has been shown to be lethal to most native species of Lauraceae and cultivated avocado (Persea americana Mill.) in the southeastern United States. In this study, we examined the survival of X. glabratus and R. lauricola in wood chips made from infested trees by using a standard tree chipper over a 10-wk period. After 2 wk, 14 X. glabratus were recovered from wood chips, whereas 339 X. glabratus emerged from nonchipped bolts. R. lauricola was not found 2 d postchipping from wood chips, indicating that the pathogen is not likely to survive for long inside wood chips. In contrast, R. lauricola persisted in dead, standing redbay trees for 14 mo. With large volumes of wood, the potential for infested logs to be moved between states or across U.S. borders is significant. Results demonstrated that chipping wood from laurel wilt-killed trees can significantly reduce the number of X. glabratus and limit the persistence of R. lauricola, which is important for sanitation strategies aimed at limiting the spread of this disease. PMID:24224251

Spence, D J; Smith, J A; Ploetz, R; Hulcr, J; Stelinski, L L

2013-10-01

121

Wilted plant  

NSDL National Science Digital Library

Although this muskmelon plant has wilted from a bacterial infection, plants can wilt for other reasons and look just like this one. Plants can be over-watered and under-watered. Plants have a range of tolerance in which they can grow. Plants also have an optimum amount of water they can receive and take up. They grow best in their optimum condition.

N/A N/A (None;)

2007-07-31

122

Systematics, phylogeny and trichothecene mycotoxin potential of fusarium head blight cereal pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight(FHB)or scab of cereals is one of the most economically devastating plant diseases in the world today. Prior to 2000, the primary etiological agent of FHB was thought to comprise a single panmictic species,Fusarium graminearum. However, a series of studies we conducted over the p...

123

Effects of European and U.S. Strains of Fusarium spp. Pathogenic to Leafy Spurge on North American Grasses and Cultivated Species  

Microsoft Academic Search

Host-range tests were conducted in a greenhouse using 9 European and 11 U.S. strains of Fusarium spp. pathogenic to Euphorbia spp. Plants of 12 grass species native to the rangelands of North America were raised from seed, planted in soil infested with each strain, and assessed for dry weight after 24 weeks. Five of 11 U.S. strains of Fusarium spp.

A. J Caesar; G Campobasso; G Terragitti

1999-01-01

124

Rhizoctonia wilt suppression of brinjal (Solanum melongena L) and plant growth activity by Bacillus BS2.  

PubMed

An antibiotic-producing and hydrogen-cyanide-producing rhizobacteria strain Bacillus BS2 showed a wide range of antifungal activity against many Fusarium sp. and brinjal wilt disease pathogen Rhizoctonia solani. Seed bacterization with the strain BS2 promoted seed germination and plant growth in leguminous plants Phaseolus vulgaris and non-leguminous plants Solanum melongena L, Brassica oleracea var. capitata, B. oleraceae var. gongylodes and Lycopersicon esculentum Mill in terms of relative growth rate, shoot height, root length, total biomass production and total chlorophyll content of leaves. Yield of bacterized plants were increased by 10 to 49% compared to uninoculated control plants. Brinjal sapling raised through seed bacterization by the strain BS2 showed a significantly reduced wilt syndrome of brinjal caused by Rhizoctonia solani. Control of wilt disease by the bacterium was clue to the production of antibiotic-like substances, whereas plant growth-promotion was due to the activity of hydrogen cyanide. Root colonization study confirmed that the introduced bacteria colonized the roots and occupied 23-25% of total aerobic bacteria, which was confirmed using dual antibiotic (nalidixic acid and streptomycin sulphate) resistant mutant strain. The results obtained through this investigation suggested the potentiality of the strain BS2 to be used as a plant growth promoter and suppressor of wilt pathogen. PMID:15266911

Boruah, H P Deka; Kumar, B S Dileep

2003-06-01

125

The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis  

PubMed Central

The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific. PMID:22493673

Brown, Neil A.; Antoniw, John; Hammond-Kosack, Kim E.

2012-01-01

126

MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.  

PubMed

We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the ?myt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the ?myt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the ?myt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the ?myt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum. PMID:24722578

Kim, Yongsoo; Kim, Hun; Son, Hokyoung; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

2014-01-01

127

Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.  

PubMed

Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F.?verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae?Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F.?verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (?ppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (?ppr2) showed elevated fumonisin production, similar to the ?cpp1 strain. Germinating ?ppr1 conidia formed abnormally swollen cells with a central septation site, whereas ?ppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F.?verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development. PMID:23452277

Shin, Joon-Hee; Kim, Jung-Eun; Malapi-Wight, Martha; Choi, Yoon-E; Shaw, Brian D; Shim, Won-Bo

2013-06-01

128

Pathogenicity of Fusarium semitectum against crop pests and its biosafety to non-target organisms.  

PubMed

Microbial control is receiving more attention, since these alternative tactics, compared to chemical control methods, are energy saving, non polluting, ecologically sound and sustainable. A mycopathogen, Fusarium semitectum Berk. and Rav. (ARSEF 7233) was isolated from diseased cadavers of aphid (Aphis gossypii) and cultured in Saboraud Maltose Agar supplemented with Yeast extract medium (SMAY). Being isolated first time from the chilli ecosystem its potential was evaluated. Experiments were conducted to understand its pathogenicity against crop pests as well as to ensure its safety to non target organisms such as silk worm (Bombyx mor), honey bee (Apis indica) and earthworm (Eisenia foetida). A paper-thrips-paper sandwich method for thrips and detached-leaf bioassay method for mites were used. Test insects and mites either reared in laboratory or obtained from the field were topically applied with spore suspension of F. semitectum (1x10(9) spores/ml). Mortality was recorded and dead animals were surface sterilized with 0.5% NaOCl and placed in SMAY medium to confirm pathogenicity. Mulberry leaves sprayed with the fungal suspension were fed to larvae of B. mori and reared. Newly emerged A. indica were topically applied with fungus. The fungus grown in cow dung for two weeks was used to assess the composting ability of E. foetida. F. semitectum produced mycosis and caused mortality to sucking pests such as chilli thrips (Scirtothrips dorsalis), broad mite (Polyphagotarsonemus latus), sugarcane wooly aphid (Ceratavacuna lanigera), spiraling whitefly (Aleyrodicus disperses), whitefly (Bemisia tabaci, A. gossypii and coconut mite (Aceria guerroronis). The fungus did not cause mortality on larvae of lepidopteran insect pests and ladybird beetle (Menochilus sexmaculatus), predatory mite (Amblysius ovalis) and larval parasitoid (Goniozus nephantidis). F. semitectum failed to infect the larvae of B. mori and newly emerged A. indica and its brood. The mycopathogen had no influence on the composting ability and growth of E. foetida. F. semitectum, in general, expressed its selectivity against sucking pests and proved its eco-friendly characteristics to the beneficial organisms and especially safe to Sericulture, Apiculture and Vermiculture industries in Karnataka, India. This novel fungus can be well incorporated as a viable tactics into the integrated management programmes of crop pests. PMID:17385514

Mikunthan, G; Manjunatha, M

2006-01-01

129

Control of wilt disease of lentil through bio control agents and organic amendments in Tarai region of Uttarakhand, India.  

PubMed

The present work aimed at evaluating the efficacy of bioagents and organic amendments against lentil wilt pathogen. Field trials were carried out consecutively during Rabi 2010-11 and 2011-12 crop seasons in Randomized Block Design (RBD) with three replications, using 'Pant L-639' a popular cultivar. The plot size was 3.0 x 1.5 m2 with row spacing of 30 cm. Effect of selected bioagents and organic amendments on disease incidence, 1000 grain weight and yield kg ha' of lentil was recorded. It was observed that seed treatment with Trichoderma harizanum + Pseudomonas fluorescens significant by reduced 1.73% (2010-11) and 1.93% (2011-12) in Fusarium wilt disease incidence and increase in grain yield 507.6 kg ha(-1) and 496.0 kg ha(-1) respectively during both crop seasons. Among organic amendments, minimum wilt disease incidence of 1.69% (2010-11) and 1.81% (2011-12) and maximum grain yield 496.3 kg ha(-1) (2010-11) and 484.0 kg ha(-1) (2011-12) were observed in farm yard manure + spent compost treated plots. This indicates that these treatments have important roles in biologically based management strategies for controling Fusarium wilt disease under organic mode of lentil cultivation in Uttarakhand State. PMID:25522507

Garkoti, Ankita; Kumar, Vijay; Tripathi, H S

2014-11-01

130

Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum.  

PubMed

Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most important diseases of wheat worldwide, resulting in yield losses and mycotoxin contamination. The molecular mechanisms regulating Fusarium penetration and infection are poorly understood. Beside mycotoxin production, cell wall degradation may play a role in the development of FHB. Many fungal pathogens secrete polygalacturonases (PGs) during the early stages of infection, and plants have evolved polygalacturonase-inhibiting proteins (PGIPs) to restrict pectin degradation during fungal infection. To investigate the role of plant PGIPs in restricting the development of FHB symptoms, we first used Arabidopsis thaliana, whose genome encodes two PGIPs (AtPGIP1 and AtPGIP2). Arabidopsis transgenic plants expressing either of these PGIPs under control of the CaMV 35S promoter accumulate inhibitory activity against F. graminearum PG in their inflorescences, and show increased resistance to FHB. Second, transgenic wheat plants expressing the bean PvPGIP2 in their flowers also had a significant reduction of symptoms when infected with F. graminearum. Our data suggest that PGs likely play a role in F. graminearum infection of floral tissues, and that PGIPs incorporated into wheat may be important for increased resistance to FHB. PMID:21974721

Ferrari, S; Sella, L; Janni, M; De Lorenzo, G; Favaron, F; D'Ovidio, R

2012-03-01

131

Molecular diagnostics on the toxigenic potential of Fusarium spp. plant pathogens  

PubMed Central

Aims We propose and test an efficient and rapid protocol for the detection of toxigenic Fusarium isolates producing three main types of Fusarium-associated mycotoxins (fumonisins, trichothecenes and zearelanone). Methods and Results The novel approach utilizes partially multiplexed markers based on genes essential for mycotoxin biosynthesis (fumonisin—fum6, fum8; trichothecenes—tri5, tri6; zearalenone, zea2) in Fusarium spp. The protocol has been verified by screening a collection of 96 isolates representing diverse species of filamentous fungi. Each Fusarium isolate was taxonomically identified through both molecular and morphological techniques. The results demonstrate a reliable detection of toxigenic potential for trichothecenes (sensitivity 100%, specificity 95%), zearalenone (sensitivity 100%, specificity 100%) and fumonisins (sensitivity 94%, specificity 88%). Both presence and identity of toxin biosynthetic genes were further confirmed by direct sequencing of amplification products. Conclusions The cross-species-specific PCR markers for key biosynthetic genes provide a sensitive detection of toxigenic fungal isolates, contaminating biological material derived from agricultural fields. Significance and Impact of the Study The conducted study shows that a PCR-based assay of biosynthetic genes is a reliable, cost-effective, early warning system against Fusarium contamination. Its future use as a high-throughput detection strategy complementing chemical assays enables effective targeted application of crop protection products. PMID:24575830

Dawidziuk, A; Koczyk, G; Popiel, D; Kaczmarek, J; Bu?ko, M

2014-01-01

132

Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in Brazilian rice. Four species and two trichothecene genotypes were found among 89 FGSC isolates obtained from infected seeds: F. asiaticum with the nivalenol (NIV) genotype (69%), F. gra...

133

Effect of different ecological conditions on secondary metabolite production and gene expression in two mycotoxigenic plant pathogen Fusarium species: F. verticillioides and F. equiseti  

Technology Transfer Automated Retrieval System (TEKTRAN)

The genus Fusarium includes many species that are plant pathogens and many produce harmful secondary metabolites including fumonisins and trichothecenes. These mycotoxins can cause disease in animals and have been associated with cancers and birth defects in humans. Many factors influence the produc...

134

Comparison of inoculation methods for characterizing relative aggressiveness of two soybean sudden-death syndrome pathogens, Fusarium virguliforme and F. tucumaniae  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium tucumaniae and F. virguliforme are the primary etiological agents of sudden-death syndrome (SDS) of soybean in Argentina and the United States, respectively. Five isolates of F. tucumaniae and four of F. virguliforme were tested for pathogenicity to soybeans, by comparing a toothpick method...

135

Transcription factors spt3 and spt8 are associated with conidiation, mycelium growth, and pathogenicity in Fusarium graminearum.  

PubMed

Fusarium graminearum (teleomorph: Gibberella zeae), the dominant pathogen of Fusarium head blight (FHB) on wheat, can cause substantial economic losses. The Spt-Ada-Gcn5-acetyltransferase (SAGA) transcription coactivator plays multiple roles in regulating transcription because of the presence of functionally independent modules of subunits within the complex. The transcription factors spt3 and spt8 are components of the SAGA complex and they are important in yeasts and filamentous fungi including F. graminearum. In this study, we identified Fgspt3 and Fgspt8, homologs of Saccharomyces cerevisiae spt3 and spt8 from F. graminearum using the blastp program. The aim of the present study was to investigate the functions of Fgspt3 and Fgspt8 in F. graminearum. The deletion mutants grew significantly more slowly than the wild-type parent and did not produce conidia. Expression of the sporulation-related genes FgFlbC and FgRen1 were significantly down-regulated in the mutants. The mutants exhibited no sexual reproduction on infected wheat kernels and a 90% decrease in virulence on wheat. Pigment formation was also greatly altered in the mutants. All of the defects were restored by genetic complementation of the mutant with wild-type Fgspt3 and Fgspt8 genes. Overall, Fgspt3 and Fgspt8 are essential genes in F. graminearum. PMID:24289742

Gao, Tao; Zheng, Zhitian; Hou, Yiping; Zhou, Mingguo

2014-02-01

136

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum  

PubMed Central

The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative C2H2 zinc-finger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth. PMID:25289009

Jung, Boknam; Park, Jungwook; Son, Hokyoung; Lee, Yin-Won; Seo, Young-Su; Lee, Jungkwan

2014-01-01

137

Release of pea germplasm with Fusarium resistance combined with desirable yield and anti-lodging traits  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium root rot caused by Fusarium solani f. sp. pisi (Fsp) and Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) races 1, 2 and 5, negatively impact the pea industry worldwide. Limited pea germplasm with agronomically acceptable characteristics combined with resistance to these disease...

138

Control of Root Rot and Wilt Diseases of Roselle under Field Conditions  

PubMed Central

Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010

Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi

2014-01-01

139

Control of Root Rot and Wilt Diseases of Roselle under Field Conditions.  

PubMed

Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010

Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi; Hyakumachi, Mitsuro

2014-12-01

140

Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development  

PubMed Central

Intra- and extracellular iron-chelating siderophores produced by fungal non-ribosomal peptide synthetases have been shown to be involved in reproductive and pathogenic developmental processes and in iron and oxidative stress management. Here we report individual and combined contributions of three of these metabolites to developmental success of the destructive cereal pathogen Fusarium graminearum. In previous work, we determined that deletion of the NPS2 gene, responsible for intracellular siderophore biosynthesis, results in inability to produce sexual spores when mutants of this homothallic ascomycete are selfed. Deletion of the NPS6 gene, required for extracellular siderophore biosynthesis, does not affect sexual reproduction but results in sensitivity to iron starvation and oxidative stress and leads to reduced virulence to the host. Building on this, we report that double mutants lacking both NPS2 and NPS6 are augmented in all collective phenotypes of single deletion strains (i.e., abnormal sexual and pathogenic development, hypersensitivity to oxidative and iron-depletion stress), which suggests overlap of function. Using comparative biochemical analysis of wild-type and mutant strains, we show that NPS1, a third gene associated with siderophore biosynthesis, is responsible for biosynthesis of a second extracellular siderophore, malonichrome. nps1 mutants fail to produce this metabolite. Phenotypic characterization reveals that, although single nps1 mutants are like wild-type with respect to sexual development, hypersensitivity to ROS and iron-depletion stress, and virulence to the host, triple nps1nps2nps6 deletion strains, lacking all three siderophores, are even more impaired in these attributes than double nps2nps6 strains. Thus, combinatorial mutants lacking key iron-associated genes uncovered malonichrome function. The intimate connection between presence/absence of siderophores and resistance/sensitivity to ROS is central to sexual and pathogenic development.

Oide, Shinichi; Berthiller, Franz; Wiesenberger, Gerlinde; Adam, Gerhard; Turgeon, B. Gillian

2015-01-01

141

Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum  

PubMed Central

Fusarium head blight (FHB) caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed. PMID:25288928

Jung, Boknam; Park, Sook-Young; Lee, Yin-Won; Lee, Jungkwan

2013-01-01

142

Pathogen induced changes in the protein profile of human tears from Fusarium keratitis patients.  

PubMed

Fusarium is the major causative agent of fungal infections leading to corneal ulcer (keratitis) in Southern India and other tropical countries. Keratitis caused by Fusarium is a difficult disease to treat unless antifungal therapy is initiated during the early stages of infection. In this study tear proteins were prepared from keratitis patients classified based on the duration of infection. Among the patients recruited, early infection (n = 35), intermediate (n = 20), late (n = 11), samples from five patients in each group were pooled for analysis. Control samples were a pool of samples from 20 patients. Proteins were separated on difference gel electrophoresis (DIGE) and the differentially expressed proteins were quantified using DeCyder software analysis. The following differentially expressed proteins namely alpha-1-antitrypsin, haptoglobin ?2 chain, zinc-alpha-2-glycoprotein, apolipoprotein, albumin, haptoglobin precursor - ? chain, lactoferrin, lacrimal lipocalin precursor, cystatin SA III precursor, lacritin precursor were identified using mass spectrometry. Variation in the expression level of some of the proteins was confirmed using western blot analysis. This is the first report to show stage specific tear protein profile in fungal keratitis patients. Validation of this data using a much larger sample set could lead to clinical application of these findings. PMID:23308132

Ananthi, Sivagnanam; Venkatesh Prajna, Namperumalsamy; Lalitha, Prajna; Valarnila, Murugesan; Dharmalingam, Kuppamuthu

2013-01-01

143

MANAGEMENT OF SCLEROTINIA BLIGHT AND VERTICILLIUM WILT IN PEANUTS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Some of the objectives of this research are to study the biology of economically important peanut pathogens including Tomato Spotted Wilt Virus (TSWV), and to determine the role of disease resistance in managing soil-borne peanut pathogens, particularly Sclerotinia blight, Verticillium wilt, and Sou...

144

Shifts in banana root exudate profiles after colonization with the non-pathogenic Fusarium oxysporum strain Fo162.  

PubMed

The non-pathogenic fungus Fusorium oxysporum strain Fo162 can efficiently colonize banana roots and reduce infecting by the burrowing nematode Radopholus similis. It is assumed that the fungus triggers a systemic reaction in the plant, which is affecting the biochemical composition of the root exudates and is thus causing the reduction in nematode colonization. To characterize these shifts, a continuous flow experiment was set up to collect root metabolites on a matrix (XAD-4). Based on HPLC analysis, the extracts, collected from the XAD-4, showed no differences in the composition of the root exudates between plants colonized by the endophyte and the controls. However, the accumulation of several compounds differed significantly. When these extracts were used in a bioassay with Radopholus similis none of the sample-treatment combinations had a significant attracting or repelling effect on the nematodes. This experiment shows that non-pathogenic Fusarium oxysporum strain Fo162 is able to upregulate the synthesis of at least some, so far unidentified compounds released by banana roots under hydroponic conditions. Further studies and optimization of the experimental setup are required to determine whether or not increase in metabolite concentration can affect nematode responses in vitro and ultimately in vivo. PMID:20222617

Kurtz, Andreas; Schouten, Alexander

2009-01-01

145

Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species  

PubMed Central

Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen. A morphology-based key is provided for identification to species or species groups. PMID:22174791

Inderbitzin, Patrik; Bostock, Richard M.; Davis, R. Michael; Usami, Toshiyuki; Platt, Harold W.; Subbarao, Krishna V.

2011-01-01

146

Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species.  

PubMed

Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen. A morphology-based key is provided for identification to species or species groups. PMID:22174791

Inderbitzin, Patrik; Bostock, Richard M; Davis, R Michael; Usami, Toshiyuki; Platt, Harold W; Subbarao, Krishna V

2011-01-01

147

Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum.  

PubMed

Interactions of rye (Secale cereale) root border cells (RBCs), generated during plant growth and surrounding the root cap, with nonpathogenic rhizosphere Fusarium culmorum isolates: DEMFc2 (PGPF) and DEMFc5 (DRMO), and a pathogenic strain DEMFc37 were studied in test tube experiments. The effect of water-suspended RBCs released from the rye root cap on the rate of macroconidia germination and hyphae (mycelial) growth of F. culmorum strains was also examined. It was found that root caps of 3-d-old rye seedlings (with the root length of 20mm) were surrounded with a layer of RBCs generated in a number specific for this plant species of 1980+/-30. Introduction of the macroconidia of the tested F. culmorum strains into the root zone of 3-d-old seedlings resulted, after 3d of incubation, in the formation of mantle-like structures only in the rhizosphere of plants inoculated with the pathogenic DEMFc37 strain. The macroconidia were suspended in (1) water, (2) a water mixture with root caps deprived of RBCs, (3) Martin medium, (4) malt extract broth, and (5) a water mixture with rye RBCs, and their percentage germination was determined during 96-h incubation at 20 degrees C. Germination of the macroconidia of all the tested F. culmorum strains suspended in the rich growth media (Martin and malt extract broth) and in the mixture with RBCs was significantly speeded up. While only an average of 16.6 % of macroconidia suspended in water germinated after 96-h incubation, more than 90 % of those suspended in the growth media or in the mixture with RBCs germinated after 24h of incubation. In all the treatments, the highest rate of macroconidia germination was found in suspensions of the pathogenic strain and the lowest in macroconidial suspensions of the PGPF strain. The stimulatory effect of RBCs was not specific to the pathogenic strain. Nevertheless, microscopic observation revealed that it was only in the suspension containing a mixture of rye RBCs and macroconidia of the pathogenic strain that after 48-h incubation compact clusters of hyphae and RBCs, resembling mantle-like structures found in the root zone of plants inoculated only with the pathogenic strain but not inoculated with DRMO and PGPF strain, were formed. PMID:19591930

Jaroszuk-Scise?, Jolanta; Kurek, Ewa; Rodzik, Beata; Winiarczyk, Krystyna

2009-10-01

148

Accumulation of beta-Fructosidase in the Cell Walls of Tomato Roots following Infection by a Fungal Wilt Pathogen.  

PubMed

Active defense in plants is associated with marked metabolic alterations, but little is known about the exact role of the reported changes in specific activity of several enzymes in infected plant tissues. beta-Fructosidase (invertase), the enzyme that converts sucrose into glucose and fructose, increases upon infection by fungi and bacteria. To understand the relationship between fungal growth and beta-fructosidase accumulation, we used an antiserum raised against a purified deglycosylated carrot cell wall beta-fructosidase to study by immunogold labeling the spatial and temporal distribution of the enzyme in susceptible and resistant tomato (Lycopersicon esculentum) root tissues infected with the necrotrophic fungus, Fusarium oxysporum f. sp. racidis-lycopersici. In susceptible plants, the enzyme started to accumulate in host cell walls about 72 hours after inoculation. Accumulation occurred only in colonized cells and was mainly restricted to areas where the walls of both partners contacted each other. In resistant plants, accumulation of beta-fructosidase was noticeable as soon as 48 hours after inoculation and appeared to reach an optimum by 72 hours after inoculation. Increase in wall-bound beta-fructosidase was not restricted to infected cells but occurred also, to a large extent, in tissues that remained uncolonized during the infection process. The enzyme also accumulated in wall appositions (papillae) and intercellular spaces. This pattern of enzyme distribution suggests that induction of beta-fructosidase upon fungal infection is part of the plant's defense response. The possible physiological role(s) of this enzyme in infected tomato plants is discussed in relation to the high demand in energy and carbon sources during pathogenesis. PMID:16668461

Benhamou, N; Grenier, J; Chrispeels, M J

1991-10-01

149

Assessing the pathogenic effect of Fusarium, Geosmithia and Ophiostoma fungi from broad-leaved trees.  

PubMed

Phytopathogenic effect of Geosmithia pallida, G. langdonii, Ophiostoma grandicarpum, O. querci, two isolates of O. piceae, and two isolates of Fusarium solani was compared using plant growth test (stem and root length of garden cress plants seeded on mycelium-covered potato carrot agar); Ophiostoma spp. and F. solani were isolated from oak, Geosmithia spp. from galleries of Scolytus intricatus on beech. All fungi inhibited more the root elongation than that of stems. F. solani led to plant collapse after briefly stimulating the growth of stem and in one case also root. G. langdonii inhibited stem and root growth to 20% and led to plant collapse. G. pallida inhibited root growth to 25% whereas stem growth was almost unimpaired. Ophiostoma spp. reduced stem growth to approximately 60-80% and root growth to 25-60%. O. piceae and O. querci caused plant collapse after 15-20 d. PMID:15954534

Cízková, D; Sr?tka, P; Kolarík, M; Kubátová, A; Pazoutová, S

2005-01-01

150

Fusarium graminearum Gene Deletion Mutants Map1 and tri5 Reveal Similarities and Differences in the Pathogenicity Requirements to Cause Disease on Arabidopsis and Wheat Floral Tissue  

Microsoft Academic Search

The Ascomycete pathogen Fusarium graminearum can infect all cereal species and lower grain yield, quality and safety. The fungus can also cause disease on Arabidopsis thaliana. In this study, the disease-causing ability of two F. graminearum mutants was analysed to further explore the parallels between the wheat (Triticum aestivum) and Arabidopsis floral pathosystems. Wild-type F graminearum (strain PH-1) and two

Alayne Cuzick; Martin Urban; Kim Hammond-Kosack

2008-01-01

151

The Sfp-Type 4?-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity  

PubMed Central

The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4?phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as ?-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under iron-replete conditions. Targeted deletion of the first Fusarium homolog of this GATA-type transcription factor-encoding gene, Ffsre1, strongly indicates its involvement in regulation of iron homeostasis and oxidative stress resistance. PMID:22662164

Wiemann, Philipp; Albermann, Sabine; Niehaus, Eva-Maria; Studt, Lena; von Bargen, Katharina W.; Brock, Nelson L.; Humpf, Hans-Ulrich; Dickschat, Jeroen S.; Tudzynski, Bettina

2012-01-01

152

The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity.  

