Science.gov

Sample records for fusion devices including

  1. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intervertebral body fusion device. 888.3080... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or...

  2. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intervertebral body fusion device. 888.3080... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or...

  3. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intervertebral body fusion device. 888.3080... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or...

  4. Electromagnetic computations for fusion devices

    SciTech Connect

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs.

  5. Magnetic systems for fusion devices

    SciTech Connect

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France.

  6. Open-ended fusion devices and reactors

    SciTech Connect

    Kawabe, T.; Nariai, H.

    1983-12-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown.

  7. Charge exchange recombination spectroscopy on fusion devices

    SciTech Connect

    Duval, B. P.

    2012-05-25

    For fusion, obtaining reliable measurements of basic plasma parameters like ion and electron densities and temperatures is a primary goal. For theory, measurements are needed as a function of time and space to understand plasma transport and confinement with the ultimate goal of achieving economic nuclear fusion power. Electron profile measurements and plasma spectroscopy for the plasma ions are introduced. With the advent of Neutral Beam auxiliary plasma heating, Charge Exchange Recombination Spectroscopy provides accurate and time resolved measurements of the ions in large volume fusion devices. In acknowledgement of Nicol Peacock's role in the development of these techniques, still at the forefront of plasma fusion research, this paper describes the evolution of this diagnostic method.

  8. Charge exchange recombination spectroscopy on fusion devices

    NASA Astrophysics Data System (ADS)

    Duval, B. P.

    2012-05-01

    For fusion, obtaining reliable measurements of basic plasma parameters like ion and electron densities and temperatures is a primary goal. For theory, measurements are needed as a function of time and space to understand plasma transport and confinement with the ultimate goal of achieving economic nuclear fusion power. Electron profile measurements and plasma spectroscopy for the plasma ions are introduced. With the advent of Neutral Beam auxiliary plasma heating, Charge Exchange Recombination Spectroscopy provides accurate and time resolved measurements of the ions in large volume fusion devices. In acknowledgement of Nicol Peacock's role in the development of these techniques, still at the forefront of plasma fusion research, this paper describes the evolution of this diagnostic method.

  9. New concept for a fusion reactor device

    SciTech Connect

    Tsai Shih-tung; Chen Yan-ping; Guo Shi-chong; Ke Fu-jiu; Shen Jie-wu; Xu Min-jian; Yu Xue-hua; Zhou Yu-mei; Chen Yun-ming; Wang Shi-jin; and others

    1987-10-01

    A new advanced concept for a fusion reactor device is suggested. Combining the merits of linear and toroidal configurations as well as the fast and slow process concepts, we consider a fusion reactor consisting of two axisymmetric tandem mirror-like sections and two heliac stellarator U-bends. Start-up, transition, and operating phases are studied. The D-D reactor parameters and stabilities are discussed. The RF and energetic components are only needed for start-up, their production would constitute only a temporary energy drain on the overall reactor economics of such a system. Besides, the plugs are needed only in the start-up phase. This also greatly relaxes the technical engineering requirements.

  10. Planar geometry inertial electrostatic confinement fusion device

    NASA Astrophysics Data System (ADS)

    Knapp, Daniel R.

    2015-03-01

    In the classic gridded inertial electrostatic confinement (IEC) fusion reactor, ion bombardment of the grid leads to heating, thermionic electron emission, significant power loss, and ultimately melting of the grid. Gridless IEC devices have sought to overcome these limitations. Klein reported a gridless device in which ions are circulated as a linear beam in an electrostatic analogue of an optical resonator. To overcome limits of stored ions due to space charge effects at the turning regions, the device employed multiple overlapping traps. The work reported here seeks to further increase the turning region space in a gridless trap by employing a planar geometry. Ion trapping in the planar device was examined by simulating trajectories of 2H+ ions with SIMION 8.1 software. Simulations were carried out using multiple potentials as in Klein's device and for a single potential trap as a planar analogue of the anharmonic ion trap. Scattering by background gas was simulated using a hard sphere collision model, and the results suggested the device will require operation at low pressure with a separate ion source.

  11. Divertor for a linear fusion device

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Yushmanov, P. N.; Barnes, D. C.; Putvinski, S. V.

    2016-03-01

    Linear fusion devices can use large magnetic flux flaring in the end tanks to reduce the heat load on the end structures. In order to reduce parallel electron heat loss, one has to create conditions where the neutral gas density in the end tanks is low, as otherwise cold electrons produced by the ionization of the neutrals would cool down the core plasma electrons. The processes determining the neutral gas formation and spatial distribution are analysed for the case where neutrals are formed by the surface recombination of the outflowing plasma. The conditions under which the cooling of the core plasma is negligible are formulated.

  12. Eddy current analysis in fusion devices

    SciTech Connect

    Turner, L.R.

    1988-06-01

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs.

  13. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  14. Tritium and workers in fusion devices-lessons learnt.

    PubMed

    Rodriguez-Rodrigo, Lina; Elbez-Uzan, Joelle; Alejaldre, Carlos

    2009-09-01

    Fusion machines from all over the world have contributed to the knowledge accumulated in fusion science. This knowledge has been applied to design new experimental fusion machines and in particular ITER. Only two fusion devices based on magnetic confinement have used deuterium and tritium fuels to-date-the Tokamak Fusion Test Reactor, TFTR, in Princeton, USA, and JET, the European tokamak. These machines have demonstrated that the fusion reaction is achievable with these fuels, and have provided valuable lessons on radioprotection-related issues as concerns tritium and workers. Dedicated tritium installations for fusion research and development have also contributed to this knowledge base. PMID:19690360

  15. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  16. Integrated devices including cleaved semiconductor lasers

    SciTech Connect

    Chen, C.Y.

    1987-11-17

    A process for fabricating a semiconductor device is described comprising semiconductor laser on a semiconductor substrate in which prior to cleaving the semiconductor substrate to form a facet of the semiconductor laser a hole is made in the substrate along the cleave plane so as to produce a stop cleave facet.

  17. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  18. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (˜100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  19. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data... infringing electronic devices, including wireless communication devices, portable music and data...

  20. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  1. Simulation of Carbon Production from Material Surfaces in Fusion Devices

    NASA Astrophysics Data System (ADS)

    Marian, J.; Verboncoeur, J.

    2005-10-01

    Impurity production at carbon surfaces by plasma bombardment is a key issue for fusion devices as modest amounts can lead to excessive radiative power loss and/or hydrogenic D-T fuel dilution. Here results of molecular dynamics (MD) simulations of physical and chemical sputtering of hydrocarbons are presented for models of graphite and amorphous carbon, the latter formed by continuous D-T impingement in conditions that mimic fusion devices. The results represent more extensive simulations than we reported last year, including incident energies in the 30-300 eV range for a variety of incident angles that yield a number of different hydrocarbon molecules. The calculated low-energy yields clarify the uncertainty in the complex chemical sputtering rate since chemical bonding and hard-core repulsion are both included in the interatomic potential. Also modeled is hydrocarbon break-up by electron-impact collisions and transport near the surface. Finally, edge transport simulations illustrate the sensitivity of the edge plasma properties arising from moderate changes in the carbon content. The models will provide the impurity background for the TEMPEST kinetic edge code.

  2. Wafer Fusion for Integration of Semiconductor Materials and Devices

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  3. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions.

    PubMed

    Donovan, D C; Boris, D R; Kulcinski, G L; Santarius, J F; Piefer, G R

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (∼100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device. PMID:23556815

  4. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  5. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  6. Super-X Divertors and High Power Density Fusion Devices

    SciTech Connect

    Valanju, P.; Kotschenreuther, M.; Mahajan, S.; Canik, John

    2009-01-01

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source "battery" small enough to fit inside a conventional fission blanket.

  7. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    SciTech Connect

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science.After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.

  8. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.

  9. Coupling of transit time instabilities in electrostatic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.; Fröhlich, M.

    2015-07-01

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  10. Computerized device for critical flicker fusion frequency determination

    NASA Astrophysics Data System (ADS)

    Racene, Diana

    2003-08-01

    The critical fusion flicker frequency of the human visual system is the threshold sensitivity for a sine wave-modulated patch of monochromatic flickering light measured as a function of its temporal frequency and average luminance level. The critical flicker fusion frequency changes in different ocular and non-ocular conditions, for example: high-myopia, AMR, glaucoma, schizophrenia, after alcohol intake, fatigue. A computerized test for critical flicker fusion frequency determination was developed. Visual stimuli are two monochromatic LED light sources that are connected to a microcircuit driven by a computer program. The control of the device is realized through the parallel port of the PC. During the test a patient has to choose which one of two light sources is flickering. The critical cliker fusion frequency is determined by a psychophysical procedure, where the stimulus frequency that showed detection probability 75% is considered as threshold.

  11. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  12. RF plasma heating in toroidal fusion devices

    SciTech Connect

    Golant, V.E.; Fedorov, V.I. )

    1989-01-01

    The purpose of the present book is to provide, in seven chapters, a unified overview of the methods for rf heating of plasmas in toroidal fusion experiments. In Chapter 1 the problem of plasma heating in tokamaks and stellarators is formulated and the requirements for auxiliary heating techniques are described. This chapter also contains a brief review of the results of research on tokamaks and stellarators. Chapter 2 is devoted to a theoretical description of the principal physical effects involved in the rf heating of plasmas, especially the characteristics of wave propagation, of the mechanisms by which waves are absorbed and plasma heating takes place, and of the nonlinear effects that accompany heating. The primary emphasis is on a qualitative physical picture of these effects. Chapters 3-6, in turn, deal with the major rf heating techniques currently under investigation, electron cyclotron (ECH), ion cyclotron (ICH), lower hybrid (LHH), and Alfven wave heating. In each of these chapters the main schemes for heating are described, the results of theoretical analyses and numerical simulations are discussed, the technology of the heating systems is briefly described, and experimental work published through the end of 1984 is reviewed. Finally, in Chapter 7 the different rf heating techniques are compared; they are contrasted with neutral beam injection, and the feasibility of adiabatic compression as a means of heating plasmas is examined. Separate abstracts were prepared for each chapter of this book. 246 refs.

  13. FED-R: a fusion engineering device utilizing resistive magnets

    SciTech Connect

    Jassby, D.L.; Kalsi, S.S.

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  14. PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26 Week Biomechanics.

    PubMed

    Pelletier, Matthew; Cordaro, Nicholas; Lau, Abe; Walsh, William R

    2012-07-13

    STUDY DESIGN:: Comparative evaluation of in vitro and in vivo biomechanics, resulting fusion and histomorphometric aspects of Polyetheretherketone (PEEK) versus Titanium (Ti) interbody fusion devices in an animal model with similar volumes of bone graft. OBJECTIVE:: Identify differences in the characteristics of fusion and biomechanics immediately following implantation (time zero) and at 26 weeks with each interbody implant. SUMMARY OF BACKGROUND DATA:: PEEK has been well accepted in spinal surgery, it provides a closer match to the mechanical properties of bone than metallic implants such as titanium. This is thought to reduce graft stress shielding and subsidence of interbody fusion devices. There remains controversy as to the overall influence of this as a factor influencing resultant fusion and initial stability. While material modulus is one factor of importance, other design factors are likely to play a large role determining overall performance of an interbody implant. METHODS:: A Ti and PEEK device of similar size with a central void to accommodate graft material were compared. The PEEK device had a ridged surface on the caudal and cephalad surfaces, while Ti device allowed axial compliance and had bone ingrowth endplates and polished internal surfaces. A two level ALIF was performed in 9 sheep and fusion, biomechanics, and bone apposition were evaluated at 26 weeks. Time zero in vitro biomechanical tests were performed to establish initial stability immediately following implantation. RESULTS:: No differences were detected in the biomechanical measures of each of the devices in in vitro time zero tests. All levels were fused by 26 weeks with considerably lower Range of Motion (ROM) when compared to in vitro tests. ROM in all modes of bending was reduced by over 70% when compared to intact values for Axial Rotation (Ti-74%, PEEK-71%), Lateral Bending (Ti-90%, PEEK-88%) and Flexion/Extension (Ti-92%, PEEK-91%). Mechanical properties of fusions formed with each implant did not differ, however bone apposition was variable with polished internal Ti surfaces being lower than PEEK and treated Ti endplates showing the greatest levels. Graft material displayed axial trabecular alignment with both implants. CONCLUSIONS:: Although material properties and surface characteristics resulted in differing amounts of biological integration from the host, both implants were capable of producing excellent fusion results using similar volumes of bone graft. PMID:22801456

  15. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  16. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  17. Application of pyrolytic boron nitride in fusion devices

    NASA Astrophysics Data System (ADS)

    Buzhinskij, O. I.; Opimach, I. V.; Kabishev, A. V.; Lopatin, V. V.; Surov, Y. P.

    1990-09-01

    Armor made of low- Z materials with low sputtering yields is widely used in fusion devices to protect the first wall. The use of pyrolytic boron nitride (PEN) as an armor material for the first wall and screens for additional heating systems in fusion devices is discussed. PBN possesses some potential advantages over other ceramics at high temperatures, for example, its mechanical strength, electrical resistance, heat conductivity, dielectrical properties and resistance to neutron damage are better than many other ceramics. An investigation of the change in physical and structural properties of the PBN surface, irradiated with those ions which prevail in the tokamak plasma as impurities, was carried out (C +, Fe +, W + and others). The PBN was irradiated by high current electron beams, γ-quanta was analyzed using IR Adsorption Reflection Spectroscopy and Secondary Ion Mass Spectroscopy; the surface resistance was also measured. It was shown that PBN properties are recovered after annealing at 1300 K.

  18. Design considerations for achieving high vacuum integrity in fusion devices

    SciTech Connect

    Fuller, G.M.; Haines, J.R.

    1983-01-01

    Achieving high vacuum integrity in fusion devices requires close attention to both the overall system configuration and the design details of joints and seals. This paper describes the factors in selecting the system configuration, from a vacuum standpoint, for the Princeton Plasma Physics Laboratory (PPPL) DCT-8 Tokamak device. The DCT-8 (driven current tokamak) is the eighth design in a series of tokamak concepts defined to cover the magnetic confinement and development gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor (ETR). Leak detection concept development is considered a vital activity, as well as the definition of a configuration that minimizes the consequences of leaks. A major part of the vacuum boundaries of the magnet system and the plasma system is common. For the major penetrations, primary and secondary seals are provided with vacuum control over the region between seals. The intent is to instrument these cavities and provide automated recordings of these measurements for leak maintenance.

  19. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body...

  20. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body...

  1. A laser device for fusion of nasal mucosa

    NASA Astrophysics Data System (ADS)

    Sooklal, Valmiki; McClure, Jesse; Hooper, Luke; Larson, Michael

    2010-02-01

    A prototype device has been created to fuse septal tissue membranes as an alternative to sutures or staples through the controlled application of laser heating and pressure to induce protein denaturation and subsequent tissue fusion, through renaturation and intertwining, across the interface. Lasers have been used to close wounds in controlled laboratory tests over the last 15 years. Many encouraging results have been obtained; however, no commercial delivery systems are currently available. This is due primarily to two factors: requiring an inordinate amount of experience on the part of the operator, and attempting to achieve general applicability for multiple tissue systems. The present device overcomes these barriers as it is tailored for the particular application of septal laser fusion, namely for the coaptation of mucoperichondrial membranes. The important parameters involved in fusing biological tissues are identified. The development of the device followed from computational modeling based on Monte Carlo simulation of photon transport and on engineering firstprinciples. Experiments were designed and analyzed using orthogonal arrays, employing a subset of the relevant parameters, i.e., laser irradiance, dwell time and spot size, for a range of wavelengths. The in vitro fusion experiments employed 1cm by 1cm sections of equine nasal mucosa having a nominal thickness of 1mm.

  2. The Mirror Fusion Test Facility: An intermediate device to a mirror fusion reactor

    SciTech Connect

    Karpenko, V.N.

    1983-09-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magneticmirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-relevant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems.

  3. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOEpatents

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  4. Conference Report on the 2nd International Symposium on Lithium Applications for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Ono, M.; Bell, M. G.; Hirooka, Y.; Kaita, R.; Kugel, H. W.; Mazzitelli, G.; Menard, J. E.; Mirnov, S. V.; Shimada, M.; Skinner, C. H.; Tabares, F. L.

    2012-03-01

    The 2nd International Symposium on Lithium Applications for Fusion Devices (ISLA-2011) was held on 27-29 April 2011 at the Princeton Plasma Physics Laboratory (PPPL) with broad participation from the community working on aspects of lithium research for fusion energy development. This community is expanding rapidly in many areas including experiments in magnetic confinement devices and a variety of lithium test stands, theory and modeling and developing innovative approaches. Overall, 53 presentations were given representing 26 institutions from 10 countries. The latest experimental results from nine magnetic fusion devices were given in 24 presentations, from NSTX (PPPL, USA), LTX (PPPL, USA), FT-U (ENEA, Italy), T-11M (TRINITY, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), and RFX (Padova, Italy). Sessions were devoted to: I. Lithium in magnetic confinement experiments (facility overviews), II. Lithium in magnetic confinement experiments (topical issues), III. Special session on liquid lithium technology, IV. Lithium laboratory test stands, V. Lithium theory/modeling/comments, VI. Innovative lithium applications and VII. Panel discussion on lithium PFC viability in magnetic fusion reactors. There was notable participation from the fusion technology communities, including the IFE, IFMIF and TBM communities providing productive exchanges with the physics oriented magnetic confinement lithium research groups. It was agreed to continue future exchanges of ideas and data to help develop attractive liquid lithium solutions for very challenging magnetic fusion issues, such as development of a high heat flux steady-state divertor concept and acceptable plasma disruption mitigation techniques while improving plasma performance with lithium. The next workshop will be held at ENEA, Frascati, Italy in 2013.

  5. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... America, LLC of Richardson, Texas (collectively, ``Samsung''). 76 FR 45860 (Aug. 1, 2011). The complaint... Commission, and on the issues of remedy, the public interest, and bonding. 77 FR 70464. The Commission... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and...

  6. Fusion rules for the logarithmic N = 1 superconformal minimal models II: Including the Ramond sector

    NASA Astrophysics Data System (ADS)

    Canagasabey, Michael; Ridout, David

    2016-04-01

    The Virasoro logarithmic minimal models were intensively studied by several groups over the last ten years with much attention paid to the fusion rules and the structures of the indecomposable representations that fusion generates. The analogous study of the fusion rules of the N = 1 superconformal logarithmic minimal models was initiated in [1] as a continuum counterpart to the lattice explorations of [2]. These works restricted fusion considerations to Neveu-Schwarz representations. Here, this is extended to include the Ramond sector. Technical advances that make this possible include a fermionic Verlinde formula applicable to logarithmic conformal field theories and a twisted version of the fusion algorithm of Nahm and Gaberdiel-Kausch. The results include the first construction and detailed analysis of logarithmic structures in the Ramond sector.

  7. Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-02-01

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  8. Conference report on the 3rd international symposium on lithium application for fusion devices

    SciTech Connect

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  9. Conference report on the 3rd international symposium on lithium application for fusion devices

    DOE PAGESBeta

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less

  10. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  11. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    SciTech Connect

    Karpenko, V.N.

    1983-03-30

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10/sup 14/ cm/sup -3/.s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems.

  12. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1995-10-03

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.

  13. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    1995-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  14. Fusion Engineering Device (FED) first wall/shield design

    SciTech Connect

    Sager, P.H.; Fuller, G.; Cramer, B.; Davisson, J.; Haines, J.; Kirchner, J.

    1981-01-01

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper.

  15. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... devices, including mobile phones and tablet computers, and components thereof by reason of infringement of... certain electronics devices, including mobile phones and tablet computers, and components thereof...

  16. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... States after importation of certain portable electronic ] communications devices, including mobile phones... importation of certain portable electronic communications devices, including mobile phones and...

  17. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... Trade Commission has received a complaint entitled Certain Electronic Devices, Including Mobile Phones... electronic devices, including mobile phones and tablet computers, and components thereof. The complaint...

  18. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  19. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  20. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    NASA Astrophysics Data System (ADS)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  1. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Music and Data Processing Devices, and Tablet Computers; Notice of Institution of Investigation... communication devices, portable music and data processing devices, and tablet computers by reason of... communication devices, portable music and data processing devices, and tablet computers that infringe one...

  2. CONFERENCE REPORT: Summary of the 16th IAEA Technical Meeting on 'Research using Small Fusion Devices'

    NASA Astrophysics Data System (ADS)

    Gribkov, V.; Van Oost, G.; Malaquias, A.; Herrera, J.

    2006-10-01

    Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions—to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J.

  3. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    PubMed Central

    He, Xiang; Aloi, Daniel N.; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  4. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.

    PubMed

    He, Xiang; Aloi, Daniel N; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  5. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  6. 75 FR 20860 - Certain Display Devices, Including Digital Televisions and Monitors; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... COMMISSION Certain Display Devices, Including Digital Televisions and Monitors; Notice of Investigation... devices, including digital televisions and monitors by reason of infringement of certain claims of U.S... after importation of certain display devices, including digital televisions or monitors that...

  7. 78 FR 40171 - Certain Wireless Devices, Including Mobile Phones and Tablets; Notice Of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... COMMISSION Certain Wireless Devices, Including Mobile Phones and Tablets; Notice Of Receipt of Complaint... complaint entitled Certain Wireless Devices, Including Mobile Phones and Tablets, DN 2964; the Commission is... importation of certain wireless devices, including mobile phones and tablets. The complaint names...

  8. 78 FR 47410 - Certain Wireless Devices, Including Mobile Phones and Tablets Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... COMMISSION Certain Wireless Devices, Including Mobile Phones and Tablets Institution of Investigation AGENCY... within the United States after importation of certain wireless devices, including mobile phones and... wireless devices, including mobile phones and tablets by reason of infringement of one or more of claims...

  9. Flywheel induction motor-generator for magnet power supply in small fusion device

    NASA Astrophysics Data System (ADS)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  10. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms). PMID:27131676

  11. JNM theme issue on models and data for plasma-material interaction and hydrogen retention in fusion devices

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2015-12-01

    Plasma-wall interaction in fusion devices encompasses a wide variety of processes. On a short timescale these include deposition of energetic plasma particles (primarily hydrogen and helium) into the surface, physical and chemical sputtering of surface material into the plasma, and reflection and desorption of particles from the surface. On a longer timescale the processes include diffusion of hydrogen and helium in the wall and changes in surface composition, morphology and material microstructure due to plasma bombardment and (in a reactor) neutron irradiation. Together these processes are extremely important in determining the plasma performance, the lifetime of plasma-facing components, trapping and retention of the tritium fusion fuel in the wall, and ultimately the feasibility of fusion power production.

  12. Photo-fusion reactions in a new compact device for ELI

    SciTech Connect

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G.

    2012-07-09

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 10{sup 9}-10{sup 10} neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

  13. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... determine which portion of the device is contributing a particular radio frequency emission, the emissions... of a receiver selectively either to the receiving antenna or to the radio frequency output of the TV... demonstrated with a radio frequency input signal of 0 to 25 dBmV. (e) For cable system terminal devices and...

  14. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... determine which portion of the device is contributing a particular radio frequency emission, the emissions... of a receiver selectively either to the receiving antenna or to the radio frequency output of the TV... demonstrated with a radio frequency input signal of 0 to 25 dBmV. (e) For cable system terminal devices and...

  15. Experimental devices in the osiris reactor to study effects of radiations on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Lefevre, F.; Thevenot, G.

    1986-11-01

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat à l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model "The COLIBRI", which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: - lithium containing materials of breeding blanket for in-situ tritium production, - protection materials, and - structural materials.

  16. Interobserver agreement using computed tomography to assess radiographic fusion criteria with a unique titanium interbody device.

    PubMed

    Slosar, Paul J; Kaiser, Jay; Marrero, Luis; Sacco, Damon

    2015-02-01

    The accuracy of using computed tomography (CT) to assess interbody fusion in patients with titanium implants has been questioned in the past. Radiologists have reported difficulty assessing fusion bone quality because of metal artifact and small graft windows. A new titanium interbody implant with a large footprint and a wide graft aperture has been developed. We conducted a study to determine the interobserver reliability of using CT to assess radiographic fusion variables with the new titanium interbody device. Patients underwent anterior lumbar interbody fusion with the same titanium interbody implant. Reconstructed CT images were obtained randomly at 6, 9, or 12 months. Two independent radiologists reviewed the scans. Interobserver reliability was calculated using the κ statistic. Fifty-six spinal fusion levels (33 patients) were analyzed. The radiologists agreed on 345 of the 392 fusion data points reviewed (κ = .88). Agreement for solid fusion formation was 0.77. This interbody device demonstrated minimal artifact and minimal subsidence, and trabecular bone was easily identified throughout the implant in the vast majority of cases reviewed. High interobserver agreement was noted across all radiographic variables assessed. PMID:25658078

  17. Experimental Study of the Iranian Inertial Electrostatic Confinement Fusion Device as a Continuous Neutron Generator

    NASA Astrophysics Data System (ADS)

    Damideh, V.; Sadighzadeh, A.; Koohi, A.; Aslezaeem, A.; Heidarnia, A.; Abdollahi, N.; Abbasi Davani, F.; Damideh, R.

    2012-04-01

    Among many facilities in the field of nuclear fusion devices, inertial electrostatic confinement (IECF) device has the specific character of tendency to generate fusion products continuously. Besides the distinctive characteristics, it has become an outstanding focus of interest for many scientists because of several applications such as the ability of performing hydrogen boron fusion. This paper summarizes primary results of the design and construction of the first Iranian IECF device (IR-IECF). It consists of 13.5 cm diameter stainless steel cathode, 41 cm diameter anode with a 60 cm diameter and 60 cm height vacuum chamber. The outcomes of neutron detection represent more than 107 neutron/s at the maximum biased voltage of -140 kV and 70 mA current with deuterium operational filling gas in the steady state regime.

  18. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... times the square root of (R) for the video signal and 155 times the square root of (R) for the audio signal. (ii) For all other TV interface devices, 346.4 times the square root of (R) for the video signal and 77.5 times the square root of (R) for the audio signal. (2) At any RF output terminal, the...

  19. Minority carrier device comprising a passivating layer including a Group 13 element and a chalcogenide component

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)

    1999-01-01

    A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.

  20. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  1. Fusion Nuclear Schience Facility-AT: A Material And Component Testing Device

    SciTech Connect

    Wong, C. P.; Chan, V. S.; Garofalo, A. M.; Stambaugh, Ron; Sawan, M.; Kurtz, Richard J.; Merrill, Brad

    2012-07-01

    A Fusion Nuclear Science Facility (FNSF) is a necessary complement to ITER, especially in the area of materials and components testing, needed for DEMO design development. FNSF-AT, which takes advantage of advanced tokamak (AT) physics should have neutron wall loading of 1-2 MW/m2, continuous operation for periods of up to two weeks, a duty factor goal of 0.3 per year and an accumulated fluence of 3-6 MW-yr/m2 (~30-60 dpa) in ten years to enable the qualification of structural, blanket and functional materials, components and corresponding ancillary equipment necessary for the design and licensing of a DEMO. Base blankets with a ferritic steel structure and selected tritium blanket materials will be tested and used for the demonstration of tritium sufficiency. Additional test ports at the outboard mid-plane will be reserved for test blankets with advanced designs or exotic materials, and electricity production for integrated high fluence testing in a DT fusion spectrum. FNSF-AT will be designed using conservative implementations of all elements of AT physics to produce 150-300 MW fusion power with modest energy gain (Q<7) in a modest sized normal conducting coil device. It will demonstrate and help to select the DEMO plasma facing, structural, tritium breeding, functional materials and ancillary equipment including diagnostics. It will also demonstrate the necessary tritium fuel cycle, design and cooling of the first wall chamber and divertor components. It will contribute to the knowledge on material qualification, licensing, operational safety and remote maintenance necessary for DEMO design

  2. Understanding plasma facing surfaces in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Koel, B. E.; Roszell, J. P.

    2013-09-01

    The plasma-material interface is recognized to be the most critical challenge in the realization of fusion energy. Liquid metals offer a self-healing, renewable interface that bypasses present issues with solid, neutron-damaged materials such as tungsten. Lithium in particular has dramatically improved plasma performance in many tokamaks through a reduction of hydrogen recycling. However the detailed chemical composition and properties of the top few nm that interact with the plasma are often obscure. Surface analysis has proven to be a key tool in semiconductor processing and a new laboratory has been established at PPPL to apply surface science techniques to plasma facing materials. We have shown that lithiated PFC surfaces in tokamaks will likely be oxidized during the intershot interval. Present work is focused on deuterium uptake of solid and liquid metals for plasma density control and sub-micron scale wetting of liquid metals on their substrates. The long-term goal is to provide a material database for designing liquid metal plasma facing components for tokamaks such as National Spherical Torus Experiment-Upgrade (NSTX-U) and Fusion Nuclear Science Facility-ST (FNSF-ST). Support was provided through DOE-PPPL Contract Number is DE-AC02-09CH11466.

  3. FED-R: a fusion engineering device utilizing resistive magnets

    SciTech Connect

    Jassby, D.L.; Kalsi, S.S.

    1983-06-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasisteady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies. The emphasis on reliable nuclear testing capability demands that the plasma physics characteristics and technological features of the fusion machine be chosen as close to mid-1980s state of the art as possible, with the important exception that FED-R requires high-duty-factor operation. The outboard nuclear test region is at least 80-cm deep with approximately 60 m/sup 2/ of exposure area. The neutron wall loading is 0.4 MW/m/sup 2/ in Stage I operation (Q/sub p/ = 1.5) and 1.3 MW/m/sup 2/ in Stage II (Q/sub p/ = 2.5). The toroidal field coils are fabricated of water-cooled copper plates with demountable joints and operate steady state with a power dissipation of 180 MW in Stage I and 280 MW in Stage II.

  4. Microfluidic device for high-yield pairing and fusion of stem cells with somatic cells

    NASA Astrophysics Data System (ADS)

    Gel, Murat; Hirano, Kunio; Oana, Hidehiro; Kotera, Hidetoshi; Tada, Takashi; Washizu, Masao

    2011-12-01

    Electro cell fusion has significant potential as a biotechnology tool with applications ranging from antibody production to cellular reprogramming. However due to low fusion efficiency of the conventional electro fusion methodology the true potential of the technique has not been reached. In this paper, we report a new method which takes cell fusion efficiency two orders magnitude higher than the conventional electro fusion method. The new method, based on one-toone pairing, fusion and selection of fused cells was developed using a microfabricated device. The device was composed of two microfluidic channels, a micro slit array and a petri dish integrated with electrodes. The electrodes positioned in each channel were used to generate electric field lines concentrating in the micro slits. Cells were introduced into channels and brought in to contact through the micro slit array using dielectrophoresis. The cells in contact were fused by applying a DC pulse to electrodes. As the electric field lines were concentrated at the micro slits the membrane potential was induced only at the vicinity of the micro slits, namely only at the cell-cell contact point. This mechanism assured the minimum damage to cells in the fusion as well as the ability to control the strength and location of induced membrane potential. We introduced mouse embryonic stem cells and mouse embryonic fibroblasts to the microfluidic channels and demonstrated high-yield fusion (> 80%). Post-fusion study showed the method can generate viable hybrids of stem cells and embryonic fibroblasts. Multinucleated hybrid cells adhering on the chip surface were routinely obtained by using this method and on-chip culturing.

  5. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... COMMISSION In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and... electronic devices, including mobile phones, portable music players, and computers, by reason of infringement... mobile phones, portable music players, or computers that infringe one or more of claims 1-12 of...

  6. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... published a notice (78 FR 12892, May 31, 2013) of receipt of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission solicited... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

  7. Anterior Lumbar Interbody Fusion: Two-Year Results with a Modular Interbody Device

    PubMed Central

    Yeoman, Chevas; Chung, Woosik M.; Chappuis, James L; Freedman, Brett

    2014-01-01

    Study Design Retrospective case series. Purpose To present radiographic outcomes following anterior lumbar interbody fusion (ALIF) utilizing a modular interbody device. Overview of Literature Though multiple anterior lumbar interbody techniques have proven successful in promoting bony fusion, postoperative subsidence remains a frequently reported phenomenon. Methods Forty-three consecutive patients underwent ALIF with (n=30) or without (n=11) supplemental instrumentation. Two patients underwent ALIF to treat failed posterior instrumented fusion. The primary outcome measure was presence of fusion as assessed by computed tomography. Secondary outcome measures were lordosis, intervertebral lordotic angle (ILA), disc height, subsidence, Bridwell fusion grade, technical complications and pain score. Interobserver reliability of radiographic outcome measures was calculated. Results Forty-three patients underwent ALIF of 73 motion segments. ILA and disc height increased over baseline, and this persisted through final follow-up (p<0.01). Solid anterior interbody fusion was present in 71 of 73 motion segments (97%). The amount of new bone formation in the interbody space increased over serial imaging. Subsidence >4 mm occurred in 12% of patients. There were eight surgical complications (19%): one major (reoperation for nonunion/progressive subsidence) and seven minor (five subsidence, two malposition). Conclusions The use of a modular interbody device for ALIF resulted in a high rate of radiographic fusion and a low rate of subsidence. The large endplate and modular design of the device may contribute to a low rate of subsidence as well as maintenance of ILA and lordosis. Previously reported quantitative radiographic outcome measures were found to be more reliable than qualitative or categorical measures. PMID:25346811

  8. Electromagnetic Environmental Effects Testing of Medical Devices Including Those Used for the Treatment of Diabetes

    PubMed Central

    Herkert, Ralph M.

    2008-01-01

    Background Electromagnetic emissions from technologies that surround us can produce interference with implanted and externally worn medical devices. Electromagnetic environmental effects (E3) testing of medical devices at the Georgia Tech Research Institute (GTRI) began almost four decades ago and continues to incorporate new devices and new sources of electromagnetic emissions as they are developed and become available. The GTRI Medical Device Test Center provides real-world exposure fields to identify interactions and help manufacturers prevent disruptions from the environments in which their devices must function. Methods Typically, the medical device is mounted in or on a torso simulator containing a saline solution that simulates the electrical characteristics of the body. The torso simulator and the device under test are then moved through the fields generated by production security and logistical system technologies using a computer-controlled positioning system. These tests are conducted with different orientations of the medical device to the electromagnetic source, simulating the way in which device wearers interact with these systems in representative situations. Results Particular E3 test results measured on specific devices in the GTRI Medical Device Test Center are proprietary; however, the results of tests to date with current medical devices used for the treatment of diabetes have been encouraging. These devices have included implantable and externally worn insulin infusion pumps and continuous glucose monitoring systems from different manufacturers. Conclusion Since E3 tests of diabetes treatment devices to date in the test center have centered on devices from only a few of the many current manufacturers, further testing is warranted. In addition, increased functionality, which is being added to existing devices, will create new possibilities for interference in the future. PMID:19885264

  9. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    SciTech Connect

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H/sub 2/O, CO, and CH/sub 4/, and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H/sub 2/O, CO, and CO/sub 2/; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs.

  10. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  11. Multifunctional envelope-type nano device (MEND) for organelle targeting via a stepwise membrane fusion process.

    PubMed

    Yamada, Yuma; Akita, Hidetaka; Harashima, Hideyoshi

    2012-01-01

    A single cell contains a variety of organelles. Included among these organelles are the nucleus that regulates the central dogma, mitochondria that function as an energy plant, the Golgi apparatus that determines the destination of endogenous protein, and others. If it were possible to prepare a nano craft that could specifically target a specific organelle, this would open a new field of research directed toward therapy for various diseases. We recently developed a new concept of "Programmed Packaging," by which we succeeded in creating a multifunctional envelope-type nano device (MEND) as a nonviral gene-delivery system. Our attempts to target certain organelles (nucleus and mitochondria) are described here, mainly focusing on the construction of a tetra-lamellar MEND (T-MEND), and on methods for screening the organelle-specific fusogenic envelope. The critical structural elements of the T-MEND include an organelle-specific membrane-fusogenic inner envelope and a cellular membrane-fusogenic outer envelope. The resulting T-MEND can be utilized to overcome intracellular membrane barriers, since it involves stepwise membrane fusion. To deliver cargos into a target organelle in our strategy, the carriers must fuse with the organelle membrane. Therefore, we screened a series of lipid envelopes that have the potential for fusing with an organelle membrane by monitoring the inhibition of fluorescence resonance energy transfer and identified the optimal lipid conditions for nuclear and mitochondrial membrane fusion. Finally, we describe the delivery of a bioactive molecule targeted to the nucleus and mitochondria in living cells, demonstrating that this system can be useful for targeting various organelles. PMID:22568912

  12. Perioperative complications of threaded cylindrical lumbar interbody fusion devices: anterior versus posterior approach.

    PubMed

    Scaduto, Anthony A; Gamradt, Seth C; Yu, Warren D; Huang, Jerry; Delamarter, Rick B; Wang, Jeffrey C

    2003-12-01

    Few data are available to evaluate approach-related differences in perioperative complications with lumbar interbody fusion devices. Complications occurring in the intraoperative and immediate postoperative period were identified and categorized for 31 consecutive posterior lumbar interbody fusions (PLIFs) and 88 consecutive anterior lumbar interbody fusions (ALIFs). In this study, all lumbar interbody fusions were conducted with threaded cylindrical devices as stand-alone internal fixation devices. Multivariate analysis was used to account for potential covariates and identify factors associated with an increased complication risk. Twenty-two percent of the patients had a perioperative complication. The relative risk of having a perioperative complication was 4.75 times higher for the PLIF group. All intraoperative complications occurred in the PLIF group. The relative risk of having a major postoperative complication was 6.8 times higher in the PLIF group than the ALIF group. Anterior approached patients tended to have visceral (ileus, 6%) and vascular (deep venous thrombosis, 2%) complications. In the posterior group, complications were neurologic and dura related (pseudomeningocele, 16%; epidural hematoma, 3%) and occurred most frequently in patients that had had previous posterior lumbar surgery (31% with major complication). PMID:14657745

  13. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    SciTech Connect

    Hedditch, John Bowden-Reid, Richard Khachan, Joe

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  14. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  15. 77 FR 3793 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and Modules, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and Modules, and Components Thereof; Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  16. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    NASA Astrophysics Data System (ADS)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  17. Characterization of charcoals for helium cryopumping in fusion devices

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.; Batzer, T.H.; Call, W.R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals' pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  18. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.

    2015-11-01

    An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  19. Solid radiographic fusion with a nonconstrained device 5 years after cervical arthroplasty.

    PubMed

    Heary, Robert F; Goldstein, Ira M; Getto, Katarzyna M; Agarwal, Nitin

    2014-12-01

    Cervical disc arthroplasty (CDA) has been gaining popularity as a surgical alternative to anterior cervical discectomy and fusion. Spontaneous fusion following a CDA is uncommon. A few anecdotal reports of heterotrophic ossification around the implant sites have been noted for the BRYAN, ProDisc-C, Mobi-C, PRESTIGE, and PCM devices. All CDA fusions reported to date have been in devices that are semiconstrained. The authors reported the case of a 56-year-old man who presented with left C-7 radiculopathy and neck pain for 10 weeks after an assault injury. There was evidence of disc herniation at the C6-7 level. He was otherwise healthy with functional scores on the visual analog scale (VAS, 4.2); neck disability index (NDI, 16); and the 36-item short form health survey (SF-36; physical component summary [PSC] score 43 and mental component summary [MCS] score 47). The patient underwent total disc replacement in which the DISCOVER Artificial Cervical Disc (DePuy Spine, Inc.) was used. The patient was seen at regular follow-up visits up to 60 months. At his 60-month follow-up visit, he had complete radiographic fusion at the C6-7 level with bridging trabecular bone and no motion at the index site on dynamic imaging. He was pain free, with a VAS score of 0, NDI score of 0, and SF-36 PCS and MCS scores of 61 and 55, respectively. Conclusions This is the first case report that identifies the phenomenon of fusion around a nonconstrained cervical prosthesis. Despite this unwanted radiographic outcome, the patient's clinical outcome was excellent. PMID:25303618

  20. Design of an Ion Source for {sup 3}He Fusion in a Low Pressure IEC Device

    SciTech Connect

    Piefer, Gregory R.; Santarius, John F.; Ashley, Robert P.; Kulcinski, Gerald L.

    2005-05-15

    Recent developments in helicon ion sources and Inertial Electrostatic Confinement (IEC) device performance at UW-Madison have enabled low pressure (< 50 {mu}torr, 6.7 mPa) operating conditions that should allow the {sup 3}He-{sup 3}He fusion reaction to be observed in an IEC device. An ion source capable of delivering a {approx} 10 mA {sup 3}He ion beam into an IEC device with minimal neutral gas flow has been designed and tested. Furthermore, a new IEC device that has never been operated with deuterium has been constructed to avoid D-{sup 3}He protons from obstructing the {sup 3}He-{sup 3}He reaction product spectrum, and to minimize Penning ionization of deuterium by excited helium, which in the past is suspected to have limited the ionized density of He. These developments make it possible to study beam-background {sup 3}He-{sup 3}He fusion reactions with > 300 mA recirculating ion currents.

  1. Mammary analogue secretory carcinoma of salivary glands: a clinicopathologic and molecular study including 2 cases harboring ETV6-X fusion.

    PubMed

    Ito, Yohei; Ishibashi, Kenichiro; Masaki, Ayako; Fujii, Kana; Fujiyoshi, Yukio; Hattori, Hideo; Kawakita, Daisuke; Matsumoto, Manabu; Miyabe, Satoru; Shimozato, Kazuo; Nagao, Toshitaka; Inagaki, Hiroshi

    2015-05-01

    Mammary analogue secretory carcinoma (MASC) is a recently described low-grade carcinoma with morphologic and genetic similarity, including ETV6-NTRK3 fusion, to secretory carcinoma of the breast. ETV6 is frequently involved in other epithelial and nonepithelial tumors, and many fusion partners of ETV6 have been reported. In the present study, 14 Japanese MASC cases were clinicopathologically and molecularly analyzed. The median age of the patients was 39 years, and the male:female ratio was 6:8. All cases showed histopathologic findings compatible with those previously described for MASC and harbored an ETV6 split as visualized by fluorescence in situ hybridization. Two cases showed thick fibrous septa and invasive features including vascular or perineural tumor involvement, findings that are rare in MASC. In addition, in these 2 cases, non-NTRK3 genes appeared to fuse with ETV6 (ETV6-X fusion). NTRK1 and NTRK2, both members of the NTRK family, were not involved. Of the 14 MASC cases, the ETV6-NTRK3 fusion transcript was positive in 6 cases, and the relative expression level of the ETV6-NTRK3 fusion transcript was variable, ranging from 1 to 5.8. Results of the present study of MASC suggest that (1) ETV6 occasionally fuses with unknown non-NTRK3 genes, (2) ETV6-X cases might have an invasive histology, (3) for molecular diagnosis of MASC, fluorescence in situ hybridization to detect ETV6 splits is the method of choice, and (4) the expression level of the ETV6-NTRK3 fusion transcript is considerably variable. These findings provide a novel insight into the oncogenesis, histopathology, diagnosis, treatment, and prognosis of this newly recognized carcinoma. PMID:25651470

  2. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  3. [Nursing Care of Lumbar Spine Fusion Surgery Using a Semi-Rigid Device (ISOBAR)].

    PubMed

    Wu, Meng-Shan; Su, Shu-Fen

    2016-04-01

    Aging frequently induces degenerative changes in the spine. Patients who suffer from lumbar degenerative disease tend to have lower back pain, neurological claudication, and neuropathy. Furthermore, incontinence may be an increasing issue as symptoms become severe. Lumbar spine fusion surgery is necessary if clinical symptoms continue to worsen or if the patient fails to respond to medication, physical therapy, or alternative treatments. However, this surgical procedure frequently induces adjacent segment disease (ASD), which is evidenced by the appearance of pathological changes in the upper and lower sections of the spinal surgical sites. In 1997, ISOBAR TTL dynamic rod stabilization was developed for application in spinal fusion surgery to prevent ASD-related complications. The device has proven effective in reducing pain in the lower back and legs, decreasing functional disability, improving quality of life, and retarding disc degeneration. However, the effectiveness of this intervention in decreasing the incidence of ASD requires further research investigation, and relevant literature and research in Taiwan is still lacking. This article discusses lumbar degenerative disease, its indications, the contraindications of lumbar spine fusion surgery using ISOBAR, and related postoperative nursing care. We hope this article provides proper and new knowledge to clinical nurses for the care of patients undergoing lumbar spine fusion surgery with ISOBAR. PMID:27026564

  4. Prediction of potential well structure formed in spherical inertial electrostatic confinement fusion devices with various parameters

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Habibi, M.; Amrollahi, R.; Amrollahi

    2013-06-01

    In this paper, the theoretical analysis regarding potential structure on the inertial electrostatic confinement fusion devices has been carried out. Negatively biased grid as cathode placed at the center of the device surrounded by anode is assumed. The device is an ion-injection system and electrons may be emitted from the surface of the cathode. So the existence of both ion and electron currents inside the cathode is considered. Dependence of radial potential well structure on some important parameters as the spreads in the normalized total and angular electron and ion energies, the ratio of ion circulating current to electron circulating current, ion perveance, and grid transparency are investigated by solving Poisson equation.

  5. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  6. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  7. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Music Players, and Computers, and Components Thereof; Notice of Institution of Investigation AGENCY: U.S... tablets, portable music players, and computers, and components thereof by reason of infringement of... importation of certain electronic devices, including mobile phones, mobile tablets, portable music...

  8. 78 FR 56737 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... `211 patent''); 7,187,945; 8,140,650 (``the `650 patent''); and 8,363,824. 78 FR 38362 (Jun. 26, 2013... investigation with respect to three of the six patents, namely the `189, `211 and `650 patents. 78 FR 49764 (Aug... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

  9. 77 FR 45375 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...''). 75 FR. 63856 (Oct. 18, 2010). The complaint alleged violations of section 337 of the Tariff Act of.... No. 337-TA-749 on November 30, 2010, based on a complaint filed by Thomson. 75 FR 74080 (Nov....

  10. Higgs boson production via gluon fusion: Soft-gluon resummation including mass effects

    NASA Astrophysics Data System (ADS)

    Schmidt, Timo; Spira, Michael

    2016-01-01

    We analyze soft and collinear gluon resummation effects at the N3LL level for Standard Model Higgs boson production via gluon fusion g g ?H and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the next-to-next-to-next-to-leading-log (N3LL ) and next-to-next-to-leading-log (NNLL) level, respectively. We introduce refinements in the treatment of quark mass effects and subleading collinear gluon effects within the resummation. Soft and collinear gluon resummation effects amount to up to about 5% beyond the fixed-order results for scalar and pseudoscalar Higgs boson production.

  11. Development of a new two color far infrared laser interferometer for future fusion devices

    SciTech Connect

    Kawahata, K.; Tanaka, K.; Tokuzawa, T.; Akiyama, T.; Ito, Y.; Okajima, S.; Nakayama, K.; Wylde, R.J.

    2004-10-01

    A new two color far infrared (FIR) laser interferometer under development for future fusion devices will be presented. The laser wavelength is optimized from the consideration of the beam refraction effect due to plasma density gradient and signal-to-noise ratio for an expected phase shift due to plasmas. Laser lines of 57.2 and 47.6 {mu}m are found to be suitable for the applications to high performance plasmas of Large Helical Device and future fusion devices such as the International Thermonuclear Experimental Reactor. The output power of 57.2 {mu}m CH{sub 3}OD laser is estimated to be {approx}1.6 W, which is the highest laser power in the FIR wavelength regime. The optical configuration of a new interferometer system using two colors will be proposed. In the system, one detector simultaneously detects the beat signals of the 57.2 and 47.6 {mu}m laser lines, and each interference signal can be separated electronically (1 MHz for 57.2 {mu}m and 0.84 MHz expected for 47.6 {mu}m). Mechanical vibration can be compensated by using the two color interferometer. The present status of the development of the system is also presented.

  12. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    SciTech Connect

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  13. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1991-06-01

    Acknowledgments; 1. The invention of Dr Spitzer; 2. Behind closed doors; 3. Friends and rivals; 4. Searching for answers; 5. Dawn of the tokamak; 6. Building big science; 7. Forming the major league; 8. The political plasma; 9. The modern fusion lab; 10. The plasma olympics; 11. Different directions; 12. Struggling to sell fusion; 13. In sight of breakeven; 14. Fusion's past and future; Notes; Glossary; Appendices; Index.

  14. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    2006-03-01

    Acknowledgments; 1. The invention of Dr Spitzer; 2. Behind closed doors; 3. Friends and rivals; 4. Searching for answers; 5. Dawn of the tokamak; 6. Building big science; 7. Forming the major league; 8. The political plasma; 9. The modern fusion lab; 10. The plasma olympics; 11. Different directions; 12. Struggling to sell fusion; 13. In sight of breakeven; 14. Fusion's past and future; Notes; Glossary; Appendices; Index.

  15. Physics of the edge plasma and first wall in fusion devices: synergistic effects

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Pigarov, A. Yu; Lee, Wonjae

    2015-04-01

    Various synergistic effects resulting from plasma-wall interactions in magnetic fusion devices are considered. The crucial role of the first wall out-gassing processes in the recovery of pedestal density in the high-confinement mode of tokamak operation after giant type-I edge localized modes (ELMs) transient events as well as in the setting the ELM period is discussed. The shielding effects of vapor plasma formed during interactions of extremely large plasma heat fluxes with material surfaces are analyzed. The strongly non-linear impact of secondary electron emission from the divertor target on the incident plasma heat flux is discussed.

  16. One Dimensional Simulation of an Inertial Electrostatic Confinement Fusion Device at Low Gas Pressure Operation

    SciTech Connect

    Noborio, Kazuyuki; Yamamoto, Yasushi; Konishi, Satoshi

    2005-05-15

    Using a 1-D particle code, we have analyzed characteristics of an Inertial Electrostatic Confinement Fusion device with external ion source which is added to enable low pressure operation. When the pressure becomes low, though neutron yield decreases, the decreasing amount is less than estimated from the decrease in background (target) gas density and it is confirmed that ions are accelerated efficiently with little energy loss through charge-exchange collision with background gas at low pressure. And when the pressure is lower than 0.05Pa, almost all injected ions reach to the cathode and it is expected that applying high geometrical transparency enhances accumulation of ion and enlarges neutron yield.

  17. Spatial profiling using a Time of Flight Diagnostic and applications of deuterim-deuterium fusion in Inertial Electrostatic Confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Donovan, David C.

    2011-12-01

    The Inertial Electrostatic Confinement (IEC) Fusion Research Group at the University of Wisconsin-Madison utilizes IEC devices as small-scale neutron generators using D-D fusion to create 2.45 MeV neutrons for the purpose of detecting clandestine material. Detection of explosives in particular can be accomplished using thermal neutron capture methods to identify characteristic nitrogen signatures in explosive material. Research has been conducted to increase reliability of detection, decrease interrogation time, and increase the steady-state operational time. Efforts have also been made to increase the neutron production rate of the device. Optimization studies have varied the configuration and design of the electrodes and have resulted in system configurations with up to 50 percent higher neutron production rates than have previously been utilized. A new feedthrough design has been constructed that is intended to increase the maximum operating voltage from 175 kV with the previous feedthrough to 300 kV. Neutron production rates scale almost linearly with both current and voltage, so the IEC device will be capable of operation at higher neutron producing regimes than have ever before been achieved. The optimization efforts involve the use of several new diagnostic tools developed at UW, which are the Fusion Ion Doppler (FIDO) Diagnostic and the Time of Flight (TOF) Diagnostic. FIDO provides the energy spectra of the charged fusion products and reactants created in the IEC device. The FIDO Diagnostic was originally only capable of studying D-D fusion, but with recent advancements is now able to study both D-D and D-3He fusion. The TOF Diagnostic provides spatial information along with the energy resolution of where the fusion reactions are occurring in the IEC device. Development of the diagnostics has involved the implementation of timing electronics, alignment systems, data acquisition software, computational post-processing, and upgrades to the experimental facility. A significant rise in the concentration of fusion events was found outside of the anode, believed to be due in part from negative ions. The FIDO and TOF Diagnostics have proven to be valuable additions to the study of IEC devices and have greatly advanced IEC operation and theory.

  18. 78 FR 29156 - Certain Digital Media Devices, Including Televisions, Blu-Ray Disc Players, Home Theater Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... COMMISSION Certain Digital Media Devices, Including Televisions, Blu-Ray Disc Players, Home Theater Systems... complaint entitled Certain Digital Media Devices, Including Televisions, Blu-Ray Disc Players, Home Theater... importation of certain digital media devices, including televisions, blu-ray disc players, home...

  19. Scaling, stability, and fusion mechanisms. Studies using plasma focus devices from tens of kilojoules to tenth of joules

    SciTech Connect

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Cardenas, Miguel; Tarifeno, Ariel

    2009-01-21

    Fusion studies using plasma focus devices from tens of kilojoules to less than one joule performed at the Chilean Nuclear Energy Commission are presented. The similarity of the physical behavior and the scaling observed in these machines are emphasized. Experiments on actual devices show that scaling holds at least through six order of magnitude. In particular all of these devices, from the largest to the smallest, keep the same quantity of energy per particle. Therefore, fusion reactions are possible to be obtained in ultraminiature devices (driven by generators of 0.1 J), as they are in the bigger devices (driven by generators of 1 MJ). However, the stability of the plasma depends on the size and energy of the device.

  20. A review of interspinous fusion devices: High complication, reoperation rates, and costs with poor outcomes

    PubMed Central

    Epstein, Nancy E.

    2012-01-01

    Background: Interspinous fusion devices (IFDs) are increasingly offered to patients over the age of 50 with lumbar spinal stenosis and intermittent neurogenic claudication. Here, we review the literature on complication rates, reoperation rates, and outcomes for implanting IFD, and offer an assessment of IFD charges at a single institution in 2010. Methods: The literature concerning IFD implants was reviewed with particular attention focused on complications, reoperation rates, and outcomes. Additionally, the costs of implanting 31 IFD devices in 16 patients at one to three levels at a single institution in 2010 are presented. Results: Reviewing the spinal literature concerning the postoperative status of IFD followed over an average of 23–42.9 postoperative months revealed that IFD resulted in 11.6–38% complication rate, 4.6–85% reoperation rate, and 66.7–77% frequency of poor outcomes. Additionally, the 31 devices implanted in 16 patients at a single university hospital in 2010 cost a total of $576,407. Conclusions: With high maximal complication rates (38%), reoperation rates (85%), poor outcomes (77%), and high costs ($576,407 for 31 devices in 16 patients), the utilization and implantation of IFD remains extremely controversial and should be investigated further. PMID:22347676

  1. Fusion Energy Division

    NASA Astrophysics Data System (ADS)

    1984-09-01

    Progress in fusion energy is reported. The work includes: (1) experimental and theoretical research on two magnetic confinement concepts; the ELMO Bumpy Torus (EBT) and the Tokamak; (2) theoretical and engineering studies on a third concept, the stellarator; (3) engineering and physics of present generation fusion devices; (4) development and testing of diagnostic tools and techniques; (5) development and testing of materials for fusion devices; (6) development and testing of essential technologies for heating and fueling fusion plasmas; (7) development and testing of the superconducting magnets that will be needed to confine these plasmas; (8) design of future devices; (9) assessment of the environmental impact on fusion energy; and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects.