PubMed

The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4'phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as ?-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under iron-replete conditions. Targeted deletion of the first Fusarium homolog of this GATA-type transcription factor-encoding gene, Ffsre1, strongly indicates its involvement in regulation of iron homeostasis and oxidative stress resistance. PMID:22662164

Wiemann, Philipp; Albermann, Sabine; Niehaus, Eva-Maria; Studt, Lena; von Bargen, Katharina W; Brock, Nelson L; Humpf, Hans-Ulrich; Dickschat, Jeroen S; Tudzynski, Bettina

2012-01-01

153

Wheat kernel black point and fumonisin contamination by Fusarium Proliferatum  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fumonisins are mycotoxins produced by several Fusarium species, especially Fusarium proliferatum and Fusarium verticillioides, which are common pathogens of maize worldwide. Consumption of fumonisins has been shown to cause a number of mycotoxicoses, including leucoencephalomalacia in horses, pulmon...

154

Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.  

PubMed

Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections. PMID:23853581

Leal, Sixto M; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S; Di Pietro, Antonio; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

2013-01-01

155

An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminerarum in North America  

Technology Transfer Automated Retrieval System (TEKTRAN)

Toxigenic fungi responsible for Fusarium head blight (FHB) place significant constraints on the production of cereals worldwide and contaminate grain with trichothecene mycotoxins that pose a serious threat to food safety. A fraction of the global FHB species and trichothecene chemotype diversity i...

156

Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts  

PubMed Central

The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ? 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

2013-01-01

157

LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides  

PubMed Central

Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi. PMID:25566199

Scala, Valeria; Giorni, Paola; Cirlini, Martina; Ludovici, Matteo; Visentin, Ivan; Cardinale, Francesca; Fabbri, Anna A.; Fanelli, Corrado; Reverberi, Massimo; Battilani, Paola; Galaverna, Gianni; Dall'Asta, Chiara

2014-01-01

158

LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides.  

PubMed

Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi. PMID:25566199

Scala, Valeria; Giorni, Paola; Cirlini, Martina; Ludovici, Matteo; Visentin, Ivan; Cardinale, Francesca; Fabbri, Anna A; Fanelli, Corrado; Reverberi, Massimo; Battilani, Paola; Galaverna, Gianni; Dall'Asta, Chiara

2014-01-01

159

Loop-Mediated Isothermal Amplification of Specific Endoglucanase Gene Sequence for Detection of the Bacterial Wilt Pathogen Ralstonia solanacearum  

PubMed Central

The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

2014-01-01

160

Multilocus Genotyping and Molecular Phylogenetics Resolve a Novel Head Blight Pathogen within the Fusarium graminearum Species Complex from Ethiopia  

Technology Transfer Automated Retrieval System (TEKTRAN)

A survey of Fusarium head blight (FHB)-contaminated wheat in Ethiopia recovered 31 isolates resembling members of the Fusarium graminearum species complex. Results of a multilocus genotyping (MLGT) assay for FHB species and trichothecene chemotype determination suggested that 22 of these isolates m...

161

PATHOGENICITY AND IN PLANTA MYCOTOXIN ACCUMULATION AMONG MEMBERS OF THE FUSARIUM GRAMINEARUM SPECIES COMPLEX ON WHEAT AND RICE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight (FHB), or scab, is a destructive disease of small grains caused by members of the Fusarium graminearum (Fg) species complex, comprised of at least nine distinct, cryptic species. Members of this complex are known to produce mycotoxins including the trichothecenes deoxynivalenol ...

162

Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium head blight pathogens isolated from symptomatic wheat heads.  

PubMed

Fusarium species are fungal plant pathogens producing toxic secondary metabolites such as deoxynivalenol (DON), 15-acetyl-deoxynivalenol (15AcDON) and nivalenol (NIV). In Luxembourg, the Fusarium species composition isolated from symptomatic winter wheat heads was dominated by Fusarium graminearum sensu stricto strains (genetic 15AcDON chemotype) between the years 2009 and 2012, except for 2011, when Fusarium culmorum strains (genetic NIV chemotype) dominated the pathogen complex. Previous reports indicated that F. graminearum sensu stricto (genetic 15AcDON chemotype) was also most frequently isolated from randomly sampled winter wheat kernels including symptomatic as well as asymptomatic kernels in 2007 and 2008. The annual precipitation (average of 10 weather stations scattered across the country) decreased continuously from 924.31mm in 2007 over 917.15mm in 2008, to 843.38mm in 2009, 736.24mm in 2010, and 575.09mm in 2011. In 2012, the annual precipitation increased again to 854.70mm. Hardly any precipitation was recorded around the time of wheat anthesis in the years 2010 and 2011, whereas precipitation levels >50mm within the week preceding anthesis plus the week post anthesis were observed in the other years. The shift to genetic NIV chemotype F. culmorum strains in 2011 was accompanied by a very minor elevation of average NIV contents (2.9ngg(-1)) in the grain. Our data suggest that high NIV levels in Luxembourgish winter wheat are at present rather unlikely, because the indigenous F. culmorum strains with the genetic NIV chemotype seem to be outcompeted under humid in vivo conditions by F. graminearum DON producing strains on the one hand and seem to be inhibited - even though to a lower extent than DON producing strains - under dry in vivo conditions on the other hand. PMID:24859190

Beyer, Marco; Pogoda, Friederike; Pallez, Marine; Lazic, Joëlle; Hoffmann, Lucien; Pasquali, Matias

2014-07-16

163

Characterization of the Maize Stalk Rot Pathogens Fusarium subglutinans and F. temperatum and the Effect of Fungicides on Their Mycelial Growth and Colony Formation.  

PubMed

Maize is a socioeconomically important crop in many countries. Recently, a high incidence of stalk rot disease has been reported in several maize fields in Gangwon province. In this report, we show that maize stalk rot is associated with the fungal pathogens Fusarium subglutinans and F. temperatum. Since no fungicides are available to control these pathogens on maize plants, we selected six fungicides (tebuconazole, difenoconazole, fluquinconazole, azoxystrobin, prochloraz and kresoxim-methyl) and examined their effectiveness against the two pathogens. The in vitro antifungal effects of the six fungicides on mycelial growth and colony formation were investigated. Based on the inhibition of mycelial growth, the most toxic fungicide was tebuconazole with 50% effective concentrations (EC50) of <0.1 ?g/ml and EC90 values of 0.9 ?g/ml for both pathogens, while the least toxic fungicide was azoxystrobin with EC50 values of 0.7 and 0.5 ?g/ml for F. subglutinans and F. temperatum, respectively, and EC90 values of >3,000 ?g/ml for both pathogens. Based on the inhibition of colony formation by the two pathogens, kresoxim-methyl was the most toxic fungicide with complete inhibition of colony formation at concentrations of 0.1 and 0.01 ?g/ml for F. subglutinans and F. temperatum, respectively, whereas azoxystrobin was the least toxic fungicide with complete inhibition of colony formation at concentrations >3,000 ?g/ml for both pathogens. PMID:25506304

Shin, Jong-Hwan; Han, Joon-Hee; Lee, Ju Kyong; Kim, Kyoung Su

2014-12-01

164

Enhanced Control of Cucumber Wilt Disease by Bacillus amyloliquefaciens SQR9 by Altering the Regulation of Its DegU Phosphorylation  

PubMed Central

Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU?P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU?P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. PMID:24584252

Xu, Zhihui; Zhang, Ruifu; Wang, Dandan; Qiu, Meihua; Feng, Haichao; Zhang, Nan

2014-01-01

165

Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of Its DegU phosphorylation.  

PubMed

Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU?P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU?P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. PMID:24584252

Xu, Zhihui; Zhang, Ruifu; Wang, Dandan; Qiu, Meihua; Feng, Haichao; Zhang, Nan; Shen, Qirong

2014-05-01

166

2007 FUSARIUM WILT VARIETY PERFORMANCE RESULTS  

E-print Network

Texas AgriLife Extension Service Dr. Terry A. Wheeler Research Plant Pathologist, Texas AgriLife Research Texas AgriLife Research and Extension Service Center 1102 East Fm 1294 Lubbock, Texas 79403 (806 is made with the understanding that no discrimination is intended and no endorsement by Texas AgriLife

Mukhtar, Saqib

167

Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.  

PubMed

Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined. PMID:9131789

el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

1996-01-01

168

Unravelling the Microbiome of Eggs of the Endangered Sea Turtle Eretmochelys imbricata Identifies Bacteria with Activity against the Emerging Pathogen Fusarium falciforme  

PubMed Central

Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species. PMID:24743166

Sarmiento-Ramírez, Jullie M.; van der Voort, Menno; Raaijmakers, Jos M.; Diéguez-Uribeondo, Javier

2014-01-01

169

Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain.  

PubMed

An endophytic fungal isolate (Fs-K), identified as a Fusarium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the tomato foliar pathogen Septoria lycopersici. Interestingly, attenuated expression of certain pathogenesis-related genes, i.e. PR5 and PR7, was detected in tomato roots inoculated with strain Fs-K compared with non-inoculated plants. The expression pattern of PR genes was either not affected or aberrant in leaves. A genetic approach, using mutant tomato plant lines, was used to determine the role of ethylene and jasmonic acid in the plant's response to infection by the soil-borne pathogen F. oxysporum f.sp. radicis-lycopersici (FORL), in the presence or absence of isolate Fs-K. Mutant tomato lines Never ripe (Nr) and epinastic (epi1), both impaired in ethylene-mediated plant responses, inoculated with FORL are not protected by isolate Fs-K, indicating that the ethylene signalling pathway is required for the mode of action used by the endophyte to confer resistance. On the contrary, def1 mutants, affected in jasmonate biosynthesis, show reduced susceptibility to FORL, in the presence Fs-K, which suggests that jasmonic acid is not essential for the mediation of biocontrol activity of isolate Fs-K. PMID:18048373

Kavroulakis, Nektarios; Ntougias, Spyridon; Zervakis, Georgios I; Ehaliotis, Constantinos; Haralampidis, Kosmas; Papadopoulou, Kalliope K

2007-01-01

170

Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.  

PubMed

The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 ?l seed?ą of BM 1, 30 ?l seed?ą of BM 2 and 70 ?l seed?ą of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives. PMID:24154979

Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

2014-03-01

171

Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense  

PubMed Central

Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

2013-01-01

172

Verticillium wilt of potato: Importance and control  

Microsoft Academic Search

The importance of Verticillium wilt of potato and its control are discussed. Among the factors considered in controlling the\\u000a disease are the role of seed tubers in disseminating the pathogen, the interaction of nematodes and fungus, chemical eradication,\\u000a the use of tolerant or resistant cultivars, and integrated control measures.

J. Krikun; D. Orion

1979-01-01

173

A Two-locus DNA Sequence Database for Typing Plant and Human Pathogens Within the Fusarium oxysporum Species Complex  

Technology Transfer Automated Retrieval System (TEKTRAN)

We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex ...

174

A Multilocus Genealogical Concordance Approach to Species Delimitation within the Fusarium graminearum Species Complex of Cereal Head Blight Pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight (FHB) of wheat and barley currently ranks as one of the most destructive and economically devastating plant diseases worldwide. Outbreaks and epidemics of FHB pose a double threat to cereal production: (i) the disease is frequently responsible for poor seed quality and reductio...

175

TPCP: Ceratocystis wilt of Acacia mearnsii. CERATOCYSTIS WILT OF ACACIA  

E-print Network

TPCP: Ceratocystis wilt of Acacia mearnsii. CERATOCYSTIS WILT OF ACACIA MEARNSII INTRODUCTION known as Ceratocystis albofundus. Wilting of Acacia mearnsii is a common phenomenon, having been.up.ac.za/academic/fabi/tpcp/pamphlets/ceratocystis.htm (1 of 2) [2002/02/26 01:53:14] #12;TPCP: Ceratocystis wilt of Acacia mearnsii. Wood discolouration

176

Identification of a cis-acting factor modulating the transcription of FUM1, a key fumonisin-biosynthetic gene in the fungal maize pathogen Fusarium verticillioides.  

PubMed

Fumonisins, toxic secondary metabolites produced by some Fusarium spp. and Aspergillus niger, have strong agro-economic and health impacts. The genes needed for their biosynthesis, named FUM, are clustered and co-expressed in fumonisin producers. In eukaryotes, coordination of transcription can be attained through shared transcription factors, whose specificity relies on the recognition of cis-regulatory elements on target promoters. A bioinformatic analysis on FUM promoters in the maize pathogens Fusarium verticillioides and Aspergillus niger identified a degenerated, over-represented motif potentially involved in the cis-regulation of FUM genes, and of fumonisin biosynthesis. The same motif was not found in various FUM homologues of fungi that do not produce fumonisins. Comparison of the transcriptional strength of the intact FUM1 promoter with a synthetic version, where the motif had been mutated, was carried out in vivo and in planta for F. verticillioides. The results showed that the motif is important for efficient transcription of the FUM1 gene. PMID:23219667

Montis, V; Pasquali, M; Visentin, I; Karlovsky, P; Cardinale, F

2013-02-01

177

Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis.  

PubMed

ABSTRACT Crown and root rot of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici is an increasing problem in Europe, Israel, Japan, and North America. The biocontrol agent Pseudomonas fluorescens strain CHA0 provides only moderate control of this disease. A one-time amendment of zinc EDTA at 33 mug of Zn(2+)/ml to hydroponic nutrient solution in soilless rockwool culture did not reduce disease when used alone, but did reduce disease by 25% in the presence of CHA0. In in vitro studies with the pathogen, zinc at concentrations as low as 10 mug/ml abolished production of the phytotoxin fusaric acid, a Fusarium pathogenicity factor, and increased production of microconidia over 100-fold, but reduced total biomass. Copper EDTA at 33 mug of Cu(2+)/ml had a similar effect as zinc on the pathogen in vitro; it reduced disease when used alone, and increased the biocontrol activity of CHA0 in soilless culture. Ammonium-molybdate neither improved the biocontrol activity of CHA0 nor affected production of fusaric acid or microconidia. Strain CHA0 did not degrade fusaric acid. Fusaric acid at concentrations as low as 0.12 mug/ml repressed production by CHA0 of the antibiotic 2,4-diacetylphloroglucinol, a key factor in the biocontrol activity of this strain. Production of pyoluteorin by CHA0 was also reduced, but production of hydrogen cyanide and protease was not affected, suggesting that fusaric acid affects biosynthesis at a regulatory level downstream of gacA and apdA genes. Fusaric acid did not affect the recovery of preformed antibiotics nor did it affect bacterial growth even at concentrations as high as 200 mug/ml. When microbial meta-bolite production was measured in the rockwool bioassay, zinc amendments reduced fusaric acid production and enhanced 2,4-diacetylphloro-glucinol production. We suggest that zinc, which did not alleviate the repression of antibiotic biosynthesis by fusaric acid, improved biocontrol activity by reducing fusaric acid production by the pathogen, which resulted in increased antibiotic production by the biocontrol agent. This demonstrates that pathogens can have a direct negative impact on the mechanism(s) of biocontrol agents. PMID:18945026

Duffy, B K; Défago, G

1997-12-01

178

Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum.  

PubMed

Fungal plant pathogens such as Fusarium graminearum cause severe global economic losses in cereals crops, and current control measures are limited. This work addresses the potential for ZnO nanoparticles (NPs) and biocontrol bacteria to be used in plant fungal control strategies. Growth of F. graminearum was significantly (p = 0.05) inhibited by inclusion of the NPs in a mung bean broth agar and in sand. Suspension in mung bean broth medium modified the surface charge, dissolution, and aggregation state of the ZnO NPs, in comparison to processes occurring in water suspension. The ZnO NPs were significantly more inhibitory to fungal growth than micro-sized particles of ZnO, although both types of particles released similar levels of soluble Zn, indicating size-dependent toxicity of the particles. Zn ions produced dose-dependent inhibition, noticeable at the level of soluble Zn released from NPs after seven-day suspension in medium; inhibitory levels caused acidification of the growth medium. Transfer of fungal inoculum after exposure to the ZnO NPs to fresh medium did not indicate adaptation to the stress because growth was still inhibited by the NPs. The ZnO NPs did not prevent metabolites from a biocontrol bacterium, Pseudomonas chlororaphis O6, from inhibiting Fusarium growth: no synergism was observed in the mung bean agar. Because other studies find that soil amendment with ZnO NPs required high doses for inhibition of plant growth, the findings of pathogen growth control reported in this paper open the possibility of using ZnO NP-based formulations to complement existing strategies for improving crop health in field settings. PMID:23933719

Dimkpa, Christian O; McLean, Joan E; Britt, David W; Anderson, Anne J

2013-12-01

179

Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates.  

PubMed

Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F.?oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F.?oxysporum f. sp. conglutinans and F.?oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F.?oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F.?oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F.?oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. PMID:24387225

Cole, Stephanie J; Yoon, Alexander J; Faull, Kym F; Diener, Andrew C

2014-08-01

180

Interactions of Fusarium species during prepenetration development.  

PubMed

Interspecies interactions between Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium poae, and Fusarium tricinctum were studied during early growth stages of isolates on model surfaces. Additionally, germination and germ tube growth of the pathogens were studied on attached and detached wheat leaves at 10 °C and 22 °C. Two-species interactions between Fusarium isolates during germination and germ tube growth were assessed after 8 hours of incubation. All species except F. tricinctum germinated and grew faster at higher than lower temperature. All species were able to germinate with more than one germ tube per conidium cell; and germination and germ tube growth were faster on leaves than on glass surface. Interactions among Fusarium species during germination and germ tube growth were predominantly competitive with macroconidia-producing species being more competitive. It is concluded that the type of conidia as well as environmental factors influence the competitiveness of Fusarium species during early stages of growth. PMID:22749170

Wagacha, John Maina; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Steiner, Ulrike

2012-07-01

181

The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat.  

PubMed

Cyclic 3',5'-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (?Fgac1). The ?Fgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ?Fgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ?Fgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ?Fgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ?Fgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the first time, we show that cAMP regulates the switch from vegetative to pathogenic lifestyle of F. graminearum on wheat. PMID:24603887

Bormann, Jörg; Boenisch, Marike Johanne; Brückner, Elena; Firat, Demet; Schäfer, Wilhelm

2014-01-01

182

The Adenylyl Cyclase Plays a Regulatory Role in the Morphogenetic Switch from Vegetative to Pathogenic Lifestyle of Fusarium graminearum on Wheat  

PubMed Central

Cyclic 3?,5?-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (?Fgac1). The ?Fgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ?Fgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ?Fgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ?Fgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ?Fgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the first time, we show that cAMP regulates the switch from vegetative to pathogenic lifestyle of F. graminearum on wheat. PMID:24603887

Bormann, Jörg; Boenisch, Marike Johanne; Brückner, Elena; Firat, Demet; Schäfer, Wilhelm

2014-01-01

183

Ctf1, a transcriptional activator of cutinase and lipase genes in Fusarium oxysporum is dispensable for virulence.  

PubMed

Cutinolytic enzymes are secreted by fungal pathogens attacking the aerial parts of the plant, to facilitate penetration of the outermost cuticular barrier of the host. The role of cutinases in soil-borne root pathogens has not been studied thus far. Here we report the characterization of the zinc finger transcription factor Ctf1 from the vascular wilt fungus Fusarium oxysporum, a functional orthologue of CTF1alpha that controls expression of cutinase genes and virulence in the pea stem pathogen Fusarium solani f. sp. pisi. Mutants carrying a Deltactf1 loss-of-function allele grown on inducing substrates failed to activate extracellular cutinolytic activity and expression of the cut1 and lip1 genes, encoding a putative cutinase and lipase, respectively, whereas strains harbouring a ctf1(C) allele in which the ctf1 coding region was fused to the strong constitutive Aspergillus nidulans gpdA promoter showed increased induction of cutinase activity and gene expression. These results suggest that F. oxysporum Ctf1 mediates expression of genes involved in fatty acid hydrolysis. However, expression of lip1 during root infection was not dependent on Ctf1, and virulence of the ctf1 mutants on tomato plants and fruits was indistinguishable from that of the wild-type. Thus, in contrast to the stem pathogen F. solani, Ctf1 is not essential for virulence in the root pathogen F. oxysporum. PMID:18705871

Rocha, Ana Lilia Martínez; Di Pietro, Antonio; Ruiz-Roldán, Carmen; Roncero, M Isabel G

2008-05-01

184

Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites  

PubMed Central

The fungus Fusarium fujikuroi causes “bakanae” disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen. PMID:23825955

Studt, Lena; Niehaus, Eva-Maria; Espino, Jose J.; Huß, Kathleen; Michielse, Caroline B.; Albermann, Sabine; Wagner, Dominik; Bergner, Sonja V.; Connolly, Lanelle R.; Fischer, Andreas; Reuter, Gunter; Kleigrewe, Karin; Bald, Till; Wingfield, Brenda D.; Ophir, Ron; Freeman, Stanley; Hippler, Michael; Smith, Kristina M.; Brown, Daren W.; Proctor, Robert H.; Münsterkötter, Martin; Freitag, Michael; Humpf, Hans-Ulrich; Güldener, Ulrich; Tudzynski, Bettina

2013-01-01

185

Interaction of Population Levels of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita on Cotton  

PubMed Central

In autoclaved greenhouse soil without Fusarium oxysporum f. sp. vasinfectum, Meloidogyne incognita did not cause leaf or vascular discoloration of 59-day-old cotton plants. Plants had root galls with as few as 50 Meloidogyne larvae per plant. Root galling was directly proportional to the initial nematode population level. Fusarium wilt symptoms occurred without nematodes with 77,000 fungus propagules or more per gram of soil. As few as 50 Meloidogyne larvae accompanying 650 fungus propagules caused Fusarium wilt. With few exceptions, leaf symptoms appeared sooner as numbers of either or both organisms increased. In soils infested with both organisms, the extent of fungal invasion and colonization was well correlated with the extent of nematode galling and other indications of the Fusarium wilt syndrome. PMID:19305546

Garber, R. H.; Jorgenson, E. C.; Smith, S.; Hyer, A. H.

1979-01-01

186

Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review  

Technology Transfer Automated Retrieval System (TEKTRAN)

Verticillium dahliae, a soil-borne pathogen, causes Verticillium wilt, one of the most serious diseases in cotton, deleteriously influencing the crop’s production and quality. Verticillium wilt has become a major obstacle in cotton production since Helicoverpa armigera, the cotton bollworm, became e...

187

Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi.  

PubMed

A strain of Coprinellus curtus (designated GM-21), a basidiomycete that suppressed bottom-rot disease of Chinese cabbage, 'pak-choi' (Brassica campestris), caused by the pathogen Rhizoctonia solani Pak-choi 2 was isolated. The mechanism of plant disease suppression was discovered to be hyphal interference, a combative fungal interaction between strain GM-21 and the pathogen. The antifungal spectrum of strain GM-21 was shown to include R. solani and Fusarium sp., i.e. strain GM-21 showed disease-suppressive ability against bottom-rot disease of lettuce and Rhizoctonia-patch disease of mascarene grass caused by strains of R. solani. In addition, clear evidence of hyphal interference between strain GM-21 and Fusarium pathogens that cause crown (foot) and root-rot disease of tomato and Fusarium wilt of melon, respectively, was demonstrated. It was thus considered that GM-21 is effective for suppressing soil-borne pathogens, and that GM-21 presents new possibilities for biological control of vegetable diseases. PMID:17850327

Nakasaki, Kiyohiko; Saito, Miyuki; Suzuki, Nobuaki

2007-10-01

188

The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism.  

PubMed

Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6-43.1 MB, with 13217-13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts. PMID:25409087

Lysře, Erik; Harris, Linda J; Walkowiak, Sean; Subramaniam, Rajagopal; Divon, Hege H; Riiser, Even S; Llorens, Carlos; Gabaldón, Toni; Kistler, H Corby; Jonkers, Wilfried; Kolseth, Anna-Karin; Nielsen, Kristian F; Thrane, Ulf; Frandsen, Rasmus J N

2014-01-01

189

Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum.  

PubMed

Fusarium culmorum, a fungal pathogen of small grain cereals, produces 4-deoxynivalenol and its acetylated derivatives that may cause toxicoses on humans or animals consuming contaminated food or feed. Natural and natural-like compounds belonging to phenol and hydroxylated biphenyl structural classes were tested in vitro to determine their activity on vegetative growth and trichothecene biosynthesis by F. culmorum. Most of the compounds tested at 1.5 or 1.0 mM reduced 3-acetyl-4-deoxynivalenol production by over 70% compared to the control, without affecting fungal growth significantly. Furthermore, several compounds retained their ability to inhibit toxin in vitro production at the lowest concentrations of 0.5 and 0.25 mM. Magnolol 27 showed fungicidal activity even at 0.1 mM. No linear correlation was observed between antioxidant properties of the compounds and their ability to inhibit fungal growth and mycotoxigenic capacity. A guaiacyl unit in the structure may play a key role in trichothecene inhibition. PMID:24820850

Pani, Giovanna; Scherm, Barbara; Azara, Emanuela; Balmas, Virgilio; Jahanshiri, Zahra; Carta, Paola; Fabbri, Davide; Dettori, Maria Antonietta; Fadda, Angela; Dessě, Alessandro; Dallocchio, Roberto; Migheli, Quirico; Delogu, Giovanna

2014-06-01

190

The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum.  

PubMed

The mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in Fusarium graminearum. Currently, the upstream sensors of these pathways are unknown. Biological functions of a transmembrane protein FgSho1 were investigated using a target gene deletion strategy. The relationship between FgSho1 and the MAPK cassette FgSte50-Ste11-Ste7 was analyzed in depth. The transmembrane protein FgSho1 is required for conidiation, full virulence, and deoxynivalenol (DON) biosynthesis in F. graminearum. Furthermore, FgSho1 and FgSln1 have an additive effect on virulence of F. graminearum. The yeast two-hybrid, coimmunoprecipitation, colocalization and affinity capture-mass spectrometry analyses strongly indicated that FgSho1 physically interacts with the MAPK module FgSte50-Ste11-Ste7. Similar to the FgSho1 mutant, the mutants of FgSte50, FgSte11, and FgSte7 were defective in conidiation, pathogenicity, and DON biosynthesis. In addition, FgSho1 plays a minor role in the response to osmotic stress but it is involved in the cell wall integrity pathway, which is independent of the module FgSte50-Ste11-Ste7 in F. graminearum. Collectively, results of this study strongly indicate that FgSho1 regulates fungal development and pathogenicity via the MAPK module FgSte50-Ste11-Ste7 in F. graminearum, which is different from what is known in the budding yeast Saccharomyces cerevisiae. PMID:25388878

Gu, Qin; Chen, Yun; Liu, Ye; Zhang, Chengqi; Ma, Zhonghua

2014-11-12

191

Cytotoxicity and Phytotoxicity of Trichothecene Mycotoxins Produced by Fusarium spp.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to plants, causing blights, wilts and other economically-important plant diseases, and to mammals, for example feed-refusal caused by deoxynivalenol (vomitoxin). Macrocyclic trichothec...