  2. Predicting hydrogen isotope inventory in plasma-facing components during normal and abnormal operations in fusion devices

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2015-10-01

    Hydrogen isotope behavior and inventory in plasma-facing components (PFCs) of fusion devices are key concerns for safe, reliable, and economical operation. To accurately estimate hydrogen isotope retention and recovery in tungsten (the current leading candidate as a PFC), we have developed a model that was recently benchmarked against isotope depth profile and retention level in a tungsten target under various conditions and compared with both experimental data and simulation results. In this research, we have extended the model to include details of transient events. Therefore, one can use this model to estimate hydrogen isotope retention behavior in tungsten and potential other PFC candidates during normal operational pulse, effects of edge-localized modes (ELMs), and a possible cleaning processes scenario.

  3. SELF-SIMILAR SKELETAL STRUCTURES IN FUSION AND MATERIAL TEST DEVICES: NUMERICAL MODELING AND NEW OBSERVATIONAL DATA

    SciTech Connect

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2009-07-26

    The hypotheses for self-assembling of a fractal condensed matter in electric discharges and the probable role of a skeletal matter in the long-lived filamentary structures in fusion devices is studied in two directions. First, we append previous collection of respective data with recent evidences for skeletal structuring in peripheral plasmas and dust deposits in fusion and material test devices. Second, we demonstrate, via numerical modelling, the possibility of coaxial tubular structuring formation in a system of electric current filaments composed of magnetized, electrically conducting thin rods (nanodust), with an accent on self-reduction of spatial dimensionality of structuring and on the role of magnetic in such systems.

  4. Summary of the 19th International Atomic Energy Agency Technical Meeting on 'Research Using Small Fusion Devices'

    NASA Astrophysics Data System (ADS)

    Van Oost, G.; Mank, G.

    2011-08-01

    This paper presents a summary of recent results reported on several topics on magnetic confinement, dense magnetized plasmas, innovative fusion technology and applications, diagnostic systems and control and data acquisition systems. The main topics covered on the magnetic confinement devices, diagnostics and data acquisition concern the tokamak KTM (Kazakhstan Tokamak for Material testing) for materials research and testing, and IAEA Joint Experiments on small tokamaks. For the dense magnetized plasmas results on development and commissioning of plasma focus devices were reported. The plasmatron VISION I for innovative plasma-wall interaction studies, a lithium divertor for KTM and compact fusion reactors as neutron sources were presented.

  5. Study of magnetic nanoparticles and overcoatings for biological applications including a sensor device

    NASA Astrophysics Data System (ADS)

    Grancharov, Stephanie G.

    I. A general introduction to the field of nanomaterials is presented, highlighting their special attributes and characteristics. Nanoparticles in general are discussed with respect to their structure, form and properties. Magnetic particles in particular are highlighted, especially the iron oxides. The importance and interest of integrating these materials with biological media is discussed, with emphasis on transferring particles from one medium to another, and subsequent modification of surfaces with different types of materials. II. A general route to making magnetic iron oxide nanoparticles is explained, both as maghemite and magnetite, including properties of the particles and characterization. A novel method of producing magnetite particles without a ligand is then presented, with subsequent characterization and properties described. III. Attempts to coat iron oxide nanoparticles with a view to creating biofunctional magnetic nanoparticles are presented, using a gold overcoating method. Methods of synthesis and characterization are examined, with unique problems to core-shell structures analyzed. IV. Solubility of nanoparticles in both aqueous and organic media is discussed and examined. The subsequent functionalization of the surface of maghemite and magnetite nanoparticles with a variety of biomaterials including block copolypeptides, phospholipids and carboxydextran is then presented. These methods are integral to the use of magnetic nanoparticles in biological applications, and therefore their properties are examined once tailored with these molecules. V. A new type of magnetic nanoparticle sensor-type device is described. This device integrates bio-and DNA-functionalized nanoparticles with conjugate functionalized silicon dioxide surfaces. These techniques to pattern particles to a surface are then incorporated into a device with a magnetic tunnel junction, which measures magnetoresistance in the presence of an external magnetic field. This configuration thereby introduces a new way to detect magnetic nanoparticles via their magnetic properties after conjugation via biological entities.

  6. Study of the pores inside tungsten coating after thermal cycling for fusion device

    NASA Astrophysics Data System (ADS)

    Desgranges, C.; Firdaouss, M.; Hernandez, C.; Martin, C.; Ruset, C.; Grigore, E.; Missirlian, M.; Samaille, F.; Bucalossi, J.

    2016-02-01

    In the next fusion devices, all the plasma facing components will consist of bulk tungsten or tungsten coating on carbon. This paper focuses on the behaviour of tungsten coated on carbon fibre composite designed for the WEST project (Bucalossi et al 2011 Fusion Eng. Des. 86 684-688) under intensive thermal cycling delivered by an electron beam. The use of scanning electron microscope has allowed in particular, the observation of several pore lines inside the coating. These pore lines have different aspects depending on the observed zone according to the localisation of the electron beam, accentuated lines with more numerous enlarged pores in zone exposed to the electron beam. An analogous trend is also observed for JET tungsten-coated samples under similar thermal cycles despite their different properties due to an alternative manufacturing method of the substrate. A systematic and attentive comparison on the coating changes after the application of the electron beam heating is presented. The observed comportments as the formation of the pore lines or the pore shapes are assumed to be inherent to simultaneous diffusion processes. In association with the pore line formation, a migration of the carbon substrate towards the surface is presumed and discussed.

  7. Moving-Surface Plasma-Facing Components for Particle Control in Steady State Magnetic Fusion Devices

    SciTech Connect

    Hirooka, Yoshi; Fukushima, Hoju; Ohno, Noriyasu; Takamura, Shuichi; Nishikawa, Masahiro

    2004-01-15

    This paper will report on the proof-of-principle (POP) experiments conducted to demonstrate reduced wall recycling, using a laboratory-scale test unit, constructed based on the concept of moving-surface plasma-facing component (MS-PFC). In this concept, the moving-surface exposed to edge plasmas in steady state magnetic fusion devices is continuously deposited ex-situ with a getter material, so that particle trapping capabilities can be regenerated prior to the subsequent exposure. In our previous paper, the construction details of the MS-PFC test unit and the first results in the case of titanium gettering was reported, but in the present paper preliminary results in the case of lithium gettering will be presented for comparison. Results indicate that the H{sub {alpha}} light intensity used as the measure of hydrogen recycling is reduced by {approx}6% due to titanium gettering and by {approx}12% due to lithium gettering, both at steady state.

  8. Multiple cell photoresponsive amorphous photo voltaic devices including graded ban gaps

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-09-04

    This patent describes an improved photoresponsive tandem multiple cell device. It comprises: at least first and second superimposed solar cells; the first cell being formed of an amorphous silicon alloy material; the second amorphous silicon alloy cell having an active photoresponsive region in which radiation can impinge to produce charge carriers. The amorphous silicon alloy cell body including at least one element for reducing the density of defect states to about 10{sup 16} defects per cubic centimeter and a band gap adjusting element graded through at least a portion of the photoresponsive region thereof to enhance the radiation absorption; the adjusting element being germanium, and the band gap of the cell being adjusted for a specified photoresponse wavelength threshold function different from the first cell; the second cell being a multi-layer body having deposited silicon alloy layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct junction contact therebetween.

  9. Flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  10. Advanced performance fusion engineering device based on low safety factor and current drive (FED-A)

    SciTech Connect

    Peng, Y.K.M.; Rutherford, P.H.

    1983-01-01

    The FED-A study aims to quantify the potential improvement in cost-effectiveness of the Fusion Engineering Device (FED) by assuming low safety factor q at the plasma edge and noninductive current drive. The FED-A performance objectives (ignition, neutron wall load, and power-reactor-like operation) are set to be equal to or better than those of the FED Baseline. The results show that assuming magnetohydrodynamic (MHD) q/sub psi/ (edge) to be 1.8 permits reduction in device size and plasma current and leads to a 30% reduction in direct cost. A closely fitted, 1.5-cm-thick, continuous water-cooled shell made of the copper alloy AMAX-MZC (0.6 Cr, 0.1 Zr, 0.03 Mg) is proposed to provide a 0.5-s time constant, to help avoid disruption when q/sub psi/ passes near 2, and to mitigate disruption impact. The lower hybrid wave current drive in a cyclic density operation is proposed to achieve a quasi-steady-state operation permitting a design with low toroidal loop voltage and a 1000-s burn time.

  11. Diagnostic study of steady state advanced fuel (deuterium-deuterium and deuterium-tritium) fusion in an IEC device

    NASA Astrophysics Data System (ADS)

    Subramanian, Krupakar Murali

    The ionized fusion fuels (D-D & D-3He) have been accelerated to fusion velocities using two concentric grids maintained at a high potential difference in an Inertial Electrostatic Confinement (IEC) device. Though the gridded IEC device currently has a low efficiency (Q ≡ fusion power/input power ˜10-5), the energetic protons and neutrons generated within this device can be used for many near-term applications, such as medical isotope production, landmine detection, neutron activation analysis, etc. The present work is centered upon understanding the operation of the device and finding new ways to increase the overall efficiency. The steady state fusion of D-3He fuel in an IEC device was successfully studied. At a pressure of ˜2 mtorr the source of such reactions was identified to be principally beam-target reactions and was theoretically explained using the Monte Carlo - Stopping and Range of Ions in Matter (SRIM) code. The first simultaneous measurement of DD and D-3He protons was accomplished during the present thesis work that confirmed that D- 3He fusion reactions indeed occur in an IEC device. A new pressure independent diagnostic was invented to measure the average ion energy. That diagnostic uses the D-D proton energy spectra from a single loop cathode grid and the SRIM code predictions. A second diagnostic called the eclipse disc was co-invented to characterize the various fusion regimes in an IEC device. This diagnostic verified that a converged core fusion source exists for the DD reactions but the D-3He reactions that are principally embedded source reactions. A third diagnostic called the chordwire was invented to study the effects of various sources of electrons---thermionic, photo and field emission electrons, that decrease the efficiency of the device. This diagnostic also helped map the ion flux into the cathode in 2D, besides helping identify the high performance grid materials (W-25%Re and pure Re). Understanding the electron current contributions helped correct previous recirculation ion current equation in the literature. Sequential grid construction experiments where a new loop was added in a sequence (in various orientations) while monitoring the performance of the grid showed fusion rate saturation of the fusion rate with just a 3 loop grid. Hence, further increases in symmetry of the grid are deemed unnecessary. It was also found that the fusion occurred mostly in the microchannels that form in the regions where the cathode field is a minimum (i.e., in the open areas between the wires). This is an important conclusion because all earlier work had assumed a uniform spherical volume source of incoming ions and this work suggests otherwise. A new method of calibration was derived using the non-uniform volume source that takes into account the surface area of the detector visible to the protons that are born anywhere within the IEC chamber. As a consequence of the above research and valuable input from others in the IEC group, at UW Madison, there has been an increase in D-3 He rate by 5 orders of magnitude, in a span of 4 yrs, while those of the D-D reaction rate increased by 3 orders of magnitude.

  12. Encoding technique for high data compaction in data bases of fusion devices

    SciTech Connect

    Vega, J.; Cremy, C.; Sanchez, E.; Portas, A.

    1996-12-01

    At present, data requirements of hundreds of Mbytes/discharge are typical in devices such as JET, TFTR, DIII-D, etc., and these requirements continue to increase. With these rates, the amount of storage required to maintain discharge information is enormous. Compaction techniques are now essential to reduce storage. However, general compression techniques may distort signals, but this is undesirable for fusion diagnostics. We have developed a general technique for data compression which is described here. The technique, which is based on delta compression, does not require an examination of the data as in delayed methods. Delta values are compacted according to general encoding forms which satisfy a prefix code property and which are defined prior to data capture. Several prefix codes, which are bit oriented and which have variable code lengths, have been developed. These encoding methods are independent of the signal analog characteristics and enable one to store undistorted signals. The technique has been applied to databases of the TJ-I tokamak and the TJ-IU torsatron. Compaction rates of over 80{percent} with negligible computational effort were achieved. Computer programs were written in ANSI C, thus ensuring portability and easy maintenance. We also present an interpretation, based on information theory, of the high compression rates achieved without signal distortion. {copyright} {ital 1996 American Institute of Physics.}

  13. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  14. III-V/Si hybrid photonic devices by direct fusion bonding.

    PubMed

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  15. Encoding technique for high data compaction in data bases of fusion devices

    NASA Astrophysics Data System (ADS)

    Vega, J.; Crémy, C.; Sánchez, E.; Portas, A.; Dormido, S.

    1996-12-01

    At present, data requirements of hundreds of Mbytes/discharge are typical in devices such as JET, TFTR, DIII-D, etc., and these requirements continue to increase. With these rates, the amount of storage required to maintain discharge information is enormous. Compaction techniques are now essential to reduce storage. However, general compression techniques may distort signals, but this is undesirable for fusion diagnostics. We have developed a general technique for data compression which is described here. The technique, which is based on delta compression, does not require an examination of the data as in delayed methods. Delta values are compacted according to general encoding forms which satisfy a prefix code property and which are defined prior to data capture. Several prefix codes, which are bit oriented and which have variable code lengths, have been developed. These encoding methods are independent of the signal analog characteristics and enable one to store undistorted signals. The technique has been applied to databases of the TJ-I tokamak and the TJ-IU torsatron. Compaction rates of over 80% with negligible computational effort were achieved. Computer programs were written in ANSI C, thus ensuring portability and easy maintenance. We also present an interpretation, based on information theory, of the high compression rates achieved without signal distortion.

  16. III-V/Si hybrid photonic devices by direct fusion bonding

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-04-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration.

  17. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    SciTech Connect

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

  18. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    PubMed Central

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  19. Studies of Hydrodynamic Processes in Alternative Magneto-Inertial Fusion Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Lina

    The main goal of the research is evaluation of the plasma jet driven magneto-inertial fusion (PJMIF) concept via simulations. To achieve this goal, the development of mathematical models and numerical algorithms for PJMIF has been performed, and large-scale simulation studies have been conducted. In the PJMIF concept, a plasma liner, formed by the merger of a large number of radial, highly supersonic plasma jets, implodes on a magnetized plasma target and compresses it to conditions of the fusion ignition. 1- (spherically symmetric), 2- and 3-dimensional simulations of the implosion of plasma liners and compression of plasma targets have been performed using the FronTier code based on the method of front tracking. Scaling laws and related fusion theories have been investigated and their conclusions compared with our results. Compared to previous theoretical and numerical studies of PJMIF, our numerical models and algorithms implement several new physics models important to PJMIF. One of them is a numerical model for atomic physics processes. The influence of atomic physics processes on the plasma liners for magneto-inertial nuclear fusion has been studied based on equation of state models with dissociation and ionization. These atomic processes in imploding liners reduce the temperature and increase the Mach number of liners, result in higher stagnation pressure and the fusion energy gain. Other factors influencing liner implosion are the residual vacuum gas and heat conduction. By replacing the idealized vacuum region with realistic residual gas and adding the Spitzer electronic thermal conductivity, we quantified their effects in the low-energy simulation regime. We have demonstrated that the internal structure of argon plasma liners, formed by the merger of plasma jets is strongly influenced by a cascade of oblique shock waves generated by colliding jets. Corresponding studies have been performed using 2- and 3-dimensional simulations. 10 times reduction of the stagnation pressure was found compared to spherically symmetric liner with the same pressure and density profiles at the merging radius, due to the influence of oblique shock waves and adiabatic compression heating. The experiment results of single argon plasma jet propagation and two argon plasma jets merger reported by Plasma Liner Experiment group in Los Alamos National Lab have also been compared with our simulations. A multi-stage computational approach for simulations of the liner-target interaction and the compression of plasma targets has been developed to minimize computing time. Simulations revealed important features of the target implosion process, including instability and disintegration of targets. The non-uniformity of the leading edge of the liner caused by the oblique shock waves between jets leads to instabilities during target compression. By using front tracking, the evolution of targets has been studied in 2- and 3-dimensional simulations. Optimization studies of target compression with different number of jets have also been performed.

  20. Lighted display devices for producing static or animated visual displays, including animated facial features

    SciTech Connect

    Heilbron, Valerie J; Clem, Paul G; Cook, Adam Wade

    2014-02-11

    An illuminated display device with a base member with a plurality of cavities therein. Illumination devices illuminate the cavities and emit light through an opening of the cavities in a pattern, and a speaker can emit sounds in synchronization with the pattern. A panel with translucent portions can overly the base member and the cavities. An animated talking character can have an animated mouth cavity complex with multiple predetermined mouth lighting configurations simulative of human utterances. The cavities can be open, or optical waveguide material or positive members can be disposed therein. Reflective material can enhance internal reflectance and light emission.

  1. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  2. Posterior Interspinous Fusion Device for One-Level Fusion in Degenerative Lumbar Spine Disease : Comparison with Pedicle Screw Fixation - Preliminary Report of at Least One Year Follow Up

    PubMed Central

    Kim, Ho Jung; Chun, Hyoung Joon; Oh, Suck Jun; Kang, Tae Hoon; Yang, Moon Sool

    2012-01-01

    Objective Transpedicular screw fixation has some disadvantages such as postoperative back pain through wide muscle dissection, long operative time, and cephalad adjacent segmental degeneration (ASD). The purposes of this study are investigation and comparison of radiological and clinical results between interspinous fusion device (IFD) and pedicle screw. Methods From Jan. 2008 to Aug. 2009, 40 patients underwent spinal fusion with IFD combined with posterior lumbar interbody fusion (PLIF). In same study period, 36 patients underwent spinal fusion with pedicle screw fixation as control group. Dynamic lateral radiographs, visual analogue scale (VAS), and Korean version of the Oswestry disability index (K-ODI) scores were evaluated in both groups. Results The lumbar spine diseases in the IFD group were as followings; spinal stenosis in 26, degenerative spondylolisthesis in 12, and intervertebral disc herniation in 2. The mean follow up period was 14.24 months (range; 12 to 22 months) in the IFD group and 18.3 months (range; 12 to 28 months) in pedicle screw group. The mean VAS scores was preoperatively 7.16±2.1 and 8.03±2.3 in the IFD and pedicle screw groups, respectively, and improved postoperatively to 1.3±2.9 and 1.2±3.2 in 1-year follow ups (p<0.05). The K-ODI was decreased significantly in an equal amount in both groups one year postoperatively (p<0.05). The statistics revealed a higher incidence of ASD in pedicle screw group than the IFD group (p=0.029). Conclusion Posterior IFD has several advantages over the pedicle screw fixation in terms of skin incision, muscle dissection and short operative time and less intraoperative estimated blood loss. The IFD with PLIF may be a favorable technique to replace the pedicle screw fixation in selective case. PMID:23133725

  3. Verification of scattering parameter measurements in waveguides up to 325 GHz including highly-reflective devices

    NASA Astrophysics Data System (ADS)

    Schrader, T.; Kuhlmann, K.; Dickhoff, R.; Dittmer, J.; Hiebel, M.

    2011-07-01

    Radio-frequency (RF) scattering parameters (S-parameters) play an important role to characterise RF signal transmission and reflection of active and passive devices such as transmission lines, components, and small-signal amplifiers. Vector network analysers (VNAs) are employed as instrumentation for such measurements. During the last years, the upper frequency limit of this instrumentation has been extended up to several hundreds of GHz for waveguide measurements. Calibration and verification procedures are obligatory prior to the VNA measurement to achieve accurate results and/or to obtain traceability to the International System of Units (SI). Usually, verification is performed by measuring well-matched devices with known S-parameters such as attenuators or short precision waveguide sections (shims). In waveguides, especially above 110 GHz, such devices may not exist and/or are not traceably calibrated. In some cases, e.g. filter networks, the devices under test (DUT) are partly highly reflective. This paper describes the dependency of the S-parameters a) on the calibration procedure, b) on the applied torque to the flange screws during the mating process of the single waveguide elements. It describes further c) how highly-reflective devices (HRD) can be used to verify a calibrated VNA, and d) how a measured attenuation at several hundreds of GHz can be substituted by a well-known coaxial attenuation at 279 MHz, the intermediate frequency (IF) of the VNA, to verify the linearity. This work is a contribution towards traceability and to obtain knowledge about the measurement uncertainty of VNA instrumentation in the millimetre-wave range.

  4. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices.

    PubMed

    Pires, Ivan Miguel; Garcia, Nuno M; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-01-01

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user's daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664

  5. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    PubMed Central

    Pires, Ivan Miguel; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-01-01

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664

  6. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  7. Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices.

    PubMed

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2012-11-01

    A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys. 31, 1 (1960)], Snyder [Phys. Rev. B 86, 045202 (2012)], and Seifert et al. [Phys. Status Solidi A 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device. PMID:23214902

  8. CONFERENCE REPORT: Summary of the 5th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices (Daejeon, Republic of Korea, 14 17 May 2007)

    NASA Astrophysics Data System (ADS)

    Lee, G. S.; Na, Yong-Su; Becoulet, A.; Ide, S.; Kessel, C. E.; Komori, A.; Kuteev, B. V.; Mank, G.; Olstad, R. A.; Sarkar, B.; Sips, A. C. C.; van Houtte, D.; Vdovin, V. L.

    2008-08-01

    This report summarizes the contributions presented at the 5th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices, held in Daejeon, Republic of Korea, 14-17 May 2007. The main topics of the meeting were overview and superconducting devices, long pulse operation and advanced tokamak, steady state fusion technology, heating and current drive, particle control and power exhaust and ITER-related issues.

  9. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NASA Astrophysics Data System (ADS)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-09-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region.

  10. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  11. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  12. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  13. Magnetron-Discharge-Based Ion Source for Improvement of an Inertial Electrostatic Confinement Fusion Device

    SciTech Connect

    Takamatsu, Teruhisa; Masuda, Kai; Yoshikawa, Kiyoshi; Toku, Hisayuki; Nagasaki, Kazunobu; Kyunai, Toshiyuki

    2005-05-15

    A magnetron discharge as a built-in ion source have studied both experimentally and numerically for a compact discharge-type fusion neutron source called IECF (Inertial Electrostatic Confinement Fusion). With this magnetron discharge, ions are produced in the vicinity of the vacuum chamber (anode) at negative electric potential. Therefore, produced ions are expected to have nearly full energy corresponding to the applied voltage to the IECF cathode but slightly smaller energy preventing them from hitting the anode of the opposite end, eventually improving both fusion reaction rate and ion recirculation life. Also, the magnetron ion source was found to produce ample ion current for maintenance of the discharge. With the optimization of the configuration of the magnetron discharge, further improvement of the fusion reaction rate is found feasible.

  14. A Simple Apparatus for the Injection of Lithium Aerosol into the Scrape-Off Layer of Fusion Research Devices

    SciTech Connect

    D. K. Mansfield, A.L Roquemore, H. Schneider, J. Timberlake, H. Kugel, M.G. Bell and the NSTX Research Team

    2010-10-11

    A simple device has been developed to deposit elemental lithium onto plasma facing components in the National Spherical Torus Experiment. Deposition is accomplished by dropping lithium powder into the plasma column. Once introduced, lithium particles quickly become entrained in scrape-off layer flow as an evaporating aerosol. Particles are delivered through a small central aperture in a computer-controlled resonating piezoelectric disk on which the powder is supported. The device has been used to deposit lithium both during discharges as well as prior to plasma breakdown. Clear improvements to plasma performance have been demonstrated. The use of this apparatus provides flexibility in the amount and timing of lithium deposition and, therefore, may benefit future fusion research devices.

  15. CONFERENCE REPORT: Summary of the 17th International Atomic Energy Agency Technical Meeting on 'Research Using Small Fusion Devices'

    NASA Astrophysics Data System (ADS)

    Varandas, C. A. F.; Silva, C.; Gribkov, V. A.; Malaquias, A.; Van Oost, G.

    2008-07-01

    This paper presents a summary of the recent results reported on several topics on magnetic confinement, dense magnetized plasmas and materials studies. The main topics covered on magnetic confinement devices are configuration studies, diagnostics developments, alternative fuelling techniques, turbulence and transport studies, confinement experiments, plasma facing materials, acquisition and control systems and integrated modelling. For the dense magnetized plasma devices results on development and commissioning of several devices (plasma focus, Z-pinch and plasma discharge type), material tests, scaling laws for plasma focus energy density from a few millijoule to megajoule, modelling of neutron and x-ray production mechanisms and fast diagnostic and signal formatting techniques were reported. Auxiliary heating systems for ITER, dedicated materials modelling and experimental studies relevant for several fusion applications and control and data acquisition systems have also been reported on in dedicated papers.

  16. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability.

    PubMed

    Belwin Edward, J; Rajasekar, N; Sathiyasekar, K; Senthilnathan, N; Sarjila, R

    2013-09-01

    Obtaining optimal power flow solution is a strenuous task for any power system engineer. The inclusion of FACTS devices in the power system network adds to its complexity. The dual objective of OPF with fuel cost minimization along with FACTS device location for IEEE 30 bus is considered and solved using proposed Enhanced Bacterial Foraging algorithm (EBFA). The conventional Bacterial Foraging Algorithm (BFA) has the difficulty of optimal parameter selection. Hence, in this paper, BFA is enhanced by including Nelder-Mead (NM) algorithm for better performance. A MATLAB code for EBFA is developed and the problem of optimal power flow with inclusion of FACTS devices is solved. After several run with different initial values, it is found that the inclusion of FACTS devices such as SVC and TCSC in the network reduces the generation cost along with increased voltage stability limits. It is also observed that, the proposed algorithm requires lesser computational time compared to earlier proposed algorithms. PMID:23759251

  17. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    DOEpatents

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  18. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  19. Nonintrusive multibiometrics on a mobile device: a comparison of fusion techniques

    NASA Astrophysics Data System (ADS)

    Allano, Lorene; Morris, Andrew C.; Sellahewa, Harin; Garcia-Salicetti, Sonia; Koreman, Jacques; Jassim, Sabah; Ly-Van, Bao; Wu, Dalei; Dorizzi, Bernadette

    2006-04-01

    In this article we test a number of score fusion methods for the purpose of multimodal biometric authentication. These tests were made for the SecurePhone project, whose aim is to develop a prototype mobile communication system enabling biometrically authenticated users to deal legally binding m-contracts during a mobile phone call on a PDA. The three biometrics of voice, face and signature were selected because they are all traditional non-intrusive and easy to use means of authentication which can readily be captured on a PDA. By combining multiple biometrics of relatively low security it may be possible to obtain a combined level of security which is at least as high as that provided by a PIN or handwritten signature, traditionally used for user authentication. As the relative success of different fusion methods depends on the database used and tests made, the database we used was recorded on a suitable PDA (the Qtek2020) and the test protocol was designed to reflect the intended application scenario, which is expected to use short text prompts. Not all of the fusion methods tested are original. They were selected for their suitability for implementation within the constraints imposed by the application. All of the methods tested are based on fusion of the match scores output by each modality. Though computationally simple, the methods tested have shown very promising results. All of the 4 fusion methods tested obtain a significant performance increase.

  20. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... White Plains, New York (collectively, ``Nokia''). 75 FR 4583-4 (Jan. 28, 2010). The complaint alleged... the parties on the issues under review. 76 FR 31938 (June 2, 2011). On June 9, 2011, the parties... COMMISSION In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players,...

  1. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nokia Corporation of Finland and Nokia Inc. of White Plains, New York (collectively, ``Nokia''). 75 FR... disapprove the Commission's action. See Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005... COMMISSION In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players,...

  2. 76 FR 13432 - In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice of... 202-205-2000. Hearing impaired individuals are advised that information on this matter can be...

  3. CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program

    SciTech Connect

    Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.

    1997-03-21

    In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.

  4. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  5. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    SciTech Connect

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  6. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  7. Operative strategy and clinical outcomes of ROI-CTM fusion device in the treatment of Hangman’s fracture

    PubMed Central

    Cao, Guijun; Meng, Chunyang; Zhang, Weihong; Kong, Xiangqing

    2015-01-01

    Objective: to compare the clinical outcomes of anterior fusion with ROI-CTM and titanium plate in the treatment of Hangman’s fractures. Methods: From Dec 2005 to Jan 2015, a total of 21 patients with Hangman’s fracture, who underwent anterior internal fixation with titanium plate or ROI-CTM, were retrospectively reviewed. All patients underwent anteroposterior, lateral, and flexion-extension radiography and computed tomography of cervical spine preoperatively and postoperatively at 3 days and 3 months. Cervical visual analog scale (VAS) score, Bazaz dysphagia score, angular displacement (AD), horizontal displacement (HD), fusion rate, and blood loss were measured. Results: The VAS and Bazaz dysphagia score at postoperative 3 days were significantly lower in ROI-CTM group, as compared to titanium plate group (P<0.05). AD and HD were significantly decreased in both groups after operation (P<0.05). The postoperative rate of complete reduction of spondylolisthesis was significantly higher in ROI-CTM group than that in titanium plate group (P<0.05). The operative time and blood loss was significantly decreased in ROI-CTM group, as compared to titanium plate group (P<0.05). Conclusion: ROI-CTM device showed superiority to titanium plate in the treatment of Hangman’s fractures, suggesting that anterior operation with ROI-CTM device may be a better choice for treating Hangman’s fractures. PMID:26770480

  8. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G.

    2013-12-15

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (∼1 m), high-current (∼1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ∼5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  9. Fabrication of a heterostructure device with Au/PPani-TiO2/ITO configuration and study of device parameters including current conduction mechanism

    NASA Astrophysics Data System (ADS)

    Ara Hussain, Amreen; Ratan Pal, Arup; Bailung, Heremba; Chutia, Joyanti; Patil, Dinkar S.

    2013-08-01

    Polyaniline based composites incorporating titanium dioxide have been synthesized by an alternative pathway using reactive magnetron sputtering of titanium and plasma polymerization of aniline monomer. Structural, optical and morphological characterizations of plasma polymerized aniline (PPani) and titanium dioxide (TiO2) composites (PPani-TiO2) reveal the evidence for the incorporation of TiO2 in the PPani matrix. A hybrid heterostructure device having PPani-TiO2 composite with a top gold (Au) layer and bottom indium-tin oxide (ITO) layer is fabricated. The developed heterostructure device exhibits rectifying behaviour indicating the formation of a Schottky contact between Au and PPani-TiO2. The detailed electrical measurement of the device is performed under different temperatures. The ideality factor (n) and barrier height (φB) of the heterojunction diode at room temperature (300 K) are found to be 1.28 and 0.43 eV, respectively. Possible conduction mechanisms are examined using various plotting and curve fitting methods for space charge limited conduction mechanism (SCLC), Schottky emission mechanism and Poole-Frenkel (PF) emission mechanism. The heterostructure device shows best fit of SCLC process as compared to the other mechanisms including Schottky emission and PF emission.

  10. Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects

    NASA Astrophysics Data System (ADS)

    Laux, S. E.; Kumar, A.; Fischetti, M. V.

    2004-05-01

    A two-dimensional device simulation program which self consistently solves the Schrödinger and Poisson equations with current flow is described in detail. Significant approximations adopted in this work are the absence of scattering and a simple six-valley, parabolic band structure for silicon. A modified version of the quantum transmitting boundary method is used to describe open boundary conditions permitting current flow in device solutions far from equilibrium. The continuous energy spectrum of the system is discretized by temporarily imposing two different forms of closed boundary conditions, resulting in energies which sample the density-of-states and establish the wave function normalization conditions. These standing wave solutions ("normal modes") are decomposed into their traveling wave constituents, each of which represents injection from only one of the open boundary contacts ("traveling eigencomponents"). These current-carrying states are occupied by a drifted Fermi distribution associated with their injecting contact and summed to form the electron density in the device. Holes are neglected in this calculation. The Poisson equation is solved on the same finite element computational mesh as the Schrödinger equation; devices of arbitrary geometry can be modeled. Computational performance of the program including characterization of a "Broyden+Newton" algorithm employed in the iteration for self consistency is described. Device results are presented for a narrow silicon resonant tunneling diode (RTD) and many variants of idealized silicon double-gate field effect transistors (DGFETs). The RTD results show two resonant conduction peaks, each of which demonstrates hysteresis. Three 7.5 nm channel length DGFET structures with identical intrinsic device configurations but differing access geometries (straight, taper and "dog bone") are studied and found to have differing current flows owing to quantum-mechanical reflection in their access regions. Substantial gate-source overlap (10 nm) in these devices creates the possibility that the potential in the source can precipitously decrease for sufficiently high gate drive, which allows electron tunneling backwards through the channel from drain to source. A 7.5 nm gate length zero gate overlap taper device with 3 nm thick silicon channel is analyzed and internal distributions of device potential, electron density, velocity and current density are presented. As this device is scaled to 5 nm gate length, channel current is restricted due to the insufficient number of current-carrying states in the now 2 nm thick silicon channel. This restriction in current flow is removed by increasing the source and drain doping. A simple theory is presented to estimate the maximum current which can be carried by the ground state two-dimensional subband, and explains this restriction in current flow. Finally, the presence of circulating flow around vortices in individual subband states is demonstrated in both RTD and DGFET devices, including taper and dog bone DGFETs, a straight DGFET including a roughened Si-SiO2 interface, and a "bent" RTD.

  11. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    SciTech Connect

    Tomaszewski, Krzysztof J.

    2008-04-07

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which--besides photomultiplier itself--also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes - embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  12. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Krzysztof J.

    2008-04-01

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which—besides photomultiplier itself—also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes—embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  13. Deuterium retention enhancement in lithiated graphite plasma-facing surfaces in fusion devices

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul

    2011-10-01

    Lithium conditioning has been adopted in a number of magnetic confinement devices resulting in significant effects on plasma performance. In NSTX for example effects include: reduction of ELMs, reduced edge neutral density, increased pedestal electron and ion temperature, and improved energy confinement. The main assumption conjectured for the effects observed in NSTX plasmas is the retention of hydrogen by coatings of lithium on ATJ graphite tile surfaces. The main binding channel understood to be the ionic lithium hydride bond. However, the likelihood that the dominant retention mechanism is governed by lithium-hydride bonding seems less probable based on well-known intercalation effects of lithium in graphite. The observed effects on plasma behavior in NSTX, despite the strong chemical interaction of D, Li, O and carbon, indicate an enhanced mechanism for retaining hydrogen in addition to Li-D binding. This paper summarizes the key mechanisms understood today of enhanced hydrogen retention in lithium-treated ATJ graphite surfaces. The mechanisms are elucidated by four major efforts: 1) controlled in-situ off-line experiments at Purdue,, 2) post-mortem NSTX tile analysis, 3) in-vacuo PMI probe data in NSTX, and 4) computational quantum-based atomistic simulations. Results show that a saturation limit of D pumping by lithium conditioning of ATJ graphite surfaces is reached in a few number of shots. Computational modeling using semi-empirical quantum mechanics of electrons and classical mechanics of nuclei elucidate on the polar-covalent interactions that emerge between lithium and the C-D-O system.

  14. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  15. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  16. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    SciTech Connect

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  17. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  18. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices.

    PubMed

    Plyusnin, V V; Jakubowski, L; Zebrowski, J; Duarte, P; Malinowski, K; Fernandes, H; Silva, C; Rabinski, M; Sadowski, M J

    2012-08-01

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK. PMID:22938292

  19. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in fusion devices by using CCD images

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Kim, Kyung-Rae; Nam, Yong-Un; Chung, Jinil; Grisolia, Christian; Rohde, Volker; KSTAR Team; TORE SUPRA Team; ASDEX Upgrade Team

    2013-08-01

    Images of wide-angle visible standard CCD cameras contain information on Dust Creation Events (DCEs) that occur during plasma operations. Database on the DCEs can be built by analyzing the straight line-like dust trajectories in scrape-off layer caused by plasma-dust interaction along the vacuum vessel. The database provides short/long term temporal evolution and spatial distribution of origins of DCEs in fusion devices. We have studied DCEs of 2011 KSTAR campaign and compared with that of 2006 Tore Supra (TS) and 2007 ASDEX Upgrade (AUG) campaign. An analysis software, with which the location of dust trajectories in 3D position in the KSTAR vacuum vessel is identified, is developed and the dust velocity distribution in 2011 campaign is measured. ©2001 Elsevier Science.

  20. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experimentsa)

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; DeHaas, T.; Glebov, V. Yu.

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (˜1014 DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ˜107 to ˜109 neutrons/cm2 and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ˜1015, depending on distance and shielding.

  1. Assessment of martensitic steels as structural materials in magnetic fusion devices

    SciTech Connect

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600/sup 0/C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity.

  2. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    NASA Technical Reports Server (NTRS)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  3. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    SciTech Connect

    Friesen, F. Q.L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-20

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  4. An Embeddable Fusion Framework to Manage Context Information in Mobile Devices

    NASA Astrophysics Data System (ADS)

    Bernardos, Ana M.; Madrazo, Eva; Casar, José R.

    Conveniently fused and combined with data from external sources, information from sensors embedded in a mobile device may offer a dynamic view of the user's situation, sufficient to build adaptive context-aware services. In order to shorten the development cycle of these applications, an embeddable framework to acquire, fuse and reason on context information is hereby described. 'CASanDRA Mobile' is designed to work autonomously in resource-constrained devices, offering to application developers a transparent management of context information. Based on a service-oriented architecture implemented in mobile OSGi, it offers a scalable infrastructure of bundles which decouple context acquisition and automate context inference from application development. 'CASanDRA Mobile' aims at providing the user with full control on his private context data, by using privacy policies suitable to handle P2P context sharing. To exemplify how to use the framework features, the design procedure for a context-aware wellness application is described.

  5. Thermoelectric-driven Flow of Liquid Lithium in Solid Metal Trenches: a New Plasma-Facing Component for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Ruzic, David N.; Andruczyk, Daniel; Curreli, Davide; Jung, Soonwook; Christenson, Michael Peter; Lindquist, Kyle; Fiflis, Peter; Xu, Wenyu

    2013-10-01

    The new LiMIT device (Lithium/Metal Infused Trenches) recently proposed [D. N. Ruzic et al., Nucl. Fusion 51, 102002 (2011)] is an innovative plasma-facing component able to naturally self-adapt its cooling capabilities depending upon the heat flux from the plasma. The system uses the thermoelectric forces arising from the strong temperature gradients and magnetic fields of the divertor region, to obtain a J×B MHD drive of the liquid lithium into small solid-metal trenches. A number of cooling channels guarantee the temperature gradient between the hot plasma-facing liquid surface and the cool solid-metal assembly comprising the trenches. A prototype of the device has been built and tested in the electron-beam-based SLIDE facility at Illinois and diagnosed by means of an IR camera and embedded thermocouples. The flow velocity of liquid lithium has been measured using a fast-frame camera, monitoring the motion of small particles deposited on the liquid lithium surface. Velocities of the order of several centimeters per second have been observed, compatible with a simplified 1D model and more accurate 3D TE-MHD (Thermoelectric Magnetohydrodynamics) computations. LiMIT is planned to be tested at Magnum-PSI (The Netherlands), EAST (China) and in the new TELS facility at Illinois. in residence at Princeton Plasma Physics Laboratory.

  6. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    NASA Astrophysics Data System (ADS)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    Written contributions from participants of the Joint 15th Latin American Workshop on Plasma Physics (LAWPP 2014) - 21st IAEA Technical Meeting on Research Using Small Fusion Devices (21st IAEA TM RUSFD). The International Advisory Committees of the 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and the 21st IAEA TM on Research Using Small Fusion Devices (RUSFD), agreed to carry out together this Joint LAWPP 2014 - 21st RUSFD in San José, Costa Rica, on 27-31 January 2014. The Joint LAWPP 2014 - 21st RUSFD meeting, organized by the Instituto Tecnológico de Costa Rica, Universidad Nacional de Costa Rica, and Ad Astra Rocket Company in collaboration with the International Atomic Energy Agency (IAEA). The Latin American Workshop on Plasma Physics (LAWPP) is a series of events which has been held periodically since 1982, with the purpose of providing a forum in which the research of the Latin American plasma physics community can be displayed, as well as fostering collaborations among plasma scientists within the region and with researchers from the rest of the world. Recognized plasma scientists from developed countries are specially invited to the meeting to present the state of the art on several "hot" topics related to plasma physics. It is an open meeting, with an International Advisory Committee, in which the working language is English. It was firstly held in 1982 in Cambuquira, Brazil, followed by workshops in Medellín, Colombia (1985), Santiago de Chile, Chile (1988), Buenos Aires, Argentina (1990), Mexico City, Mexico (1992), Foz do Iguaçu, Brazil (1994, combined with the International Congress on Plasma Physics (ICPP)), Caracas, Venezuela (1997), Tandil, Argentina (1998), La Serena, Chile (2000), Sao Pedro, Brazil (2003), Mexico City, Mexico (2005), Caracas, Venezuela (2007), Santiago de Chile, Chile (2010, combined with the ICPP) and Mar de Plata, Argentina (2011). The 21st IAEA TM on Research Using Small Fusion Devices is an ideal forum for small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January 2014 and was attended by 37 participants formally registered with the IAEA, who joined the LAWPP 2014 participants. Its separate scientific programme had two plenary talks, 12 oral presentations and 14 papers presented in poster sessions on Monday 27 and Tuesday 28 January 2014. The 2nd Workshop on Industrial Applications of Plasma Technology (2nd AITP) was held on 30 and 31 January 2014, had six invited speakers, which included 2 plenary talks, 4 invited talks, 11 oral presentations and 31 contributions in a single poster session on Thursday 30 January, 2014. Its proceedings have been merged with those of the joint meeting. Finally the 1st Costa Rican Summer School on Plasma Physics, held in Santa Clara, San Carlos on 20-24 January 2014, in the week previous to the meetings, had 80 participants, 40 international conferences on different plasma physics topics, and 12 professors. The topics included in the programme of the Joint LAWPP 2014 - 21st IAEA TM RUSFD were: space plasmas, dusty plasmas, nuclear fusion, nonthermal plasmas, plasma space propulsion, basic plasma processes, plasma simulation, and industrial plasma applications among others. We are very grateful to the sponsors of the meetings: the Instituto Tecnológico de Costa Rica, the International Atomic Energy Agency (IAEA), the Universidad Nacional de Costa Rica, and Ad Astra Rocket Company. We also want to thank our exhibitors and contributors: INTERCOVAMEX, Nuclear & Plasma Sciences Society, and the IEEE Costa Rica Chapter. The publication of the proceedings was fully supported by the International Atomic Energy Agency (IAEA). The support of the International Advisory and the Local Organizing Committees, is also acknowledged in a heartfelt way. Finally, the Editors of this special issue are grateful to José Asenjo for his excellent work and cooperation for the preparation of the proceedings. Iván Vargas-Blanco and J. Julio E. Herrera-Velázquez Editors of the proceedings

  7. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-12-31

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He{sup 2{plus}} and Fe{sup 24{plus}} transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He{sup 2{plus}} studies. By examining the electron and He{sup 2{plus}} responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed.

  8. Computation of stationary 3D halo currents in fusion devices with accuracy control

    SciTech Connect

    Bettini, Paolo; Specogna, Ruben

    2014-09-15

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  9. Computation of stationary 3D halo currents in fusion devices with accuracy control

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Specogna, Ruben

    2014-09-01

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  10. Mirror fusion

    NASA Astrophysics Data System (ADS)

    Harrison, M. A.; McGregor, C. K.

    1980-07-01

    Progress reported in the mirror fusion energy program covers (1) fusion, plasma theory, and computation; (2) magnetic mirror system and tandem mirror experiments; (3) superconducting magnetic development; (4) fusion reactor materials; (5) experiments in the mirror fusion test facility; and (6) design and construction of the facility. Topics covered include fiber optic communication links; desorption of deuterium and contaminants; neutral beam injection; operating point for the Yin-Yang cell; and reverse field pinch.

  11. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Local thermal particle and energy transport studies of balanced-injection L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power have been performed on TFTR. The particle transport of He{sup 2+} and electrons following a small helium gas puff and Fe{sup 24+} induced by laser ablation has been examined and compared to the local energy transport characteristics inferred from power balance analysis. All particle perturbation diffusivities are radially hollow and are similar in magnitude and shape to the effective thermal conductivities found by power balance analysis. All particle diffusivities are 1--2 orders of magnitude larger than neoclassical values, except near the magnetic axis. A reduction in the helium diffusivity D{sub He} in the Supershot as compared to the L-mode is accompanied by a similar reduction in the effective single fluid thermal conductivity {chi}fluid. Also, the helium core convective velocity V{sub He} is found to increase in the Supershot over the L-Mode for r/a < 0.5. A quasilinear model of electrostatic drift waves has been used to calculate ratios between particle and energy fluxes in the Supershot. The measured ratios of the helium and iron particle diffusivities are in good accord with predictions, as are predicted ratios of V{sub He}/D{sub He}. Modelling indicates that the similarity in magnitude and profile shape of D{sub He} and {chi}fluid has generally favorable implications for helium ash content in a future fusion reactor. The core convection found in the Supershot increases the helium concentration on axis but does not reduce the plasma reactivity significantly.

  12. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Local thermal particle and energy transport studies of balanced-injection L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power have been performed on TFTR. The particle transport of He[sup 2+] and electrons following a small helium gas puff and Fe[sup 24+] induced by laser ablation has been examined and compared to the local energy transport characteristics inferred from power balance analysis. All particle perturbation diffusivities are radially hollow and are similar in magnitude and shape to the effective thermal conductivities found by power balance analysis. All particle diffusivities are 1--2 orders of magnitude larger than neoclassical values, except near the magnetic axis. A reduction in the helium diffusivity D[sub He] in the Supershot as compared to the L-mode is accompanied by a similar reduction in the effective single fluid thermal conductivity [chi]fluid. Also, the helium core convective velocity V[sub He] is found to increase in the Supershot over the L-Mode for r/a < 0.5. A quasilinear model of electrostatic drift waves has been used to calculate ratios between particle and energy fluxes in the Supershot. The measured ratios of the helium and iron particle diffusivities are in good accord with predictions, as are predicted ratios of V[sub He]/D[sub He]. Modelling indicates that the similarity in magnitude and profile shape of D[sub He] and [chi]fluid has generally favorable implications for helium ash content in a future fusion reactor. The core convection found in the Supershot increases the helium concentration on axis but does not reduce the plasma reactivity significantly.

  13. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  14. In-line and following-up tests of perspective fusion-reactor materials in plasma focus devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Dubrovsky, A. V.; Paduch, M.; Sadowski, M. J.; Scholz, M.; Tomaszewski, K.; Malinowski, K.; Skladnik-Sadowska, E.; Strzyzewski, P.; Marchenko, A. K.; Tsarenko, A. V.; Masljaev, S. A.; Pimenov, V. N.

    2006-12-01

    The paper presents results of recent experiments, as performed with the PF-1000 and PF-6 Plasma-Focus facilities, which were aimed at investigation of the correlation between processes of the irradiation of different materials of fusion devices and results of this irradiation. Among the irradiated samples there were pure tungsten, tantalum, copper, aluminum, and alloys, based on these metals, various steels, carbon and carbon-based materials, which are designed for plasma facing components or constructional parts of future thermonuclear reactors of the inertial- and magnetic-confinement types. The corpuscular radiation consisted of high-energy ( E D>100 keV) deuterium ion beams and fast ( v str ≥ 107 cm/s) deuterium-plasma streams. They were investigated by a number of methods with spatial and temporal resolution. Particular attention was paid to the verification of diagnostic techniques, which might be used for time- and space-resolved studies of the interaction process. Correlation of these data with information obtained from subsequent analytical investigation of some of the irradiated specimens, as performed by means of a number of methods typical for material sciences, gives possibility to deduce physical mechanisms of the deuterium implantation and radiation damage of the investigated materials in dependence on the conditions of their irradiation.

  15. Two-color medium-infrared scanning interferometer for the Frascati tokamak upgrade fusion test device

    NASA Astrophysics Data System (ADS)

    Canton, A.; Innocente, P.; Tudisco, O.

    2006-12-01

    A scanning beam interferometer installed on the Frascati tokamak upgrade (FTU) experiment is presented. The scanning beam scheme combined with the small dimensions of the beams produces a system with very high spatial resolution: more than 30 adjacent (nonoverlapping) chords sample most of the plasma cross section. A good time resolution is achieved by the use of a proper scanning device, with a scanning frequency ≥8 kHz. Very fast events are measured by three additional fixed lines of sight providing a time resolution ≥100 kHz. The instrument is a two-color medium-infrared-compensated-type interferometer; two wavelengths (colors) are used to measure both the density and the mechanical vibrations of optical components. A CO2 laser (λ=10.6 μm) is the main light source, and a CO laser (λ=5.4 μm) is the compensation one. The optical scheme is a double pass Mach-Zehnder type. All the retroreflector mirrors are mounted directly on the FTU mechanical structure thanks to the compensation system that allows for large vibration amplitudes of optical components. Heterodyne detection at 30 and 40 MHz is obtained by frequency shifting the reference beams with two acousto-optic modulators (Bragg cells). Many features are implemented to achieve high measurement accuracy and reliability. A real-time system computes the integral density measured on one of the fixed lines of sight and provides an analog signal for density feedback control. The interferometer was used to measure density profiles both in medium-density discharges (ne≈1020 m-3) and in high-density pellet injected discharges (ne≈7-8×1020 m-3). The measurement error is ≈2×1018 m-2 under optimal conditions but can be higher in some cases, mainly because of the large tilt of the retroreflector mirrors.

  16. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  17. Economic analysis of fusion breeders

    SciTech Connect

    Delene, J.G.

    1985-01-01

    This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included.

  18. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    SciTech Connect

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-15

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  19. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-01

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  20. Optimization of transistor design including large signal device/circuit interactions at extremely high frequencies (20-100+GHz)

    NASA Technical Reports Server (NTRS)

    Levy, Ralph; Grubin, H. L.

    1991-01-01

    Transistor design for extremely high frequency applications requires consideration of the interaction between the device and the circuit to which it is connected. Traditional analytical transistor models are to approximate at some of these frequencies and may not account for variations of dopants and semiconductor materials (especially some of the newer materials) within the device. Physically based models of device performance are required. These are based on coupled systems of partial differential equations and typically require 20 minutes of Cray computer time for a single AC operating point. A technique is presented to extract parameters from a few partial differential equation solutions for the device to create a nonlinear equivalent circuit model which runs in approximately 1 second of personal computer time. This nonlinear equivalent circuit model accurately replicates the contact current properties of the device as computed by the partial differential solver on which it is based. Using the nonlinear equivalent circuit model of the device, optimization of systems design can be performed based on device/circuit interactions.

  1. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries?

    PubMed Central

    Ghaly, Ramsis F.; Tverdohleb, Tatiana; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulation is currently approved to treat chronic intractable pain of the trunk and limbs. However, such implantable electronic devices are vulnerable to external electrical currents and magnetic fields. Within the hospitals and modern operating rooms (ORs), there is an abundance of electrical devices and other types of equipment that could interfere with such devices. Despite the increasing number of patients with neuromodulation implantable devices, there are no written guidelines available or consensus of cautions for such patients undergoing unrelated surgery. Case Descriptions: A 60-year-old female with a permanent St. Jude's spinal cord stimulator (SCS) presented for open total abdominal hysterectomy. Both the anesthesia and gynecology staffs were aware of the device presence, but were unaware of any precautions regarding intraoperative management. The device was found to be nonmagnetic resonance imaging compatible, and bipolar cautery was used instead of monopolar cautery. A 59-year-old female with a 9-year-old permanent Medtronic SCS, presented for right total hip arthroplasty. The device was switched off prior to entering the OR, bipolar cautery was used, and grounding pads were placed away from her battery site. In each case, the manufacturer's representative was contacted preoperative. Both surgeries proceeded uneventfully. Conclusions: The Food and Drug Administration safety information manual warns about the use of diathermy, concomitant implanted stimulation devices, lithotripsy, external defibrillation, radiation therapy, ultrasonic scanning, and high-output ultrasound, all of which can lead to permanent implant damage if not turned off prior to undertaking procedures. Lack of uniform guidelines makes intraoperative management, as well as remote anesthesia care of patients with previously implanted SCSs unsafe. PMID:26958424

  2. Spatial Resolution Measurements of C, Si and Mo Using LIBS for Diagnostics of Plasma Facing Materials in a Fusion Device

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhao, Dongye; Wu, Xingwei; Ding, Hongbin

    2015-08-01

    Recently, a laser-induced breakdown spectroscopic (LIBS) system has been developed for in situ measurements of the chemical compositions of plasma facing materials (PFMs) in the Experimental Advanced Superconducting Tokamak (EAST). In this study, a LIBS system, which was used in a similar optical configuration to the in situ LIBS system in EAST, has been developed to investigate the spatial distribution of PFM elements at 10-4 Pa. The aim of this study was to understand the nature of the spatial distribution of atoms or ions of different elements in the plasma plume and optimize the signal to background ratio for the in situ LIBS diagnosis in EAST. The spatial profiles of the LIBS signals of C, Si, Mo and the continuous background were measured. Moreover, the influence of laser spot size and laser energy density on the LIBS signals of C, Si, Mo and H was also investigated. The results show that the distribution of the C, Si and Mo peaks' intensities first increased and then decreased from the center to the edge of the plasma plume. There was a maximum value at R ≈ 1.5 mm from the center of the plasma plume. This work aims to improve the understanding of ablating plasma dynamics in very low pressure environments and give guidance to optimize the LIBS system in the EAST device. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11175035, 11475039), Chinesisch-Deutsches Forschungs Project (GZ768) and the Fundamental Research Funds for the Central Universities of China (Nos. DUT12ZD(G)01, DUT14ZD(G)04)

  3. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for segmentation and rendering. We have also provided numerical simulation of the fast ion beam action. The paper contains results on the investigations of modifications of the elemental contents, structure and properties of the materials.

  4. Implementation of a written protocol for management of central venous access devices: a theoretical and practical education, including bedside examinations.