192

Compost induces protection against Fusarium oxysporum in sweet basil  

Microsoft Academic Search

Sweet basil (Ocimum basilicum L.) plants suffer frequently from wilt caused by Fusarium oxysporum f. sp. basilici (FOB). No efficient fungicide is currently available to control the disease. Sweet basil transplants were grown in either sphagnum peat (Europlant, Germany) or in compost, made by mixing the coarse fraction of cattle manure, chicken manure and wheat straw. The C\\/N ratio of

Reuven Reuveni; Michael Raviv; Arkady Krasnovsky; Lilya Freiman; Shlomit Medina; Anat Bar; Daniel Orion

2002-01-01

193

Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants.  

PubMed

In order to feed an ever-increasing world population, there is an urgent need to improve the production of staple food and fruit crops. The productivity of important food and fruit crops is constrained by numerous biotic and abiotic factors. The cultivation of banana, which is an important fruit crop, is severely threatened by Fusarium wilt disease caused by infestation by an ascomycetes fungus Fusarium oxysporum f. sp. cubense (Foc). Since there are no established edible cultivars of banana resistant to all the pathogenic races of Foc, genetic engineering is the only option for the generation of resistant cultivars. Since Foc is a hemibiotrophic fungus, investigations into the roles played by different cell-death-related genes in the progression of Foc infection on host banana plants are important. Towards this goal, three such genes namely MusaDAD1, MusaBAG1 and MusaBI1 were identified in banana. The study of their expression pattern in banana cells in response to Foc inoculation (using Foc cultures or fungal toxins like fusaric acid and beauvericin) indicated that they were indeed differentially regulated by fungal inoculation. Among the three genes studied, MusaBAG1 showed the highest up-regulation upon Foc inoculation. Further, in order to characterize these genes in the context of Foc infection in banana, we generated transgenic banana plants constitutively overexpressing the three genes that were later subjected to Foc bioassays in a contained greenhouse. Among the three groups of transgenics tested, transformed banana plants overexpressing MusaBAG1 demonstrated the best resistance towards Foc infection. Further, these plants also showed the highest relative overexpression of the transgene (MusaBAG1) among the three groups of transformed plants generated. Our study showed for the first time that native genes like MusaBAG1 can be used to develop transgenic banana plants with efficient resistance towards pathogens like Foc. PMID:24996429

Ghag, Siddhesh B; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

2014-01-01

194

Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila.  

PubMed

Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI). Even at 24 DPI (fruit maturity) S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface) under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types. PMID:25147942

Gautam, Dhiraj; Dobhal, Shefali; Payton, Mark E; Fletcher, Jacqueline; Ma, Li Maria

2014-01-01

195

Identification of resistance to fusarium oxysporum f. sp. niveum Race 2 in citrullus lanatus var. citroides plant introductions  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium wilt is a major disease of watermelon in North America and around the world. Control of this disease is difficult, because the soil-borne causal agent Fusarium oxysporum f. sp. niveum (Fon), produces resilient spores that remain infectious for many years. Although various levels of resist...

196

Hinoki ( Chamaecyparis obtusa) bark, a substrate with anti-pathogen properties that suppress some root diseases of tomato  

Microsoft Academic Search

There were no significant differences in the content of nutrient elements and the growth of tomato plants on rockwool and on hinoki bark fiber slabs. However, the incidences of fusarium crown and root rot (Fusarium oxysporum f. sp. radicis-lycopersici), and bacterial wilt (Pseudomonas solanacearum) were greatly reduced by hinoki bark. The populations of Fusarium or Pseudomonas were significantly lower in

J. Q Yu; H Komada

1999-01-01

197

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide  

PubMed Central

Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field. PMID:23610539

2013-01-01

198

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.  

PubMed

Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field. PMID:23610539

Abdel-Monaim, Montaser Fawzy

2013-03-01

199

Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides.  

PubMed

When the fungal pathogen Gibberella moniliformis (anamorph, Fusarium verticillioides) colonizes maize and maize-based products, it produces class B fumonisin (FB) mycotoxins, which are a significant threat to human and animal health. FB biosynthetic enzymes and accessory proteins are encoded by a set of clustered and cotranscribed genes collectively named FUM, whose molecular regulation is beginning to be unraveled by researchers. FB accumulation correlates with the amount of transcripts from the key FUM genes, FUM1, FUM21, and FUM8. In fungi in general, gene expression is often partially controlled at the chromatin level in secondary metabolism; when this is the case, the deacetylation and acetylation (and other posttranslational modifications) of histones are usually crucial in the regulation of transcription. To assess whether epigenetic factors regulate the FB pathway, we monitored FB production and FUM1, FUM21, and FUM8 expression in the presence of a histone deacetylase inhibitor and verified by chromatin immunoprecipitation the relative degree of histone acetylation in the promoter regions of FUM1, FUM21, and FUM8 under FB-inducing and noninducing conditions. Moreover, we generated transgenic F. verticillioides strains expressing GFP under the control of the FUM1 promoter to determine whether its strength under FB-inducing and noninducing conditions was influenced by its location in the genome. Our results indicate a clear and differential role for chromatin remodeling in the regulation of FUM genes. This epigenetic regulation can be attained through the modulation of histone acetylation at the level of the promoter regions of the key biosynthetic genes FUM1 and FUM21, but less so for FUM8. PMID:22117026

Visentin, I; Montis, V; Döll, K; Alabouvette, C; Tamietti, G; Karlovsky, P; Cardinale, F

2012-03-01

200

Root Exudates from Grafted-Root Watermelon Showed a Certain Contribution in Inhibiting Fusarium oxysporum f. sp. niveum  

PubMed Central

Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants. PMID:23700421

Wang, Dongsheng; Mao, Jiugeng; Huang, Qiwei; Guo, Shiwei; Shen, Qirong

2013-01-01

201

RESISTANCE TO SCLEROTINIA WILT IN WILD SUNFLOWER SPECIES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sclerotinia sclerotiorum (Lib.) De Bary is a widespread plant pathogen affecting over 300 plant species. In sunflower (Helianthus annuus L.), the mycelia infect under ground plant parts causing wilt, and ascospores infect stems and heads causing stem and head rot. This study investigated the resista...

202

Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum  

Microsoft Academic Search

Root exudates have a key role in communication between plants and microbes in the rhizosphere. Fusarium wilt of watermelon,\\u000a caused by Fusarium oxysporum f. sp. niveum (Fusarium oxysporum), drastically reduces watermelon yields in continuous cultivation systems, but it can be significantly alleviated using watermelon\\/aerobic\\u000a rice intercropping system as shown by the research carried out in this laboratory. It is important

Wen-ya Hao; Li-xuan Ren; Wei Ran; Qi-rong Shen

2010-01-01

203

Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil.  

PubMed

A multiyear survey of more than 200 wheat fields in Paraná (PR) and Rio Grande do Sul (RS) states was conducted to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in southern Brazilian wheat agroecosystem. Five species and three trichothecene genotypes were found among 671 FGSC isolates from FHB infected wheat heads: F. graminearum (Fgra, 83%) of the 15-ADON genotype, F. meridionale (Fmer, 12.8%) and F. asiaticum (Fasi, 0.4%) of the NIV genotype, and F. cortaderiae (Fcor, 2.5%) and F. austroamericanum (Faus, 0.9%) with either the NIV or the 3-ADON genotype. Regional differences in FGSC composition were observed, with Fmer and the NIV type being significantly (P < 0.001) more prevalent in PR (>28%) than in RS (?9%). Within RS, Fgra was overrepresented in fields below 600 m elevation and in fields with higher levels of FHB incidence (P < 0.05). Species composition was not significantly influenced by previous crop or the stage of grain development at sampling. Habitat-specific differences in FGSC composition were evaluated in three fields by characterizing a total of 189 isolates collected from corn stubble, air above the wheat canopy and symptomatic wheat kernels. Significant differences in FGSC composition were observed among these habitats (P < 0.001). Most strikingly, Fmer and Fcor of the NIV genotype accounted for the vast majority (>96%) of isolates from corn stubbles, whereas Fgra with the 15-ADON genotype were dominant (>84%) among isolates from diseased wheat kernels. Potential differences in pathogenic fitness on wheat were also suggested by a greenhouse competitiveness assay in which Fgra was recovered at much higher frequency (>90%) than Fmer from four wheat varieties inoculated with an equal mixture of Fgra and Fmer isolates. Taken together, the data presented here suggest that FGSC composition and consequently the trichothecene contamination in wheat grown in southern Brazil is influenced by host adaptation and pathogenic fitness. Evidence that Fmer and Fcor with the NIV genotype are regionally significant contributors to FHB may have significant implications for food safety and the economics of cereal production. PMID:25121641

Del Ponte, Emerson; Spolti, Pierri; Ward, Todd; Gomes, Larissa Bitencourt; Nicolli, Camila Primieri; Kuhnem, Paulo Roberto; da Silva, Cleiltan Novais; Tessmann, Dauri Jose

2014-08-14

204

Insight into mycoviruses infecting Fusarium species.  

PubMed

Most of the major fungal families including plant-pathogenic fungi, yeasts, and mushrooms are infected by mycoviruses, and many double-stranded RNA (dsRNA) mycoviruses have been recently identified from diverse plant-pathogenic Fusarium species. The frequency of occurrence of dsRNAs is high in Fusarium poae but low in other Fusarium species. Most Fusarium mycoviruses do not cause any morphological changes in the host but some mycoviruses like Fusarium graminearum virus 1 (FgV1) cause hypovirulence. Available genomic data for seven of the dsRNA mycoviruses infecting Fusarium species indicate that these mycoviruses exist as complexes of one to five dsRNAs. According to phylogenetic analysis, the Fusarium mycoviruses identified to date belong to four families: Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae. Proteome and transcriptome analysis have revealed that FgV1 infection of Fusarium causes changes in host transcriptional and translational machineries. Successful transmission of FgV1 via protoplast fusion suggests the possibility that, as biological control agents, mycoviruses could be introduced into diverse species of fungal plant pathogens. Research is now needed on the molecular biology of mycovirus life cycles and mycovirus-host interactions. This research will be facilitated by the further development of omics technologies. PMID:23498910

Cho, Won Kyong; Lee, Kyung-Mi; Yu, Jisuk; Son, Moonil; Kim, Kook-Hyung

2013-01-01

205

Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4  

PubMed Central

Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is considered the most lethal disease of Cavendish bananas in the world. The disease can be managed in the field by planting resistant Cavendish plants generated by somaclonal variation. However, little information is available on the genetic basis of plant resistance to Foc TR4. To a better understand the defense response of resistant banana plants to the Fusarium wilt pathogen, the transcriptome profiles in roots of resistant and susceptible Cavendish banana challenged with Foc TR4 were compared. Results RNA-seq analysis generated more than 103 million 90-bp clean pair end (PE) reads, which were assembled into 88,161 unigenes (mean size?=?554 bp). Based on sequence similarity searches, 61,706 (69.99%) genes were identified, among which 21,273 and 50,410 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 33,243 (37.71%) unigenes to 119 KEGG pathways. A total of 5,008 genes were assigned to plant-pathogen interactions, including disease defense and signal transduction. Digital gene expression (DGE) analysis revealed large differences in the transcriptome profiles of the Foc TR4-resistant somaclonal variant and its susceptible wild-type. Expression patterns of genes involved in pathogen-associated molecular pattern (PAMP) recognition, activation of effector-triggered immunity (ETI), ion influx, and biosynthesis of hormones as well as pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, cell wall modification genes and genes with other functions were analyzed and compared. The results indicated that basal defense mechanisms are involved in the recognition of PAMPs, and that high levels of defense-related transcripts may contribute to Foc TR4 resistance in banana. Conclusions This study generated a substantial amount of banana transcript sequences and compared the defense responses against Foc TR4 between resistant and susceptible Cavendish bananas. The results contribute to the identification of candidate genes related to plant resistance in a non-model organism, banana, and help to improve the current understanding of host-pathogen interactions. PMID:22863187

2012-01-01

206

Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance.  

PubMed

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N; Schenk, Peer M

2014-01-01

207

Evolutionary Relationships among the Fusarium oxysporum f. sp. cubense Vegetative Compatibility Groups?  

PubMed Central

Fusarium oxysporum f. sp. cubense, the causal agent of fusarium wilt of banana (Musa spp.), is one of the most destructive strains of the vascular wilt fungus F. oxysporum. Genetic relatedness among and within vegetative compatibility groups (VCGs) of F. oxysporum f. sp. cubense was studied by sequencing two nuclear and two mitochondrial DNA regions in a collection of 70 F. oxysporum isolates that include representatives of 20 VCGs of F. oxysporum f. sp. cubense, other formae speciales, and nonpathogens. To determine the ability of F. oxysporum f. sp. cubense to sexually recombine, crosses were made between isolates of opposite mating types. Phylogenetic analysis separated the F. oxysporum isolates into two clades and eight lineages. Phylogenetic relationships between F. oxysporum f. sp. cubense and other formae speciales of F. oxysporum and the relationships among VCGs and races of F. oxysporum f. sp. cubense clearly showed that F. oxysporum f. sp. cubense's ability to cause disease on banana has emerged multiple times, independently, and that the ability to cause disease to a specific banana cultivar is also a polyphyletic trait. These analyses further suggest that both coevolution with the host and horizontal gene transfer may have played important roles in the evolutionary history of the pathogen. All examined isolates harbored one of the two mating-type idiomorphs, but never both, which suggests a heterothallic mating system should sexual reproduction occur. Although, no sexual structures were observed, some lineages of F. oxysporum f. sp. cubense harbored MAT-1 and MAT-2 isolates, suggesting a potential that these lineages have a sexual origin that might be more recent than initially anticipated. PMID:19482953

Fourie, Gerda; Steenkamp, E. T.; Gordon, T. R.; Viljoen, A.

2009-01-01

208

Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels.  

PubMed

GBB1, a heterotrimeric G-protein ?-subunit gene, was shown to be a key regulator of fumonisin B(1) (FB(1) ) biosynthesis in the maize pathogen Fusarium verticillioides. In this study, we performed functional analyses of genes that encode putative RGS (regulators of G-protein signalling) proteins and PhLPs (phosducin-like proteins) in F. verticillioides. These proteins are known to regulate heterotrimeric G-protein activity by altering the intrinsic guanosine triphosphatase (GTPase) activity, which, in turn, influences the signalling mechanisms that control fungal growth, virulence and secondary metabolism. Our aim was to isolate and characterize gene(s) that are under the transcriptional control of GBB1, and to test the hypothesis that these genes are directly associated with FB(1) regulation and fungal development in F. verticillioides on maize kernels. We first identified eight genes (two PhLPs and six RGSs) in the F. verticillioides genome, and a subsequent transcriptional expression study revealed that three RGS genes were up-regulated in the gbb1 deletion (?gbb1) mutant and one RGS gene was up-regulated in the wild-type. To characterize their function, we generated knockout mutants using a homologous recombination strategy. When grown on autoclaved nonviable kernels, two mutants (?flbA2 and ?rgsB) produced significantly higher levels of FB(1) compared with the wild-type progenitor, suggesting that the two mutated genes are negative regulators of FB(1) biosynthesis. ?flbA2 also showed a severe curly conidia germination pattern, which was contradictory to that observed in the ?gbb1 strain. Strikingly, when these mutants were grown on live maize kernels, we observed contrasting FB(1) and conidiation phenotypes in fungal mutants, which strongly suggests that these G-protein regulators have an impact on how F. verticillioides responds to host/environmental factors. Our data also provide evidence that fungal G-protein signalling is important for modulating the ethylene biosynthetic pathway in maize kernels. PMID:21535353

Mukherjee, Mala; Kim, Jung-Eun; Park, Yong-Soon; Kolomiets, Michael V; Shim, Won-Bo

2011-06-01

209

The development and application of a plant bioassay to elucidate toxic principles directed at watermelon by Fusarium Oxysporum f. sp. niveum  

Technology Transfer Automated Retrieval System (TEKTRAN)

Formae speciales of Fusarium oxysporum cause wilt and death of numerous agronomic crops worldwide. The objective of this research was to develop a bioassay for Fusarium toxins directed toward watermelon. Watermelon seedlings were grown to the two leaf stage; the roots were washed and trimmed. Two...

210

Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil  

Technology Transfer Automated Retrieval System (TEKTRAN)

A multiyear survey of >200 wheat fields in Paraná (PR) and Rio Grande do Sul (RS) states was conducted to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in the southern Brazilian wheat agroecosystem. Five species and three trichothecene genotypes were fou...

211

The genome of the of the generalist plant pathogenic fungus Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium avenaceum is a fungus commonly isolated from soil and with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The physical sizes of the three genomes range from 41.6-43.2 MB...

212

A Novel Asian Clade Within the Fusarium graminearum Species Complex Includes a Newly Discovered Cereal Head Blight Pathogen from the Far East of Russia  

Technology Transfer Automated Retrieval System (TEKTRAN)

We investigated B-trichothecene toxin-producing Fusarium head blight (B-FHB) species and their toxin potential in European and Asian regions of the Russian Federation, and adjoining regions to the Northwest in Finland and the South near Harbin, in the Heilongjiang Province of China to expand our kno...

213

Fusarium euwallaceae sp. nov.--a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California.  

PubMed

The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al. PMID:23928415

Freeman, S; Sharon, M; Maymon, M; Mendel, Z; Protasov, A; Aoki, T; Eskalen, A; O'Donnell, K

2013-01-01

214

Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis  

PubMed Central

Background Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. Results Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. Conclusion Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response. We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races. Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981. PMID:21338485

2011-01-01

215

Efficacy of microorganisms selected from compost to control soil-borne pathogens.  

PubMed

Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results confirmed the good suppressive activity of the compost under study against soil-borne pathogens. The selection of antagonists from compost is a promising strategy for the development of new biological control agents against soil-borne pathogens. PMID:21534476

Pugliese, M; Gullino, M L; Garibaldi, A

2010-01-01

216

Cyber-infrastructure for Fusarium (CiF): Three integrated platforms supporting strain identification, phylogenetics, comparative genomics, and knowledge sharing  

Technology Transfer Automated Retrieval System (TEKTRAN)

The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on ...

217

Studies of a New Fusarium Wilt of Spinach in Texas.  

E-print Network

Savoy, Victoria, Im- proved Thick Leaved (Viroflay), and Long Season. None of these vari- eties, however, showed any more resistance than the other. On the other hand, New Zealand spinach (Tetragonia expansa) proved to be completely resistant...

Taubenhaus, J. J. (Jacob Joseph)

1926-01-01

218

First Report of Bacterial Wilt Caused by Ralstonia solanacearum Biovar 2 Race 1 on Tomato in Egypt  

PubMed Central

This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt. PMID:25289016

Seleim, Mohamed A. A.; Abo-Elyousr, Kamal A. M.; Abd-El-Moneem, Kenawy M.; Saead, Farag A.

2014-01-01

219

First Report of Bacterial Wilt Caused by Ralstonia solanacearum Biovar 2 Race 1 on Tomato in Egypt.  

PubMed

This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt. PMID:25289016

Seleim, Mohamed A A; Abo-Elyousr, Kamal A M; Abd-El-Moneem, Kenawy M; Saead, Farag A

2014-09-01

220

Purification and identification of two antifungal cyclic dipeptides from Bacillus cereus subsp. thuringiensis associated with a rhabditid entomopathogenic nematode especially against Fusarium oxysporum.  

PubMed

The cell-free culture filtrate of Bacillus cereus subsp. thuringiensis associated with an entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain two cyclic dipeptides (CDPs). The structure and absolute stereochemistry of this compound were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclo(D-Pro-L-Met) and cyclo(D-Pro-D-Tyr). CDPs showed significantly higher activity than the standard fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum. The highest activity of 2 µg/ml by cyclo(D-Pro-D-Tyr) was recorded against F. oxysporum, a plant pathogen responsible for causing fusarium wilt followed by R. solani, a pathogen that causes root rot and P. expansum. To our knowledge, this is the first report on the isolation of these compounds from Rhabditis EPN bacterial strain Bacillus cereus subsp. thuringiensis. PMID:23402421

Kumar, S Nishanth; Nambisan, Bala; Mohandas, C

2014-04-01

221

Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum.  

PubMed

A pectate lyase (PL1) from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici was previously characterized, and evidence was obtained for its production in planta. The gene encoding PL1 was isolated from a genomic library of F. oxysporum f. sp. lycopersici. Pl1 encodes a 240 amino-acid polypeptide with one putative N-glycosylation site and a 15 amino-acid N-terminal signal peptide. PL1 showed 89%, 67%, 55% and 56% identity with the products of the Fusarium solani f.sp. pisi pelA, pelB, pelC and pelD genes, respectively. A single copy of the gene was detected in different formae speciales of F. oxysporum. The pl1 transcript was observed during growth on polygalacturonic acid sodium salt and tomato vascular tissue, but not on pectin or glucose. RT-PCR showed pl1 expression in roots and stems of tomato plants infected by F. oxysporum f.sp. lycopersici. PMID:10022947

Huertas-González, M D; Ruiz-Roldán, M C; García Maceira, F I; Roncero, M I; Di Pietro, A

1999-02-01

222

Diversity of the Fusarium graminearum species complex on French cereals  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Gibberella ear rot (GER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern...

223

Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium  

Technology Transfer Automated Retrieval System (TEKTRAN)

Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

224

CONIDIAL GERMINATION IN THE FILAMENTOUS FUNGUS FUSARIUM GRAMINEARUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These e...

225

Differential Control of Head Blight Pathogens of Wheat by Fungicides and Consequences for Mycotoxin Contamination of Grain  

Microsoft Academic Search

Fusarium head blight of wheat is caused by a disease complex comprised of toxigenic pathogens, predominantly Fusarium spp., and a non-toxigenic pathogen Microdochium nivale, which causes symptoms visually indistinguishable from Fusarium and is often included as a causal agent of Fusarium head blight. Four field trials are reported here, including both naturally and artificially inoculated trials in which the effect

Duncan R. Simpson; Gillian E. Weston; Judith A. Turner; Philip Jennings; Paul Nicholson

2001-01-01

226

Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum  

PubMed Central

Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

2015-01-01

227

Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum.  

PubMed

Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

2015-01-01

228

Response of transgenic cucumber expressing a rice class I chitinase gene to two fungal pathogens with different infectivities  

Microsoft Academic Search

A transgenic cucumber line (CR32) over-expressing the rice class I chitinase gene exhibited resistance to Phytophthora rot ( Phytophthora nicotianae var. parasitica) but not to Fusarium wilt ( Fusarium oxysporum f. sp. cucumerinum). The infection behavior of these fungi on CR32 and nontransgenic plants was examined with an optical microscope. In zoosporangia of P. nicotianae var. parasitica, the rates of

Kyutaro Kishimoto; Masami Nakajima; Yoko Nishizawa; Yutaka Tabei; Tadaaki Hibi; Katsumi Akutsu

2003-01-01

229

Rainfall Effects on Wilting Forages  

Technology Transfer Automated Retrieval System (TEKTRAN)

Given the uncertainty of the weather and inherent differences between forage crops, specific recommendations for managing potential rain damage to wilting forages are difficult. However, there are a number of principles that can be applied to best manage the potential for rain damage. These science-...

230

Phylogenetically marking the limits of the genus Fusarium for post-Article 59 usage  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium (Hypocreales, Nectriaceae) is one of the most important and systematically challenging groups of mycotoxigenic, plant pathogenic, and human pathogenic fungi. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial nucleotide sequences of genes encod...

231

A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight or scab caused by Fusarium graminearum is an important disease of wheat and barley. The pathogen not only causes severe yield losses but also contaminates infested grains with mycotoxins. In a previous study we identified several pathogenicity mutants by random insertional mutag...

232

Investigating Spore killer of Fusarium verticillioides  

Technology Transfer Automated Retrieval System (TEKTRAN)

Maize is one of the most important crops in the world. Fusarium verticillioides may colonize maize as an endophyte or as a pathogen, causing disease at any life stage of the plant. During growth on maize, F. verticillioides can synthesis a number of mycotoxins including fumonisins, which have been l...

233

Molecular Identification and Databases in Fusarium  

Technology Transfer Automated Retrieval System (TEKTRAN)

DNA sequence-based methods for identifying pathogenic and mycotoxigenic Fusarium isolates have become the gold standard worldwide. Moreover, fusarial DNA sequence data are increasing rapidly in several web-accessible databases for comparative purposes. Unfortunately, the use of Basic Alignment Sea...

234

HISTOLOGY AND PHYSIOLOGY OF FUSARIUM HEAD BLIGHT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight re-emerged as a devastating disease of wheat and barley in the 1990s in the midwestern U.S. Research efforts to control the disease have been hampered by limited knowledge of how the fungal head blight pathogens infect and damage head tissue and what natural defenses the plant h...

235

Fusarium verticillioides: Talking to Friends and Enemies  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is both a symptomless endophyte and a pathogen of maize. At some point, the fungus may synthesize fumonisins which have been linked to a variety of animal diseases including cancer in some animals. In order to minimize losses due to contaminated food or feed, we are workin...

236

Icebergs and species in populations of Fusarium  

Microsoft Academic Search

(Accepted for publication August 2001 and published electronically 22 October 2001) ''Why is the name of the pathogen I work on changing?'' is a common question raised by plant pathologists. Species in the genus Fusarium (and the authors of this article) often are the target for such questions. Species descriptions, even very thorough ones, usually rely on a limited set

John F. Leslie; Kurt A. Zeller; Brett A. Summerell

2001-01-01

237

Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense.  

PubMed

Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 ?g g?ą FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR. PMID:23702248

Wu, Yuanli; Yi, Ganjun; Peng, Xinxiang; Huang, Bingzhi; Liu, Ee; Zhang, Jianjun

2013-07-15

238

Diversity of endophytic fungi from different verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro.  