    PubMed

    Ahlin, Catharina; Klang-Sderkvist, Birgitta; Brundin, Seija; Hellstrm, Birgitta; Pettersson, Karin; Johansson, Eva

    2006-01-01

    The objectives of this study were to evaluate registered nurses' (RN) compliance with a local clinical central venous access device (CVAD) protocol after completing an educational program and to determine RNs' perception of the program. Seventy-five RNs working in hematology participated in the educational part of the program. Sixty-eight RNs were examined while changing CVAD dressings or placing a Huber needle into a port on actual patients. Sixty percent of the RNs passed the examination and reported that the program increased their knowledge. The results indicated that the educational program could be recommended for use when implementing a new clinical protocol. PMID:17035886

  5. Tritium accountancy in fusion systems

    SciTech Connect

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  6. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  7. Indian fusion test reactor

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; FTR Team

    2012-06-01

    The fusion reactor as a volumetric neutron source can serve many applications needed for realizing fusion power reactor. For the Indian energy scenario, such a device can also produce fissile fuel for accelerating the nuclear power production. The Indian Fusion Test Reactor (FTR) is a low fusion gain (Q = 3-5) device to be used as component test facility for qualifying future reactor materials as well as for demonstrating the production of fissile fuel. FTR will be a medium sized tokamak device with a neutron wall load of 0.2 MW/m2. The presently available structural materials can be used for this device and such a device can be realized in ten years time from now. This device should produce about 25-50 kg of fissile fuel in one full-power-year and also produce the tritium needed for its operation. This device will greatly help the nuclear fission power program by producing fissile fuel.

  8. Why you need to include human factors in clinical and empirical studies of in vitro point of care devices? Review and future perspectives.

    PubMed

    Borsci, Simone; Buckle, Peter; Hanna, George B

    2016-04-01

    Use of in-vitro point of care devices - intended as tests performed out of laboratories and near patient - is increasing in clinical environments. International standards indicate that interaction assessment should not end after the product release, yet human factors methods are frequently not included in clinical and empirical studies of these devices. Whilst the literature confirms some advantages of bed-side tests compared to those in laboratories there is a lack of knowledge of the risks associated with their use. This article provides a review of approaches applied by clinical researchers to model the use of in-vitro testing. Results suggest that only a few studies have explored human factor approaches. Furthermore, when researchers investigated people-device interaction these were predominantly limited to qualitative and not standardised approaches. The methodological failings and limitations of these studies, identified by us, demonstrate the growing need to integrate human factors methods in the medical field. PMID:26878393

  9. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B)

    SciTech Connect

    Karpenko, V.N.; Ng, D.S.

    1985-03-04

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects.

  10. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B)

    NASA Astrophysics Data System (ADS)

    Karpenko, V. N.; Ng, D. S.

    1985-03-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects.

  11. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  12. Two-frame flash x-radiography device for the study of particle beam fusion target implosions

    NASA Astrophysics Data System (ADS)

    Fehl, D. L.; Chang, J.

    1983-06-01

    A two-frame flash x-radiography (FXR) system has been developed for studying the implosion hydrodynamics of particle beam driven, inertial confinement fusion (ICF) targets. This system consists of two micropoint flash x-ray sources, two gated x-ray cameras, and a mechanical framework for aligning these components with respect to the target. The tungsten micropoint sources yield a bremsstrahlung spectrum with an end-point energy of 600 keV, an x-ray dose of 8 mrad at 61 cm, a spot size of ˜100 μm, and an exposure time of ˜3 ns. A geometric magnification of 4× was employed in this radiographic arrangement, with an overall system resolving power of 4 line pairs/mm. This system has been used successfully to observe relativistic electron beam (REB) driven, ablative pusher target implosions.

  13. Two-frame flash x-radiography device for the study of particle beam fusion target implosions

    SciTech Connect

    Fehl, D.L.; Chang, J.

    1983-06-01

    A two-frame flash x-radiography (FXR) system has been developed for studying the implosion hydrodynamics of particle beam driven, inertial confinement fusion (ICF) targets. This system consists of two micropoint flash x-ray sources, two gated x-ray cameras, and a mechanical framework for aligning these components with respect to the target. The tungsten micropoint sources yield a bremsstrahlung spectrum with an end-point energy of 600 keV, an x-ray dose of 8 mrad at 61 cm, a spot size of approx.100 ..mu..m, and an exposure time of approx.3 ns. A geometric magnification of 4 x was employed in this radiographic arrangement, with an overall system resolving power of 4 line pairs/mm. This system has been used successfully to observe relativistic electron beam (REB) driven, ablative pusher target implosions.

  14. Usefulness of Leksell GammaPlan for preoperative planning of brain tumor resection: delineation of the cranial nerves and fusion of the neuroimaging data, including diffusion tensor imaging.

    PubMed

    Tamura, Manabu; Konishi, Yoshiyuki; Tamura, Noriko; Hayashi, Motohiro; Nakao, Naoyuki; Uematsu, Yuji; Itakura, Toru; Régis, Jean; Mangin, Jean François; Muragaki, Yoshihiro; Iseki, Hiroshi

    2013-01-01

    Leksell GammaPlan (LGP) software was initially designed for Gamma Knife radiosurgery, but it can be successfully applied to planning of the open neurosurgical procedures as well. We present our initial experience of delineating the cranial nerves in the vicinity of skull base tumors, combined visualization of the implanted subdural electrodes and cortical anatomy to facilitate brain mapping, and fusion of structural magnetic resonance imaging and diffusion tensor imaging performed with the use of LGP before removal of intracranial neoplasms. Such preoperative information facilitated choosing the optimal approach and general surgical strategy, and corresponded well to the intraoperative findings. Therefore, LGP may be helpful for planning open neurosurgical procedures in cases of both extraaxial and intraaxial intracranial tumors. PMID:23417477

  15. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    DOE PAGESBeta

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; Braunecker, W. A.; Larsen, R. E.; Ratcliff, E. L.; Olson, D. C.

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymersmore » that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.« less

  16. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    SciTech Connect

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; Braunecker, W. A.; Larsen, R. E.; Ratcliff, E. L.; Olson, D. C.

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymers that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.

  17. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  19. The origin of convective structures in the scrape-off layer of linear magnetic fusion devices investigated by fast imaging

    SciTech Connect

    Antar, G. Y.; Yu, J. H.; Tynan, G.

    2007-02-15

    A fast imaging camera is used to unveil the spatio-temporal properties of radially convective events in the CSDX linear plasma device [M. J. Burin et al., Phys. Plasmas, 12, 052320 (2005)]. The exposure time is set to 1 {mu}s and the time between frames to 10 {mu}s. The time series from a Langmuir probe and from a pixel in the 50000-frame movie are compared and cross-correlated. Excellent agreement between the two diagnostics is found for spatial scales greater than 2.5 mm. The fluctuations inside the main plasma column are found to change between different poloidal mode numbers as a function of time. Accordingly, the power spectra determined in these linear devices reflect the sum over these modes. Outside the main plasma column, avaloids are observed to remain attached to the main plasma, hence their behavior does not become independent of the dynamics inside the main plasma column. Avaloid properties, assessed from imaging, agree with Langmuir probes done on various devices, except that the radial length is found to be much larger than previously determined because the blob-shape assumption is not valid. The link between fluctuations inside and outside the main plasma column indicates that the nonlinear evolution of the m=1 poloidal mode number is responsible for the creation of avaloids.

  20. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  1. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  2. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  3. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    SciTech Connect

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-29

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  4. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect

    Wang Zhehui; Wurden, Glen A.; Mansfield, Dennis K.; Roquemore, Lane A.; Ticos, Catalin M.

    2008-09-07

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  5. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  6. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  7. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  8. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  9. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  10. Current-voltage characteristic for bipolar p-n junction devices with drift fields, including correlation between carrier lifetimes and shallow-impurity concentration

    SciTech Connect

    Lindholm, F.A.; Chen, Y.H.

    1982-12-01

    We present general analytic solutions for static current-voltage characteristics of quasineutral regions of nonilluminated semiconductor bipolar devices under the following assumptions: (a) the quasineutral region has a graded shallow-level impurity concentration producing a constant built-in electric (drift) field; (b) minority carriers injected into this region stay at concentrations low enough to avoid violation of low-injection conditions; (c) the minority-carrier lifetime of this region depends on position in accordance with a power-law dependence on the shallow-level donor concentration, a dependence that is consistent with the longest minority-carrier lifetimes measured and with the physical chemistry of divacancy-donor reactions at high temperatures. The solutions presented are apparently the first that include assumption (c). Modified Bessel functions of the first and second kind appear in these solutions. From a pheonomenological standpoint, the solutions may account for defect centers associated with vacancy complexes and, in part, for the gettering observed in highly doped n-type Si. Design implications for transistors, diodes, and solar cells are discussed quantitatively for a thin drift-field Si p/n(x) junction solar cell.

  11. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher. PMID:25430306

  12. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    SciTech Connect

    Klepper, C. C. Isler, R. C.; Biewer, T. M.; Caughman, J. B.; Green, D. L.; Harris, J. H.; Hillis, D. L.; Martin, E. H.; Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, S.; Pegourié, B.; Jacquot, J.; Lotte, Ph.; Colledani, G.; Ekedahl, A.; Litaudon, X.; Shannon, S. C.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  13. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    SciTech Connect

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C; Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, Stephanie; Jacquot, Jonathan; Lotte, Ph.; Colledani, G.; Biewer, Theodore M; Caughman, J. B. O.; Ekedahl, A.; Green, David L; Harris, Jeffrey H; Hillis, Donald Lee; Shannon, Prof. Steven; Litaudon, X

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  14. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  15. Arthroscopic partial wrist fusion.

    PubMed

    Ho, Pak-Cheong

    2008-12-01

    The wide intraarticular exposure of the wrist joint under arthroscopic view provides an excellent ground for various forms of partial wrist fusion. Combining with percutaneous fixation technique, arthroscopic partial wrist fusion can potentially generate the best possible functional outcome by preserving the maximal motion pertained with each type of partial wrist fusion because the effect of extraarticular adhesion associated with open surgery can be minimized. From November 1997 to May 2008, the author had performed 12 cases of arthroscopic partial wrist fusion, including scaphotrapeziotrapezoid fusion in 3, scaphoidectomy and 4-corner fusion in 4, radioscapholunate fusion in 3, radiolunate fusion in 1, and lunotriquetral fusion in 1 case. Through the radiocarpal or midcarpal joint, the corresponding articular surfaces were denuded of cartilage using arthroscopic burr and curette. Carpal bones involved in the fusion process were then transfixed with K wires percutaneously after alignment corrected and confirmed under fluoroscopic control. Autogenous cancellous bone graft or bone substitute were inserted and impacted to the fusion site through cannula under direct arthroscopic view. Final fixation could be by multiple K wires or cannulated screw system. Early mobilization was encouraged. Surgical complications were minor, including pin tract infection, skin burn, and delay union in 1 case. Uneventful radiologic union was obtained in 9 cases, stable fibrous union in 2, and nonunion in 1. The average follow-up period was 70 months. Symptom was resolved or improved, and functional motion was gained in all cases. All surgical scars were almost invisible, and aesthetic outcome was excellent. PMID:19060685

  16. Multi-center, Prospective, Randomized, Controlled Investigational Device Exemption Clinical Trial Comparing Mobi-C Cervical Artificial Disc to Anterior Discectomy and Fusion in the Treatment of Symptomatic Degenerative Disc Disease in the Cervical Spine

    PubMed Central

    Bae, Hyun W.; Davis, Reginald; Gaede, Steven; Hoffman, Greg; Kim, Kee; Nunley, Pierce D.; Peterson, Daniel; Rashbaum, Ralph; Stokes, John

    2014-01-01

    Background Anterior cervical discectomy and fusion (ACDF) is the gold standard for treating symptomatic cervical disc degeneration. Cervical total disc replacements (TDRs) have emerged as an alternative for some patients. The purpose of this study was to evaluate the safety and effectiveness of a new TDR device compared with ACDF for treating single-level cervical disc degeneration. Methods This was a prospective, randomized, controlled, multicenter Food and Drug Administration (FDA) regulated Investigational Device Exemption (IDE) study. A total of 245 patients were treated (164 TDR: 81 ACDF). The primary outcome measure was overall success based on improvement in Neck Disability Index (NDI), no subsequent surgical interventions, and no adverse events (AEs) classified as major complications. Secondary outcome measures included SF-12, visual analog scale (VAS) assessing neck and arm pain, patient satisfaction, radiographic range of motion, and adjacent level degeneration. Patients were evaluated preoperatively and postoperatively at 6 weeks, 3, 6, 12, 18, and 24 months. The hypothesis was that the TDR success rate was non-inferior to ACDF at 24 months. Results Overall success rates were 73.6% for TDR and 65.3% for ACDF, confirming non-inferiority (p < 0.0025). TDR demonstrated earlier improvements with significant differences in NDI scores at 6 weeks and 3 months, and VAS neck pain and SF-12 PCS scores at 6 weeks (p<0.05). Operative level range of motion in the TDR group was maintained throughout follow-up. Radiographic evidence of inferior adjacent segment degeneration was significantly greater with ACDF at 12 and 24 months (p < 0.05). AE rates were similar. Conclusions Mobi-C TDR is a safe and effective treatment for single-level disc degeneration, producing outcomes similar to ACDF with less adjacent segment degeneration. Level of Evidence: Level I. Clinical relevance: This study adds to the literature supporting cervical TDR as a viable option to ACDF in appropriately selected patients with disc degeneration. PMID:25694918

  17. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  18. EDITORIAL: Stochasticity in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Finken, K. H.

    2006-04-01

    In recent years the importance of externally imposed resonant magnetic fields on plasma has become more and more recognized. These fields will cause ergodization at well defined plasma layers and can induce large size islands at rational q-surfaces. A hope for future large scale tokamak devices is the development of a reliable method for mitigating the large ELMs of type 1 ELMy-H-modes by modifying the edge transport. Other topics of interest for fusion reactors are the option of distributing the heat to a large area and optimizing methods for heat and particle exhaust, or the understanding of the transport around tearing mode instabilities. The cluster of papers in this issue of Nuclear Fusion is a successor to the 2004 special issue (Nuclear Fusion 44 S1-122 ) intended to raise interest in the subject. The contents of this present issue are based on presentations at the Second Workshop on Stochasticity in Fusion Plasmas (SFP) held in Juelich, Germany, 15-17 March 2005. The SFP workshops have been stimulated by the installation of the Dynamic Ergodic Divertor (DED) in the TEXTOR tokamak. It has attracted colleagues working on various plasma configurations such as tokamaks, stellarators or reversed field pinches. The workshop was originally devoted to phenomena on the plasma edge but it has been broadened to transport questions over the whole plasma cross-section. It is a meeting place for experimental and theoretical working groups. The next workshop is planned for February/March 2007 in Juelich, Germany. For details see http://www.fz-juelich.de/sfp/. The content of the workshop is summarized in the following conference summary (K.H. Finken 2006 Nuclear Fusion 46 S107-112). At the workshop experimental results on the plasma transport resulting from ergodization in various devices were presented. Highlights were the results from DIII-D on the mitigation of ELMs (see also T.E. Evans et al 2005 Nuclear Fusion 45 595 ). Theoretical work was focused around the topics of mapping methods of magnetic field lines, 3D-plasma transport modelling efforts of ergodized plasmas and island divertors, and on the penetration of the external field including the resulting force transfer. We hope that the article series in Nuclear Fusion will stimulate interest in this fascinating subject of plasma physics.

  19. Research on fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.

    2012-06-01

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. "Fusion for Neutrons" (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  20. Research on fusion neutron sources

    SciTech Connect

    Gryaznevich, M. P.

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  1. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  2. Superconductors for fusion: Achievements, open issues, roadmap to future

    NASA Astrophysics Data System (ADS)

    Bruzzone, P.

    2010-11-01

    The need of superconducting magnets for fusion reactors has been obvious since over 30 years. In last century, a dozen of fusion devices have been built with superconducting magnets. In the last years the Chinese and Korean tokamaks started operation. Four devices are under construction (SST1, W7-X, ITER, JT60SA). The size, i.e. the energy stored in the magnetic field, has driven the R&D for conductors, from the multi-filamentary composite of Tore Supra, to the monolithic conductors of T15 and the Large Helical Device (LHD), to the cable-in-conduit conductors, which dominate the fusion magnets of the last 15 years. The large electro-magnetic forces on the windings also drove the selection of cooling, from the bath cooling of Tore Supra and LHD to the force flow of supercritical helium in all the other devices. The state of the art on conductor design and performance is reviewed and three open issues in the superconducting magnet technology for fusion are highlighted (performance degradation in Nb 3Sn, self field limitation in large NbTi cable-in-conduit conductor (CICC), change of length upon heat treatment of ITER conductors). A projection in the future of superconductors for fusion is attempted, including the role of HTS.

  3. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  4. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    SciTech Connect

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included.

  5. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    DOEpatents

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  6. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    NASA Astrophysics Data System (ADS)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  7. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  8. Effect of superbanana diffusion on fusion reactivity in stellarators

    SciTech Connect

    Hinton, Fred L.

    2012-08-15

    Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in the calculation.

  9. Numerical investigations on a compact magnetic fusion device for studying the effect of external applied magnetic field oscillations on the nuclear burning efficiency of D-T and p-11B fuels

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Larour, J.; Auvray, P.; Balcou, P.; Ducret, J.-E.; Martin, P.

    2015-05-01

    The burning process of high density (about 1018cm-3), high temperature (tens to hundreds of keV) plasma trapped by a high mirror-like magnetic field in a Compact Magnetic Fusion (CMF) device is numerically investigated.. The initial high density and high temperature plasma in the CMF device is produced by ultrashort high intensity laser beam interaction with clusters or thin foils, and two fuels, D-T and p-11B are studied. The spatio-temporal evolution of D-T and p-11B plasmas, the production of alphas, the generated electric fields and the high external applied magnetic field are described by a 1-D multifluid code. The initial values for the plasma densities, temperatures and external applied magnetic field (about 100 T) correspond to high β plasmas. The main objectives of the numerical simulations are: to study the plasma trapping, the neutron and alpha production for both fuels, and compare the effect of the external applied magnetic field on the nuclear burning efficiency for the two fuels.. The comparisons and the advantages for each fuel will be presented. The proposed CMF device and the potential operation of the device within the ELI-NP pillar will be discussed.

  10. Nuclear fusion: The issues

    SciTech Connect

    Griffin, R.D.

    1993-01-22

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included.

  11. Glossary of fusion energy

    SciTech Connect

    Whitson, M.O.

    1985-02-01

    The Glossary of Fusion Energy is an attempt to present a concise, yet comprehensive collection of terms that may be beneficial to scientists and laymen who are directly or tangentially concerned with this burgeoning energy enterprise. Included are definitions of terms in theoretical plasma physics, controlled thermonuclear fusion, and some related physics concepts. Also, short descriptions of some of the major thermonuclear experiments currently under way in the world today are included.

  12. Fusion Power Deployment

    SciTech Connect

    J.A. Schmidt; J.M. Ogden

    2002-02-06

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  13. Cold fusion before Congress

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Stanley Pons and Martin Fleischmann took their cold fusion show to Capitol Hill last week, saying they were “as sure as sure can be” that the heat produced in their experiments at the University of Utah is the result of some form of nuclear fusion and vigorously defending themselves against charges that they have set the scientific world on its ear by creating a good battery.The two chemists asked for “tens of millions of dollars” in federal funds to move directly into commercial development of energy devices based on the new discovery, but provided no more than tantalizing hints at what is going on in their experiments.

  14. Mirror fusion - Another path to fusion power

    NASA Astrophysics Data System (ADS)

    Werne, R. W.; Fisher, D. K.; Hirschfeld, F.

    1981-07-01

    Developments in the mirror program at Lawrence Livermore National Laboratory are discussed. Major innovations discussed in the mirror approach include the mirror concept, and the minimum-B field (magnetic well) assuring gross magnetohydrodynamic stability. Also presented are the tandem mirror, and the thermal barrier, which greatly enhances plasma potential confinement. The Mirror Fusion Test Facility objectives include construction and operation of a Nb-Ti superconducting magnet system, long pulsed, high-current, high-voltage, neutral beams, and a large-scale cryopanel vacuum pump. With commercialization and government support, the program hopes to make mirror fusion an important energy option.

  15. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  16. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  17. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    SciTech Connect

    Karpenko, V.N.; Ng, D.S.

    1985-08-15

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  18. "Polarized" Fusion

    NASA Astrophysics Data System (ADS)

    Schieck, Hans Paetz Gen.

    Increasing energy demand in view of limited supply, as well as environmental and nuclear-safety concerns leading to increased emphasis on renewable energy sources such as solar or wind energy are expected to focus public and scientific interest increasingly also on fusion energy. With the decision to build ITER (low-density magnetic confinement) and also continuing research on (high-density) inertial-confinement fusion (cf. the inauguration of the laser fusion facility at the Lawrence Livermore National Laboratory) prospects of fusion energy have probably entered a new era.

  19. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  20. Surgical Outcome of a Zero-profile Device Comparing with Stand-alone Cage and Anterior Cervical Plate with Iliac Bone Graft in the Anterior Cervical Discectomy and Fusion

    PubMed Central

    Shin, Jae Sik; Cho, Pyoung Goo

    2014-01-01

    Objective A Zero-profile device is a cervical stand-alone cage with integrated segmental fixation device. We characteristically evaluated the radiological changes as well as clinical outcomes in the application of Zero-profile devices compared with stand-alone cages and anterior cervical plates with iliac bone grafts for the cervical disease. Methods Retrospectively, total 60 patients at least more than one year follow-up were enrolled. Twenty patients were treated with Zero-profile devices (Group A), twenty patients with stand-alone cages (Group B) and twenty patients with anterior cervical plates and iliac bone grafts (Group C) for a single level cervical disease. The clinical outcomes were evaluated by Odom's criteria and Bazaz-Yoo dysphagia index. The radiologic parameters were by subsidence and the changes of the midpoint interbody height (IBH), the segmental kyphotic angle (SKA), the overall kyphotic angle (OKA) in index level. Results Although there was no significant clinical difference according to the Odom's criteria among them(p=0.766), post-operative dysphagia was significantly decreased in the Group A and B compared with the Group C (p=0.04). From the immediate postoperative to the last follow-up time, the mean change of IBH decrement and SKA increment were significant in the Group B compared with the Group A (p=0.025, p=0.033) and the Group C (p=0.001, p=0.000). The subsidence rate was not significant among all groups (p=0.338). Conclusion This Zero-profile device is a valuable alternative to the anterior cervical discectomy and fusion with a low incidence of postoperative dysphagia and without segmental kyphotic change. PMID:25346764

  1. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  2. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  3. Colliding Beam Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Rostoker, Norman; Qerushi, Artan; Binderbauer, Michl

    2003-06-01

    The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker-Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are generic in that they do not relate to specific confinement devices. In all cases except for a Tokamak with D-T fuel the recirculating power was found to exceed the fusion power by a large factor. In this paper we criticize the generality claimed for this calculation. The ratio of circulating power to fusion power is calculated for the Colliding Beam Reactor with fuels D-T, D-He3 and p-B11. The results are respectively, 0.070, 0.141 and 0.493.

  4. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  5. Photovoltaic device

    SciTech Connect

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  6. Photovoltaic device

    SciTech Connect

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  7. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming. PMID:26932053

  8. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    NASA Astrophysics Data System (ADS)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  9. Analytical performance evaluation for autonomous sensor fusion

    NASA Astrophysics Data System (ADS)

    Chang, K. C.

    2008-04-01

    A distributed data fusion system consists of a network of sensors, each capable of local processing and fusion of sensor data. There has been a great deal of work in developing distributed fusion algorithms applicable to a network centric architecture. Currently there are at least a few approaches including naive fusion, cross-correlation fusion, information graph fusion, maximum a posteriori (MAP) fusion, channel filter fusion, and covariance intersection fusion. However, in general, in a distributed system such as the ad hoc sensor networks, the communication architecture is not fixed. Each node has knowledge of only its local connectivity but not the global network topology. In those cases, the distributed fusion algorithm based on information graph type of approach may not scale due to its requirements to carry long pedigree information for decorrelation. In this paper, we focus on scalable fusion algorithms and conduct analytical performance evaluation to compare their performance. The goal is to understand the performance of those algorithms under different operating conditions. Specifically, we evaluate the performance of channel filter fusion, Chernoff fusion, Shannon Fusion, and Battachayya fusion algorithms. We also compare their results to NaÃve fusion and "optimal" centralized fusion algorithms under a specific communication pattern.

  10. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  11. Real-time sensor validation and fusion for distributed autonomous sensors

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojing; Li, Xiangshang; Buckles, Bill P.

    2004-04-01

    Multi-sensor data fusion has found widespread applications in industrial and research sectors. The purpose of real time multi-sensor data fusion is to dynamically estimate an improved system model from a set of different data sources, i.e., sensors. This paper presented a systematic and unified real time sensor validation and fusion framework (RTSVFF) based on distributed autonomous sensors. The RTSVFF is an open architecture which consists of four layers - the transaction layer, the process fusion layer, the control layer, and the planning layer. This paradigm facilitates distribution of intelligence to the sensor level and sharing of information among sensors, controllers, and other devices in the system. The openness of the architecture also provides a platform to test different sensor validation and fusion algorithms and thus facilitates the selection of near optimal algorithms for specific sensor fusion application. In the version of the model presented in this paper, confidence weighted averaging is employed to address the dynamic system state issue noted above. The state is computed using an adaptive estimator and dynamic validation curve for numeric data fusion and a robust diagnostic map for decision level qualitative fusion. The framework is then applied to automatic monitoring of a gas-turbine engine, including a performance comparison of the proposed real-time sensor fusion algorithms and a traditional numerical weighted average.

  12. Fusion - From science to engineering

    NASA Astrophysics Data System (ADS)

    Kenton, J.

    1981-12-01

    The principles and state of advancement in fusion energy devices are explored, along with the transition from theoretical problems to engineering difficulties. Tokamaks are noted to be the closest to actual break-even, the point where the energy extracted from the reactor is equal to the energy necessary to initiate the process, although linear, mirror fusion machines also show promise. Attention is also given to poloidal diverter systems and the ELMO bumpy torus, which has demonstrated continuous operation for the first time. The prospects for a U.S. fusion engineering facility are uncertain in the light of current budget cuts, with most funding being concentrated on military applications. Laser inertial fusion devices are reviewed, as well as particle and ion accelerators for fuel pellet implosions. Finally, the most complex engineering problem is asserted to be the development of the reactor blanket system.

  13. Fusion strategies for speech and handwriting modalities in HCI

    NASA Astrophysics Data System (ADS)

    Vielhauer, Claus; Schimke, Sascha; Thanassis, Valsamakis; Stylianou, Yannis

    2005-03-01

    In this paper we present a strategy for handling of multimodal signals from pen-based mobile devices for Human to Computer Interaction (HCI), where our focus is on the modalities of spoken and handwritten inputs. Each modality for itself is quite well understood, as the exhaustive literature demonstrates, although still a number of challenges exist, like recognition result improvements. Among the potentials in multimodal HCI are improvements in recognition and robustness as well as seamless men-machine communication based on fusion of different modalities by exploiting redundancies among these modalities. However, such valuable fusion of both modalities still poses some problems. Open problems today include design approaches for fusion strategies and with the increasing number of mobile and pen-based computers, particularly techniques for fusion of handwriting and speech appear to have a great potential. But today few publications can be found that addresses this potential. In this work we introduce a conceptional approach based on a model to describe a bimodal HCI process. We analyze four exemplary applications with respect to the structure of this model, and highlight the open problems within these applications. Further, we will outline possible solutions to these challenges. Having such fusion model for HCI may simplify the development of seamless and intuitive to user interfaces on pen-based mobile devices. For one of our application scenarios, a bimodal system for form data recording and recognition in medical or financial environment, we will present some first experimental results.

  14. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  15. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  16. SAR and LIDAR fusion: experiments and applications

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  17. Modeling hydrogen isotope behavior in fusion plasma-facing components

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2014-03-01

    In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.

  18. Spinal fusion

    MedlinePlus

    ... the wound or vertebral bones Damage to a spinal nerve, causing weakness, pain, loss of sensation, problems with your bowels or bladder The vertebrae above and below the fusion are more likely to wear away, leading to more problems later

  19. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  20. Stress analysis of superconducting magnets for magnetic fusion reactors

    SciTech Connect

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  1. OCULUS Sea Track Fusion Service

    NASA Astrophysics Data System (ADS)

    Panagiotou, Stylianos C.; Rizogiannis, Constantinos; Katsoulis, Stavros; Lampropoulos, Vassilis; Kanellopoulos, Sotirios; Thomopoulos, Stelios C. A.

    2015-06-01

    Oculus Sea is a complete solution regarding maritime surveillance and communications at Local as well as Central Command and Control level. It includes a robust and independent track fusion service whose main functions include: 1) Interaction with the User to suggest the fusion of two or more tracks, confirm Track ID and Vessel Metadata creation for the fused track, and suggest de-association of two tracks 2) Fusion of same vessel tracks arriving simultaneously from multiple radar sensors featuring track Association, track Fusion of associated tracks to produce a more accurate track, and Multiple tracking filters and fusion algorithms 3) Unique Track ID Generator for each fused track 4) Track Dissemination Service. Oculus Sea Track Fusion Service adopts a system architecture where each sensor is associated with a Kalman estimator/tracker that obtains an estimate of the state vector and its respective error covariance matrix. Finally, at the fusion center, association and track state estimation fusion are carried out. The expected benefits of this system include multi-sensor information fusion, enhanced spatial resolution, and improved target detection.

  2. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    NASA Astrophysics Data System (ADS)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work of Dr Todd Evans, another significant mentor of mine, as winner of this prestigious award? Then, it happened. The paper covers several key topics related to high beta tokamak physics. For me, the greatest satisfaction in receiving this award is because it was the first Nuclear Fusion Award to recognize research on the National Spherical Torus Experiment (NSTX) located at the Princeton Plasma Physics Laboratory. The achievement of record stability parameters in a mega-Ampere class spherical torus (ST) device reported in the paper represents a multi-year effort, contributed to by the entire research team. Research to maintain such plasmas for an indefinite period continues today. Understanding RWM stabilization physics is crucial for this goal, and leveraging the high beta ST operating space uniquely tests theory for application to future STs and to tokamaks in general, including advanced operational scenarios of ITER. For instance, the RWM was found to have significant amplitude in components with the toroidal mode number greater than unity. This has important implications for general active RWM control. Evidence that the RWM passive stabilization physics and marginal stability criterion are indeed more complex than originally thought was shown in this paper. Present work shows the greater complexity has a direct impact on how we should extrapolate RWM stabilization to future devices. The paper also reported the qualitative observation of neoclassical toroidal viscosity (NTV), followed by a companion paper by our group in 2006 reporting the quantitative observation of this effect and comparison to theory. The physics of this interesting and important phenomenon was introduced to me by Professor J. Callen (who has given an overview talk at this conference including this subject) and Professor Kerchung Shaing of the University of Wisconsin, to whom I am quite indebted. The paper also reported the first measurement of resonant field amplification at high beta in the NSTX, following work of the Columbia University group at DIII-D during that period. My greatest hope in our stability physics research effort is that our insight in this portion of the much larger research effort, of which we all partake, to make fusion reactors a practical reality, will give new and future researchers the input and motivation to amplify our work and create realities that we had thought were just out of reach. Receiving the 2009 IAEA Nuclear Fusion Award is a substantial honor that greatly motivates me to continue to support the international nuclear fusion research effort at the highest level possible. So, please allow me to raise this beautiful trophy high, here today, to best remember this fine honor. Thank you. Steven Anthony Sabbagh 2009 Nuclear Fusion Award winner Columbia University, New York, NY, USA

  3. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  4. Review And Status Report On Laser Tissue Fusion

    NASA Astrophysics Data System (ADS)

    Dew, D. K.

    1987-03-01

    In an attempt to overcome some of the problems associated with conventional wound closure, i.e. suture or mechanical device closure, the laser has been used for "tissue welding" ,(sealing and fusion), of wound edges. Early attempts at laser tissue fusion were centered on microvascular anastomosis and recent studies have extended to include most soft tissues. It has been demonstrated in animal studies, that the process of healing after laser wound closure is very similar in most tissues. Within the past year alone, the experimental work in this area has progressed rapidly; limited clinical trials are now under way. Based on detailed animal studies and limited clinical experience, laser tissue fusion may soon replace many conventional techniques of wound repair.

  5. Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces

    SciTech Connect

    Thomas, E.W.

    1985-02-01

    This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping.

  6. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  7. Cell fusion.

    PubMed Central

    Podbilewicz, Benjamin

    2006-01-01

    Selective cell fusion is a natural part of development. It is found in sexually reproducing organisms that require fertilization to propagate and in muscles, placenta, bones, lens of the eye and stem cells. Cell fusion is particularly important in the development of C. elegans: in addition to 300 sperm and oocytes that fuse during fertilization, 300 of the 1090 somatic cells born, fuse throughout development. Studies of cell fusion in C. elegans have shown that although different types of cells fuse, cell membrane merger is initiated through a common mechanism involving the action of one gene, eff-1. In worms with mutations that inactivate eff-1, almost none of the 300 somatic cells that normally fuse do so, but appear to differentiate, attach and behave in the same way as fusing cells. Such worms develop and survive but have numerous morphological, behavioral and fertility defects associated to cell fusion failure in the epidermis, pharynx, male tail, vulva and uterus. Cell fusion in embryonic dorsal epithelial cells has been analyzed in great detail by confocal microscopy using membrane fluorescent probes, apical junction markers and cytoplasmic aqueous fluorescent probes allowing the direct observation of membrane disappearance, pore expansion and cytoplasmic content mixing. The complete elimination of the membranes between two fusing cells takes about 30 min and involves vesiculation of the fusing membranes. Genetic and cell biological evidence indicates that eff-1 activity is both necessary and sufficient to fuse epithelial and myoepithelial cells in vivo. Based on electron microscopic analyses of intermediates of cell fusion in eff-1 mutants, it appears that eff-1 is required for both initiation and expansion of fusion pores, similar to the fusogen of Influenza virus. While only one gene encoding a novel candidate component of the cell membrane fusion machinery has been found, the nematode's cell fusion program is under the control of many cell-specific transcriptional regulators. A large number of these conserved regulators prevent cell fusion by repressing eff-1 activity. For example, if either ceh-16/engrailed or the GATA factor EGL-18/ELT-5 is inactivated, the lateral epidermal cells that normally do not fuse in the embryo will fuse causing embryonic lethality. And if either the Hox protein lin-39/Deformed or its cofactor ceh-20/Extradenticle is inactivated, the ventral epidermal vulval precursor cells that normally do not fuse in the larvae will fuse and the hermaphrodite will have no vulva. In addition, there is evidence for coordinated and complex regulation of lin-39 in the ventral epidermis by Ras, Wnt, Rb/E2F, NuRD and lin-15 pathways. It appears that in many cells that normally do not fuse, specific transcription complexes repress eff-1 expression preventing cell fusion. ref-2 (REgulator of Fusion-2) encodes a Zn-finger protein that is required to generate ventral Pn.p cells and to keep them unfused both in males and hermaphrodites. ref-2 is necessary, but not sufficient, to maintain Pn.p cells unfused. This review shows that far from cell fusion being an unusual phenomenon, there is the clear prospect that animal cells in all tissues are intrinsically programmed to fuse, and are only prevented from fusing by transcriptional and post-transcriptional control mechanisms. There are three major questions that remain open for future research: (1) How does eff-1 fuse cells? (2) How do Ras, Wnt, Rb, NuRD, E2F, heterochronic and other pathways control cell fusion? (3) What are the implications of cell fusion beyond worms? PMID:18050486

  8. Data security on the national fusion grid

    SciTech Connect

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  9. Security on the US Fusion Grid

    SciTech Connect

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  10. A Coherent Laser Radar (CLR) Device for Remote Metrology, Insspection, and Motion Detection of Plasma Facing Components (PFCs)

    NASA Astrophysics Data System (ADS)

    Menon, M. M.; Barry, R. E.; Slotwinski, A.; Spampinato, P. T.

    1998-11-01

    A frequency modulated CLR device, designed for remote metrology and inspection of PFCs in fusion devices, is described. The device, developed for ITER application, would be useful for studying plasma interaction on PFCs in any fusion experiment. The device designed for ITER measures ranges up to 22 m with better than 0.1mm accuracy. An array of range data, obtained by scanning a surface, can be rendered into an image of the surface. Thus, the CLR can be used for precision metrology and for inspection of PFCs, with no external illumination. Since the measurements can be done remotely, without breaking the vacuum, the use of CLR for troubleshooting would improve human safety and machine availability. The CLR has the potential for measuring the PFC motion in real time and thereby estimate the forces on PFCs during plasma disruptions. The salient features of the device, including measurements made on fusion-relevant surfaces, are illustrated.

  11. Sealing device

    SciTech Connect

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  12. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  14. [Fusion tags technology and their applications].

    PubMed

    Li, Yong-Jin; Chen, Yuan-Yuan; Bi, Li-Jun

    2006-07-01

    Fusion tags are originally developed to facilitate the purification of recombinant protein from crude extracts. In recent years, the discovery of different tags and the development of fusion strategy make the function of fusion tags diversified. However, there was no a cure-all fusion tag for different applications. We here give an overview of fusion tag technology and the different applications of fusion tags, including the purification, detection and oriented immobilization of recombinant protein, the visualization of bioevent in vivo, the enhancement of the yield of protein, the improvement of the solubility and stability of the expressed protein. PMID:16894881

  15. EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.

    2011-01-01

    The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S888-97 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 781-7 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 541-7 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 133-41 Watanabe T.-H. et al 2006 Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 24-32 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618-24 Lipschultz B. et al 2007 Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189-205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 1112-20 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 667-76 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 1588-97 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 535-51 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 856-63 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 228-32 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 961-8 Urano H. et al 2007 H-mode pedestal structure in the variation of toroidal rotation and toroidal field ripple in JT-60U Nucl. Fusion 47 706-13 Günter S. et al 2007 Interaction of energetic particles with large and small scale instabilities Nucl. Fusion 47 920-8

  16. Transforaminal lumbar interbody fusion and posterior lumbar interbody fusion utilizing BMP-2 in treatment of degenerative spondylolisthesis: neither safe nor cost effective

    PubMed Central

    Moatz, Bradley; Tortolani, P. Justin

    2013-01-01

    Background: With the rise of health care costs, there is increased emphasis on evaluating the cost of a particular surgical procedure for quality adjusted life year (QALY) gained. Recent data have shown that surgical intervention for the treatment of degenerative spondylolisthesis (DS) is as cost-effective as total joint arthroplasty. Despite these excellent outcomes, some argue that the addition of interbody fusion supplemented with bone morphogenetic protein (BMP) enhances the value of this procedure. Methods: This review examines the current research regarding the cost-effectiveness of the surgical management of lumbar DS utilizing interbody fusion along with BMP. Results: Posterolateral spinal fusion with instrumentation for focal lumbar spinal stenosis with DS can provide and maintain improvement in self-reported quality of life. Based on the available literature, including nonrandomized comparative studies and case series, the addition of interbody fusion along with BMP does not lead to significantly better clinical outcomes and increases costs when compared with more routine posterolateral fusion techniques. Conclusions: To enhance the value of the surgical management for DS, costs must decrease or there should be substantial improvement in effectiveness as measured by clinical outcomes. To date, there is insufficient evidence to support the use of interbody fusion devices along with BMP to treat routine cases of focal stenosis accompanied by DS, which are routinely adequately treated utilizing posterolateral fusion techniques. PMID:23646277

  17. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  18. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  19. Fusion welding process

    SciTech Connect

    Jones, E.D.; Mcbride, M.A.; Thomas, K.C.

    1983-06-28

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  20. Collaborations in fusion research

    SciTech Connect

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow`s standards. An overview of the tools and technologies in today`s collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper.

  1. Lateral Lumbar Interbody Fusion.

    PubMed

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  2. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  3. Lateral Lumbar Interbody Fusion

    PubMed Central

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  4. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect

    Wang, Zhehui; Li, Yangfang

    2012-08-08

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  5. D5S818 Typing Discrepancy Between PowerPlex(®) Fusion and Other STR Kits Including GlobalFiler(®) Caused by a One-base Deletion in 31 Nucleotides Upstream of the Repeat Region.

    PubMed

    Fujii, Koji; Iwashima, Yasuki; Watahiki, Haruhiko; Mita, Yusuke; Kitayama, Tetsushi; Nakahara, Hiroaki; Mizuno, Natsuko; Sekiguchi, Kazumasa

    2016-05-01

    Short tandem repeat (STR) typing is widely used in forensic investigation. When the same DNA sample is analyzed with different STR typing kits, a typing discrepancy is occasionally observed. In this study, we examined the cause of a typing discrepancy in a sample at D5S818 locus. This sample was designated as 10, 12 using Identifiler(®) , Identifiler(®) Plus, GlobalFiler(®) , PowerPlex(®) 16HS, and PowerPlex(®) 18D, but as 9.3, 12 using PowerPlex(®) Fusion. Sequencing results indicated that the shorter allele in the sample had a deletion (U31Tdel) at 31 nucleotides upstream of the repeat region (AGAT)10 . This deletion was located in the binding site of the published D5S818 forward primer in PowerPlex(®) 16 and was only 9 and 11 nucleotides downstream of our estimated 5' end position of D5S818 forward primer in GlobalFiler(®) and PowerPlex(®) 18D, respectively. We also examined the effect of primer length on the heterozygous peak balance in this sample. PMID:27122415

  6. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1980-01-01

    Cleaning devices are described which include a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes.

  7. Assistive Devices

    MedlinePlus

    ... center provides information on VA benefits for assistive technology. Medicare − Benefits may include assistive devices, such as ... a Web site that provides information about assistive technology products. Go to the “Products” section to find ...

  8. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  9. Fusion of the ear bones

    MedlinePlus

    Fusion of the ear bones is the joining of the bones of the inner ear. These are the incus, malleus, and stapes bones. Related topics include: Chronic ear infection Otosclerosis Middle ear malformations

  10. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    SciTech Connect

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P

    2012-08-27

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  11. History of Nuclear Fusion Research in Japan

    NASA Astrophysics Data System (ADS)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  12. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  13. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  14. Multimodal options for materials research to advance the basis for fusion energy in the ITER era

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Möslang, A.; Muroga, T.; Tanigawa, H.

    2013-10-01

    Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

  15. Data fusion qualitative sensitivity analysis

    SciTech Connect

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory was tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. The data fusion software developed by CRC was initially demonstrated on a data set collected at the Hanford Site where three types of data were combined. These data were (1) seismic reflection, (2) seismic refraction, and (3) depth to geologic horizons. The fused results included a contour map of the top of a low-permeability horizon. This report discusses the results of a sensitivity analysis of data fusion software to variations in its input parameters. The data fusion software developed by CRC has a large number of input parameters that can be varied by the user and that influence the results of data fusion. Many of these parameters are defined as part of the earth model. The earth model is a series of 3-dimensional polynomials with horizontal spatial coordinates as the independent variables and either subsurface layer depth or values of various properties within these layers (e.g., compression wave velocity, resistivity) as the dependent variables.

  16. Fusion ambassador

    NASA Astrophysics Data System (ADS)

    Smith, Chris Llewellyn

    2009-02-01

    With his glasses and shock of thick, white hair, Chris Llewellyn Smith does not look like a superhero saving the world from peril. Yet the slim, 66-year-old physicist is seemingly becoming a potential saviour in the public eye. At least that is the reaction he says he got while recently moving house in Oxford. "I was quite surprised by my new neighbours' knowledge of energy issues when they said 'The world is relying on you to develop fusion!'."

  17. Fusion reactor nucleonics: status and needs

    SciTech Connect

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface.

  18. Leak testing and repair of fusion devices

    SciTech Connect

    Kozman, T.A.

    1983-06-17

    The leak testing, reporting and vacuum leak repair techniques of the MFTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques will be developed for testing and repairing leaks on the 42 MFTF-B magnets. The leak-hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown), their associated piping, liquid nitrogen radiation shields, and piping. Additionally, during MFTF-B operation there will be warm water plasma shields and piping that require leak checking.

  19. Fusion engineering device (FED) configuration and maintenance

    SciTech Connect

    Smith, G.E.

    1981-10-01

    This paper addresses the subject of how the FED baseline configuration provides for replacement of major machine components in the event of wear-out or failure. The maintenance aspects of the configuration are emphasized. Specifically, removal/replacement scenarios and their associated time spans are summarized for twelve major FED cmponents. These scenarios were developed concurrently with the development of the baseline configuration to assure conformance with maintenance requirements. The results show that eight of the twelve components investigated are amenable to straightforward removal and replacement techniques which can be performed in 45 days or less. Two additional components, the TF coils and one PF coil, exhibit relatively straightforward removal/replacement characteristics but require an extensive time span as a consequence of the large amount of intervening equipment which must also be removed and replaced.

  20. Beam limiter for thermonuclear fusion devices

    DOEpatents

    Kaminsky, Manfred S.

    1976-01-01

    A beam limiter circumscribes the interior surface of a vacuum vessel to inhibit collisions of contained plasma and the vessel walls. The cross section of the material making up the limiter has a flatsided or slightly concave portion of increased width towards the plasma and portions of decreased width towards the interior surface of the vessel. This configuration is designed to prevent a major fraction of the material sputtered, vaporized and blistered from the limiter from reaching the plasma. It also allows adequate heat transfer from the wider to the narrower portions. The preferred materials for the beam limiter are solids of sintered, particulate materials of low atomic number with low vapor pressure and low sputtering and blistering yields.

  1. STAR Power, an Interactive Educational Fusion CD with a Dynamic, Shaped Tokamak Power Plant Simulator

    NASA Astrophysics Data System (ADS)

    Leuer, J. A.; Lee, R. L.; Kellman, A. G.; Chapman Nutt, G. C., Jr.; Holley, G.; Larsen, T. A.

    2000-10-01

    We describe an interactive, educational fusion adventure game developed within our fusion education program. The theme of the adventure is start-up of a state-of-the-art fusion power plant. To gain access to the power plant control room, the student must complete several education modules, including topics on building an atom, fusion reactions, charged particle motion in electric and magnetic fields, and building a power plant. Review questions, a fusion video, library material and glossary provide additional resources. In the control room the student must start-up a complex, dynamic fusion power plant. The simulation model contains primary elements of a tokamak based device, including a magnetic shaper capable of producing limited and diverted elongated plasmas. A zero dimensional plasma model based on ITER scaling and containing rate based conservation equations provides dynamic feedback through major control parameters such as toroidal field, fueling rate and heating. The game is available for use on PC and Mac. computers. Copies will be available at the conference.

  2. Laser fusion monthly -- August 1980

    SciTech Connect

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  3. Purdue Contribution of Fusion Simulation Program

    SciTech Connect

    Jeffrey Brooks

    2011-09-30

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall. It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  4. Image fusion and navigation platforms for percutaneous image-guided interventions.

    PubMed

    Rajagopal, Manoj; Venkatesan, Aradhana M

    2016-04-01

    Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions. PMID:26826086

  5. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGESBeta

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  6. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  7. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  8. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  9. Status of Fusion Experimental Reactor (FER) design

    SciTech Connect

    Tone, T.; Fujisawa, N.; Sugihara, M.

    1985-07-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been conducted at JAERI in line with a long-range plan for fusion reactor development laid out in the long-term program of the Atomic Energy Commission issued in 1982. The FER succeeding the tokamak device JT-60 is a tokamak reactor with a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. The paper describes recent developments of the FER design concept.

  10. Integrated Simulation and Optimization of Fusion Systems: the Fusion Simulation Project

    NASA Astrophysics Data System (ADS)

    Batchelor, Donald B.

    2004-05-01

    Advanced experimental devices for fusion energy research are very large in the $1B class, the next major step being construction of ITER, a tokamak device capable of producing several hundred megawatts of fusion power. The plasmas in such devices are extremely far from thermal equilibrium and support a vast number of physical processes that must be controlled and coordinated to successfully achieve the conditions required for fusion. Simulation is a key element in the research program needed to understand experimental results from devices and compare these results to theory, to plan and design experiments on the devices, and to invent and evaluate new, higher performing confinement concepts. There are a number of fundamental computational challenges in such simulation: extreme range of time scales - wall equilibration time/electron cyclotron time O(10^14), extreme range of space scales - machine radius/electron gyroradius O(10^4), extreme plasma anisotropy - mean free path in magnetic field parallel/perpendicular O(10^10), strong non-linear coupling, sensitivity to geometric details, and high dimensionality. To deal with this challenge, several classes of fusion physics sub-disciplines and related simulation codes have been developed. There is not at present a single code, or code set, that integrates these sub-disciplines in their generality. The talk will describe the various approaches to fusion plasma simulation and progress toward bringing together the various models so as to treat the plasma more self-consistently. In particular, the fusion community is planning a comprehensive Fusion Simulation Project (FSP) whose ultimate goal ( 15 years) is to predict reliably the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales.

  11. Experiences with a Barista Robot, FusionBot

    NASA Astrophysics Data System (ADS)

    Limbu, Dilip Kumar; Tan, Yeow Kee; Wong, Chern Yuen; Jiang, Ridong; Wu, Hengxin; Li, Liyuan; Kah, Eng Hoe; Yu, Xinguo; Li, Dong; Li, Haizhou

    In this paper, we describe the implemented service robot, called FusionBot. The goal of this research is to explore and demonstrate the utility of an interactive service robot in a smart home environment, thereby improving the quality of human life. The robot has four main features: 1) speech recognition, 2) object recognition, 3) object grabbing and fetching and 4) communication with a smart coffee machine. Its software architecture employs a multimodal dialogue system that integrates different components, including spoken dialog system, vision understanding, navigation and smart device gateway. In the experiments conducted during the TechFest 2008 event, the FusionBot successfully demonstrated that it could autonomously serve coffee to visitors on their request. Preliminary survey results indicate that the robot has potential to not only aid in the general robotics but also contribute towards the long term goal of intelligent service robotics in smart home environment.

  12. Tibiotalocalcaneal Fusion for Severe Deformity and Bone Loss.

    PubMed

    Asomugha, Eva U; Den Hartog, Bryan D; Junko, Jeffrey T; Alexander, Ian J

    2016-03-01

    Tibiotalocalcaneal fusion is an effective salvage procedure for combined end-stage ankle and subtalar arthrosis and for the management of severe planar deformities of the ankle and hindfoot. Although the procedure results in a rigid ankle and hindfoot, it is often the only means of providing patients with a stable and painless foot and ankle for ambulation. Some patients who require the procedure have substantial bone loss that can be managed with a variety of autograft and allograft options. Options for tibiotalocalcaneal fixation include both internal and external devices, the selection of which depends on the underlying pathology, amount of bone loss, and type of bone graft selected. Relatively high complication rates associated with tibiotalocalcaneal fusion have been reported, with complications ranging from superficial infection to ultimate amputation; however, proper patient selection and careful graft and fixation planning can minimize the postoperative complications of the procedure. PMID:26829585

  13. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  14. Gasdynamic mirror fusion propulsion experiment

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    2001-02-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. Several advantages accrue from such a design. First, the high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with ``loss cone'' microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000. .

  15. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions: Annual Report; 24 August 1998-23 August 1999

    SciTech Connect

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Eser, E.; Hegedus, S.S.; McCandless, B.E.

    2000-08-25

    This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

  16. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for the Development of Polycrystalline Multijunctions Annual Subcontract Report, 24 August 1999 - 23 August 2000

    SciTech Connect

    Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.

    2001-11-14

    This report describes the results achieved during Phase I of a three-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient, and with respect to device structure and module encapsulation.

  17. 2014 Nuclear Fusion Prize Acceptance Speech 2014 Nuclear Fusion Prize Acceptance Speech

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.

    2015-01-01

    It is a great honor to receive the 2014 Nuclear Fusion Prize, here at the 25th IAEA Fusion Energy Conference. On behalf of everyone involved in this work, I would like to thank the IAEA, the Nuclear Fusion journal team, the IOP, and specifically Mitsuru Kikuchi, for their support of this important award. I would also like to acknowledge the many important contributions made by the other ten papers nominated for this prize. Our paper investigates the physics of the H-mode pedestal in tokamaks, specifically the development of a predictive understanding of the pedestal structure based on electromagnetic instabilities which constrain it, and the testing of the resulting theoretical model (EPED) against detailed observations on multiple devices. In addition to making pedestal predictions for existing devices, the paper also presents predictions for ITER, including methods for optimizing its pedestal height and fusion performance. What made this work possible, and indeed a pleasure to be involved with, was an extensive set of collaborations, including theory-experiment, multi-institutional, and international collaborations. Many of these collaborations have gone on for over a decade, and have been fostered in part by the ITPA Pedestal Group. The eight authors of this paper, from five institutions, all made important contributions. Rich Groebner, Tom Osborne and Tony Leonard carried out dedicated experiments and data analysis on the DIII-D tokamak, testing the EPED model over a very wide range of parameters. Jerry Hughes led dedicated experiments on Alcator C-Mod which tested the model at high magnetic field and pedestal pressure. Marc Beurskens carried out experiments and data analysis on the JET tokamak, testing the model at large scale. Xueqiao Xu conducted two-fluid studies of diamagnetic stabilization, which enabled a more accurate treatment of this important effect. Finally, Howard Wilson and I have been working together for many years to develop analytic formalism and numerical techniques which enable efficient quantitative study of peeling-ballooning modes. More broadly, I would like to thank the full DIII-D, C-Mod and JET teams, the LLNL and General Atomics Theory groups, and the York Plasma Institute. In addition, I would like to thank the US DOE Office of Fusion Energy Sciences, EURATOM, and the UK EPSRC for supporting this research. On a more personal note, I would like to thank my mentors over the years, including Nat Fisch, Greg Hammett, Ron Waltz, Vincent Chan, and Tony Taylor, and numerous colleagues who provided insight related to this work, including Lang Lao, Alan Turnbull, Ming Chu, Bob Miller, Rip Perkins, John Greene, Keith Burrell, John Ferron, Mickey Wade, Wayne Solomon, George McKee, Zheng Yan, Andrea Garofalo, Raffi Nazikian, Jack Connor, Jim Hastie, Chris Hegna, Samuli Saarelma, Guido Huijsmans, Alberto Loarte, Yutaka Kamada, Naoyuki Oyama, Hajime Urano, Nobuyuki Aiba, Andrew Kirk, David Dickinson, Lorne Horton, Costanza Maggi, Wolfgang Suttrop, P.A. Schneider, Rajesh Maingi, Amanda Hubbard, Ahmed Diallo, John Walk, and Matthew Leyland. Recently, the model developed in this paper has been used to discover a new regime of operation, the Super H-Mode, and to shed light on mechanisms for suppressing Edge Localized Modes. I hope that the model will continue to be useful, both as a tool for predicting and optimizing pedestal and fusion performance, and as a platform on which the fusion community continues to build our understanding of the complex physics of the edge barrier region, which plays such an important role in overall confinement and stability.