PubMed

Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. However, no significant difference in the abundance of isolated endophytes was found among resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and susceptible ones had similar endophytic fungal population compositions. In three Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem tissue endophytic communities (0.702) was comparatively more uniform than the other two tissues. Eighty endophytic fungi selected from 27 genera were evaluated for their inhibition activity against highly virulent Verticillium dahliae isolate Vd080 in vitro. Thirty-nine isolates exhibited fungistasis against the pathogen at varying degrees. Seven species, having high growth inhibition rates (?75%), exhibited strong antifungal activity against V. dahliae. The antifungal activity of both volatile and nonvolatile metabolites was also investigated. The nonvolatile substances produced by CEF-818 (Penicillium simplicissimum), CEF-325 (Fusarium solani), CEF-714 (Leptosphaeria sp.), and CEF-642 (Talaromyces flavus) completely inhibited V. dahliae growth. These findings deepen our understanding of cotton-endophyte interactions and provide a platform for screening G. hirsutum endophytes with biocontrol potential. PMID:24836187

Li, Zhi-Fang; Wang, Ling-Fei; Feng, Zi-Li; Zhao, Li-Hong; Shi, Yong-Qiang; Zhu, He-Qin

2014-09-01

239

Transgenic wheat and barley carrying a barley UDP-glucosyltransferase exhibit high levels of Fusarium head blight resistance  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight (FHB) is an old yet unsolved problem of cereal crops, mainly caused by the fungal pathogen Fusarium graminearum. During infection, trichothecenes produced by Fusarium increase fungal virulence and decrease grain quality. Previous work identified a barley UDP-glucosyltransferase ...

240

Differential acquisition and transmission of Florida Tomato spotted wilt virus isolates by Western flower thrips  

Technology Transfer Automated Retrieval System (TEKTRAN)

Thrips-vectored Tomato spotted wilt virus (TSWV) is one of the most important insect-vectored plant pathogens globally. The virus host range encompasses many key vegetable, ornamental and agronomic crops. TSWV populations are highly heterogeneous, which has important implications for vector relati...

241

New outbreaks of verticillium wilt on Hop in Oregon caused by nonlethal verticillium albo-atrum  

Technology Transfer Automated Retrieval System (TEKTRAN)

In 2006 and 2007, new outbreaks of Verticillium wilt on hop were detected on two farms in Oregon. Verticillium pathogens vary in their virulence to hop; some strains cause minor damage but others can kill susceptible cultivars. Studies were conducted to determine the identity of the Verticillium sp...

242

Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia.  

PubMed

An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites. PMID:23606046

Tan, Diana C; Flematti, Gavin R; Ghisalberti, Emilio L; Sivasithamparam, Krishnapillai; Chakraborty, Sukumar; Obanor, Friday; Jayasena, Kithsiri; Barbetti, Martin J

2012-05-01

243

Molecular detection and genotyping of Fusarium oxysporum f. sp. psidii isolates from different agro-ecological regions of India.  

PubMed

Twenty one isolates of Fusarium oxysporum f. sp. psidii (Fop), causing a vascular wilt in guava (Psidium guajava L.), were collected from different agro-ecological regions of India. The pathogenicity test was performed in guava seedlings, where the Fop isolates were found to be highly pathogenic. All 21 isolates were confirmed as F. oxysporum f. sp. psidii by a newly developed, species-specific primer against the conserved regions of 28S rDNA and the intergenic spacer region. RAPD and PCR-RFLP were used for genotyping the isolates to determine their genetic relationships. Fifteen RAPD primers were tested, of which five primers produced prominent, polymorphic, and reproducible bands. RAPD yielded an average of 6.5 polymorphic bands per primer, with the amplified DNA fragments ranging from 200-2,000 bp in size. A dendrogram constructed from these data indicated a 22-74% level of homology. In RFLP analysis, two major bands (350 and 220 bp) were commonly present in all isolates of F. oxysporum. These findings provide new insight for rapid, specific, and sensitive disease diagnosis. However, genotyping could be useful in strain-level discrimination of isolates from different agro-ecological regions of India. PMID:23990290

Mishra, Rupesh Kumar; Pandey, Brajesh Kumar; Singh, Vijai; Mathew, Amita John; Pathak, Neelam; Zeeshan, Mohammad

2013-08-01

244

Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings  

PubMed Central

A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P? 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings. PMID:24031662

Mwangi, Margaret W.; Monda, Ethel O.; Okoth, Sheila A.; Jefwa, Joyce M.

2011-01-01

245

Isolation and characterization of an exopolygalacturonase from Fusarium oxysporum f.sp. cubense race 1 and race 4  

PubMed Central

Background Fusarium wilt is an economically devastating disease that affects banana production. Although Cavendish banana cultivars are resistant to Fusarium oxysporum f.sp. cubense race 1 (FOC1) and maitain banana production after Gros Michel was destructed by race 1, a new race race 4 (FOC4) was found to infect Cavendish. Results An exopolygalacturonase (PGC2) was isolated and purified from the supernatant of the plant pathogen Fusarium oxysporum f.sp. cubense race 4 (FOC4). PGC2 had an apparent Mr of 63 kDa by SDS-PAGE and 51.7 kDa by mass spectrometry. The enzyme was N-glycosylated. PGC2 hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. To obtain adequate amounts of protein for functional studies between the PGC2 proteins of two races of the pathogen, pgc2 genes encoding PGC2 from race 4 (FOC4) and race 1 (FOC1), both 1395 bp in length and encoding 465 amino acids with a predicted amino-terminal signal sequence of 18 residues, were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC2 products, r-FOC1-PGC2 and r-FOC4-PGC2, were expressed and purified as active extracellular proteins. Optimal PGC2 activity was observed at 50°C and pH 5. The Km and Vmax values of purified r-FOC1-PGC2 were 0.43 mg.mL-1 and 94.34 units mg protein-1 min-1, respectively. The Km and Vmax values of purified r-FOC4-PGC2 were 0.48 mg.mL-1 and 95.24 units mg protein-1 min-1, respectively. Both recombinant PGC2 proteins could induce tissue maceration and necrosis in banana plants. Conclusions Collectively, these results suggest that PGC2 is the first exoPG reported from the pathogen FOC, and we have shown that fully functional PGC2 can be produced in the P. pastoris expression system. PMID:21920035

2011-01-01

246

Progress Toward Breeding for Verticillium Wilt Resistance  

Technology Transfer Automated Retrieval System (TEKTRAN)

Verticillium wilt is a persistent and serious problem in potato production. Host plant resistance offers an attractive long-term control method. Breeding progress depends on access to germplasm carrying resistance genes. This study was carried out to identify sources of Verticillium wilt resistan...

247

Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host  

PubMed Central

Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

2011-01-01

248

Original article Wilting effect on fermentation characteristics and  

E-print Network

Original article Wilting effect on fermentation characteristics and nutritive value of mountain the chemical characteristics and the evolution of fermentation processes in pre-wilted silages: 500 L capacity-wilting. Fermentation characteris- tics were significantly modified by wilting with an increase in pH (from 3.82 to 4

Paris-Sud XI, Université de

249

Onychomycosis by Fusarium oxysporum probably acquired in utero  

PubMed Central

Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother. PMID:25383318

Carvalho, Vania O.; Vicente, Vania A.; Werner, Betina; Gomes, Renata R.; Fornari, Gheniffer; Herkert, Patricia F.; Rodrigues, Cristina O.; Abagge, Kerstin T.; Robl, Renata; Camińa, Ricardo H

2014-01-01

250

Keratitis by Fusarium temperatum , a novel opportunist.  

PubMed

Background Fusarium species are among the most common fungi present in the environment and some species have emerged as major opportunistic fungal infection in human. However, in immunocompromised hosts they can be virulent pathogens and can cause death. The pathogenesis of this infection relies on three factors: colonization, tissue damage, and immunosuppression. A novel Fusarium species is reported for the first time from keratitis in an agriculture worker who acquired the infection from plant material of maize. Maize plants are the natural host of this fungus where it causes stalk rot and seeding malformation under temperate and humid climatic conditions. The clinical manifestation, microbiological morphology, physiological features and molecular data are described.MethodsDiagnosis was established by using polymerase chain reaction of fungal DNA followed by sequencing portions of translation elongation factor 1 alpha (TEF1 ż) and beta-tubulin (BT2) genes. Susceptibility profiles of this fungus were evaluated using CLSI broth microdilution method.ResultsThe analyses of these two genes sequences support a novel opportunist with the designation Fusarium temperatum. Phylogenetic analyses showed that the reported clinical isolate was nested within the Fusarium fujikuroi species complex. Antifungal susceptibility testing demonstrated that the fungus had low MICs of micafungin (0.031 żg/ml), posaconazole (0.25 żg/ml) and amphotericin B (0.5 żg/ml).ConclusionThe present case extends the significance of the genus Fusarium as agents of keratitis and underscores the utility of molecular verification of these emerging fungi in the human host. PMID:25388601

Al-Hatmi, Abdullah M S; Bonifaz, Alexandro; de Hoog, G; Vazquez-Maya, Leticia; Garcia-Carmona, Karla; Meis, Jacques F; van Diepeningen, Anne D

2014-11-12

251

ORIGINAL ARTICLE Moths that Vector a Plant Pathogen also Transport  

E-print Network

ORIGINAL ARTICLE Moths that Vector a Plant Pathogen also Transport Endophytic Fungi Abstract Claviceps paspali, a common fungal pathogen of Paspalum grasses, attracts moth vectors Fusarium species that may negatively influence C. paspali fitness. We examined the potential for moths

Arnold, A. Elizabeth

252

A model for multiseasonal spread of verticillium wilt of lettuce.  

PubMed

Verticillium wilt, caused by Verticillium dahliae, is a destructive disease in lettuce, and the pathogen is seedborne. Even though maximum seed infestation rates of <5% have been detected in commercial lettuce seed lots, it is necessary to establish acceptable contamination thresholds to prevent introduction and establishment of the pathogen in lettuce production fields. However, introduction of inoculum into lettuce fields for experimental purposes to determine its long term effects is undesirable. Therefore, we constructed a simulation model to study the spread of Verticillium wilt following pathogen introduction from seed. The model consists of four components: the first for simulating infection of host plants, the second for simulating reproduction of microsclerotia on diseased plants, the third for simulating the survival of microsclerotia, and the fourth for simulating the dispersal of microsclerotia. The simulation results demonstrated that the inoculum density-disease incidence curve parameters and the dispersal gradients affect disease spread in the field. Although a steep dispersal gradient facilitated the establishment of the disease in a new field with a low inoculum density, a long-tail gradient allowed microsclerotia to be dispersed over greater distances, promoting the disease spread in fields with high inoculum density. The simulation results also revealed the importance of avoiding successive lettuce crops in the same field, reducing survival rate of microsclerotia between crops, and the need for breeding resistance against V. dahliae in lettuce cultivars to lower the number of microsclerotia formed on each diseased plant. The simulation results, however, suggested that, even with a low seed infestation rate, the pathogen would eventually become established if susceptible lettuce cultivars were grown consecutively in the same field for many years. A threshold for seed infestation can be established only when two of the three drivers of the disease-(i) low microsclerotia production per diseased plant, (ii) long-tail dispersal gradient, and (iii) low microsclerotia survival between lettuce crops-are present. PMID:24624952

Wu, B M; Subbarao, K V

2014-09-01

253

Identification of Fusarium species isolated from stored apple fruit in Croatia.  

PubMed

Several species of the genus Fusarium can cause apple fruit to rot while stored. Since Fusarium taxonomy is very complex and has constantly been revised and updated over the last years, the aim of this study was to identify Fusarium species from rotten apples, based on combined morphological characteristics and molecular data. We identified 32 Fusarium isolates from rotten apple fruit of cultivars Golden Delicious, Jonagold, Idared, and Pink Lady, stored in Ultra Low Oxygen (ULO) conditions. Fusarium rot was detected in 9.4 % to 33.2 % of naturally infected apples, depending on the cultivar. The symptoms were similar in all four cultivars: a soft circular brown necrosis of different extent, with or without visible sporulation. Fusarium species were identified by the morphology of cultures grown on potato-dextrose agar (PDA) and carnation leaf agar (CLA). Twenty one isolates were identified as Fusarium avenaceum and confirmed as such with polymerase chain reaction (PCR) using specific primer pair FA-ITSF and FA-ITSR. F. pseudograminearum,F. semitectum, F. crookwellense, and F. compactum were identified by morphological characteristics. F.avenaceum can produce several mycotoxins and its dominance in Fusarium rot points to the risk of mycotoxin contamination of apple fruit juices and other products for human consumption. Pathogenicity tests showed typical symptoms of Fusarium rot in most of the inoculated wounded apple fruits. In this respect Fusarium avenaceum, as the dominant cause of Fusarium rot in stored apple fruits is a typical wound parasite. PMID:23334041

Sever, Zdravka; Ivi?, Dario; Kos, Tomislav; Mili?evi?, Tihomir

2012-12-01

254

Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

255

Morphological and molecular variation among species of the Fusarium dimerum species group  

Technology Transfer Automated Retrieval System (TEKTRAN)

The name Fusarium dimerum has been used in the past for saprotrophic fungi and opportunistic human pathogens with up to 3-septate but mostly 0- or 1-septate Fusarium-like conidia. On the basis of narrowly defined morphological characters, the varieties Pusillum, Nectrioides and Violaceum were disti...

256

Npc1 is involved in sterol trafficking in the filamentous fungus Fusarium graminearum  

Technology Transfer Automated Retrieval System (TEKTRAN)

The ortholog of the human gene NPC1 was identified in the plant pathogenic, filamentous fungus Fusarium graminearum by shared amino acid sequence, protein domain structure and cellular localization of the mature fungal protein. The Fusarium Npc1 gene shares 34% amino acid sequence identity and 51% s...

257

Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina  

Technology Transfer Automated Retrieval System (TEKTRAN)

Members of the Fusarium graminearum species complex (Fg complex) are the causal agents of ear rot in maize and Fusarium head blight of wheat and other small grain cereals. The potential of these pathogens to contaminate cereals with trichothecene mycotoxins is a health risk for both humans and anima...

258

Composition of the Fusarium graminearum species complex populations in wheat cropping environments in Southern Brazil  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Fusarium graminearum species complex (FGSC) comprises several toxigenic species that cause Fusarium head blight (FHB) in wheat. In this study, high number (n=671 isolates) of pathogenic isolates (isolated from infected spikes) was obtained from a 3-year large-scale survey (2009-2011) conducted o...

259

Mid-Infrared and Near-Infrared Spectroscopic Properties of Fusarium Isolates: Effects of Culture Conditions  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Fusarium genus includes soil saprobes as well as pathogenic or toxin-producing species. Traditional classification of Fusarium isolates is slow and requires a high level of expertise. The objective of this project is to describe culture condition effects on mid-infrared (MidIR) and near-infrared...

260

Introgression and genetic characterization of alien Fusarium head blight resistance in wheat  

Technology Transfer Automated Retrieval System (TEKTRAN)

Alien species are an important source of genetic variability in wheat (Triticum spp.) and carry genes for resistance to numerous pathogens, including Fusarium graminearum Schwabe, the causal agent of Fusarium head blight (FHB). The goal of this project was to develop breeder-friendly, FHB-resistant ...

261

SOURCES OF PARTIAL RESISTANCE TO FUSARIUM ROOT ROT IN THE PISUM CORE COLLECTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium root rot, caused by Fusarium solani f. sp. pisi, is one of the most important fungal diseases of pea and is found in most pea growing areas around the world. Currently, no commercial cultivars are resistant to this pathogen. Availability of new sources of partial resistance could provide ...

262

A North American isolate of Fusarium graminearum: toxicity and biosynthesis of a new type A trichothecene  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is one of the economically most important plant pathogens causing diseases such as Fusarium Head Blight (FHB) of small grain cereals and ear rot of maize. The mycotoxin deoxynivalenol (DON) produced by F. graminearum is a virulence factor in wheat and probably also on other host...

263

Biogeography and phylogeography of Fusarium : a review  

Microsoft Academic Search

Fusarium is a large, complex genus that causes a wide variety of plant diseases, produces a number of mycotoxins and is becoming increasingly\\u000a recognized as a significant human pathogen. These fungi occur in ecosystems in all parts of the globe, which makes them useful\\u000a as a model to better understand biogeographic processes affecting the distribution of fungi. Here we review

Brett A. Summerell; Matthew H. Laurence; Edward C. Y. Liew; John F. Leslie

2010-01-01

264

Fusarium oxysporum f.sp. ciceri Race 1 Induced Redox State Alterations Are Coupled to Downstream Defense Signaling in Root Tissues of Chickpea (Cicer arietinum L.)  

PubMed Central

Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea–Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes. PMID:24058463

Chatterjee, Moniya; Das, Sampa

2013-01-01

265

Sclerotinia wilt of Hop (Humulus lupulus) caused by Sclerotinia sclerotiorum in the Pacific Northwest U.S.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sclerotinia sclerotiorum is a widespread, destructive pathogen with an exceptionally broad host range. During June 2011, wilted hop plants (Humulus lupulus cv. Nugget) were observed in a hop yard in Marion County, Oregon. Some affected plants had upward curled leaves with necrotic margins, whereas o...

266

Entomopathogenic fungi as a biological control for the vector of the laurel wilt disease: the redbay ambrosia beetle  

Technology Transfer Automated Retrieval System (TEKTRAN)

The redbay ambrosia beetle (RAB), Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) vectors the fungal pathogen, Raffaelea lauricola, which causes laurel wilt (LW), a lethal disease of trees in the family Lauraceae, including the most commercially important crop in this family, avocado, Pe...

267

Is California bay laurel a suitable host for the non-native redbay ambrosia beetle, vector of laurel wilt disease?  

Technology Transfer Automated Retrieval System (TEKTRAN)

Laurel wilt is a deadly vascular disease of trees in the Lauraceae that kills healthy redbay (Persea borbonia), sassafras (Sassafras albidum), and other related hosts. The fungal pathogen (Raffaelea lauricola) and it vector, the redbay ambrosia beetle (Xyleborus glabratus) are native to Asia and ha...

268

Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice.  

PubMed

Three Fusarium species associated with bakanae disease of rice (Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides) were investigated for their ability to produce fumonisins (FB1 and FB2) under different light conditions, and for pathogenicity. Compared to darkness, the conditions that highly stimulated fumonisin production were yellow and green light in F. verticillioides strains; white and blue light, and light/dark alternation in F. fujikuroi and F. proliferatum strains. In general, all light conditions positively influenced fumonisin production with respect to the dark. Expression of the FUM1 gene, which is necessary for the initiation of fumonisin production, was in accordance with the fumonisin biosynthetic profile. High and low fumonisin-producing F. fujikuroi strains showed typical symptoms of bakanae disease, abundant fumonisin-producing F. verticillioides strains exhibited chlorosis and stunting of rice plants, while fumonisin-producing F. proliferatum strains were asymptomatic on rice. We report that F. fujikuroi might be an abundant fumonisin producer with levels comparable to that of F. verticillioides and F. proliferatum, highlighting the need of deeper mycotoxicological analyses on rice isolates of F. fujikuroi. Our results showed for the first time the influence of light on fumonisin production in isolates of F. fujikuroi, F. proliferatum, and F. verticillioides from rice. PMID:24055868

Mati?, Slavica; Spadaro, Davide; Prelle, Ambra; Gullino, Maria Lodovica; Garibaldi, Angelo

2013-09-16

269

Differential Expression of Putative Polyketide Biosynthetic Gene Clusters in Fusarium verticillioides  

Technology Transfer Automated Retrieval System (TEKTRAN)

The maize pathogen Fusarium verticillioides can produce a number of polyketide derived secondary metabolites, including fumonisins. Fumonisins cause diseases in animals, and show epidemiological correlation with esophageal cancer and birth defects in humans. The F. verticillioides genome contains ...

270

Development of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay for Rapid and Quantitative Detection of Fusarium oxysporum f. sp. cubense Tropical Race 4 In Soil  

PubMed Central

Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 103 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

2013-01-01

271

Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.  

PubMed

Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

2013-01-01

272

ANALYSIS OF EXPRESSED SEQUENCE TAGS FROM GIBBERELLA ZEAE (ANAMORPH FUSARIUM GRAMINEARUM)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is a broad host range pathogen that infects many crop plants, including wheat and barley, and causes head blight or rot diseases throughout the world. To better understand fungal development and pathogenicity in this important pathogen, we have now generated over 12,000 ESTs in...

273

Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain.  

PubMed

Fungi of the genus Fusarium are important plant pathogens and contaminants of cereal grains producing different types of mycotoxins. Enniatins are a group of mycotoxins with ionophoric properties frequently detected in North European grains. Within the Fusarium complex responsible for grain infection, Fusarium avenaceum, Fusarium poae and Fusarium tricinctum are the most potential enniatins producers. This study presents the development of two quantitative TaqMan MGB (Minor Groove Binder) assays for the specific quantification of F. avenaceum/F. tricinctum and F. poae esyn1 genotypes, respectively. Two sets of genotype-specific primers/probes were designed on the basis of esyn1 gene homologues encoding multifunctional enzyme enniatin synthetase. The specificity of the assays developed has been tested successfully on 111 Fusarium isolates from different geographical origins. The detection limits for F. avenaceum/F. tricinctum esyn1 genotype and F. poae genotype were 19 and 0.3?pg, respectively. The application of the assays developed on asymptomatic wheat grain samples revealed significant positive correlations between the enniatins levels and the amount of F. avenaceum/F. tricinctum esyn1 genotype (R=0.61) and F. poae esyn1 genotype (R=0.42). PMID:21059180

Kulik, Tomasz; Jestoi, Marika; Okorski, Adam

2011-01-01

274

Genetic Diversity of Human Pathogenic Members of the Fusarium oxysporum Complex Inferred from Multilocus DNA Sequence Data and Amplified Fragment Length Polymorphism Analyses: Evidence for the Recent Dispersion of a Geographically Widespread Clonal Lineage and Nosocomial Origin  

Microsoft Academic Search

Fusarium oxysporum is a phylogenetically diverse monophyletic complex of filamentous ascomycetous fungi that are responsible for localized and disseminated life-threatening opportunistic infections in immunocom- petent and severely neutropenic patients, respectively. Although members of this complex were isolated from patients during a pseudoepidemic in San Antonio, Tex., and from patients and the water system in a Houston, Tex., hospital during the

Kerry O'Donnell; Deanna A. Sutton; Michael G. Rinaldi; Karen C. Magnon; Patricia A. Cox; Sanjay G. Revankar; Stephen Sanche; David M. Geiser; Jean H. Juba; Jo-Anne H. van Burik; Arvind Padhye; Elias J. Anaissie; Andrea Francesconi; Thomas J. Walsh; Jody S. Robinson

2004-01-01

275

Evaluation of oak wilt index based on genetic programming  

Microsoft Academic Search

We proposed a normalized oak wilt index (NWI) to extract oak wilt area from remotely sensed hyperspectral image of forest in our previous work. The NWI, which is designed based on factitious characterization of spectral profiles of oak wilt, realized satisfactory extraction performance. In this paper, we propose a genetic-programming-based search method for physically interpretable index. The search procedure consists

Kuniaki Uto; Yukio Kosugi; Toshinari Ogata

2009-01-01

276

Molecular characterization of the Fusarium graminearum species complex in Japan  

Technology Transfer Automated Retrieval System (TEKTRAN)

Members of the Fusarium graminearum species complex (teleomorph: Gibberella zeae) are important cereal pathogens worldwide and belong to one of at least nine phylogenetically distinct species. We collected 298 isolates of the F. graminearum species complex from wheat or barley from 2001 to 2004 in ...

277

REMI MUTAGENESIS IN THE WHEAT SCAB FUNGUS FUSARIUM GRAMINEARUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is an important pathogen of small grains and maize in many areas of the world. Infected grains are often contaminated with mycotoxins harmful to humans and animals. In the past decade, wheat scab (head blight), primarily caused by F. graminearum in North America, has emerged as ...

278

Characterization of polyketide synthase genes in the genus Fusarium  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a stalk and ear rot pathogen of maize and can produce the fumonisin mycotoxins. Although the genetics and biochemistry of fumonisin biosynthesis is relatively well understood, little is known about the biosynthesis of other secondary metabolites produced by F. verticilli...

279

Genome Sequence of Fusarium graminearum Isolate CS3005  

PubMed Central

Fusarium graminearum is one of the most important fungal pathogens of wheat, barley, and maize worldwide. This announcement reports the genome sequence of a highly virulent Australian isolate of this species to supplement the existing genome of the North American F. graminearum isolate Ph1. PMID:24744326

Stiller, Jiri; Kazan, Kemal

2014-01-01

280

RAS2 regulates growth and pathogenesis in Fusarium graminearum  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is a ubiquitous pathogen of cereal crops including wheat, barley, and maize. Diseases caused by F. graminearum are of particular concern because harvested grains are frequently contaminated with harmful mycotoxins such as deoxynivalenol (DON). Currently, little is known about ...

281

DISCONTINUOUS DISTRIBUTION OF THE FUMONISIN BIOSYNTHETIC GENE CLUSTER IN FUSARIUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fumonisins are polyketide mycotoxins produced by Fusarium verticillioides, one of the most common ear and stalk rot pathogens of maize. Consumption of fumonisins has been associated epidemiologically with esophageal cancer in humans and experimentally with kidney and liver cancer in rodents. We us...

282

Prussin et. al. 1 Agricultural and Forest Meteorology Experimental Validation of a Long-Distance Transport Model for Plant Pathogens:1  

E-print Network

Prussin et. al. 1 Agricultural and Forest Meteorology Experimental Validation of a Long to view linked References #12;Prussin et. al. 2 Agricultural and Forest Meteorology Fusarium graminearum Agricultural and Forest Meteorology Keywords: Atmospheric transport, Plant Pathogenic Fungi, Fusarium head

Ross, Shane

283

Identification of Molecular Markers Associated with Verticillium Wilt Resistance in Alfalfa (Medicago Sativa L.) Using High-Resolution Melting  

PubMed Central

Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs. PMID:25536106

Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J.; Ho, Julie; Reisen, Peter; Samac, Deborah A.

2014-01-01

284

Molecular biology of Fusarium mycotoxins  

Technology Transfer Automated Retrieval System (TEKTRAN)

As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides, and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic...