  18. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  19. Detection device

    DOEpatents

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  20. Detection device

    DOEpatents

    Smith, Jay E.

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  1. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1981-01-01

    Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.

  2. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  3. Fusion breeder: its potential role and prospects

    SciTech Connect

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  4. Mitochondrial fission and fusion

    PubMed Central

    Scott, Iain; Youle, Richard J.

    2016-01-01

    Mitochondria are highly dynamic cellular organelles, with the ability to change size, shape and position over the course of a few seconds. Many of these changes are related to the ability of mitochondria to undergo the highly co-ordinated processes of fission (division of a single organelle into two or more independent structures) or fusion (the opposing reaction). These actions occur simultaneously and continuously in many cell types, and the balance between them regulates the overall morphology of mitochondria within any given cell. Fission and fusion are active processes which require many specialized proteins, including mechanical enzymes that physically alter mitochondrial membranes, and adaptor proteins that regulate the interaction of these mechanical proteins with organelles. Although not fully understood, alterations in mitochondrial morphology appear to be involved in several activities that are crucial to the health of cells. In the present chapter we discuss the mechanisms behind mitochondrial fission and fusion, and discuss the implications of changes in organelle morphology during the life of a cell. PMID:20533902

  5. Alternate Applications of Fusion - Production of Radioisotopes

    SciTech Connect

    Kulcinski, G.L.; Weidner, J.; Cipiti, B.; Ashley, R.P.; Santarius, J.F.; Murali, S.K.; Piefer, G.; Radel, R.

    2003-09-15

    A major effort to find near-term, non-electric applications of fusion energy has shown that the production of radioisotopes is attractive. The use of the D{sup 3}He fusion reaction to produce Positron Emission Tomography (PET) isotopes is described. An Inertial Electrostatic Confinement (IEC) device is particularly well suited to produce low levels of high-energy (14.7 MeV) protons, which in turn, can produce short-lived PET isotopes. The IEC device at University of Wisconsin has been modified to investigate the potential of this process to be commercially attractive.

  6. Background: Energy's holy grail. [The quest for controlled fusion

    SciTech Connect

    Not Available

    1993-01-22

    This article presents a brief history of the pursuit and development of fusion as a power source. Starting with the 1950s through the present, the research efforts of the US and other countries is highlighted, including a chronology of hey developments. Other topics discussed include cold fusion and magnetic versus inertial fusion issues.

  7. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  8. Cold fusion

    SciTech Connect

    Bush, R.T. )

    1991-03-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of {approximately}1 kW/cm{sup 3} Pd, as compared to 50 W/cm{sup 3} of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given.

  9. World progress toward fusion energy

    NASA Astrophysics Data System (ADS)

    Clarke, J. F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements (about 75 percent of that required for ignition) have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R&D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century.

  10. Radiation hardening of diagnostics for fusion reactors

    SciTech Connect

    Baur, J.F.; Engholm, B.A.; Hacker, M.P.; Maya, I.; Miller, P.H.; Toffolo, W.E.; Wojtowicz, S.S.

    1981-12-01

    A list of the diagnostic systems presently used in magnetic confinement fusion experiments is compiled herein. The radiation-sensitive components are identified, and their locations in zones around the machine are indicated. A table of radiation sensitivities of components is included to indicate the data available from previous work in fission reactor, space probe, and defense-related programs. Extrapolation and application to hardening of fusion diagnostic systems requires additional data that are more specific to the fusion radiation environment and fusion components. A list is also given of present radiation-producing facilities where near-term screening tests of materials and components can be performed.

  11. A review of pulse fusion propulsion

    NASA Astrophysics Data System (ADS)

    Cassenti, Brice N.

    2002-01-01

    During the last forty years there has been considerable interest in both internal and external pulse propulsion systems. Over this time the nuclear devices being considered have grown considerably smaller than those initially examined. Now pellets are normally in the range from 15 cm down to 2 cm in diameter, and fusion devices are generally preferred. High energy density triggers (such as lasers, particle beams or antiprotons) have been considered for detonating the fusion fuel. When antiprotons are considered it is more efficient to annihilate the antiprotons in a fissionable material, and then use the energy from the fission reaction to drive the fusion reaction in the pellet, than to use the annihilation energy directly. Finally, fissionable material can be used to boost the performance of a fusion system. The early concepts, which used critical mass devices, do not satisfy the ban on nuclear weapons in space, and are only rarely considered today. Concepts based on inertial confinement fusion are heavier than those that use antiprotons for the trigger since the mass associated with the lasers, or particle beams and their power supplies are considerably heavier than the traps used for antiprotons. Hence, from a performance, and even a political, point of view the antiproton-triggered approach is the most desirable, but it also requires more development. Not only is the trigger lighter but an external pulse propulsion rocket does not necessarily need radiators to reject excess heat and, hence, can be even lighter. Propulsion systems based on critical mass devices are clearly feasible, so the primary problem is to reduce the size of the explosive devices so that a critical mass is not required. If pulse nuclear fusion propulsion can become a reality then the performance is enough to complete manned missions to the inner planets in weeks and the outer planets in months. .

  12. Nuclear fusion: Inexhaustible source of energy for tomorrow

    NASA Astrophysics Data System (ADS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues (scientific, technological, economic and environmental) which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating, and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, and inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics, and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4.

  13. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  14. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-09-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ``International Thermonuclear Experimental Reactor (ITER)`` will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  15. Energetic particle physics in fusion research in preparation for burning plasma experiments

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Pinches, S. D.; Toi, K.

    2014-12-01

    The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium-tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the ‘sea’ of Alfvén eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  16. LIFE: a sustainable solution for developing safe, clean fusion power.

    PubMed

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob

    2013-06-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors. PMID:23629070

  17. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  18. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Astrophysics Data System (ADS)

    Emrich, Bill

    2000-10-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies without requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma ``b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  19. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  20. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  1. Lateral Transpsoas Fusion: Indications and Outcomes

    PubMed Central

    Patel, Vishal C.; Park, Daniel K.; Herkowitz, Harry N.

    2012-01-01

    Spinal fusion historically has been used extensively, and, recently, the lateral transpsoas approach to the thoracic and lumbar spine has become an increasingly common method to achieve fusion. Recent literature on this approach has elucidated its advantage over more traditional anterior and posterior approaches, which include a smaller tissue dissection, potentially lower blood loss, no need for an access surgeon, and a shorter hospital stay. Indications for the procedure have now expanded to include degenerative disc disease, spinal stenosis, degenerative scoliosis, nonunion, trauma, infection, and low-grade spondylolisthesis. Lateral interbody fusion has a similar if not lower rate of complications compared to traditional anterior and posterior approaches to interbody fusion. However, lateral interbody fusion has unique complications that include transient neurologic symptoms, motor deficits, and neural injuries that range from 1 to 60% in the literature. Additional studies are required to further evaluate and monitor the short- and long-term safety, efficacy, outcomes, and complications of lateral transpsoas procedures. PMID:23213303

  2. Review of the Fusion Materials Research Program

    NASA Astrophysics Data System (ADS)

    Harkness, Samuel D.; Baker, Charles C.; Abdou, Mohamed A.; Davis, John W.; Hogan, William; Kulcinski, Gerald L.; Mauel, Michael; McHargue, Carl; Odette, Robert; Petti, David A.; Shewmon, Paul; Zweben, Stewart J.

    2000-03-01

    This report presents the results and recommendations of the deliberations of the U.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion Materials Research Program carried out during 1998. Metrics evaluated included evidence of recognition, publications per worker, new people attracted to the work and significance of recent accomplishments.

  3. Plasma physics and controlled thermonuclear fusion

    SciTech Connect

    Krikorian, R. )

    1989-01-01

    This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.

  4. Socio-economic Aspects of Fusion

    SciTech Connect

    J.A. Schmidt

    2004-10-21

    Fusion power systems, if developed and deployed, would have many attractive features including power production not dependant on weather or solar conditions, flexible siting, and minimal carbon dioxide production. In this paper, we quantify the benefit of these features. In addition, fusion deployment scenarios are developed for the last half of this century and these scenarios are analyzed for resource requirements and waste production.

  5. Electrochromic device

    DOEpatents

    Schwendemanm, Irina G.; Polcyn, Adam D.; Finley, James J.; Boykin, Cheri M.; Knowles, Julianna M.

    2011-03-15

    An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

  6. Review of fusion synfuels

    SciTech Connect

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  7. Properties of the ion-ion hybrid resonator in fusion plasmas

    SciTech Connect

    Morales, George J.

    2015-10-06

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts between experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.

  8. Laser device

    SciTech Connect

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  9. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  10. Results at 24 months from the prospective, randomized, multicenter Investigational Device Exemption trial of ProDisc-C versus anterior cervical discectomy and fusion with 4-year follow-up and continued access patients

    PubMed Central

    Delamarter, Rick B.; Murrey, Daniel; Janssen, Michael E.; Goldstein, Jeffrey A.; Zigler, Jack; Tay, Bobby K-B; Darden, Bruce

    2010-01-01

    Background Cervical total disk replacement (TDR) is intended to address pain and preserve motion between vertebral bodies in patients with symptomatic cervical disk disease. Two-year follow-up for the ProDisc-C (Synthes USA Products, LLC, West Chester, Pennsylvania) TDR clinical trial showed non-inferiority versus anterior cervical discectomy and fusion (ACDF), showing superiority in many clinical outcomes. We present the 4-year interim follow-up results. Methods Patients were randomized (1:1) to ProDisc-C (PDC-R) or ACDF. Patients were assessed preoperatively, and postoperatively at 6 weeks and 3, 6, 12, 18, 24, 36, and 48 months. After the randomized portion, continued access (CA) patients also underwent ProDisc-C implantation, with follow-up visits up to 24 months. Evaluations included Neck Disability Index (NDI), Visual Analog Scale (VAS) for pain/satisfaction, and radiographic and physical/neurologic examinations. Results Randomized patients (103 PDC-R and 106 ACDF) and 136 CA patients were treated at 13 sites. VAS pain and NDI score improvements from baseline were significant for all patients (P < .0001) but did not differ among groups. VAS satisfaction was higher at all time points for PDC-R versus ACDF patients (P = .0499 at 48 months). The percentage of patients who responded yes to surgery again was 85.6% at 24 months and 88.9% at 48 months in the PDC-R group, 80.9% at 24 months and 81.0% at 48 months in the ACDF group, and 86.3% at 24 months in the CA group. Five PDC-R patients (48 months) and no CA patients (24 months) had index-level bridging bone. By 48 months, approximately 4-fold more ACDF patients required secondary surgery (3 of 103 PDC-R patients [2.9%] vs 12 of 106 ACDF patients [11.3%], P = .0292). Of these, 6 ACDF patients (5.6%) required procedures at adjacent levels. Three CA patients required secondary procedures (24 months). Conclusions Our 4-year data support that ProDisc-C TDR and ACDF are viable surgical options for symptomatic cervical disk disease. Although ACDF patients may be at higher risk for additional surgical intervention, patients in both groups show good clinical results at longer-term follow-up. PMID:25802660

  11. Multilevel image fusion

    NASA Astrophysics Data System (ADS)

    Petrovic, Vladimir

    2003-04-01

    Signal-level image fusion has in recent years established itself as a useful tool for dealing with vast amounts of image data obtained by disparate sensors. In many modern multisensor systems, fusion algorithms significantly reduce the amount of raw data that needs to be presented or processed without loss of information content as well as provide an effective way of information integrations. One of the most useful and widespread applications of signal-level image fusion is for display purposes. Fused images provide the observer with a more reliable and more complete representation of the scene than would be obtained through single sensor display configurations. In recent years, a plethora of algorithms that deal with problem of fusion for display has been proposed. However, almost all are based on relatively basic processing techniques and do not consider information from higher levels of abstraction. As some recent studies have shown this does not always satisfy the complex demands of a human observer and a more subjectively meaningful approach is required. This paper presents a fusion framework based on the idea that subjectively relevant fusion could be achieved in information at higher levels of abstraction such as image edges and image segment boundaries are used to guide the basic signal-level fusion process. Fusion of processed, higher level information to form a blueprint for fusion at signal level and fusion of information from multiple levels of extraction into a single fusion engine are both considered. When tested on two conventional signal-level fusion methodologies, such multi-level fusion structures eliminated undesirable effects such as a fusion artifacts and loss of visually vital information that compromise their usefulness. Images produced by inclusion of multi-level information in the fusion process are clearer and of generally better quality than those obtained through conventional low-level fusion. This is verified through subjective evaluation and established objective fusion performance metrics.

  12. Human Sensing Fusion Project for Safety and Health Society

    NASA Astrophysics Data System (ADS)

    Maenaka, Kazusuke

    This paper introduces objectives and status of “Human sensing fusion project” in the Exploratory Research for Advanced Technology (ERATO) scheme produced by Japan Science and Technology Agency (JST). This project was started in December 2007 and the laboratory with 11 members opened on April 2008. The aim of this project is to realize a human activity-monitoring device with many kinds of sensors in ultimate small size so that the device can be pasted or patched to the human body, and to establish the algorism for understanding human condition including both physical and mental conditions from obtained data. This system can be used towards the prevention of the danger of accidents and the maintenance of health. The actual research has just begun and preparations for project are well under way.

  13. Establishment of an Institute for Fusion Studies

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    1994-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement, including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a national and international center for information exchange by hosting exchange visits, conferences, and workshops; and (3) to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results obtained by the Institute contribute to the progress of nuclear fusion research, whose goal is the development of fusion power as a basic energy source. Close collaborative relationships have been developed with other university and national laboratory fusion groups, both in the US and abroad. In addition to its primary focus on mainstream fusion physics, the Institute is also involved with research in fusion-sidestream fields, such as advanced computing techniques, nonlinear dynamics, space plasmas and astrophysics, statistical mechanics, fluid dynamics, and accelerator physics. Important research discoveries are briefly described.

  14. Fusion metrics for dynamic situation analysis

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.; Pribilski, Mike; Daughtery, Bryan; Roscoe, Brian; Gunsett, Josh

    2004-08-01

    To design information fusion systems, it is important to develop metrics as part of a test and evaluation strategy. In many cases, fusion systems are designed to (1) meet a specific set of user information needs (IN), (2) continuously validate information pedigree and updates, and (3) maintain this performance under changing conditions. A fusion system"s performance is evaluated in many ways. However, developing a consistent set of metrics is important for standardization. For example, many track and identification metrics have been proposed for fusion analysis. To evaluate a complete fusion system performance, level 4 sensor management and level 5 user refinement metrics need to be developed simultaneously to determine whether or not the fusion system is meeting information needs. To describe fusion performance, the fusion community needs to agree on a minimum set of metrics for user assessment and algorithm comparison. We suggest that such a minimum set should include feasible metrics of accuracy, confidence, throughput, timeliness, and cost. These metrics can be computed as confidence (probability), accuracy (error), timeliness (delay), throughput (amount) and cost (dollars). In this paper, we explore an aggregate set of metrics for fusion evaluation and demonstrate with information need metrics for dynamic situation analysis.

  15. Mitochondrial Fusion Is Essential for Steroid Biosynthesis

    PubMed Central

    Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J.

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles’ reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis. PMID:23029265

  16. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  17. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  18. Fusion power for space propulsion.

    NASA Technical Reports Server (NTRS)

    Roth, R.; Rayle, W.; Reinmann, J.

    1972-01-01

    Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.

  19. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  20. Electrospray device

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)

    2011-01-01

    An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.

  1. COLLABORATIVE: FUSION SIMULATION PROGRAM

    SciTech Connect

    Chang, Choong Seock

    2012-06-05

    New York University, Courant Institute of Mathematical Sciences, participated in the “Fusion Simulation Program (FSP) Planning Activities” [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP’s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

  2. The SIGN nail for knee fusion: technique and clinical results

    PubMed Central

    Anderson, Duane Ray; Anderson, Lucas Aaron; Haller, Justin M.; Feyissa, Abebe Chala

    2016-01-01

    Purpose: Evaluate the efficacy of using the SIGN nail for instrumented knee fusion. Methods: Six consecutive patients (seven knees, three males) with an average age of 30.5 years (range, 18–50 years) underwent a knee arthrodesis with SIGN nail (mean follow-up 10.7 months; range, 8–14 months). Diagnoses included tuberculosis (two knees), congenital knee dislocation in two knees (one patient), bacterial septic arthritis (one knee), malunited spontaneous fusion (one knee), and severe gout with 90° flexion contracture (one knee). The nail was inserted through an anteromedial entry point on the femur and full weightbearing was permitted immediately. Results: All knees had clinical and radiographic evidence of fusion at final follow-up and none required further surgery. Four of six patients ambulated without assistive device, and all patients reported improved overall physical function. There were no post-operative complications. Conclusion: The technique described utilizing the SIGN nail is both safe and effective for knee arthrodesis and useful for austere environments with limited fluoroscopy and implant options.

  3. Overview of Fusion Nuclear Technology in the US

    SciTech Connect

    Morley, Neil B.; Abdou, Mohamed A.; Anderson, Mark; Calderoni, P.; Kurtz, Richard J.; Nygren, R N.; Raffray, R; Sawan, M.; Sharpe, Peter J.; Smolentsev, S.; Willms, Scott; Ying, A Y.

    2006-02-01

    Fusion Nuclear Technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities. With the recent return of the US to the ITER collaboration, several activities in support of the ITER machine have been initiated, including development of the first wall shielding blanket baffle module (module 18), testing of plasma facing components, ITER tokamak exhaust tritium processing system development, and 3-D neutronics and activation code advances. The ITER test blanket module development activity has also been restarted in the US, and critical R&D is proceeding on ceramic breeder thermomechanical systems and lead-lithium breeder systems utilizing SiC composite flow channel inserts for thermal and MHD electrical insulation. Novel research on free surface liquid metal divertors is also continuing, with the goal of fielding a lithium free surface divertor in the National Spherical Torus eXperimental device (NSTX) and aiding the development of the Lithium Tokamak Experiment at Princeton. Materials research in the long term is focused on coupled computational materials science and carefully designed experiments to determine the underlying mechanisms that control the mechanical and physical behavior of advanced body-centered cubic metals and ceramic composites in the harsh fusion environment. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described.

  4. Articulating feedstock delivery device

    DOEpatents

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  5. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  6. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

  7. Utility requirements for fusion

    SciTech Connect

    Vondrasek, R.J.

    1982-02-01

    This report describes work done and results obtained during performance of Task 1 of a study of Utility Requirements and Criteria for Fusion Options. The work consisted of developing a list of utility requirements for fusion optics containing definition of the requirements and showing their relative importance to the utility industry. The project team members developed a preliminary list which was refined by discussions and literature searches. The refined list was recast as a questionnaire which was sent to a substantial portion of the utility industry in this country. Forty-three questionnaire recipients responded including thirty-two utilities. A workshop was held to develop a revised requirements list using the survey responses as a major input. The list prepared by the workshop was further refined by a panel consisting of vice presidents of the three project team firms. The results of the study indicate that in addition to considering the cost of energy for a power plant, utilities consider twenty-three other requirements. Four of the requirements were judged to be vital to plant acceptability: Plant Capital Cost, Financial Liability, Plant Safety and Licensability.

  8. Fusion processor simulation (FPSim)

    NASA Astrophysics Data System (ADS)

    Barnell, Mark D.; Wynne, Douglas G.; Rahn, Brian J.

    1998-07-01

    The Fusion Processor Simulation (FPSim) is being developed by Rome Laboratory to support the Discrimination Interceptor Technology (DITP) and Advanced Sensor Technology (ASTP) Programs of the Ballistic Missile Defense Organization. The purpose of the FPSim is to serve as a test bed and evaluation tool for establishing the feasibility of achieving threat engagement timelines. The FPSim supports the integration, evaluation, and demonstration of different strategies, system concepts, and Acquisition Tracking & Pointing (ATP) subsystems and components. The environment comprises a simulation capability within which users can integrate and test their application software models, algorithms and databases. The FPSim must evolve as algorithm developments mature to support independent evaluation of contractor designs and the integration of a number of fusion processor subsystem technologies. To accomplish this, the simulation contains validated modules, databases, and simulations. It possesses standardized engagement scenarios, architectures and subsystem interfaces, and provides a hardware and software framework which is flexible to support growth, reconfigurration, and simulation component modification and insertion. Key user interaction features include: (1) Visualization of platform status through displays of the surveillance scene as seen by imaging sensors. (2) User-selectable data analysis and graphics display during the simulation execution as well as during post-simulation analysis. (3) Automated, graphical tools to permit the user to reconfigure the FPSim, i.e., 'Plug and Play' various model/software modules. The FPSim is capable of hosting and executing user's software algorithms of image processing, signal processing, subsystems, and functions for evaluation purposes.

  9. A hidden Markov model for multimodal biometrics score fusion

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2011-05-01

    There are strong evidences of that multimodal biometric score fusion can significantly improve human identification performance. Score level fusion usually involves score normalization, score fusion, and fusion decision. There are several types of score fusion methods, direct combination of fusion scores, classifier-based fusion, and density-based fusion. The real applications require achieving greater reliability in determining or verifying person's identity. The goal of this research is to improve the accuracy and robustness of human identification by using multimodal biometrics score fusion. The accuracy means high verification rate if tested on a closed dataset, or a high genuine accept rate under low false accept rate if tested on an open dataset. While the robustness means the fusion performance is stable with variant biometric scores. We propose a hidden Markov model (HMM) for multiple score fusion, where the biometric scores include multimodal scores and multi-matcher scores. The state probability density functions in a HHM model are estimated by Gaussian mixture model. The proposed HMM model for multiple score fusion is accurate for identification, flexible and reliable with biometrics. The proposed HMM method are tested on three NIST-BSSR1 multimodal databases and on three face-score databases. The results show the HMM method is an excellent and reliable score fusion method.

  10. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect

    Richard J. Hawryluk

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  11. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  12. Centric fusion polymorphisms in waterbuck (Kobus ellipsiprymnus).

    PubMed

    Kingswood, S C; Kumamoto, A T; Charter, S J; Aman, R A; Ryder, O A

    1998-01-01

    Twenty-six captive individuals of the ellipsiprymnus subspecies group of Kobus ellipsiprymnus were found to have chromosomal complements of 2n = 50-52 (FN = 61-62), and 26 of the defassa subspecies group, including three specimens from Lake Nakuru National Park, Kenya, had complements of 2n = 53-54 (FN = 62). G-banded karyotypes that were numbered according to the standard karyotype of Bos taurus revealed that variation in diploid number was the result of polymorphism for two independent centric (Robertsonian) fusions. The ellipsiprymnus group was polymorphic for a 7;11 centric fusion. Both elements of chromosome pairs 7 and 11 were fused in fusion homozygotes (2n = 50); in fusion heterozygotes (2n = 51), only one element of each pair was fused. The 7;11 fusion was lacking in specimens with 2n = 52. The defassa group was polymorphic for a 6;18 centric fusion; individuals were either heterozygous for the fusion (2n = 53) or lacking it (2n = 54). There were no defassa group individuals that were homozygous for the 6;18 fusion (2n = 52), but this may be a sampling artifact. The 6;18 fusion was fixed in the ellipsiprymnus group, whereas the 7;11 fusion was absent in the defassa group. In G- and C-banded karyotypes, all autosomal arms and the X chromosomes of the two subspecies groups appeared to be completely homologous. However, the Y chromosome was acrocentric in the ellipsiprymnus group and submetacentric in the defassa group, possibly the result of a pericentric inversion. Fixed chromosomal differences between the two subspecies groups reflect a period of supposed geographic isolation during which time they diverged genetically and phenotypically, and the centric fusion polymorphisms raise the possibility of reduced fertility in hybrids. These data, in conjunction with phenotypic and mitochondrial DNA data, suggest to us that populations of the ellipsiprymnus and defassa groups should be managed separately. PMID:9487681

  13. Posterior lumbar interbody fusion.

    PubMed

    DiPaola, Christian P; Molinari, Robert W

    2008-03-01

    Posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) create intervertebral fusion by means of a posterior approach. Both techniques are useful in managing degenerative disk disease, severe instability, spondylolisthesis, deformity, and pseudarthrosis. Successful results have been reported with allograft, various cages (for interbody support), autograft, and recombinant human bone morphogenetic protein-2. Interbody fusion techniques may facilitate reduction and enhance fusion. The rationale for PLIF and TLIF is biomechanically sound. However, clinical outcomes of different anterior and posterior spinal fusion techniques tend to be similar. PLIF has a high complication rate (dural tear, 5.4% to 10%; neurologic injury, 9% to 16%). These findings, coupled with the versatility of TLIF throughout the entire lumbar spine, may make TLIF the ideal choice for an all-posterior interbody fusion. PMID:18316711

  14. Adaptive fusion processor

    NASA Astrophysics Data System (ADS)

    Dasarathy, Belur V.

    1995-07-01

    An adaptive learning fusion processor, capable of fusion of a mix of information at the data, feature, and decision levels, acquired from multiple sources (sensors as well as feature extractors and/or decision processors) is presented. Four alternative approaches: a self- partitioning neural net, an adaptive fusion process, an evidential reasoning approach, and a concurrence seeking approach were initially evaluated from a conceptual viewpoint followed by some limited simulation and testing. Based on this assessment, an adaptive fusion processor employing innovative advances of the nearest neighbor concept was selected for detailed implementation and testing using real-world field data. Results show the benefits of fusion in terms of improved performance as compared to those obtainable from the individual component information streams being input to the fusion processor and clearly bring out the feasibility and effectiveness of the new multi-level fusion concepts.

  15. Modern magnetic mirrors and their fusion prospects

    NASA Astrophysics Data System (ADS)

    Burdakov, A. V.; Ivanov, A. A.; Kruglyakov, E. P.

    2010-12-01

    This paper reviews the most important findings from recent experiments on modern magnetic mirrors, apart from tandem mirrors and rotating plasma devices. These modern magnetic mirrors are represented by a multiple mirror device GOL-3 and a gas dynamic trap, experiments on which are carried out in Novosibirsk. Both devices are characterized by axial symmetry and improved axial confinement of plasma compared with conventional mirror machines. Recent findings from experiments enable us to more practically consider applications of the gas dynamic trap as a high-flux 14 MeV neutron source for fusion materials testing, and possibly as a driver for fusion-fission hybrids. They also indicate that effective axial plasma confinement in a multiple mirror can be obtained with a smaller plasma density compared with theory and β < 1. This is beneficial from the point of view of the technical realization of a multiple mirror reactor.

  16. Fusion Plasma Studies on JET

    NASA Astrophysics Data System (ADS)

    Lomas, P. J.

    1998-11-01

    Following the DT experiments already reported (Gibson, APS, 1997) JET has undertaken a series of "ITER Physics" experiments. A common thread between these two sets of experiments is the isotopic effects on the H mode threshold, density limit, ELM behaviour, pedestal scaling and confinement. It is found that the edge barrier and core scale very differently, that the pedestal pressure for the L to H transition scales approximately as the square of the toroidal field divided by the square root of the mass whereas the pedestal pressure during the ELMy phase scales approximately as the toroidal field times mass (at fixed q). With this pedestal subtracted the core confinement has a weak negative mass dependence consistent with gyro-Bohm scaling. In addition, these experiments included inter-machine similarity, error fields and the effect of vessel temperature on impurity generation. These new experiments will be described, bringing out the key results for "Next-Step" devices from both the DT experiments and the subsequent phase. The installation of a new divertor, MKIIGB has been recently completed, entirely by remote handling. This is the third in a series of divertor designs including the rather open MKI and the more closed MKII. It features a removeable "septum" which separates inner and outer legs, horizontal and removeable vertical CFC targets and a pumping throat between them. As currently installed the design is a deep divertor topologically similar to the present ITER vertical target design. If required the vertical targets can be removed to expose CFC baffles to test a "Gas-Box" divertor. At present (July) ELMy H modes have been established with up to 7MW of ICRH at 2.5MA. The experimental programme will include studies of the H mode threshold, density limit and divertor detachment including balancing the two divertor legs. The divertor should permit a continuation of the development of core fusion performance towards higher yield and towards steady conditions utilising internal and/or edge barriers, and experiments are planned on edge control with gas, impurities and pellets together with current profile control with LHCD. The latest results from this new divertor will be described.