285

Molecular Biology of Fusarium Mycotoxins  

Technology Transfer Automated Retrieval System (TEKTRAN)

As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic ...

286

Genetic Dissection of Verticillium Wilt Resistance Mediated by Tomato Ve11[C][W][OA  

PubMed Central

Vascular wilt diseases caused by soil-borne pathogens are among the most devastating plant diseases worldwide. The Verticillium genus includes vascular wilt pathogens with a wide host range. Although V. longisporum infects various hosts belonging to the Cruciferaceae, V. dahliae and V. albo-atrum cause vascular wilt diseases in over 200 dicotyledonous species, including economically important crops. A locus responsible for resistance against race 1 strains of V. dahliae and V. albo-atrum has been cloned from tomato (Solanum lycopersicum) only. This locus, known as Ve, comprises two closely linked inversely oriented genes, Ve1 and Ve2, that encode cell surface receptor proteins of the extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. Here, we show that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. dahliae and V. albo-atrum and not against race 2 strains. Using virus-induced gene silencing in tomato, the signaling cascade downstream of Ve1 is shown to require both EDS1 and NDR1. In addition, NRC1, ACIF, MEK2, and SERK3/BAK1 also act as positive regulators of Ve1 in tomato. In conclusion, Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins. PMID:19321708

Fradin, Emilie F.; Zhang, Zhao; Juarez Ayala, Juan C.; Castroverde, Christian D.M.; Nazar, Ross N.; Robb, Jane; Liu, Chun-Ming; Thomma, Bart P.H.J.

2009-01-01

287

Transgenic wheat carrying a barley UDP-glucosyltransferase exhibit high levels of Fusarium head blight resistance by detoxifying trichothecenes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight (FHB) is a worldwide disease of wheat and barley, mainly caused by Fusarium graminearum. During infection, the fungal pathogen produces trichothecene mycotoxins, such as deoxynivalenol (DON) and nivalenol (NIV) that increase fungal virulence. Moreover, grains contaminated with t...

288

Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium.  

PubMed

Fusarium oxysporum f.sp. cubense (FOC) is a causal agent of vascular wilt and leaf chlorosis of banana plants. Chloroses resulting from FOC occur first in the lowest leaves of banana seedlings and gradually progress upward. To investigate the responses of different leaf positions to FOC infection, hydroponic experiments with FOC inoculation were conducted in a greenhouse. Fusarium-infected seedlings exhibited a decrease in net photosynthesis rate, stomatal conductance, and transpiration rate of all leaves. The wilting process in Fusarium-infected seedlings varied with leaf position. Measurements of the maximum photochemical efficiency of photosystem II (F(V)/F(max) and visualization with transmission electron microscopy showed a positive correlation between chloroplast impairment and severity of disease symptoms. Furthermore, results of malondialdehyde content and relative membrane conductivity measurements demonstrated that the membrane system was damaged in infected leaves. Additionally, the activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were increased and total soluble phenolic compounds were significantly accumulated in the leaves of infected plants. The structural and biochemical changes of infected plants was consistent with plant senescence. As the FOC was not detected in infected leaves, we proposed that the chloroplast and membrane could be damaged by fusaric acid produced by Fusarium. During the infection, fusaric acid was first accumulated in the lower leaves and water-soluble substances in the lower leaves could dramatically enhance fusaric acid production. Taken together, the senescence of infected banana plants was induced by Fusarium infection with fusaric acid production and the composition of different leaf positions largely contribute to the particular senescence process. PMID:24282097

Dong, Xian; Xiong, Yinfeng; Ling, Ning; Shen, Qirong; Guo, Shiwei

2014-04-01

289

Induced defense-related proteins in soybean (Glycine max L. Merrill) plants by Carnobacterium sp. SJ-5 upon challenge inoculation of Fusarium oxysporum.  

PubMed

The aim of the present study was to analyze induced expression of defense-related proteins in the soybean plants by rhizobacterial stain Carnobacterium sp. SJ-5 upon challenge inoculation with Fusarium oxysporum. Determination of the enzymatic activity of the different defense-related enzymes, phenylalanine ammonia lyase (PAL), lipoxygenase (LOX), peroxidase (POD) and polyphenol oxidase (PPO) was performed in the major parts of Glycine max L. Merrill using spectrophotometric method. Native-polyacrylamide gel electrophoresis analysis of the POD and PPO was employed followed by activity staining to find out the isoforms of respective enzymes. Activities of the PAL, LOX, POD and PPO were found to be highest in the bacterized root tissue of the soybean plants challenged with F. oxysporum. Isoform analysis revealed that PPO1, PPO4 and POD2 isoforms were expressed at higher levels in bacterized soybean root tissues challenge inoculated with the pathogen. Conclusively it was found that bacterial strain Carnobacterium sp. SJ-5 protect soybean plants from wilt disease caused by F. oxysporum by elicitation of the defense-related enzymes. PMID:24504695

Jain, Shekhar; Choudhary, Devendra Kumar

2014-05-01

290

Recovery Plan for Laurel Wilt of Avocado  

Technology Transfer Automated Retrieval System (TEKTRAN)

Laurel wilt kills American members of the Lauraceae plant family, including avocado (Persea americana). The disease threatens commercial avocado production in Florida, as well as the National Germplasm Repository for avocado in Miami (USDA-ARS). Elsewhere in the US, major (California) and minor comm...

291

Two rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon pea.  

PubMed

A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea. PMID:25224506

Dutta, Swarnalee; Morang, Pranjal; Kumar S, Nishanth; Dileep Kumar, B S

2014-09-01

292

Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt.  

PubMed

Bacterial strain S20 was isolated and identified as Bacillus amyloliquefaciens based on physiological and biochemical characteristics and a 16S rRNA gene sequence analysis. Strain S20 inhibits the growth of Fusarium oxysporum and Ralstonia solanacearum. Some genes associated with the synthesis of some lipopeptides were detected in strain S20 by PCR. Iturins A were identified as the main antagonistic substrates by analysis with electrospray ionization mass spectrometry/collision-induced dissociation (ESI-MS/CID). Four homologues of iturin A (C13-C16) were identified. Pot experiments showed that the application of strain S20 alone could control eggplant wilt with an efficacy of 25.3% during a 40 day experiment. If strain S20 was used with organic fertilizer, the control efficacy against eggplant wilt reached as high as 70.7%. The application of organic fertilizer alone promotes the growth of R. solanacearum, resulting in a higher wilt incidence than that observed in control plants. The application of strain S20 effectively inhibits R. solanacearum in the rhizosphere soil of eggplant. The combined use of strain S20 and organic fertilizer more effectively controlled R. solanacearum in soil than the use of strain S20 alone. The soil count of strain S20 decreased gradually during the course of the experiment after inoculation. Organic fertilizer was beneficial for the survival of the antagonistic bacterial strain S20; a higher level of these bacteria could be maintained. The application of organic fertilizer with strain S20 increased bacterial diversity in rhizosphere soil. PMID:24632400

Chen, Da; Liu, Xin; Li, Chunyu; Tian, Wei; Shen, Qirong; Shen, Biao

2014-05-01

293

A severe dieback of box elder ( Acer negundo ) caused by Fusarium solani (Mart.) Sacc. in Turkey  

Microsoft Academic Search

A severe dieback has recently been observed on box elder (Acer negundo) grown on roadsides and in gardens in Ankara, the capital of Turkey. Fusarium solani was isolated from diseased box elder branches and was identified as the causal agent of dieback on this host. Pathogenicity\\u000a tests were carried out on young box elder shoots. Symptoms of the pathogen are

E. Demirci; S. Maden

2006-01-01

294

Identification of two tagged-insertional mutants of Fusarium graminearum impaired in asexual reproduction  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is an important fungal pathogen of small grains and maize cultivated throughout the world. This pathogen not only causes extensive crop losses due to the destructive nature of the disease but also has the ability to contaminate grains with mycotoxins. To better understand funga...

295

Fusarium brain abscess: case report and literature review.  

PubMed

Severely immunocompromised patients such as those with haematological malignancies and haematopoietic stem cell transplant recipients are at an increased risk of acquiring invasive mould infections. Fusarium, a ubiquitous fungus, can cause potentially fatal infections in such hosts. It usually manifests as skin lesions, fevers and sino-pulmonary infections. Brain abscesses have been reported, but are relatively uncommon. We report a case of a 50-year-old patient with acute lymphocytic leukaemia and failed autologous peripheral stem cell transplant that presented with new onset seizures and was found to have Fusarium solani brain abscess. Nasal route was the presumed mode of entry of the fungus into the cerebrum. Treatment comprised surgical excision of the lesion, and antimycotic therapy with liposomal amphotericin B and voriconazole. Despite aggressive therapy, patient succumbed to the disease. We have provided an overview of infections secondary to Fusarium, along with a review of the central nervous system involvement by this pathogenic mould. PMID:25476184

Garcia, Raquel Ramos; Min, Zaw; Narasimhan, Supriya; Bhanot, Nitin

2015-01-01

296

Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine  

PubMed Central

This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management. PMID:24971084

Pouzoulet, Jérôme; Pivovaroff, Alexandria L.; Santiago, Louis S.; Rolshausen, Philippe E.

2014-01-01

297

Evaluation of commercial formulations of entomopathogenic fungi to manage the redbay ambrosia beetle, vector of Laurel wilt, a lethal disease affecting avocados in Florida  

Technology Transfer Automated Retrieval System (TEKTRAN)

The redbay ambrosia beetle (RAB), Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) vectors the fungal pathogen, Raffaelea lauricola, which causes laurel wilt (LW), a lethal disease of trees in the family Lauraceae, including the most commercially important crop in this family, avocado, Pe...

298

Influence of Maize Root Colonization by the Rhizosphere Actinomycetes and Yeast Fungi on Plant Growth and on the Biological Control of Late Wilt Disease  

Microsoft Academic Search

Isolates of 85 actinomycetes and 40 yeast fungi were obtained from the rhizosphere of maize plant (Zea mays L.) and were screened for in vitro antagonism to Cephalosporium maydis, a causal agent of late wilt disease of maize. Of these, six actinomycetes and five yeast fungi isolates were found to be strongly antagonistic to the pathogen in vitro. The isolates

ADEL A. EL-MEHALAWY; NAZIHA M. HASSANEIN; HEND M. KHATER; EL-ZAHRAA A. KARAM EL-DIN; YOUSSEF A. YOUSSEF

299

Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds  

NASA Astrophysics Data System (ADS)

The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and concentration x genotype interaction were all highly significant sources of variation in seed germination; however, interaction was the first in importance as a source of variation followed by the concentration, while genotype was the least important source of variation. These results suggest the potential use of eugenol oil nanoemulsion for protecting seedcotton from Fusarium wilt infection.

Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

2015-02-01

300

Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds  

NASA Astrophysics Data System (ADS)

The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant (p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and concentration x genotype interaction were all highly significant sources of variation in seed germination; however, interaction was the first in importance as a source of variation followed by the concentration, while genotype was the least important source of variation. These results suggest the potential use of eugenol oil nanoemulsion for protecting seedcotton from Fusarium wilt infection.

Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

2015-01-01

301

Toxigenic Fusarium species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe  

Microsoft Academic Search

The Fusarium species predominantly found associated with Fusarium head blight (FHB) in wheat and other small-grain cereals all over Europe are F. graminearum, F. avenaceum and F. culmorum. Among the less frequently encountered species are several others which are less pathogenic or opportunistic, but also toxigenic. These include F. poae, F. cerealisF. equisetiF. sporotrichioidesF. tricinctum and, to a lesser extent,

Antonio Bottalico; Giancarlo Perrone

2002-01-01

302

Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it.  

PubMed

Verticillium wilts are important vascular wilt diseases that affect many crops and ornamentals in different regions of the world. Verticillium wilts are caused by members of the ascomycete genus Verticillium, a small group of 10 species that are related to the agents of anthracnose caused by Colletotrichum species. Verticillium has a long and complicated taxonomic history with controversies about species boundaries and long overlooked cryptic species, which confused and limited our knowledge of the biology of individual species. We first review the taxonomic history of Verticillium, provide an update and explanation of the current system of classification and compile host range and geographic distribution data for individual species from internal transcribed spacer (ITS) GenBank records. Using Verticillium as an example, we show that species names are a poor vehicle for archiving and retrieving information, and that species identifications should always be backed up by DNA sequence data and DNA extracts that are made publicly available. If such a system were made a prerequisite for publication, all species identifications could be evaluated retroactively, and our knowledge of the biology of individual species would be immune from taxonomic changes, controversy and misidentification. Adoption of this system would improve quarantine practices and the management of diseases caused by various plant pathogens. PMID:24548214

Inderbitzin, Patrik; Subbarao, Krishna V

2014-06-01

303

Making headway in understanding pine wilt disease: what do we perceive in the postgenomic era?  

PubMed

The advent of next generation sequencing has revolutionized research approaches to biology by making entire genome sequences available and marking a new age in biology that has the potential to open innovative research avenues in various fields. Genome sequencing is now being applied in the fields of forest ecology and forest pathology, which previously had limited access to molecular techniques. One of the most advanced areas of progress is the study of "pine wilt disease", which is caused by the parasitic nematode, Bursaphelenchus xylophilus. The entire genome sequence of B. xylophilus was determined in 2011, and since then, proteomic studies have been conducted to understand the molecular basis of the parasitism and pathogenicity of B. xylophilus. These postgenomic studies have provided numerous molecular insights and greatly changed our understanding of the pathogenesis of pine wilt disease. Here, we review the recent advances in genomic and proteomic approaches that address some of the longstanding questions behind the pathogenesis of pine wilt disease and have identified future questions and directions in this regard. PMID:23474098

Shinya, Ryoji; Morisaka, Hironobu; Takeuchi, Yuko; Futai, Kazuyoshi; Ueda, Mitsuyoshi

2013-07-01

304

Incidences and severity of vascular wilt in Acacia mangium plantations in Sabah, Malaysia  

NASA Astrophysics Data System (ADS)

This study aimed to evaluate the incidences and severity of vascular wilt disease associated with dieback in stands of commercial Acacia mangium plantations. The study revealed that the prevalence of the symptoms is high between 50 to 60% in two plantations, where it is found scattered in the plots that were surveyed. The incidence of the disease in each plot is low between 0 to 6%. The disease symptoms were more often found where the symptom syndrome in a chronic (level 3) or critical state (level 4). This suggests that the causal pathogen has the ability to penetrate into the tissues of the plants and only display symptoms at the latest stage.

Maid, Mandy; Ratnam, Wickneswari

2014-09-01

305

Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease.  

PubMed

Plant immunization for resistance against a wide variety of phytopathogens is an effective strategy for plant disease management. Seventy-nine plant growth-promoting fungi (PGPFs) were isolated from rhizosphere soil of India. Among them, nine revealed saprophytic ability, root colonization, phosphate solubilization, IAA production, and plant growth promotion. Seed priming with four PGPFs exhibited early seedling emergence and enhanced vigour of a tomato cultivar susceptible to the bacterial wilt pathogen compared to untreated controls. Under greenhouse conditions, TriH_JSB27 and PenC_JSB41 treatments remarkably enhanced the vegetative and reproductive growth parameters. Maximum NPK uptake was noticed in TriH_JSB27-treated plants. A significant disease reduction of 57.3% against Ralstonia solanacearum was observed in tomato plants pretreated with TriH_JSB27. Furthermore, induction of defence-related enzymes and genes was observed in plants pretreated with PGPFs or inoculated with pathogen. The maximum phenylalanine ammonia lyase (PAL) activity (111U) was observed at 24h in seedlings treated with TriH_JSB27 and this activity was slightly reduced (99U) after pathogen inoculation. Activities of peroxidase (POX, 54U) and ?-1,3-glucanase (GLU, 15U) were significantly higher in control plants inoculated with pathogen after 24h and remained constant at all time points. A similar trend in gene induction for PAL was evident in PGPFs-treated tomato seedlings with or without pathogen inoculation, whereas POX and GLU were upregulated in control plus pathogen-inoculated tomato seedlings. These results determine that the susceptible tomato cultivar is triggered after perception of potent PGPFs to synthesize PAL, POX, and GLU, which activate defence resistance against bacterial wilt disease, thereby contributing to plant health improvement. PMID:23956415

Jogaiah, Sudisha; Abdelrahman, Mostafa; Tran, Lam-Son Phan; Shin-ichi, Ito

2013-09-01

306

Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing  

PubMed Central

Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and Verticillium albo-atrum, but the corresponding Verticillium effector remained unknown thus far. By high-throughput population genome sequencing, a single 50-Kb sequence stretch was identified that only occurs in race 1 strains, and subsequent transcriptome sequencing of Verticillium-infected Nicotiana benthamiana plants revealed only a single highly expressed ORF in this region, designated Ave1 (for Avirulence on Ve1 tomato). Functional analyses confirmed that Ave1 activates Ve1-mediated resistance and demonstrated that Ave1 markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis. Interestingly, Ave1 is homologous to a widespread family of plant natriuretic peptides. Besides plants, homologous proteins were only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Colletotrichum higginsianum, Cercospora beticola, and Fusarium oxysporum f. sp. lycopersici. The distribution of Ave1 homologs, coincident with the presence of Ave1 within a flexible genomic region, strongly suggests that Verticillium acquired Ave1 from plants through horizontal gene transfer. Remarkably, by transient expression we show that also the Ave1 homologs from F. oxysporum and C. beticola can activate Ve1-mediated resistance. In line with this observation, Ve1 was found to mediate resistance toward F. oxysporum in tomato, showing that this immune receptor is involved in resistance against multiple fungal pathogens. PMID:22416119

de Jonge, Ronnie; Peter van Esse, H.; Maruthachalam, Karunakaran; Bolton, Melvin D.; Santhanam, Parthasarathy; Saber, Mojtaba Keykha; Zhang, Zhao; Usami, Toshiyuki; Lievens, Bart; Subbarao, Krishna V.; Thomma, Bart P. H. J.

2012-01-01

307

[Invasive fungal disease due to Scedosporium, Fusarium and mucorales].  

PubMed

The number of emerging organisms causing invasive fungal infections has increased in the last decades. These etiological agents include Scedosporium, Fusarium and mucorales. All of them can cause disseminated, virulent, and difficult-to treat infections in immunosuppressed patients, the most affected, due to their resistance to most available antifungal agents. Current trends in transplantation including the use of new immunosuppressive treatments, the common prescription of antifungal agents for prophylaxis, and new ecological niches could explain the emergence of these fungal pathogens. These pathogens can also affect immunocompetent individuals, especially after natural disasters (earthquakes, floods, tsunamis), combat wounds or near drowning. All the invasive infections caused by Scedosporium, Fusarium, and mucorales are potentially lethal and a favourable outcome is associated with rapid diagnosis by direct microscopic examination of the involved tissue, wide debridement of infected material, early use of antifungal agents including combination therapy, and an improvement in host defenses, especially neutropenia. PMID:25442383

Pemán, Javier; Salavert, Miguel

2014-01-01

308

Effect of Fusarium Head Blight on Hard Red Spring Wheat Quality and Correlation with Accumulation of the Toxin Deoxynivalenol in the Grain After Fungicide Treatment  

Technology Transfer Automated Retrieval System (TEKTRAN)

1. Fusarium head blight (FHB) is a fungal disease that negatively affects small grains. In wheat this is caused by the pathogen Fusarium graminearum. An important effect of FHB infection is the production of several toxins including deoxynivalenol (DON) also referred to as vomitoxin. The Food and Dr...

309

Agrobacterium-Mediated Transformation of Tomato with rolB Gene Results in Enhancement of Fruit Quality and Foliar Resistance against Fungal Pathogens  

PubMed Central

Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens. PMID:24817272

Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S.; Mirza, Bushra

2014-01-01

310

Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.  

PubMed

Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens. PMID:24817272

Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

2014-01-01

311

Fusarium sp. infection in a patient with Acute Lymphoblastic Leukaemia.  

PubMed

In the past two decades, Fusarium species have been increasingly recognized as serious pathogens in immunocompromised patients. The outcome of fusariosis in the context of severe persistent neutropaenia has been almost universally fatal. The treatment of fusariosis in immunocompromised patients remains a challenge and the prognosis of systemic fusariosis in this population remains poor. This report presents a case of fatal fusariosis in a 37- year-old patient who was diagnosed with precursor-B cell Acute Lymphoblastic Leukaemia (ALL). PMID:24632920

Tan, R; Ng, K P; Gan, G G; Na, S L

2013-12-01

312

Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum.  

PubMed

Two mutants (tri6? and noxAB?) of the fungal pathogen Fusarium graminearum were assessed for their ability to prime immune responses in wheat (cv. Roblin) against challenge with pathogenic F.?graminearum. Priming treatments generated Fusarium head blight (FHB)-resistant wheat phenotypes and reduced the accumulation of fungal mycotoxins in infected tissues. Microarray analysis identified 260 transcripts that were differentially expressed during the priming period. Expression changes were observed in genes associated with immune surveillance systems, signalling cascades, antimicrobial compound production, oxidative burst, secondary metabolism, and detoxification and transport. Specifically, genes related to jasmonate, gibberellin and ethylene biosynthesis exhibited differential expression during priming. In addition, the induction of the phenylpropanoid pathways that lead to flavonoid, coumarin and hydroxycinnamic acid amide accumulation was also observed. This study highlights the utility of nonpathogenic mutants to both elicit and delineate stages of defence responses in wheat. PMID:24751103

Ravensdale, Michael; Rocheleau, Hélčne; Wang, Li; Nasmith, Charles; Ouellet, Thérčse; Subramaniam, Rajagopal

2014-12-01

313

MEMBERS OF THE FUSARIUM SOLANI SPECIES COMPLEX CAUSING INFECTIONS IN BOTH HUMANS AND PLANTS ARE THOSE MOST COMMONLY ENCOUNTERED IN THE ENVIRONMENT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Members of the Fusarium solani species complex (FSSC) are increasingly implicated as the causative agents of human mycoses, particularly in the expanding immunocompromised and immunosuppressed patient populations. Best known as ubiquitous plant pathogens and saprotrophs, members of FSSC comprise ov...

314

Verticillium comparative genomics--understanding pathogenicity and diversity.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Verticillium dahliae is the primary causal agent of Verticillium wilt that causes billions of dollars in annual losses worldwide. This soil-borne fungal pathogen exhibits extraordinary genetic plasticity, capable of colonizing a broad range of hosts in diverse ecological niches. Moreover, V. dahlia...

315

Oak Wilt: A Threat to Red Oaks & White Oaks Species  

NSDL National Science Digital Library

Oak Wilt: A Threat to Red Oaks & White Oaks Species was created by Dr. David L. Roberts at Michigan State University Extension. Dr. RobertâÂÂs concise site contains brief sections addressing oak wilt distribution, field diagnosis, management, disease cycle, and more. This guide contains extensive links to images and other informational extension sites that will help you make informed decisions regarding the health of your trees. The site compiles a great deal of research on oak wilt and is an excellent resource for students and professionals alike.

Roberts, David L.

2008-02-22

316

Fusarium species from the cassava root rot complex in west Africa.  

PubMed

ABSTRACT Fusarium species are a significant component of the set of fungi associated with cassava root rot. Yield losses due to root rot average 0.5 to 1 ton/ha but losses >3 ton/ha, an equivalent of 15 to 20% yield, often occur. This paper reviews previous work on cassava root rot and summarizes a few recent studies on Fusarium species associated with the disease. Our studies in Cameroon showed that 30% of rotted tubers were infected by Fusarium spp. 12 months after planting and represented 25% of all the fungal isolates recovered. Other commonly recovered fungi were Botryodiplodia theobromae and Armillaria spp. Numerous and diverse species of Fusarium were associated with rotted cassava roots in Nigeria and Cameroon. At least 13 distinct amplified fragment length polymorphism (AFLP) groups of Fusarium were distinguishable, each group probably a distinct species, and many of them might represent previously undescribed Fusarium species. The two largest of the AFLP groups correspond to F. oxysporum and F. solani species complex. The distribution of Fusarium spp. varied among countries and among locations within a country, suggesting that germ plasm resistant at one location may not be resistant at another. Fusarium spp. also cause seedling blight of cassava and can be recovered from the stems of infected plants up to 1 m above the ground. Therefore, the pathogen can spread with stems cut as planting material. Fusarium spp. also can colonize Chromolaena odorata, the dominant weed in short fallows, which could further complicate management efforts by serving as an alternative host for strains that colonize cassava. PMID:18943189

Bandyopadhyay, Ranajit; Mwangi, Maina; Aigbe, Sylvester O; Leslie, John F

2006-06-01

317

Interaction of Fusarium graminearum and F. moniliforme in Maize Ears: Disease Progress, Fungal Biomass, and Mycotoxin Accumulation  

Microsoft Academic Search

Reid, L. M., Nicol, R. W., Ouellet, T., Savard, M., Miller, J. D., Y oung, J. C., Stewart, D. W., and Schaafsma, A. W. 1999. Interaction of Fusarium graminearum and F. moniliforme in maize ears: Disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology 89:1028-1037. To investigate the interaction between two major ear-rotting pathogens, maize ears were inoculated with either Fusarium

L. M. Reid; R. W. Nicol; T. Ouellet; M. Savard; J. D. Miller; J. C. Young; D. W. Stewart; A. W. Schaafsma

1999-01-01

318

New PCR Assays for the Identification of Fusarium verticillioides, Fusarium subglutinans, and Other Species of the Gibberella fujikuroi Complex  

PubMed Central

Fusarium verticillioides and Fusarium subglutinans are important fungal pathogens of maize and other cereals worldwide. In this study, we developed PCR-based protocols for the identification of these pathogens targeting the gaoB gene, which codes for galactose oxidase. The designed primers recognized isolates of F. verticillioides and F. subglutinans that were obtained from maize seeds from several producing regions of Brazil but did not recognize other Fusarium spp. or other fungal genera that were either obtained from fungal collections or isolated from maize seeds. A multiplex PCR protocol was established to simultaneously detect the genomic DNA from F. verticillioides and F. subglutinans. This protocol could detect the DNA from these fungi growing in artificially or naturally infected maize seeds. Another multiplex reaction with a pair of primers developed in this work combined with a pre-existing pair of primers has allowed identifying F. subglutinans, F. konzum, and F. thapsinum. In addition, the identification of F. nygamai was also possible using a combination of two PCR reactions described in this work, and another described in the literature. PMID:22312242

Faria, Carla Bertechini; Abe, Camila Agnes Lumi; da Silva, Cleiltan Novais; Tessmann, Dauri José; Barbosa-Tessmann, Ione Parra

2012-01-01

319

1056 Plant Disease / Vol. 95 No. 9 Susceptibility to Laurel Wilt and Disease Incidence in Two Rare Plant Species,  

E-print Network

as laurel wilt caused by Raffaelea lauricola T.C. Harrin., Fraedrich & Aghayeva, a fungal symbiont a vascular wilt disease similar to the wilt caused by the related Dutch elm disease fungi (Ophiostoma ulmi

Harrington, Thomas C.

320

How does VeA Regulates some Secondary Metabolism in Fusarium fujikuroi?  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium fujikuroi is best known as a pathogen of rice that causes hyper elongation of seedling stalks and leaves due to the production of gibberellic acids (GAs). Besides GAs, F. fujikuroi may also synthesize other toxins like fumonisins, fusarin C, and bikaverin as well as carotenoids. Although ...

321

Identification and analysis of Fusarium verticillioides genes differentially expressed during conidiation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides, an endophytic maize pathogen, is the causal agent of diseases such as ear rot, seedling blight, and stalk rot, resulting in major economic losses in maize production. This fungus can also cause certain diseases in animals due to consumption of feed contaminated with fumonis...

322

SURVEY OF GENOME-WIDE OCCURRENCE OF ALTERNATIVE SPLICE FORMS IN FUSARIUM VERTICILLIOIDES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a pathogen of maize and is associated with disease at every life stage of the plant. Contamination of infected kernels with the polyketide derived mycotoxin fumonisins contribute significantly to economic losses to the maize grain industry worldwide. Ingested fumonisins...

323

Spatial patterns of disease induced by Fusarium moniliforme var. subglutinans in a population of Plantago lanceolata  

Microsoft Academic Search

At low densities, Plantago lanceolata was less likely to have the inflorescence disease caused by the fungus Fusarium moniliforme var. subglutinans. Where the disease was found, as host density increased, the proportion diseased remained constant or decreased. The pathogen's inability to exploit high host densities may be due to both the long disease cycle and the reduced efficiency of disease

Helen Miller Alexander

1984-01-01

324

Insights into the evolution of mycotoxin biosynthesis in the fungus Fusarium  

Technology Transfer Automated Retrieval System (TEKTRAN)

Collectively species of Fusarium are pathogens of almost all economically important plants and produce over 50 structurally distinct families of secondary metabolites (SMs), including some of the mycotoxins (e.g. fumonisins and trichothecenes) of greatest concern to food and feed safety. In fungi, g...

325

CLM1 of Fusarium graminearum Encodes a Longiborneol Synthase Required for Culmorin Production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium graminearum is a serious fungal pathogen of cereal crops (e.g. wheat, barley, maize) and produces a number of mycotoxins including 15-acetyldeoxynivalenol, butenolide, zearalenone, and culmorin. To identify a biosynthetic gene for the culmorin pathway, an EST database was examined for terp...

326

Use of RT-PCR to detect fusarium verticilloides during endophytic colonization of maize  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is one of the most important world wide pathogens of maize, causing yield loss as well as health problems for livestock and humans through the ingestion of fumonisin contaminated grain. Of particular concern is the ability of F. verticillioides to establish an asymptomatic ...

327

Regulation of secondary metabolite production in Fusarium species by the global regulator LAE1  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium species are pathogens of corn and wheat and are capable of producing secondary metabolites that are a food safety concern. These mycotoxins include fumonins and trichothecenes which have known carcinogenic potential and can inhibit protein synthesis respectively in animals. In addition to t...

328

Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum  

Technology Transfer Automated Retrieval System (TEKTRAN)

As in many other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of numerous plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 putative ...

329

IDENTIFICATION OF GENES EXPRESSED BY FUSARIUM GRAMINEARUM DURING INFECTION OF WHEAT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Our initial studies have shown that the Fusarium graminearum species complex is comprised of strains belonging to at least nine biogeographically structured cryptic species that may differ significantly in their aggressiveness on wheat and mycotoxin production. To study this host-pathogen interactio...

330

Structural and Functional Characterization of TRI3 Acetyltransferase from Fusarium sporotrichioides  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium Head Blight (FHB) is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichoth...

331

CHARACTERIZATION OF A PUTATIVE FUSARIN MYCOTOXIN BIOSYNTHETIC GENE CLUSTER IN FUSARIUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a stalk and ear rot pathogen of maize that can produce the polyketide mycotoxins fumonisins in infected kernels. Although the genetics and biochemistry of fumonisin biosynthesis is relatively well understood in F. verticillioides, little is known about the biosynthesis o...

332

Seed treatment with live or dead Fusarium verticillioides equivalently reduces the severity of subsequent stalk rot  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a widely distributed fungus that can associate with maize as a deleterious pathogen and an advantageous endophyte. Here, we show that seed treatment with live F.verticillioides enhances maize resistance to secondary stalk rot infection, and demonstrate that dead F.vertici...

333

VALIDATION OF DNA MICROARRAYS DERIVED FROM THE FUSARIUM VERTICILLIOIDES GENE INDEX  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a pathogen of maize and it can produce the toxic polyketide derived secondary metabolites called fumonisins. Fumonisins have been shown to cause animal diseases and are epidemiologically correlated to esophageal cancer and neural tube defects in humans. In an effort to ...

334

FUM and BIK gene expression contribute to describe fumonisin and bikaverin synthesis in Fusarium verticillioides  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a maize-pathogen that causes ear and stalk rot and produces toxic secondary metabolites including fumonisins and bikaverin. Fumonisins are known to cause disease in animals and humans; bikaverin is a pigment associated with self-defense. Water activity (aw) is one of the ...

335

How does VeA effect secondary metabolism in Fusarium fujikuroi?  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium fujikuroi is best known as a pathogen of rice that causes hyper elongation of seedling stalks and leaves due to the production of gibberellic acids (GAs). Besides GAs, F. fujikuroi may also synthesize other toxins like fumonisins, fusarin C, and bikaverin as well as carotenoids. Although ...

336

Fusarium verticillioides fungemia in a liver transplantation patient: successful treatment with voriconazole.  

PubMed

Fusarium is an opportunistic fungal pathogen which is emerging as a significant cause of morbidity and mortality in immunocompromised hosts. We present a rare case of F. verticillioides fungemia that occurred in a patient who underwent a second orthotopic liver transplantation for chronic rejection and completely responded to treatment with voriconazole. PMID:22083080

Cocchi, Stefania; Codeluppi, Mauro; Venturelli, Claudia; Bedini, Andrea; Grottola, Antonella; Gennari, William; Cavrini, Francesca; Di Benedetto, Fabrizio; De Ruvo, Nicola; Rumpianesi, Fabio; Gerunda, Giorgio Enrico; Guaraldi, Giovanni

2011-12-01

337

On the reliability of Fusarium oxysporum f. sp. niveum research: Do we need standardized testing methods?  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium oxysporum f. sp. nivium (Fon) is a pathogen highly variable in aggressiveness that requires a standardized testing method to more accurately define isolate aggressiveness (races) and to identify resistant watermelon lines. Isolates of Fon vary in aggressiveness from weakly to highly aggres...

338

Genetic Basis for the 3-ADON and 15-ADON Trichothecene Chemotypes in Fusarium graminearum  

Technology Transfer Automated Retrieval System (TEKTRAN)

In some regions of the world, most strains of the wheat head blight pathogen Fusarium graminearum have one of two trichothecene mycotoxin production profiles (chemotypes), which are designated as 3-ADON and 15-ADON. In a defined medium, strains with the 3-ADON chemotype produce a trichothecene (3-a...

339

Molecular Identification of Fusarium Species in Onychomycoses  

Microsoft Academic Search

Background:Fusarium species are isolated from about 3% of onychomycoses in the Swiss native population. On the basis of macroscopic characters and microscopic examination of the cultures, identification of Fusarium often remains difficult or uncertain because of variations from one isolate to another and overlapping characteristics between species. Objective: To obtain information about the prevailing species of Fusarium collected from onychomycoses.

Béatrice Ninet; Isabelle Jan; Olympia Bontems; Barbara Léchenne; Olivier Jousson; Daniel Lew; Jacques Schrenzel; Renato G. Panizzon; Michel Monod

2005-01-01

340

Disease Interactions in a Shared Host Plant: Effects of Pre-Existing Viral Infection on Cucurbit Plant Defense Responses and Resistance to Bacterial Wilt Disease  

PubMed Central

Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles. PMID:24155951

Mauck, Kerry E.; Pulido, Hannier; De Moraes, Consuelo M.; Stephenson, Andrew G.; Mescher, Mark C.

2013-01-01

341

Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt  

PubMed Central

Verticillium wilt is a major threat to alfalfa (Medicago sativa) and many other crops. The model legume Medicago truncatula was used as a host for studying resistance and susceptibility to Verticillium albo-atrum. In addition to presenting well-established genetic resources, this wild plant species enables to investigate biodiversity of the response to the pathogen and putative crosstalk between disease and symbiosis. Symptom scoring after root inoculation and modelling of disease curves allowed assessing susceptibility levels in recombinant lines of three crosses between susceptible and resistant lines, in a core collection of 32 lines, and in mutants affected in symbiosis with rhizobia. A GFP-expressing V. albo-atrum strain was used to study colonization of susceptible plants. Symptoms and colonization pattern in infected M. truncatula plants were typical of Verticillium wilt. Three distinct major quantitative trait loci were identified using a multicross, multisite design, suggesting that simple genetic mechanisms appear to control Verticillium wilt resistance in M. truncatula lines A17 and DZA45.5. The disease functional parameters varied largely in lines of the core collection. This biodiversity with regard to disease response encourages the development of association genetics and ecological approaches. Several mutants of the resistant line, impaired in different steps of rhizobial symbiosis, were affected in their response to V. albo-atrum, which suggests that mechanisms involved in the establishment of symbiosis or disease might have some common regulatory control points. PMID:23213135

Gentzbittel, Laurent

2013-01-01

342

GENETIC ENGINEERING OF COTTON (GOSSYPIUM HIRSUTUM L.) WITH ANTIFUNGAL PROTEINS OR PEPTIDES TO CONFER ENHANCED RESISTANCE TO FUNGAL PATHOGENS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cotton crop is affected by several fungal and bacterial pathogens, and the average annual cotton production loss due to diseases in the United States is about 12 percent. The seedling disease complex, fungal wilt pathogens, and boll rots are the major cotton diseases worldwide. Cottonseed is also ...

343

Disseminated Fusarium oxysporum neurospinal infection  

PubMed Central

We report a case of disseminated meningospondylodiscitis in an elderly diabetic patient caused by Fusarium oxysporum. As the clinical presentation was nonspecific, the diagnosis of the condition could only be arrived at after laboratory and imaging studies. The diagnosis of the condition requires a high index of suspicion. Patient underwent thorough surgical debridement along with a short course of variconazole and remained asymptomatic after 36 months of diagnosis. Fusarium is a large genus of filamentous fungi widely distributed in soil and in association with plants. It is known to cause local infections (nail, cornea) in healthy humans and disseminated infection only in the immunocompromised. PMID:24741147

Sreedharan Namboothiri, PE; Nair, Sreehari Narayanan; Vijayan, Krishnan; Visweswaran, VK

2014-01-01

344

Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum.  

PubMed

Plants face many different concurrent and consecutive abiotic and biotic stresses during their lifetime. Roots can be infected by numerous pathogens and parasitic organisms. Unlike foliar pathogens, root pathogens have not been explored enough to fully understand root-pathogen interactions and the underlying mechanism of defense and resistance. PR gene expression, structural responses, secondary metabolite and root exudate production, as well as the recruitment of plant defense-assisting "soldier" rhizosphere microbes all assist in root defense against pathogens and herbivores. With new high-throughput molecular tools becoming available and more affordable, now is the opportune time to take a deep look below the ground. In this addendum, we focus on soil-borne Fusarium oxysporum as a pathogen and the options plants have to defend themselves against these hard-to-control pathogens. PMID:25482759

Chen, Yi Chung; Kidd, Brendan N; Carvalhais, Lilia C; Schenk, Peer M

2014-12-01

345

[Isolation of protoplasts from vegetable tissues using extracellular lytic enzymes from fusarium oxysporum f.sp. melonis].  

PubMed

Fusarium oxysporum f.sp. melonis, a pathogen of melon (Cucumis melo L.), was grown in shaken cultures at 26 degrees C in a mineral salts medium containing glucose, xylan and apple pectin as carbon sources. The extracellular enzymic complex obtained from these cultures showed lytic activity on plant tissues, causing maceration of melon fruits, potato tubers and carrot roots. Protoplasts were isolated from melon fruits when the maceration was carried out under appropriate osmotic conditions. This fact suggest a possible relationship between the enzymes produced by Fusarium oxysporum f.sp. melonis and their pathogenicity on melon plants. PMID:8850131

Alconada, T M; Martínez, M J

1995-01-01

346

[FLASH-PCR diagnostics of toxigenic fungi of the genus Fusarium].  

PubMed

A test system for the diagnostics and identification of seven toxigenic fungi causing fusarioses of cereals (Fusarium graminearum, F. culmorum, F. poae, F. sporotrichioides, F. langsethiae, F. avenaceum, and F. tricinctum) was developed using PCR. The identification of pathogen is based on the specific amplification of a DNA fragment of the gene of translation elongation factor 1 alpha (tef-1alpha) and subsequent detection of the results by the fluorescent amplification-based specific hybridization method. The system was tested on 38 isolates of different fungi of the genus Fusarium. PMID:19088754

Riazantsev, D Iu; Abramova, S L; Evstratova, S V; Gagkaeva, T Iu; Zavriev, S K

2008-01-01

347

BIOSYNTHESIS OF FUSARIUM MYCOTOXINS AND GENOMICS OF FUSARIUM VERTICILLIOIDES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Trichothecenes and fumonisins are groups of mycotoxins produced by some species within the fungal genus Fusarium. These groups of toxins have markedly different biogenic origins and as a result have markedly different structures; trichothecenes are tricyclic compounds synthesized via terpenoid meta...

348

BIOSYNTHESIS OF FUSARIUM MYCOTOXINS AND GENOMICS OF FUSARIUM VERTICILLIOIDES.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Analyses of mycotoxin biosynthetic genes in Fusarium indicate that interspecies variation in trichothecene structures can result from differences in gene function, and interspecies variation in fumonisin production/non production can result from differences in the presence/absence of genes. Such va...

349

The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system  

PubMed Central

Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen. PMID:22225407

Muhammed, Maged; Fuchs, Beth Burgwyn; WU, Michael P.; Breger, Julia; Coleman, Jeffrey J.; Mylonakis, Eleftherios

2013-01-01

350

Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae)  

Microsoft Academic Search

Structural changes associated with corolla wilting may serve as a mechanism for effecting self-pollination. Low pollinator visitation, high seed production and a corolla that persists after anthesis indicates that Pedicularis dunniana is autogamous. Delayed autonomous self-pollination is facilitated by corolla wilting. Wilting of the upper lip (galea) brought the pollen laden anthers into contact with the stigma resulting in the

S.-G. Sun; Y.-H Guo; R. W. Gituru; S.-Q. Huang

2005-01-01

351

Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era  

PubMed Central

The ascomycete fungal pathogen Fusarium graminearum (teleomorph stage: Gibberella zeae) is the causal agent of Fusarium head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications toward a better understanding of F. graminearum pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly. PMID:23450732

Yang, Fen; Jacobsen, Susanne; Jřrgensen, Hans J. L.; Collinge, David B.; Svensson, Birte; Finnie, Christine

2013-01-01

352

A small molecule species-specifically inhibits Fusarium myosin I.  

PubMed

Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease of cereal crops worldwide. Recently, a novel fungicide JS399-19 has been launched into the marketplace to manage FHB. It is compelling that JS399-19 shows highly inhibitory activity towards some Fusarium species, but not to other fungi, indicating that it is an environmentally compatible fungicide. To explore the mode of action of this species-specific compound, we conducted a whole-genome transcript profiling together with genetic and biochemical assays, and discovered that JS399-19 targets the myosin I of F. graminearum (FgMyo1). FgMyo1 is essential for F. graminearum growth. A point mutation S217L or E420K in FgMyo1 is responsible for F. graminearum resistance to JS399-19. In addition, transformation of F. graminearum with the myosin I gene of Magnaporthe grisea, the causal agent of rice blast, also led to JS399-19 resistance. JS399-19 strongly inhibits the ATPase activity of the wild-type FgMyo1, but not the mutated FgMyo1(S217L/E420K) . These results provide us a new insight into the design of species-specific antifungal compounds. Furthermore, our strategy can be applied to identify novel drug targets in various pathogenic organisms. PMID:25404531

Zhang, Chengqi; Chen, Yun; Yin, Yanni; Ji, Huanhong; Shim, Won-Bo; Hou, Yiping; Zhou, Mingguo; Li, Xiang-Dong; Ma, Zhonghua

2014-11-18

353

Fusarium Keratitis - Multiple States, 2006  

Technology Transfer Automated Retrieval System (TEKTRAN)

The United States Centers for Disease Control and Prevention investigated an outbreak of corneal infections caused by Fusarium involving at least 17 states as of April, 2006. Initial outbreak reports were from Singapore and Hong Kong. Preliminary results suggest that these outbreaks may be linked ...

354

Microarray Analysis of Fusarium verticillioides  

Technology Transfer Automated Retrieval System (TEKTRAN)

Microarrays provide a powerful tool to examine genome wide patterns of differential transcription. We are using microarrays to identify Fusarium verticillioides' structural and regulatory genes involved in the biosynthesis of fungal toxins, virulence factors, and other elements involved in plant pa...

355

Influence of antifungal compounds from a soil-borne actinomycete onFusarium spp. in asparagus.  

PubMed

Asparagus decline syndrome is caused by fungal infection of asparagus roots and crowns byFusarium oxysporum f.sp.asparagi (FOA) andF. moniliforme (FM). Several soil-borne microorganisms have been found inhibitory toFusarium pathogens in other crops. A novelStreptomyces spp. (ME2-27-19A) was isolated from asparagus field soil and found to be inhibitory to FOA and FM in vitro. Solvent extraction of ME2-27-19A and Chromatographic purification of the extract yielded compound(s) that were inhibitory to FOA and FM at 40?g/ml. ME2-27-19A extract produced variable control of FOA and FM in vitro, and was phytotoxic at 1000 (?g/ml. In soil, ME2-27-19A extract reduced theFusarium population at 100?g/ml, but also reduced the asparagus shoot length. PMID:24241918

Elson, M K; Kelly, J F; Nair, M G

1994-11-01

356

Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 Implicates Tyrosine-Sulfated Peptide Signaling in Susceptibility and Resistance to Root Infection  

PubMed Central

In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs), including RFO2, account for the strong resistance of accession Columbia-0 (Col-0) and relative susceptibility of Taynuilt-0 (Ty-0) to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP) genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs) in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK) receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits. PMID:23717215

Shen, Yunping; Diener, Andrew C.

2013-01-01

357

Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus.  

PubMed

The laurel wilt pathogen, Raffaelea lauricola, is a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia and was believed to have brought R. lauricola with it to the southeastern United States. Individual X. glabratus beetles from six populations in South Carolina and Georgia were individually macerated in glass tissue grinders and serially diluted to quantify the CFU of fungal symbionts. Six species of Raffaelea were isolated, with up to four species from an individual adult beetle. The Raffaelea spp. were apparently within the protected, paired, mandibular mycangia because they were as numerous in heads as in whole beetles, and surface-sterilized heads or whole bodies yielded as many or more CFU as did nonsterilized heads or whole beetles. R. lauricola was isolated from 40 of the 41 beetles sampled, and it was isolated in the highest numbers, up to 30,000 CFU/beetle. Depending on the population sampled, R. subalba or R. ellipticospora was the next most frequently isolated species. R. arxii, R. fusca, and R. subfusca were only occasionally isolated. The laurel wilt pathogen apparently grows in a yeast phase within the mycangia in competition with other Raffaelea spp. PMID:20839947

Harrington, T C; Fraedrich, S W

2010-10-01

358

A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain.  

PubMed

Several breeding programs are under way to introduce resistance to bacterial wilt caused by Ralstonia solanacearum in solanaceous crops. The lack of screening methods allowing easy measurement of pathogen colonization and the inability to detect latent (i.e., symptomless) infections are major limitations when evaluating resistance to this disease in plant germplasm. We describe a new method to study the interaction between R. solanacearum and potato germplasm that overcomes these restrictions. The R. solanacearum UY031 was genetically modified to constitutively generate light from a synthetic luxCDABE operon stably inserted in its chromosome. Colonization of this reporter strain on different potato accessions was followed using life imaging. Bacterial detection in planta by this nondisruptive system correlated with the development of wilting symptoms. In addition, we demonstrated that quantitative detection of the recombinant strain using a luminometer can identify latent infections on symptomless potato plants. We have developed a novel, unsophisticated, and accurate method for high-throughput evaluation of pathogen colonization in plant populations. We applied this method to compare the behavior of potato accessions with contrasting resistance to R. solanacearum. This new system will be especially useful to detect latency in symptomless parental lines before their inclusion in long-term breeding programs for disease resistance. PMID:24283938

Cruz, Andrea Paola Zuluaga; Ferreira, Virginia; Pianzzola, María Julia; Siri, María Inés; Coll, Núria S; Valls, Marc

2014-03-01

359

Morphological and Phylogenetic Analysis of Fusarium solani Species Complex in Malaysia.  

PubMed

Members of Fusarium solani species complex (FSSC) have been known as plant, animal, and human pathogens. Nevertheless, the taxonomic status of such an important group of fungi is still very confusing and many new species as well as lineages have been elucidated recently. Unfortunately, most of the new taxa came from temperate and subtropical regions. Therefore, the objectives of the present study were to identify strains of FSSC recovered from different sources in Malaysia. In the present study, 55 strains belonging to the FSSC were examined and phylogenetically analyzed on the basis of internal transcribed spacer (ITS) regions and partial translation elongation factor-1 (TEF-1?) sequences. Based on morphological features, a total of 55 strains were selected for molecular studies. Based on morphological features, the strains were classified into four described Fusarium species, namely Fusarium keratoplasticum, Fusarium falciforme, FSSC 5, and Fusarium cf. ensiforme, and one unknown phylogenetic species was introduced. Although the data obtained from morphological and molecular studies sufficiently supported each other, the phylogenetic trees based on ITS and TEF-1? dataset clearly distinguished closely related species and distinctly separated all morphological taxa. All members of FSSC in this research were reported for the first time for Malaysian mycoflora. PMID:25238930

Chehri, Khosrow; Salleh, Baharuddin; Zakaria, Latiffah

2014-09-20

360

Fusarium Laboratory Workshop Kansas State University, Manhatten, Kansas State, USA  

E-print Network

instructors and lecturers including experts in Fusarium identification, taxonomy, mycotoxin production and impact of Fusarium mycotoxins. #12;2 While the learning experience was intensive, social events also

361

[Trichothecene mycotoxins of Fusarium poae from different habitats].  

PubMed

Comparative study of the ability of three strains of Fusarium poae for the synthesis of trichothecen mycotoxins has been carried out. Studied strains were isolated from different habitats: forest soil, wheat (plant pathogen) and cranberry root (endophytic strain). All three strains were able to synthesize T-2 toxin, HT-2 toxin and T-2 tetraol but they were in various amounts. The soil strain 50660 was characterized by high level of synthesis of both HT-2 toxin and T-2 tetraol; plant pathogenic 50674 and endophytic 50685 strains were characterized by high level of T-2 tetraol synthesis and lower level of HT-2 toxin synthesis. The main trichothecene mycotoxin of this group - T-2 toxin - was detected in trace amounts for all three strains of F. poae. PMID:24006781

Kurchenko, I N; Tsyganenko, E S

2013-01-01

362

Expression in cereal plants of genes that inactivate Fusarium mycotoxins.  

PubMed

Trichothecene 3-O-acetyltransferase (encoded by Tri101) inactivates the virulence factor of the cereal pathogen Fusarium graminearum. Zearalenone hydrolase (encoded by zhd101) detoxifies the oestrogenic mycotoxin produced by the same pathogen. These genes were introduced into a model monocotyledon rice plant to evaluate their usefulness for decontamination of mycotoxins. The strong and constitutive rice Act1 promoter did not cause accumulation of TRI101 protein in transgenic rice plants. In contrast, the same promoter was suitable for transgenic production of ZHD101 protein; so far, five promising T0 plants have been generated. Low transgenic expression of Tri101 was suggested to be increased by addition of an omega enhancer sequence upstream of the start codon. PMID:12784641

Higa, Arisa; Kimura, Makoto; Mimori, Kouhei; Ochiai-Fukuda, Tetsuko; Tokai, Takeshi; Takahashi-Ando, Naoko; Nishiuchi, Takumi; Igawa, Tomoko; Fujimura, Makoto; Hamamoto, Hiroshi; Usami, Ron; Yamaguchi, Isamu

2003-04-01

363

Ice Nucleation Activity in Fusarium acuminatum and Fusarium avenaceum†  

PubMed Central

Twenty fungal genera, including 14 Fusarium species, were examined for ice nucleation activity at ?5.0°C, and this activity was found only in Fusarium acuminatum and Fusarium avenaceum. This characteristic is unique to these two species. Ice nucleation activity of F. avenaceum was compared with ice nucleation activity of a Pseudomonas sp. strain. Cumulative nucleus spectra are similar for both microorganisms, while the maximum temperatures of ice nucleation were ?2.5°C for F. avenaceum and ?1.0°C for the bacteria. Ice nucleation activity of F. avenaceum was stable at pH levels from 1 to 13 and tolerated temperature treatments up to 60°C, suggesting that these ice nuclei are more similar to lichen ice nuclei than to bacterial ones. Ice nuclei of F. avenaceum, unlike bacterial ice nuclei, pass through a 0.22-?m-pore-size filter. Fusarial nuclei share some characteristics with the so-called leaf-derived nuclei with which they might be identified: they are cell free and stable up to 60°C, and they are found in the same kinds of environment. Highly stable ice nuclei produced by fast-growing microorganisms have potential applications in biotechnology. This is the first report of ice nucleation activity in free-living fungi. PMID:16348770

Pouleur, Stéphan; Richard, Claude; Martin, Jean-Guy; Antoun, Hani

1992-01-01

364

Laurel wilt: A global threat to avocado production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Laurel wilt kills American members of the Lauraceae plant family, including avocado (Persea americana). The disease threatens commercial avocado production in Florida, as well as the National Germplasm Repository for avocado in Miami (USDA-ARS). Elsewhere in the US, major (California) and minor comm...

365

Laurel wilt: A global threat to avocado production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Laurel wilt kills members of the Lauraceae plant family, including avocado. The disease has invaded much of the southeastern USA, and threatens avocado commerce and homeowner production in Florida, valuable germplasm in Miami (USDA-ARS), and major production and germplasm in California and MesoAmer...

366

Pine Wilt Disease And The Pinewood Nematode, Bursaphelenchus Xylophilus  

Microsoft Academic Search

Pine wilt disease (PWD) is one of the most damaging events affecting conifer forests (in particular Pinus spp.), in the Far East (Japan, China and Korea), North America (USA and Canada) and, more recently, in the European Union\\u000a (Portugal). In Japan it became catastrophic, damaging native pine species (Pinus thunbergii and P. densiflora), and becoming the main forest problem, forcing

Manuel M. Mota; Kazuyoshi Futai; Paulo Vieira

367

The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases.  

PubMed

Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well. PMID:24476707

Antonissen, Gunther; Martel, An; Pasmans, Frank; Ducatelle, Richard; Verbrugghe, Elin; Vandenbroucke, Virginie; Li, Shaoji; Haesebrouck, Freddy; Van Immerseel, Filip; Croubels, Siska

2014-02-01

368

The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases  

PubMed Central

Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well. PMID:24476707

Antonissen, Gunther; Martel, An; Pasmans, Frank; Ducatelle, Richard; Verbrugghe, Elin; Vandenbroucke, Virginie; Li, Shaoji; Haesebrouck, Freddy; Van Immerseel, Filip; Croubels, Siska

2014-01-01

369

Sexual compatibility in Fusarium pseudograminearum (Gibberella coronicola).  

PubMed

Numerous pathogenic Fusarium species have well-characterized sexual cycles, whereas others, including the crown rot fungus F. pseudograminearum, do not. We conducted studies to elucidate the potential frequency and nature of sexual reproduction in field populations of F. pseudograminearum and developed tester strains for controlled crossings under laboratory conditions. Studies on the role of sexual recombination in the life cycle of F. pseudograminearum revealed apparently low levels of female fertility under controlled laboratory conditions, despite the observation of naturally occurring perithecia of the teleomorph Gibberella coronicola at two field sites. Female fertility levels were experimentally increased to produce female fertile tester strains using four generations of single and multi-stage crossings between sibling progeny derived from fertile laboratory crosses between field isolates collected in northeastern Australia. The production of reliable female fertile tester strains has potential applications for the construction of biological species boundaries, elucidation of the physical characters of reproductive structures, and the generation of genetic diversity via sexual recombination in F. pseudograminearum. As such, the current study is a significant advancement in the understanding of G. coronicola, allowing for future characterisation of various biological, epidemiological, and genetic parameters. PMID:18694636

Bentley, Alison R; Summerell, Brett A; Burgess, Lester W

2008-09-01

370

Expression of Baculovirus Anti-Apoptotic Genes p35 and op-iap in Cotton (Gossypium hirsutum L.) Enhances Tolerance to Verticillium Wilt  

PubMed Central

Background Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored. Methodology/Principal Findings In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T1–T3 generation was lower than 19, significantly (P<0.05) better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines's 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD). Conclusion/Significance Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants. PMID:21151969

Liang, Benguo; Li, Shanwei; Wu, Zhixia; Wang, Qianhua; Leng, Chunxu; Dong, Jiangli; Wang, Tao

2010-01-01

371

Evidence that a Secondary Metabolic Biosynthetic Gene Cluster has Grown by Gene Relocation During Evolution of the Filamentous Fungus Fusarium  

Technology Transfer Automated Retrieval System (TEKTRAN)

Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of medical and agricultural interest because they are toxic to animals and plants and can contribute to pathogenesis ...

372

Elicitation of soluble phenolics in date palm ( Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium  

Microsoft Academic Search

A system using callus cultures from two cultivars of date palm (Phoenix dactylifera), resistant (BSTN) and susceptible (JHL) to ‘Bayoud disease’, caused by Fusarium oxysporum f.sp. albedinis (Foa), was established as a suitable system for this host-pathogen interaction study. De novo accumulation of phenolic compounds occurred in date palm callus in response to elicitation with filtrates from Foa cultures. Based

F Daayf; M El Bellaj; M El Hassni; F J'Aiti; I El Hadrami

2003-01-01

373

IN SILICO SUBTRACTION OF FUSARIUM VERTICILLIOIDES EST LIBRARIES TO IDENTIFY POTENTIAL TRANSCRIPTIONAL REGULATORS OF THE FUM GENE CLUSTER  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fumonisins are polyketide derived mycotoxins produced by the maize pathogen Fusarium verticillioides. Fumonisins can disrupt sphingolipid biosynthesis in animal cells, cause diseases in horses and swine, and have been associated with cancer in laboratory rodents. A cluster of genes responsible for...

374

GENOME-WIDE RNA EXPRESSION ANALYSIS DURING CONIDIAL MATURATION AND GERMINATION IN THE FILAMENTOUS FUNGUS, FUSARIUM GRAMINEARUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

The fungal plant pathogen, F. graminearum, causes Fusarium head blight disease of wheat and barley. To understand the early infection cycle of this organism, we monitored the RNA expression profiles in newly formed spores (macroconidia), in maturing spores and during the early stages of spore germin...

375

In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling  

Technology Transfer Automated Retrieval System (TEKTRAN)

The goal of this research was to determine mechanisms of interaction between endophytic strains of Fusarium verticillioides and the pathogen, Ustilago maydis. Endophytic strains of the fungus F. verticillioides are commonly found in association with maize (Zea mays) and when co-inoculated with U. m...

376

The role of MeaB, NMR and AreB as antagonists of AreA in Fusarium fujikuroi  

Technology Transfer Automated Retrieval System (TEKTRAN)

The rice pathogen Fusarium fujikuroi produces the phytohormones gibberellins (GAs), and the red polyketide pigment bikaverin. The production of both metabolites is subject to nitrogen metabolite repression (NMR): the central regulator of nitrogen repression, AreA, has been shown to directly activa...

377

COMPARATIVE ANALYSIS OF 87,000 EXPRESSED SEQUENCE TAGS FROM THE FUMONISIN-PRODUCING FUNGUS FUSARIUM VERTICILLIOIDES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium verticillioides is a pathogen of maize worldwide and produces fumonisins, a family of mycotoxins that cause several animal diseases and is epidemiologically associated with human esophageal cancer and birth defects in some regions of the world. This fungus is generally an endophyte of corn...

378

Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol.  

PubMed

The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F.?graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F.?graminearum wild-type and defined mutants: the DON-deficient ?tri5 mutant and the DON-producing lipase disruption mutant ?fgl1, both infecting only directly inoculated florets, and the mitogen-activated protein (MAP) kinase disruption mutant ?gpmk1, with strongly decreased virulence but intact DON production. At 14 days post-inoculation, the glucose amounts in the non-cellulosic cell wall fraction were only increased in spikelets infected with the DON-producing strains wild-type, ?fgl1 and ?gpmk1. Hence, we tested for DON-induced cell wall changes in B.?distachyon, which were most prominent at DON concentrations ranging from 1 to 100?ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1?ppm prior to F.?graminearum wild-type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence-related gene expression after DON pretreatment and fungal infection suggested that DON-induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB. PMID:25202860

Blümke, Antje; Sode, Björn; Ellinger, Dorothea; Voigt, Christian A

2014-09-01

379

Hyphal Growth of Phagocytosed Fusarium oxysporum Causes Cell Lysis and Death of Murine Macrophages  

PubMed Central

Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host. PMID:25025395

Schäfer, Katja; Bain, Judith M.

2014-01-01

380

MOLECULAR SYSTEMATICS OF FUNGAL PLANT PATHOGENS: GENERALISATIONS FROM FUSARIUM  

Technology Transfer Automated Retrieval System (TEKTRAN)

This presentation will focus on the importance of developing a robust phylogenetic framework for investigating species limits, evolution of virulence-associated factors such as toxins, host range, biogeography and global movement of agronomically important phytopathogens, drawing from examples of Fu...

381

Developing Fusarium head blight resistant wheat  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight, caused by Fusarium graminearum, is a major disease problem in wheat and barley around the world. During infection, F. graminearum produces trichothecene mycotoxins that act as virulence factors and cause a reduction in grain quality. Therefore, developing approaches to detoxi...

382

Interaction between Mycotoxin Producing Fusarium Species in  

E-print Network

1 Interaction between Mycotoxin Producing Fusarium Species in Different Oat Cultivars Tania Tajrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 #12;4 Interaction between Mycotoxin Producing Fusarium Species in different Oat Cultivars. In some oat cultivars there was a higher infection level of F. langsethiae when this species were single

383

Biological and chemical complexity of Fusarium proliferatum  

Technology Transfer Automated Retrieval System (TEKTRAN)

The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

384

Biological and Chemical Complexity of Fusarium proliferatum  

Technology Transfer Automated Retrieval System (TEKTRAN)

The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

385

The Maize An2 Gene is Induced by Fusarium Attack and Encodesan ent -Copalyl Diphosphate Synthase  

Microsoft Academic Search

Using the technique of differential display, a maize transcript was identified whose silk tissue expression is induced in\\u000a the presence of the ear rot pathogen Fusarium graminearum. The 3445 nt transcript includes a 727 nt 5? untranslated leader with the potential for extensive secondary structure and\\u000a represents the maize gene An2. An2 encodes a copalyl diphosphate synthase (CPS)-like protein with 60% amino

L. J. Harris; A. Saparno; A. Johnston; S. Prisic; M. Xu; S. Allard; A. Kathiresan; T. Ouellet; R. J. Peters

2005-01-01

386

Identification of mangrove endophytic fungus 1403 ( Fusarium proliferatum ) based on morphological and molecular evidence  

Microsoft Academic Search

A mangrove endophytic fungus 1403 isolated from the South China Sea Coast, which is able to produce griseofulvin and anthracenediones\\u000a under submerged fermentation, was compared with Fusarium genus with the similar morphological characters such as elongated, microconidium-producing conidiophores, ovoid microconidia\\u000a and straight to slightly curved macroconidia. It was found that the fungus 1403 resembles pathogenic F. verticillioides (teleomophy Gibberella moniliforme)

Zhong-shan Cheng; Wen-cheng Tang; Zhi-jian Su; Yi Cai; Shi-feng Sun; Qi-jin Chen; Fang-hai Wang; Yong-cheng Lin; Zhi-gang She; LLP Vrijmoed

2008-01-01

387

Differential Detection of Potentially Hazardous Fusarium Species in Wheat Grains by an Electronic Nose  

Microsoft Academic Search

Fungal infestation on wheat is an increasingly grave nutritional problem in many countries worldwide. Fusarium species are especially harmful pathogens due to their toxic metabolites. In this work we studied volatile compounds released by F. cerealis, F. graminearum, F. culmorum and F. redolens using SPME-GC\\/MS. By using an electronic nose we were able to differentiate between infected and non-infected wheat

Jakob Eifler; Eugenio Martinelli; Marco Santonico; Rosamaria Capuano; Detlev Schild; Corrado Di Natale

2011-01-01

388

Aluminum-induced abiotic stress counteracts Fusarium infection in Cajanus cajan (L.) Millsp  

Microsoft Academic Search

Interaction between Al and fungal pathogen Fusarium incarnatum-equiseti was investigated in Cajanus cajan (L.) Millsp. Germinating seeds of C. cajan conditioned by treating presoaked seeds with Al at concentrations 0, 10, 50, and 100 µM, pH 4.5, for 24 h were subjected to fungal infection. Subsequently, generation of reactive oxygen species (ROS: O2 and H2O2), cell death, and activity of

Prakasini Satapathy; V. Mohan Murali Achary; Brahma B. Panda

2012-01-01

389

Aluminum-induced abiotic stress counteracts Fusarium infection in Cajanus cajan (L.) Millsp  

Microsoft Academic Search

Interaction between Al and fungal pathogen Fusarium incarnatum-equiseti was investigated in Cajanus cajan (L.) Millsp. Germinating seeds of C. cajan conditioned by treating presoaked seeds with Al at concentrations 0, 10, 50, and 100 µM, pH 4.5, for 24 h were subjected to fungal infection. Subsequently, generation of reactive oxygen species (ROS: O2 and H2O2), cell death, and activity of

Prakasini Satapathy; V. Mohan Murali Achary; Brahma B. Panda

2011-01-01

390

Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations.  

PubMed

Burkholderia cepacia complex (Bcc) bacteria are naturally present in the rhizosphere of several crop plants and have been found to antagonize a wide range of important plant pathogens. In this study, we evaluated the effect of the pathogenic fungus Fusarium verticillioides on Bcc populations recovered from the roots of Zea mays plants. Maize plants were cultivated under greenhouse conditions and bacterial colonies were randomly isolated from distinct root portions of Fusarium-treated and control plants. We obtained a total of 120 Bcc isolates which all belonged to the species Burkholderia cenocepacia, a species of the Bcc widely distributed in natural habitats such as the rhizosphere of several crop plants. Results obtained revealed that the presence of the plant pathogen F. verticillioides had an effect at the root colonization level of B. cenocepacia populations, since an increase in indigenous B. cenocepacia bacteria was found in the rhizospheres of maize plants grown in infested soil, compared to the rhizospheres of control plants. The analysis of diversity indices as well as the investigation of genetic polymorphism of B. cenocepacia strains, isolated from Fusarium-treated and control root portions, revealed greater genetic variability in the presence of F. verticillioides, especially in the terminal root system portion. Finally, all B. cenocepacia isolates were also tested for in vitro inhibition of F. verticillioides growth as a functional property. Our results revealed that all B. cenocepacia isolates were able to restrict in vitro fungal growth, suggesting that there was no relationship between genetic polymorphism and biocontrol traits. PMID:16085398

Bevivino, Annamaria; Peggion, Verena; Chiarini, Luigi; Tabacchioni, Silvia; Cantale, Cristina; Dalmastri, Claudia

2005-12-01

391

Screening and Functional Analysis of the Peroxiredoxin Specifically Expressed in Bursaphelenchus xylophilus—The Causative Agent of Pine Wilt Disease  

PubMed Central

The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease. Accurately differentiating B. xylophilus from other nematodes species, especially its related species B. mucronatus, is important for pine wood nematode detection. Thus, we attempted to identify a specific protein in the pine wood nematode using proteomics technology. Here, we compared the proteomes of B. xylophilus and B. mucronatus using Two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF-MS) technologies. In total, 15 highly expressed proteins were identified in B. xylophilus compared with B. mucronatus. Subsequently, the specificity of the proteins identified was confirmed by PCR using the genomic DNA of other nematode species. Finally, a gene encoding a specific protein (Bx-Prx) was obtained. This gene was cloned and expressed in E. coli. The in situ hybridisation pattern of Bx-Prx showed that it was expressed strongly in the tail of B. xylophilus. RNAi was used to assess the function of Bx-Prx, the results indicated that the gene was associated with the reproduction and pathogenicity of B. xylophilus. This discovery provides fundamental information for identifying B. xylophilus via a molecular approach. Moreover, the purified recombinant protein has potential as a candidate diagnostic antigen of pine wilt disease, which may lead to a new immunological detection method for the pine wood nematode. PMID:24918285

Fu, Han-Yu; Ren, Jia-Hong; Huang, Lin; Li, Hao; Ye, Jian-Ren

2014-01-01

392

Prussin et. al. 1 Agricultural and Forest Meteorology Experimental Validation of a Long-Distance Transport Model for Plant Pathogens:1  

E-print Network

Prussin et. al. 1 Agricultural and Forest Meteorology Experimental Validation of a Long 18 19 20 21 22 23 #12;Prussin et. al. 2 Agricultural and Forest Meteorology Meteorology Keywords: Atmospheric transport, Plant Pathogenic Fungi, Fusarium head blight, Gaussian47

Ross, Shane

393

The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage.  

PubMed

In order to clarify the ensiling characteristics of stylo (Stylosanthes guianensis Swartz), the effects of wilting (no wilting, light wilting and heavy wilting) and storage temperatures (10°C, 20°C, 30°C and 40°C) on the fermentation quality and aerobic stability of stylo silage were investigated. Wilting had no significant influence on the contents of crude protein, ether extract and acid detergent fiber, and numbers of lactic acid bacteria, aerobic bacteria, yeasts and mold (P > 0.05). Heavy wilted material, wilted for 12 h, had higher neutral detergent fiber content and lower water-soluble carbohydrate content than unwilted and light wilted materials (P < 0.05). Wilting and storage temperatures had significant effects on pH value, acetic acid, butyric acid and NH(3) -N contents of stylo silage (P < 0.01 or P < 0.05). Wilting tended to reduce acetic acid and NH(3) -N contents and improve the fermentation quality of stylo silage. In all the silages, no wilting silage ensiled at 30°C had the highest butyric acid content (P < 0.05). High temperature of 40°C markedly restricted the growth of lactic acid bacteria and aerobic bacteria in silage, irrespective of wilting. The wilted silage or silage stored at low temperature had poor aerobic stability. PMID:21794013

Liu, Qinghua; Zhang, Jianguo; Shi, Shangli; Sun, Qizhong

2011-08-01

394

Activity of antibiotics against Fusarium and Aspergillus  

PubMed Central

Background/Aims To study the susceptibility of Fusarium and Aspergillus isolated from keratitis to amoxicillin, cefazolin, chloramphenicol, moxifloxacin, tobramycin, and benzalkonium chloride (BAK). Methods 10 isolates of Fusarium and 10 isolates of Aspergillus from cases of fungal keratitis at Aravind Eye Hospital in South India were tested using microbroth dilution for susceptibility to amoxicillin, cefazolin, chloramphenicol, moxifloxacin, tobramycin, and BAK. The minimum inhibitory concentration (MIC) median and 90th percentile were determined. Results BAK had the lowest MIC for both Fusarium and Aspergillus. Chloramphenicol had activity against both Fusarium and Aspergillus, while moxifloxacin and tobramycin had activity against Fusarium but not Aspergillus. Conclusions The susceptibility of Fusarium to tobramycin, moxifloxacin, chloramphenicol, and BAK and of Aspergillus to chloramphenicol and BAK may explain anecdotal reports of fungal ulcers that improved with antibiotic treatment alone. While some of the MICs of antibiotics and BAK are lower than the typically prescribed concentrations, they are not in the range of antifungal agents such as voriconazole, natamycin, and amphotericin B. Antibiotics may, however, have a modest effect on Fusarium and Aspergillus when used as initial treatment prior to identification of the pathologic organism. PMID:18952649

Day, Shelley; Lalitha, Prajna; Haug, Sara; Fothergill, Annette W.; Cevallos, Vicky; Vijayakumar, Rajendran; Prajna, Namperumalsamy V.; Acharya, Nisha R.; McLeod, Stephen D.; Lietman, Thomas M.

2008-01-01

395

Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection  

PubMed Central

Background Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21) is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB) disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. Results Using a 3?-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. Conclusion This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together, our data aid in the understanding of how FgV1-DK21 regulates the transcriptional reprogramming of F. graminearum. PMID:22559730

2012-01-01

396

Does biopolymers composition in seeds contribute to the flax resistance against the Fusarium infection?  

PubMed

Over the last decades, the cultivation of fibrous flax declined heavily. There are number of reasons for that fact; one of them is flax susceptibility to the pathogen infection. Damages caused mainly by fungi from genus Fusarium lead to the significant losses when cultivating flax, which in turn discourage farmers to grow flax. Therefore, to launch the new products from flax with attractive properties there is a need to obtain new flax varieties with increased resistance to pathogens. In order to obtain the better quality of flax fiber, we previously generated flax with reduced pectin or lignin level (cell wall polymers). The modifications altered also plants' resistance to the Fusarium infection. Undoubtedly, the plant defense system is complex, however, in this article we aimed to investigate the composition of modified flax seeds and to correlate it with the observed changes in the flax resistance to the pathogen attack. In particular, we evaluated the content and composition of carbohydrates (cell wall polymers: pectin, cellulose, hemicelluloses and mucilage), and phenylpropanoid compounds (lignin, lignans, phenolics). From the obtained results we concluded that the observed changes in the vulnerability to pathogens putatively correlate with the antioxidant potential of phenylpropanoids accumulated in seeds, seco-isolariciresinol and coumaric acid diglycosides in particular, and with pectin level as a carbon source for pathogens. Surprisingly, relatively less important for the resistance was the physical barrier, including lignin and cellulose amount and cellulose structure. Certainly, the hypothesis should be verified on a larger number of genotypes. PMID:25080398

Zeitoun, Ahmed M; Preisner, Marta; Kulma, Anna; Dymi?ska, Lucyna; Hanuza, Jerzy; Starzycki, Michal; Szopa, Jan

2014-01-01

397

Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe.  

PubMed

Based on a 2-year field trial at two locations in Lower Saxony (Germany), 395 Fusarium isolates belonging to 13 species were collected from more than 3,000 sugar beet roots that were apparently healthy at harvest. In a comparative screen, subsamples were analyzed for Fusarium infection directly after harvest and after different storage conditions. Depending on the storage duration, a different species composition was observed. F. redolens was predominant in freshly harvested beets, while F. culmorum, F. cerealis, and F. graminearum comprised 50.0% (2006) and 84.8% (2007) of the Fusarium mycoflora of sugar beets subjected to long-term pile storage. Randomly selected isolates of all species detected were tested for pathogenicity to sugar beet, but only isolates of F. graminearum and F. sambucinum caused severe root symptoms. Overall, 34 isolates of all species detected were characterized for their mycotoxin profile in rice culture to determine potentially produced toxins for future analysis of sugar beet. A total of 26 Fusarium mycotoxins were detected by liquid chromatography-tandem mass spectrometry, including trichothecenes, zearalenone, and especially high amounts of beauvericin, enniatins, and moniliformin. Further work is required to analyze the natural occurrence of these mycotoxins in sugar beet. PMID:21770776

Christ, Daniela S; Märländer, Bernward; Varrelmann, Mark

2011-11-01

398

Selection of potential antagonists against asparagus crown and root rot caused by Fusarium spp.  

PubMed

Crown and root rot is one of the most important diseases of asparagus crop worldwide. Fusarium oxysporum f.sp. asparagi and F. proliferatum are the two species more frequently associated to this complex and their prevalence depends on the production area. The control of the disease on asparagus crop is difficult to achieve because its perennial condition and the long survival of the pathogen in the soil as chlamydospores or as mycelium in infected plant debris. Furthermore, Fusarium spp. are easily disseminated with asparagus propagation materials. Thus, control measures should aim at obtaining seedlings protection for longer than achieved with conventional pre-planting chemical treatments. The effectiveness of fungal antagonists on the control of diseases caused by soil borne fungi has been reported. The potential of Trichoderma spp. as a biological control agent against diseases caused by Fusarium spp. in tomato and asparagus has been studied . It has been suggested that microorganisms isolated from the root or rhizosphere of a specific crop may be better adapted to that crop and may provide better disease control than organisms originally isolated from other plant species. The objective of this work was the evaluation of the potential of fungal isolates from symptomless asparagus plants as biocontrol agents of Fusarium crown and root rot. PMID:19226757

Rubio-Pérez, E; Molinero-Ruiz, M L; Melero-Vara, J M; Basallote-Ureba, M J

2008-01-01

399

In silico analysis and prioritization of drug targets in Fusarium solani.  

PubMed

Mycotic keratitis has emerged as a major ophthalmic problem and a leading cause of blindness, since its recognition in 1879. Filamentous fungi are major causative of mycotic keratitis. In India, the main etiological organism responsible for mycotic keratitis is Aspergillus species followed by Fusarium species. In South India, Fusarium based keratitis scales up to 43%. Nearly one-third of mycotic keratitis treatment results in failure, as fungal infections are highly resistant to antibiotic therapies. Therefore, there is need to determine novel and specific targets to constrain Fusarium infections in human eye. In this study, we implemented subtractive proteomics coupled with in silico functional annotation to prioritize potential and specific drug targets which can be used to modulate the virulence of Fusarium solani subsp.pisi (Nectria haematococca MPVI). The results infer that Thiamine thiazole synthase (Thi4), an intracellular membrane bound protein as the potential target, which is a core protein in biological and metabolic process of this pathogen. Moreover, this protein occurs in the thiamine thiazole biosynthesis pathway which is unique to F.solani and devoid in human. Hence, we predicted a plausible structure for this protein and also performed ligand-binding cavity analysis which can be for a strong base for drug designing studies. This study will pave way in better understanding of potential drug targets in F.solani and also leading to therapeutic interventions of fungal keratitis. PMID:25555413

Sivashanmugam, Muthukumaran; Nagarajan, Hemavathy; Vetrivel, Umashankar; Ramasubban, Gayathri; Therese, Kulandai Lily; Hajib Narahari, Madhavan

2015-02-01

400

Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fungal plant pathogens secrete effector molecules to establish disease on their hosts, while plants in turn utilize immune receptors to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and V. alb...

401

Regeneration of flax ( Linum usitatissimum L.) plants from anther culture and somatic tissue with increased resistance to Fusarium oxysporum.  

PubMed

The aim of this study was to establish a protocol for the efficient production of flax plants of microspore origin. The results were compared to those obtained for plants regenerated from somatic explants from hypocotyls, cotyledons, leaves, stems and roots. All the plants obtained during the experiments were regenerated from callus that was grown for periods from a few weeks to a few months before the regeneration was achieved. Anther cultures were less effective in plant regeneration than somatic cell cultures. However, regenerants derived from anther cells showed valuable breeding features, including increased resistance to fungal wilt. The age of the donor plants and the season they grew in had a noticeable effect on their anther callusing and subsequent plant regeneration. Low temperature had a negative effect and dark pre-treatment a positive effect on callusing and plant regeneration. Different media were most effective for callus induction, shoot induction and rooting. For callus induction two carbon sources (2.5% sucrose and 2.5% glucose) were most effective; for shoots, only sucrose at lower concentration (2%) was effective. Rooting was most efficient in 1% sucrose and reduced (50%) mineral concentration in the medium. It was found that the length of in vitro cultivation significantly increases the ploidy and affects such features as regenerant morphological characteristics, petal colour, and resistance to Fusarium oxysporum-induced fungal wilt. The established plant regeneration system provides a basis for the creation of transgenic flax. PMID:12827441

Rutkowska-Krause, I; Mankowska, G; Lukaszewicz, M; Szopa, J

2003-09-01

402

Utility of the phylotoxigenic relationships among trichothecene-producing Fusarium species for predicting their mycotoxin-producing potential.  

PubMed

Species of the genus Fusarium are well-known plant pathogens and mycotoxigenic fusaria are associated with health hazards to humans and animals. There is a need to understand the mechanisms of mycotoxin production by Fusarium species and to predict which produce mycotoxins. In this study, the Fusarium phylogenetic tree was first inferred among trichothecene producers and related species. We reconstructed the maximum likelihood (ML) tree based on the combined data from nucleotide sequences of rDNA cluster regions, the ?-tubulin gene (?-tub) and the elongation factor 1? gene (EF-1?). Second, based on this tree topology, the ancestral states of the producing potential of type A and B trichothecenes (TriA and TriB), zearalenone (ZEN), moniliformin (MON), beauvericin (BEA) and enniatins (ENN) were reconstructed using the maximum parsimony (MP) method based on the observed production by extant species as reported in the literature. Finally, the species having the potential to produce each of these six mycotoxins was predicted on the basis of the parsimonious analysis. The ML tree indicated that the Fusarium species analysed in this study could be divided into two major clades. Clade I was divided into four distinct subclades: I-a, I-b, I-c and I-d. Furthermore, the parsimony reconstruction suggested that the potential for producing MON and ZEN was gained or lost only once, and that the producing potential for TriA and TriB, BEA and ENN was repeatedly gained and lost during the evolutionary history of the Fusarium species analysed in this study. Interestingly, the results showed the possibility that several species, about which reports were scarce with regard to mycotoxin production, have the potential to produce one or more of the six evaluated in this study. The phylogenetic information therefore helps one to predict the mycotoxin-producing potential by Fusarium species, and these "phylotoxigenic relationships" may be useful for predicting the pathogenicity of fungi. PMID:23731171

Watanabe, M; Yonezawa, T; Sugita-Konishi, Y; Kamata, Y

2013-01-01

403

Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat  

PubMed Central

Background Fusarium species cause Fusarium head blight (FHB) and other important diseases of cereals. The causal agents produce trichothecene mycotoxins such as deoxynivalenol (DON). The dicotyledonous model species Arabidopsis thaliana has been used to study Fusarium-host interactions but it is not ideal for model-to-crop translation. Brachypodium distachyon (Bd) has been proposed as a new monocotyledonous model species for functional genomic studies in grass species. This study aims to assess the interaction between the most prevalent FHB-causing Fusarium species and Bd in order to develop and exploit Bd as a genetic model for FHB and other Fusarium diseases of wheat. Results The ability of Fusarium graminearum and Fusarium culmorum to infect a range of Bd tissues was examined in various bioassays which showed that both species can infect all Bd tissues examined, including intact foliar tissues. DON accumulated in infected spike tissues at levels similar to those of infected wheat spikes. Histological studies revealed details of infection, colonisation and host response and indicate that hair cells are important sites of infection. Susceptibility to Fusarium and DON was assessed in two Bd ecotypes and revealed variation in resistance between ecotypes. Conclusions Bd exhibits characteristics of susceptibility highly similar to those of wheat, including susceptibility to spread of disease in the spikelets. Bd is the first reported plant species to allow successful infection on intact foliar tissues by FHB-causing Fusarium species. DON appears to function as a virulence factor in Bd as it does in wheat. Bd is proposed as a valuable model for undertaking studies of Fusarium head blight and other Fusarium diseases of wheat. PMID:21639892

2011-01-01

404

Seasonal associations and atmospheric transport distances of Fusarium collected with unmanned aerial vehicles and ground-based sampling devices  

NASA Astrophysics Data System (ADS)

Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. Members of this genus are important pathogens and mycotoxin producers. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. Spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2,200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. Some of the species of Fusarium identified from our collections have not been previously reported in the state of Virginia. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season. This work extends previous studies showing an association between atmospheric transport barriers (Lagrangian coherent structures or LCSs) and the movement of Fusarium in the lower atmosphere. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for diseases causes by fusaria in the future.

Schmale, David; Ross, Shane; Lin, Binbin

2014-05-01

405

Identification and Chacterization of new strains of Enterobacter spp. causing Mulberry (Morus alba) wilt disease in China  

Technology Transfer Automated Retrieval System (TEKTRAN)

A new mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are dark brown discolorations in vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the bacterial wilt disease caused by Ralstonia solanacearum, the leaf w...

406

Activity of antibiotics against Fusarium and Aspergillus  

Microsoft Academic Search

Background\\/aims:To study the susceptibility of Fusarium and Aspergillus isolated from keratitis to amoxicillin, cefazolin, chloramphenicol, moxifloxacin, tobramycin and benzalkonium chloride (BAK).Methods:10 isolates of Fusarium and 10 isolates of Aspergillus from cases of fungal keratitis at Aravind Eye Hospital in South India were tested using microbroth dilution for susceptibility to amoxicillin, cefazolin, chloramphenicol, moxifloxacin, tobramycin and BAK. The minimum inhibitory concentration

S Day; P Lalitha; S Haug; A W Fothergill; V Cevallos; R Vijayakumar; N V Prajna; N R Acharya; S D McLeod; T M Lietman

2009-01-01

407

The influence of cultivar and chlorimuron application timing on spotted wilt disease and peanut yield.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Research was conducted from 2000 through 2007 at fifteen locations in Georgia to evaluate the effects of chlorimuron on the development of spotted wilt disease of peanut caused by tomato spotted wilt tospovirus. Chlorimuron at 9 g ai/ha was applied at various intervals ranging from 60 to 105 days a...

408

Field evaluation of mint mutant and hybrid lines for resistance to Verticillium wilt and yield  

Technology Transfer Automated Retrieval System (TEKTRAN)

Severity of Verticillium wilt varied significantly among mint lines and cultivars in the inoculated and non-inoculated sub-plots in two field trials. Verticillium wilt was significantly less severe for mutant lines 87M0109-1, 84M0107-7, and M90-11 than for Black Mitcham in 2002 and 2003. Verticilli...

409

Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.].  

PubMed

As water demand for agriculture exceeds water availability, cropping systems need to become more efficient in water usage, such as deployment of cultivars that sustain yield under drought conditions. Soybean cultivars differ in how quickly they wilt during water-deficit stress, and this trait may lead to yield improvement during drought. The objective of this study was to determine the genetic mechanism of canopy wilting in soybean using a mapping population of recombinant inbred lines (RILs) derived from a cross between KS4895 and Jackson. Canopy wilting was rated in three environments using a rating scale of 0 (no wilting) to 100 (severe wilting and plant death). Transgressive segregation was observed for the RIL population with the parents expressing intermediate wilting scores. Using multiple-loci analysis, four quantitative trait loci (QTLs) on molecular linkage groups (MLGs) A2, B2, D2, and F were detected (P wilting was polygenic and environmentally sensitive and provide a foundation for future research to examine the importance of canopy wilting in drought tolerance of soybean. PMID:19471903

Charlson, Dirk V; Bhatnagar, Sandeep; King, C Andy; Ray, Jeffery D; Sneller, Clay H; Carter, Thomas E; Purcell, Larry C

2009-08-01

410

The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight  

Microsoft Academic Search

The long-distance transport of plant pathogens takes place primarily in the planetary boundary layer (PBL) of the atmosphere. The PBL extends from about 50m to nearly 1km above the surface of the earth. We used remote-piloted vehicles (RPVs) to measure the relative abundance of viable spores of Gibberella zeae (anamorph Fusarium graminearum), causal agent of Fusarium head blight of wheat,

Sandra Lee Maldonado-Ramirez; David G. Schmale; Elson J. Shields; Gary C. Bergstrom

2005-01-01

411

Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. Winter Wheat  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fusarium head blight (FHB) is a devastating disease that threatens wheat (Triticum aestivum L.) production in many areas worldwide. FHB infection results in Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) that dramatically reduce grain yield and quality. More effective and accurate disease e...

412

Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species.  

PubMed

The plant hormone indole-3-acetic acid (IAA) can be synthesized from tryptophan via the intermediate indole-3-acetamide (IAM). The two genes, IaaM (encoding tryptophan monooxygenase) and IaaH (encoding indole-3-acetamide hydrolase) that constitute the IAM pathway have been described in plant-associated bacteria. We have identified putative homologs of the bacterial IaaM and IaaH genes in four Fusarium species -Fusarium proliferatum, Fusarium verticillioides, Fusarium fujikuroi, and Fusarium oxysporum. In all four species the two genes are organized next to each other in a head to head orientation and are separated by a short non-coding region. However, the pathway is fully functional only in the orchid endophytic strain F. proliferatum ET1, which produces significant amounts of IAM and IAA. Minor amounts of IAM are produced by the corn pathogen F. verticillioides strain 149, while in the two other species, the rice pathogen F. fujikuroi strain m567 and the tomato pathogen F. oxysporum f. sp. lycopersici strain 42-87 the IAM pathway is inactive. Deletion of the entire gene locus in F. proliferatum ET1 resulted in drastic reduction of IAA production. Conversely, transgenic strains of F. fujikuroi over-expressing the F. proliferatum IAM genes produced elevated levels of both IAM and IAA. Analysis of the intergenic promoter region in F. proliferatum showed that transcriptional activation in direction of the IaaH gene is about 3-fold stronger than in direction of the IaaM gene. The regulation of the IAM genes and the limiting factors of IAA production via the IAM pathway are discussed. PMID:22079545

Tsavkelova, Elena; Oeser, Birgitt; Oren-Young, Liat; Israeli, Maayan; Sasson, Yehezkel; Tudzynski, Bettina; Sharon, Amir

2012-01-01

413

Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy.  

PubMed

It recently has been reported that the non-plant-pathogenic oomycete Pythium oligandrum suppresses bacterial wilt caused by Ralstonia solanacearum in tomato. As one approach to determine disease-suppressive mechanisms of action, we analyzed the colonization of P. oligandrum in rhizospheres of tomato using real-time polymerase chain reaction (PCR) and confocal laser-scanning microscopy. The real-time PCR specifically quantified P. oligandrum in the tomato rhizosphere that is reliable over a range of 0.1 pg to 1 ng of P. oligandrum DNA from 25 mg dry weight of soil. Rhizosphere populations of P. oligandrum from tomato grown for 3 weeks in both unsterilized and sterilized field soils similarly increased with the initial application of at least 5 x 10(5) oospores per plant. Confocal microscopic observation also showed that hyphal development was frequent on the root surface and some hyphae penetrated into root epidermis. However, rhizosphere population dynamics after transplanting into sterilized soil showed that the P. oligandrum population decreased with time after transplanting, particularly at the root tips, indicating that this biocontrol fungus is rhizosphere competent but does not actively spread along roots. Protection over the long term from root-infecting pathogens does not seem to involve direct competition. However, sparse rhizosphere colonization of P. oligandrum reduced the bacterial wilt as well as more extensive colonization, which did not reduce the rhizosphere population of R. solanacearum. These results suggest that competition for infection sites and nutrients in rhizosphere is not the primary biocontrol mechanism of bacterial wilt by P. oligandrum. PMID:18943195

Takenaka, Shigehito; Sekiguchi, Hiroyuki; Nakaho, Kazuhiro; Tojo, Motoaki; Masunaka, Akira; Takahashi, Hideki

2008-02-01

414

Population Dynamics of Fusarium spp. and Microdochium nivale in Crops and Crop Residues of Winter Wheat.  

PubMed

ABSTRACT Naturally occurring populations of Fusarium avenaceum, F. culmorum, F. graminearum, F. poae, and Microdochium nivale were studied in two field experiments from anthesis in June 2003 until harvest in crops of winter wheat, and subsequently during 10 months after harvest until June 2004 on their residues exposed on the soil surface under field conditions. The dynamics of the different pathogens were estimated by quantifying the amount of DNA present in wheat tissues using TaqMan-polymerase chain reaction. While colonization of grain by Fusarium spp. and M. nivale was low, high amounts of DNA of F. avenaceum, F. graminearum, and F. culmorum were found in ear residues, internodes, and nodes of the mature crop. Amounts of DNA of pathogens decreased significantly during the following 10 months in residues of internodes and nodes, but not in residues of stem bases. Knowledge on population dynamics of pathogens will help to develop preventive measures aimed at reduction of inoculum sources of head blight pathogens. PMID:18943637

Köhl, J; de Haas, B H; Kastelein, P; Burgers, S L G E; Waalwijk, C

2007-08-01

415

Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.  

PubMed

In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates. PMID:23315087

Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

2013-04-01

416

Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides  

PubMed Central

Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent. PMID:25359909

Blacutt, A. A.; Meinersmann, R. J.; Bacon, C. W.

2014-01-01

417

In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme  

PubMed Central

Background Sudden death syndrome (SDS) of soybean (Glycine max L. Merr.) is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv). Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs) of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance. PMID:18831797

Yuan, Jiazheng; Zhu, Mengxia; Lightfoot, David A; Iqbal, M Javed; Yang, Jack Y; Meksem, Khalid

2008-01-01

418

Identification and Characterization of Wilt and Salt Stress-Responsive MicroRNAs in Chickpea through High-Throughput Sequencing  

PubMed Central

Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5? RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress. PMID:25295754

Deokar, Amit Atmaram; Bhardwaj, Ankur R.; Agarwal, Manu; Katiyar-Agarwal, Surekha; Srinivasan, Ramamurthy; Jain, Pradeep Kumar

2014-01-01

419

Species-Specific Detection and Identification of Fusarium Species Complex, the Causal Agent of Sugarcane Pokkah Boeng in China  

PubMed Central

Background Pokkah boeng disease caused by the Fusarium species complex results in significant yield losses in sugarcane. Thus, the rapid and accurate detection and identification of the pathogen is urgently required to manage and prevent the spreading of sugarcane pokkah boeng. Methods A total of 101 isolates were recovered from the pokkah boeng samples collected from five major sugarcane production areas in China throughout 2012 and 2013. The causal pathogen was identified by morphological observation, pathogenicity test, and phylogenetic analysis based on the fungus-conserved rDNA-ITS. Species-specific TaqMan real-time PCR and conventional PCR methods were developed for rapid and accurate detection of the causal agent of sugarcane pokkah boeng. The specificity and sensitivity of PCR assay were also evaluated on a total of 84 isolates of Fusarium from China and several isolates from other fungal pathogens of Sporisorium scitamineum and Phoma sp. and sugarcane endophyte of Acremonium sp. Result Two Fusarium species (F. verticillioides and F. proliferatum) that caused sugarcane pokahh boeng were identified by morphological observation, pathogenicity test, and phylogenetic analysis. Species-specific TaqMan PCR and conventional PCR were designed and optimized to target their rDNA-ITS regions. The sensitivity of the TaqMan PCR was approximately 10 pg of fungal DNA input, which was 1,000-fold over conventional PCR, and successfully detected pokkah boeng in the field-grown sugarcane. Conclusions/Significance This study was the first to identify two species, F. verticillioides and F. proliferatum, that were causal pathogens of sugarcane pokkah boeng in China. It also described the development of a species-specific PCR assay to detect and confirm these pathogens in sugarcane plants from mainland China. This method will be very useful for a broad range of research endeavors as well as the regulatory response and management of sugarcane pokkah boeng. PMID:25141192

Que, Youxiong; Wang, Jihua; Comstock, Jack C.; Wei, Jinjin; McCord, Per H.; Chen, Baoshan; Chen, Rukai; Zhang, Muqing

2014-01-01

420

Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity  

PubMed Central

Background The ultimate phenome of any organism is modulated by regulated transcription of many genes. Characterization of genetic makeup is thus crucial for understanding the molecular basis of phenotypic diversity, evolution and response to intra- and extra-cellular stimuli. Chickpea is the world's third most important food legume grown in over 40 countries representing all the continents. Despite its importance in plant evolution, role in human nutrition and stress adaptation, very little ESTs and differential transcriptome data is available, let alone genotype-specific gene signatures. Present study focuses on Fusarium wilt responsive gene expression in chickpea. Results We report 6272 gene sequences of immune-response pathway that would provide genotype-dependent spatial information on the presence and relative abundance of each gene. The sequence assembly led to the identification of a CaUnigene set of 2013 transcripts comprising of 973 contigs and 1040 singletons, two-third of which represent new chickpea genes hitherto undiscovered. We identified 209 gene families and 262 genotype-specific SNPs. Further, several novel transcription regulators were identified indicating their possible role in immune response. The transcriptomic analysis revealed 649 non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. Conclusion Our study establishes a comprehensive catalogue of the immune-responsive root transcriptome with insight into their identity and function. The development, detailed analysis of CaEST datasets and global gene expression by microarray provide new insight into the commonality and diversity of organ-specific immune-responsive transcript signatures and their regulated expression shaping the species specificity at genotype level. This is the first report on differential transcriptome of an unsequenced genome during vascular wilt. PMID:19732460

Ashraf, Nasheeman; Ghai, Deepali; Barman, Pranjan; Basu, Swaraj; Gangisetty, Nagaraju; Mandal, Mihir K; Chakraborty, Niranjan; Datta, Asis; Chakraborty, Subhra

2009-01-01

421

Moths that vector a plant pathogen also transport endophytic fungi and mycoparasitic antagonists.  

PubMed

Claviceps paspali, a common fungal pathogen of Paspalum grasses, attracts moth vectors by producing sugary exudates in the grass florets it infects. These exudates also support mycoparasitic Fusarium species that may negatively influence C. paspali fitness. We examined the potential for moths on which C. paspali depends to also transmit mycoparasitic Fusarium and fungal endophytes, which inhabit asymptomatic plant tissue and may influence host susceptibility to pathogens. We quantified infections by C. paspali, Fusarium spp., and endophytic fungi associated with Paspalum spp. at focal sites in the southeastern USA and used data from the nuclear internal transcribed spacer (ITS rDNA) to compare communities of plant-associated and moth-borne fungi. ITS sequences of moth-borne fungi were identical to reference sequences of mycoparasitic Fusarium heterosporum and to three distinct endophytic fungi isolated from Paspalum species. Our results demonstrate an unexpected overlap of fungal communities between disparate locations and among plant species and plant tissues, and suggest an unexpected role of moths, which vector a plant pathogen, to transmit other guilds of fungi. In turn, the potential for insects to transmit plant pathogens as well as mycoparasites and endophytic fungi suggests complex interactions underlying a commonly observed grass-pathogen system. PMID:18491176

Feldman, Tracy S; O'Brien, Heath E; Arnold, A Elizabeth

2008-11-01

422

A Conserved Homeobox Transcription Factor Htf1 Is Required for Phialide Development and Conidiogenesis in Fusarium Species  

PubMed Central

Conidia are primary means of asexual reproduction and dispersal in a variety of pathogenic fungi, and it is widely recognized that they play a critical role in animal and plant disease epidemics. However, genetic mechanisms associated with conidiogenesis are complex and remain largely undefined in numerous pathogenic fungi. We previously showed that Htf1, a homeobox transcription factor, is required for conidiogenesis in the rice pathogen Magnaporthe oryzae. In this study, our aim was to characterize how Htf1 homolog regulates common and also distinctive conidiogenesis in three key Fusarium pathogens: F. graminearm, F. verticillioides, and F. oxysporum. When compared to wild-type progenitors, the gene-deletion mutants in Fusarium species failed to form conventional phialides. Rather, they formed clusters of aberrant phialides that resembled elongated hyphae segments, and it is conceivable that this led to the obstruction of conidiation in phialides. We also observed that mutants, as well as wild-type Fusaria, can initiate alternative macroconidia production directly from hyphae through budding-like mechanism albeit at low frequencies. Microscopic observations led us to conclude that proper basal cell division and subsequent foot cell development of macroconidia were negatively impacted in the mutants. In F. verticillioides and F. oxysporum, mutants exhibited a 2- to 5- microconidia complex at the apex of monophialides resulting in a floral petal-like shape. Also, prototypical microconidia chains were absent in F. verticillioides mutants. F. graminearum and F. verticillioides mutants were complemented by introducing its native HTF1 gene or homologs from other Fusarium species. These results suggest that Fusarium Htf1 is functionally conserved homeobox transcription factor that regulates phialide development and conidiogenesis via distinct signaling pathways yet to be characterized in fungi. PMID:23029006

Zheng, Wenhui; Zhao, Xu; Xie, Qiurong; Huang, Qingping; Zhang, Chengkang; Zhai, Huanchen; Xu, Liping; Lu, Guodong; Shim, Won-Bo; Wang, Zonghua

2012-01-01

423

Limitations of exotic and indigenous isolates of Fusarium avenaceum for the biological control of spotted knapweed — Centaurea maculosa  

Microsoft Academic Search

Three isolates ofFusarium avenaceum are pathogenic on spotted knapweed(Centaurea maculosa), a major weed plant of pasturelands and rangelands of the Pacific Northwestern USA. One isolate (no. 1) obtained from the\\u000a European centre of origin of knapweed and isolate no. 365 native to Montana, did not significantly affect knapweed seed germination.\\u000a However,F. avenaceum no. 1003, another Montana native isolate, caused a

E. Czembor; G. A. Strobel

1997-01-01

424

Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Commercially distributed garlic (Allium sativum) seed cloves from six states of the United States and mainland China were surveyed for the presence of fungi recorded as pathogenic to garlic in the literature. Aspergillus niger, A. ochraceus, Botrytis porri, Embellisia allii, Fusarium oxysporum f. s...

425

Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides  

PubMed Central

Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom. PMID:24792348

Lan, Nan; Zhang, Hanxing; Hu, Chengcheng; Wang, Wenzhao; Calvo, Ana M.; Harris, Steven D.; Chen, She

2014-01-01

426

Multilocus Phylogenetics Show High Intraspecific Variability within Fusarium avenaceum  

PubMed Central

Fusarium avenaceum is a common soil saprophyte and plant pathogen of a variety of hosts worldwide. This pathogen is often involved in the crown rot and head blight of cereals that affects grain yield and quality. F. avenaceum contaminates grain with enniatins more than any species, and they are often detected at the highest prevalence among fusarial toxins in certain geographic areas. We studied intraspecific variability of F. avenaceum based on partial sequences of elongation factor-1 alpha, enniatin synthase, intergenic spacer of rDNA, arylamine N-acetyltransferase and RNA polymerase II data sets. The phylogenetic analyses incorporated a collection of 63 F. avenaceum isolates of various origin among which 41 were associated with wheat. Analyses of the multilocus sequence (MLS) data indicated a high level of genetic variation within the isolates studied with no significant linkage disequilibrium. Correspondingly, maximum parsimony analyses of both MLS and individual data sets showed lack of clear phylogenetic structure within F. avenaceum in relation to host (wheat) and geographic origin. Lack of host specialization indicates no host selective pressure in driving F. avenaceum evolution, while no geographic lineage structure indicates widespread distribution of genotypes that resulted in nullifying the effects of geographic isolation on the evolution of this species. Moreover, significant incongruence between all individual tree topologies and little clonality is consistent with frequent recombination within F. avenaceum. PMID:22016614

Kulik, Tomasz; Pszczó?kowska, Agnieszka; ?ojko, Maciej

2011-01-01

427

Dominance relationships of bean pathogens at Lake Balaton.  

PubMed

Dominance relationships of different bean pathogens were examined during 1999-2000 in small plot trials at Lake Balaton in Hungary. In 1999 the dominant pathogen species were Xanthomonas campestris pv. phaseoli. The main cause of the stock decay was due to the infection of Fusarium spp. Bean plants were infected also by Alternaria, Colletotrichum, Macrophomina and Sclerotinia, species part from viruses. Among of thirty-eight examined bean cultivars and genotypes the variety "Díszbab" and the genotype 513 were the most resistant. In 2000 Macrophomina phaseolina and Fusarium spp. caused epidemics. Most of the observed plants died early. The most healthy species and branches were the SC-34-1 and cv. Díszbab. PMID:12425043

Balázs, A; Budai, P; Kadlicskó, S; Kovács, J

2001-01-01

428

Production of trichothecene mycotoxins by Fusarium graminearum and Fusarium culmorum on barley and wheat  

Microsoft Academic Search

Wheat cultivars (Stoa, MN87150, SuMai-3, YMI-6, Wheaton) and barley cultivars (Robust, Excel, Chevron, M69) were inoculated in the field with isolates ofFusarium graminearum andF. culmorum. The diseased (Fusarium head blight) kernels were analyzed for deoxynivalenol (DON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol (NIV).F. culmorum produced all three trichothecenes on all cultivars tested whereasF. graminearum only produced DON and 15-ADON. There was no

C. J. Mirocha; Weiping Xie; Yichun Xu; R. D. Wilcoxson; R. P. Woodward; R. H. Etebarian; G. Behele

1994-01-01

429

Detection and quantification of Fusarium culmorumand Fusarium graminearumin cereals using PCR assays  

Microsoft Academic Search

Random amplified polymorphic DNA assays were used to identify amplification products characteristic of eitherFusarium culmorumorFusarium graminearum. Selected fragments were cloned, sequenced and primer pairs were developed which permitted specific detection ofF. culmorumorF. graminearumusing conventional PCR. Quantitative assays were developed for bothF. culmorumandF. graminearum, using competitive PCR. TheF. culmorum-specific competitive PCR assay was used to study the effect of inoculum load

P Nicholson; D. R Simpson; G Weston; H. N Rezanoor; A. K Lees; D. W Parry; D Joyce

1998-01-01

430

Nemtaode-Vector Relationships in the Pine Wilt Disease System  

PubMed Central

Pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease in North America and Japan. Dispersal stage dauer larvae are transported to new host trees on the body surface and within the tracheal system of several beetle species. Worldwide, 21 species of Cerambycidae, 1 genus of Buprestidae, and 2 species of Curculionidae are known to carry pinewood nematode dauer larvae upon emerging from nematode-infested trees. Five species of cerambycids in the genus Monochamus are known to transmit dauer larvae to new host trees, four North American species and one Japanese species. Primary transmission to healthy trees occurs through beetle feeding wounds on young branches. Secondary transmission to stressed trees or recently cut logs occurs through Monochamus oviposition sites. PMID:19290206

Linit, M. J.

1988-01-01

431