  17. Nuclear Chemistry: Include It in Your Curriculum.

    ERIC Educational Resources Information Center

    Atwood, Charles H.; Sheline, R. K.

    1989-01-01

    Some of the topics that might be included in a nuclear chemistry section are explored. Offers radioactivity, closed shells in nuclei, energy of nuclear processes, nuclear reactions, and fission and fusion as topics of interest. Provided are ideas and examples for each. (MVL)

  18. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

  19. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the underlying principles involved in MTF. Magnetized Target Fusion is an attempt to combine MCF (magnetic confinement fusion) for energy confinement and ICF (inertial confinement fusion) for efficient compression heating and wall free containment of the fusing plasma. It also seeks to combine the best features to these two main commonplace approaches to fusion.

  20. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has been widely and expertly disseminated. We further acknowledge the efforts of the Chairman of the IFRC and of all authors and experts who contributed to this report on the present status of fusion research.

  1. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  2. Wireless device monitoring systems and monitoring devices, and associated methods

    DOEpatents

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  3. Advances in data representation for hard/soft information fusion

    NASA Astrophysics Data System (ADS)

    Rimland, Jeffrey C.; Coughlin, Dan; Hall, David L.; Graham, Jacob L.

    2012-06-01

    Information fusion is becoming increasingly human-centric. While past systems typically relegated humans to the role of analyzing a finished fusion product, current systems are exploring the role of humans as integral elements in a modular and extensible distributed framework where many tasks can be accomplished by either human or machine performers. For example, "participatory sensing" campaigns give humans the role of "soft sensors" by uploading their direct observations or as "soft sensor platforms" by using mobile devices to record human-annotated, GPS-encoded high quality photographs, video, or audio. Additionally, the role of "human-in-the-loop", in which individuals or teams using advanced human computer interface (HCI) tools such as stereoscopic 3D visualization, haptic interfaces, or aural "sonification" interfaces can help to effectively engage the innate human capability to perform pattern matching, anomaly identification, and semantic-based contextual reasoning to interpret an evolving situation. The Pennsylvania State University is participating in a Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office to investigate fusion of hard and soft data in counterinsurgency (COIN) situations. In addition to the importance of this research for Intelligence Preparation of the Battlefield (IPB), many of the same challenges and techniques apply to health and medical informatics, crisis management, crowd-sourced "citizen science", and monitoring environmental concerns. One of the key challenges that we have encountered is the development of data formats, protocols, and methodologies to establish an information architecture and framework for the effective capture, representation, transmission, and storage of the vastly heterogeneous data and accompanying metadata -- including capabilities and characteristics of human observers, uncertainty of human observations, "soft" contextual data, and information pedigree. This paper describes our findings and offers insights into the role of data representation in hard/soft fusion.

  4. Visual sensor fusion for active security in robotic industrial environments

    NASA Astrophysics Data System (ADS)

    Robla, Sandra; Llata, Jose R.; Torre-Ferrero, Carlos; Sarabia, Esther G.; Becerra, Victor; Perez-Oria, Juan

    2014-12-01

    This work presents a method of information fusion involving data captured by both a standard charge-coupled device (CCD) camera and a time-of-flight (ToF) camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time-of-flight information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time, this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localisation. Further development of these methods will make it possible to identify objects and their position in the real world and to use this information to prevent possible collisions between the robot and such objects.

  5. Device and SPICE modeling of RRAM devices.

    PubMed

    Sheridan, Patrick; Kim, Kuk-Hwan; Gaba, Siddharth; Chang, Ting; Chen, Lin; Lu, Wei

    2011-09-01

    We report the development of physics based models for resistive random-access memory (RRAM) devices. The models are based on a generalized memristive system framework and can explain the dynamic resistive switching phenomena observed in a broad range of devices. Furthermore, by constructing a simple subcircuit, we can incorporate the device models into standard circuit simulators such as SPICE. The SPICE models can accurately capture the dynamic effects of the RRAM devices such as the apparent threshold effect, the voltage dependence of the switching time, and multi-level effects under complex circuit conditions. The device and SPICE models can also be readily expanded to include additional effects related to internal state changes, and will be valuable to help in the design and simulation of memory and logic circuits based on resistive switching devices. PMID:21847501

  6. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  7. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  8. BOOK REVIEW: Fusion: The Energy of the Universe

    NASA Astrophysics Data System (ADS)

    Lister, J.

    2006-05-01

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the `nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call `false trails', since it is so tempting to produce a `backroom' solution to mankind's hunger for energy. Unfortunately, Chapter 8 can only regret that none of them has passed closer peer review. Chapters 9 and 10 concentrate on the `tokamak' concept for magnetic confinement, the basis for the JET and ITER projects, as well as for a wealth of smaller, national projects. The hopes and the disappointments are well and very frankly illustrated. The motivation for building a project of the size of ITER is made very clear. Present fusion research cannot forget that its mission is to develop an industrial reactor, not just a powerful research tool. Chapter 11 presents the major challenges between ITER and a reactor. Finally, Chapter 12 reminds us of why we need energy, why we do not have a credible solution at the mid-term (20 years) and why we have no solution in the longer term. The public awareness of this is growing, at last, even though the arguments were all on the table in the 1970's. This chapter therefore closes the book by bringing the reader back to earth rather suitably with the hard reality of energy needs and the absence of credible policies. This book has already received impressive approval among a wide range of people, since it so evidently succeeds in its goal to explain Fusion to many levels of reader. Gary McCracken and Peter Stott (one time editor of Plasma Physics and Controlled Fusion) both dedicated their careers to magnetic confinement fusion, mostly at Culham working on UKAEA projects and later on the JET project. They were both deeply involved with international collaborations and both were working abroad when they retired. The mixture between ideas, developments and people is most successfully developed. They clearly underline the importance of strong international collaboration on which this field depends. This open background is tangible in their recently published work, in which they have tried to communicate their love and understanding of this exciting field to the non-specialist. Their attempt has resulted in a remarkable success, filling a hole in the available literature. The format of this book, with boxed technical details, allows the casual reader to browse without being trapped by excessive detail, whereas the information is still there for the more assiduous reader. The only technical fault is the marring of the presentation by some unresolved production details in chapter 10. With the long-awaited decision to site ITER in Europe, there will inevitably be a strong demand for more information on fusion research for non-specialists, simply to understand what is behind this large project. This book fits the bill. It is written with technical accuracy but without resort to mathematics—a notably tricky target. The non-specialist wishing to find out about the field of fusion research, whether working as a journalist, administrator, secretary, politician, engineer or technician, will find a wealth of detail expressed in an accessible language. The specialist will be surprised by the precision of the text, and by the depth of the historical basis to this research. He will learn much, even if he is already familiar with the current state of art of fusion research. The younger researchers will find a clear history of their chosen field. The reviewer knows of no other book which has met this difficult goal with such ease, and strongly recommends it for the educated layman as well as for the ITER generation of younger physicists who did not live through the evolutionary period of fusion research, with its doubts, disappointments and successes.

  9. Creep and Fatigue Issues for Structural Materials in Demonstration Fusion Energy Systems

    SciTech Connect

    Sham, Sam; Zinkle, Steven J

    2010-01-01

    in an environment consisting of intense neutron irradiation, high temperatures, and cyclic varying stress. Therefore, thermal creep and creep-fatigue (in addition to radiation effects issues such as irradiation creep) are anticipated to be important issues for the engineering design of structural materials for fusion reactors. The key materials systems under consideration for structures of fusion reactors include 8-9%Cr ferritic/martensitic steels, oxide dispersion strengthened ferritic steels, vanadium alloys, and SiC fiber-reinforced SiC matrix ceramic composites. The current elevated temperature creep-fatigue design rules based on the American Society of Mechanical Engineers (ASME) code are discussed, along with a brief review of creep-fatigue interaction mechanisms. Refinements to current international design codes to include radiation-induced phenomena such as reduction in uniform elongation have been performed in association with the engineering design of the ITER fusion energy device currently under construction in France. Several other creep-fatigue issues of potential importance for fusion energy applications are discussed.

  10. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  11. Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  12. Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  13. Deformability-based microfluidic cell pairing and fusion.

    PubMed

    Dura, Burak; Liu, Yaoping; Voldman, Joel

    2014-08-01

    We present a microfluidic cell pairing device capable of sequential trapping and pairing of hundreds of cells using passive hydrodynamics and flow-induced deformation. We describe the design and operation principles of our device and show its applicability for cell fusion. Using our device, we achieved both homotypic and heterotypic cell pairing, demonstrating efficiencies up to 80%. The platform is compatible with fusion protocols based on biological, chemical and physical stimuli with fusion yields up to 95%. Our device further permits its disconnection from the fluidic hardware enabling its transportation for imaging and culture while maintaining cell registration on chip. Our design principles and cell trapping technique can readily be applied for different cell types and can be extended to trap and fuse multiple (>2) cell partners as demonstrated by our preliminary experiments. PMID:24898933

  14. Limited wrist fusion.

    PubMed

    Mih, A D

    1997-11-01

    Limited wrist fusion can provide patients a measure of pain relief with retention of a functional range of motion. Recent biomechanic investigations have shed light on the potential benefits of such procedures. Clinical studies have demonstrated the usefulness of limited wrist fusion for the treatment of numerous conditions involving the wrist. Significant complications are associated with many of these fusions and should be considered before performing these procedures. PMID:9403297

  15. Metatarsophalangeal Joint Fusion: Why and How?

    PubMed

    Rammelt, Stefan; Panzner, Ines; Mittlmeier, Thomas

    2015-09-01

    First metatarsophalangeal (MTP) joint fusion aims at elimination of pain resulting from end-stage arthritis and obtaining a stable, plantigrade first toe. Associated deformities are corrected and greater defects are filled with interposition autograft or allograft. Fusion is generally obtained with screws, staples, and/or low-profile plates. Complications include infection, osteonecrosis, implant protrusion or failure, nonunion, and malunion, the latter 2 each occurring in approximately 6% of cases. The medium-term results of first MTP joint fusion indicate mostly good functional results with success rates of approximately 90%. PMID:26320560

  16. Safety assessment of the fusion breeder

    SciTech Connect

    Gurner, J.K.; Maya, I.

    1985-07-01

    This paper presents the safety features and describes the supporting analyses of the fusion breeder reactor concepts developed by the Fusion Breeder Program (FBP). The reactor and blanket concepts studied include suppressed and fast-fission blankets for both the tandem mirror and tokamak confinement schemes. Helium and lithium cooled blankets are considered. Most of the effort was directed toward a lithium cooled, fissionsuppressed, tandem mirror blanket. Other concepts are evaluated with comparatively minimal analysis. Mobile fuel, which can be gravity dumped to separately cooled tanks, together with other design solutions and safety systems, can result in an acceptably safe fusion breeder.

  17. Portable data collection device

    DOEpatents

    French, P.D.

    1996-06-11

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.

  18. Portable data collection device

    DOEpatents

    French, Patrick D.

    1996-01-01

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  19. Magnetic fusion reactor economics

    SciTech Connect

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  20. Fusion tritium program in the United States

    SciTech Connect

    Anderson, J.L.; Bartlit, J.R.

    1988-01-01

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Labortory. Objectives of this project are to develop and demonstrate the fuel cycle for processing the reactor exhaust gas (unburned deuterium and tritium plus impurities), and the necessary personnel and environemntal protection systems for the next generation of fusion devices. The TSTA is a full-scale system for an INTOR/ITER sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report is a summary of the results and interactions of the TSTA program since a previous summary was published and an overview of related tritium programs.

  1. Computational problems in magnetic fusion research

    SciTech Connect

    Killeen, J.

    1981-08-31

    Numerical calculations have had an important role in fusion research since its beginning, but the application of computers to plasma physics has advanced rapidly in the last few years. One reason for this is the increasing sophistication of the mathematical models of plasma behavior, and another is the increased speed and memory of the computers which made it reasonable to consider numerical simulation of fusion devices. The behavior of a plasma is simulated by a variety of numerical models. Some models used for short times give detailed knowledge of the plasma on a microscopic scale, while other models used for much longer times compute macroscopic properties of the plasma dynamics. The computer models used in fusion research are surveyed. One of the most active areas of research is in time-dependent, three-dimensional, resistive magnetohydrodynamic models. These codes are reviewed briefly.

  2. Visualize Your Data with Google Fusion Tables

    NASA Astrophysics Data System (ADS)

    Brisbin, K. E.

    2011-12-01

    Google Fusion Tables is a modern data management platform that makes it easy to host, manage, collaborate on, visualize, and publish tabular data online. Fusion Tables allows users to upload their own data to the Google cloud, which they can then use to create compelling and interactive visualizations with the data. Users can view data on a Google Map, plot data in a line chart, or display data along a timeline. Users can share these visualizations with others to explore and discover interesting trends about various types of data, including scientific data such as invasive species or global trends in disease. Fusion Tables has been used by many organizations to visualize a variety of scientific data. One example is the California Redistricting Map created by the LA Times: http://goo.gl/gwZt5 The Pacific Institute and Circle of Blue have used Fusion Tables to map the quality of water around the world: http://goo.gl/T4SX8 The World Resources Institute mapped the threat level of coral reefs using Fusion Tables: http://goo.gl/cdqe8 What attendees will learn in this session: This session will cover all the steps necessary to use Fusion Tables to create a variety of interactive visualizations. Attendees will begin by learning about the various options for uploading data into Fusion Tables, including Shapefile, KML file, and CSV file import. Attendees will then learn how to use Fusion Tables to manage their data by merging it with other data and controlling the permissions of the data. Finally, the session will cover how to create a customized visualization from the data, and share that visualization with others using both Fusion Tables and the Google Maps API.

  3. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  4. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  5. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  6. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  7. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  8. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections over a wider energy range for many more reactions is desired for accurate determination of and more insight into the dynamics of fusion in the heavy mass region.

  9. Nuclear fusion inside condense matters

    NASA Astrophysics Data System (ADS)

    He, Jing-Tang

    2007-03-01

    This article describes in detail the nuclear fusion inside condense matters—the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.

  10. Sensor fusion II: Human and machine strategies; Proceedings of the Meeting, Philadelphia, PA, Nov. 6-9, 1989

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1990-01-01

    Various papers on human and machine strategies in sensor fusion are presented. The general topics addressed include: active vision, measurement and analysis of visual motion, decision models for sensor fusion, implementation of sensor fusion algorithms, applying sensor fusion to image analysis, perceptual modules and their fusion, perceptual organization and object recognition, planning and the integration of high-level knowledge with perception, using prior knowledge and context in sensor fusion.

  11. Establishment of an Institute for Fusion Studies

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  12. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  13. Cognitive fusion analysis based on context

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.; Plano, Susan

    2004-04-01

    The standard fusion model includes active and passive user interaction in level 5 - "User Refinement". User refinement is more than just details of passive automation partitioning - it is the active management of information. While a fusion system can explore many operational conditions over myopic changes, the user has the ability to reason about the hyperopic "big picture." Blasch and Plano developed cognitive-fusion models that address user constraints including: intent, attention, trust, workload, and throughput to facilitate hyperopic analysis. To enhance user-fusion performance modeling (i.e. confidence, timeliness, and accuracy); we seek to explore the nature of context. Context, the interrelated conditions of which something exists, can be modeled in many ways including geographic, sensor, object, and environmental conditioning. This paper highlights user refinement actions based on context to constrain the fusion analysis for accurately representing the trade space in the real world. As an example, we explore a target identification task in which contextual information from the user"s cognitive model is imparted to a fusion belief filter.

  14. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  15. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  16. Affine fusion tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew

    Fusion dimensions are integer-valued quantities equal to the dimensions of the spaces of conformal blocks, which describe the interactions of a conformal field theory (CFT). Our focus was on the Wess-Zumino-Witten models, a particularly interesting type of CFT, whose primary fields correspond to representations of affine Lie groups. Arguably, affine fusion tadpoles are the simplest g ? 1 fusion dimension, having only a single incoming field and g = 1. We study the symmetries of the SU(N) tadpole and Verlinde formula with the intention of finding a non-negative-integer decomposition. Such a decomposition might be indicative of a combinatorial atom for fusion, which could suggest a new combinatorial account of fusion dimensions. From produced tables we found that tadpole values appeared to be polynomial in the level k. Several conjectures were made and we sketch a method obtaining general forms of SU(N) tadpoles via dominant weight sums.

  17. A direct fusion drive for rocket propulsion

    NASA Astrophysics Data System (ADS)

    Razin, Yosef S.; Pajer, Gary; Breton, Mary; Ham, Eric; Mueller, Joseph; Paluszek, Michael; Glasser, Alan H.; Cohen, Samuel A.

    2014-12-01

    The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium-helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma's Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun-Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg.

  18. Choice of coils for a fusion reactor.

    PubMed

    Alexander, Romeo; Garabedian, Paul R

    2007-07-24

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  19. Role of impurities in fusion plasmas

    SciTech Connect

    Tokar, M. Z.

    2008-10-15

    The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.

  20. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  1. [Fluctuations and transport in fusion plasma

    SciTech Connect

    Not Available

    1989-12-31

    This research is aimed at furthering the understanding of turbulent fluctuations in fusion plasmas and the anomalous transport of particles, heat, and momentum which results therefrom. This understanding is critical to the design of future plasma confinement devices. This study involves a combination of experimental measurements, from the Caltech and other tokamaks, analysis and interpretation of measurements, computer calculations of basic processes, and comparisons of the latter with experiment.

  2. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  3. A smartphone-based driver safety monitoring system using data fusion.

    PubMed

    Lee, Boon-Giin; Chung, Wan-Young

    2012-01-01

    This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver's capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

  4. A Smartphone-Based Driver Safety Monitoring System Using Data Fusion

    PubMed Central

    Lee, Boon-Giin; Chung, Wan-Young

    2012-01-01

    This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

  5. Fusion power production in International Thermonuclear Experimental Reactor baseline H-mode scenarios

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kessel, C. E.; Pankin, A. Y.

    2015-04-01

    Self-consistent simulations of 15 MA ITER H-mode DT scenarios, from ramp-up through flat-top, are carried out. Electron and ion temperatures, toroidal angular frequency, and currents are evolved, in simulations carried out using the predictive TRANSPort and integrated modeling code starting with initial profiles and equilibria obtained from tokamak simulation code studies. Studies are carried out examining the dependence and sensitivity of fusion power production on electron density, argon impurity concentration, choice of radio frequency heating, pedestal temperature without and with E × B flow shear effects included, and the degree of plasma rotation. The goal of these whole-device ITER simulations is to identify dependencies that might impact ITER fusion performance.

  6. Fusion power production in International Thermonuclear Experimental Reactor baseline H-mode scenarios

    SciTech Connect

    Rafiq, T.; Kritz, A. H.; Kessel, C. E.; Pankin, A. Y.

    2015-04-15

    Self-consistent simulations of 15 MA ITER H-mode DT scenarios, from ramp-up through flat-top, are carried out. Electron and ion temperatures, toroidal angular frequency, and currents are evolved, in simulations carried out using the predictive TRANSPort and integrated modeling code starting with initial profiles and equilibria obtained from tokamak simulation code studies. Studies are carried out examining the dependence and sensitivity of fusion power production on electron density, argon impurity concentration, choice of radio frequency heating, pedestal temperature without and with E × B flow shear effects included, and the degree of plasma rotation. The goal of these whole-device ITER simulations is to identify dependencies that might impact ITER fusion performance.

  7. Enabling Fusion Codes for Upcoming Exascale Platforms

    NASA Astrophysics Data System (ADS)

    Koniges, Alice; Yuan, Xuefei; Liu, Wangyi; Narayanan, Praveen; Preissl, Robert; Ethier, Stephane; Wang, Weixang; Jardin, Stephen; Candy, Jeff

    2012-10-01

    Emerging computational systems including multicore homogenous nodes as well as accelerated heterogeneous nodes provide new and important platforms for moving plasma modeling codes to the next level of predictive performance. We discuss the effects of these new architectures on plasma physics applications using examples from MHD, plasma turbulence, gyrokinetics, and radiation hydrodynamics. First, we profile the existing codes on current machines, to determine both scalability and bottlenecks [1]. Then, we determine how best to use ``application proxies,'' for fusion, that provide a vehicle for computational scientists to modify and test new programming models in realistic fusion code frameworks. We describe how well these application proxies mimic the performance of full fusion codes, and give examples of the use of advanced programming models to improve their performance. [4pt] [1] Performance Characterization and Implications for Magnetic Fusion Co-design Applications, P. Narayanan, et al. Proc. CUG 2011

  8. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  9. Fusion programs in applied plasma physics

    SciTech Connect

    Not Available

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  10. Colliding beam fusion reactor space propulsion system

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 106-109 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, Isp~106 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameter×10-meters length, magnetic field ~7 Tesla, ion beam current ~10 A, and fuels of either D-He3,P-B11,P-Li6,D-Li6, etc. .

  11. Superconductivity and fusion energy—the inseparable companions

    NASA Astrophysics Data System (ADS)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  12. Super-X divertors and high power density fusion devicesa)

    NASA Astrophysics Data System (ADS)

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-01

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source "battery" small enough to fit inside a conventional fission blanket.

  13. The application of diagnostic equipment in the Tokamak fusion reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Bang-shuai; Chang, Jun; Gong, Xian-zu; Gan, Jia-fu; Feng, Shu-long

    2011-11-01

    This paper introduces the infrared optical system in the Tokamak fusion reaction device. In this optical system, the traditional optical structure can't meet the requirements, because the length of the infrared optical system in the Tokamak is very long. The design of optical system in the detection facility includes three parts:1.the combination of the concave aspheric mirror and flat mirror; 2.the Cassegrain system; 3.the relay group lenses. This paper describes the decrease of the modulation transfer function (MTF) when the temperature changes and how to compensate the decrease of the MTF in order to maintain the image quality in a high level. As a result, the image quality of this optical system can reach the requirements when the temperature changes.

  14. Negative ion source development for fusion application (invited).

    PubMed

    Takeiri, Yasuhiko

    2010-02-01

    Giant negative ion sources, producing high-current of several tens amps with high energy of several hundreds keV to 1 MeV, are required for a neutral beam injector (NBI) in a fusion device. The giant negative ion sources are cesium-seeded plasma sources, in which the negative ions are produced on the cesium-covered surface. Their characteristic features are discussed with the views of large-volume plasma production, large-area beam acceleration, and high-voltage dc holding. The international thermonuclear experimental reactor NBI employs a 1 MeV-40 A of deuterium negative ion source, and intensive development programs for the rf-driven source plasma production and the multistage electrostatic acceleration are in progress, including the long pulse operation for 3600 s. Present status of the development, as well as the achievements of the giant negative ion sources in the working injectors, is also summarized. PMID:20192420

  15. Capillary interconnect device

    SciTech Connect

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  16. Advanced resistive exercise device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)

    2008-01-01

    The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.

  17. Large excimer lasers for fusion

    SciTech Connect

    Jensen, R.J.

    1986-01-01

    Important goals in DOE and DOD programs require multimegajoule laser pulses. For inertial confinement fusion there is also a requirement to deliver the pulse in about 25 nsec with a very particular power vs time profile - all at high overall efficiency and low cost per joule. After exhaustive consideration of various alternatives, our studies have shown that the most cost effective approach to energy scaling is to increase the size of the final amplifiers up to the 200 to 300 kJ level. This conclusion derives largely from the fact that, at a given complexity, costs increase slowly with increasing part size while output energy should increase dramatically. Extrapolations to low cost by drastic cuts in the unit cost of smaller devices through mass production are considered highly risky. At a minimum the requirement to provide, space, optics and mounts for such systems will remain expensive. In recent years there have been dramatic advances in scaling. The Los Alamos LAM has produced over 10 kJ in a single 1/2 nsec pulse. In this paper we explore the issues involved in scaling to higher energy while still maintaining high efficiencies. In the remainder of this paper we will discuss KrF laser scaling for the fusion mission. We will omit most of the discussion of the laser system design, but address only KrF amplifiers.

  18. Fusion Simulation Program

    SciTech Connect

    Project Staff

    2012-02-29

    Under this project, General Atomics (GA) was tasked to develop the experimental validation plans for two high priority ISAs, Boundary and Pedestal and Whole Device Modeling in collaboration with the theory, simulation and experimental communities. The following sections have been incorporated into the final FSP Program Plan (www.pppl.gov/fsp), which was delivered to the US Department of Energy (DOE). Additional deliverables by GA include guidance for validation, development of metrics to evaluate success and procedures for collaboration with experiments. These are also part of the final report.

  19. Joint interpretation of geophysical data using Image Fusion techniques

    NASA Astrophysics Data System (ADS)

    Karamitrou, A.; Tsokas, G.; Petrou, M.

    2013-12-01

    Joint interpretation of geophysical data produced from different methods is a challenging area of research in a wide range of applications. In this work we apply several image fusion approaches to combine maps of electrical resistivity, electromagnetic conductivity, vertical gradient of the magnetic field, magnetic susceptibility, and ground penetrating radar reflections, in order to detect archaeological relics. We utilize data gathered from Arkansas University, with the support of the U.S. Department of Defense, through the Strategic Environmental Research and Development Program (SERDP-CS1263). The area of investigation is the Army City, situated in Riley Country of Kansas, USA. The depth of the relics is estimated about 30 cm from the surface, yet the surface indications of its existence are limited. We initially register the images from the different methods to correct from random offsets due to the use of hand-held devices during the measurement procedure. Next, we apply four different image fusion approaches to create combined images, using fusion with mean values, wavelet decomposition, curvelet transform, and curvelet transform enhancing the images along specific angles. We create seven combinations of pairs between the available geophysical datasets. The combinations are such that for every pair at least one high-resolution method (resistivity or magnetic gradiometry) is included. Our results indicate that in almost every case the method of mean values produces satisfactory fused images that corporate the majority of the features of the initial images. However, the contrast of the final image is reduced, and in some cases the averaging process nearly eliminated features that are fade in the original images. Wavelet based fusion outputs also good results, providing additional control in selecting the feature wavelength. Curvelet based fusion is proved the most effective method in most of the cases. The ability of curvelet domain to unfold the image in terms of space, wavenumber, and orientation, provides important advantages compared with the rest of the methods by allowing the incorporation of a-priori information about the orientation of the potential targets.

  20. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  1. BOOK REVIEW: Advanced Diagnostics for Magnetic and Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Stott, PE; Wootton, A.; Gorini, G.; Sindoni, E.; Batani, D.

    2003-02-01

    This book is a collection of papers, written by specialists in the field, on advanced topics of nuclear fusion diagnostics. The 78 contributions were originally presented at the International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion held at Villa Monastero, Italy in September 2001. Both magnetically confined and inertial fusion programmes are quite extensively covered, with more emphasis given to the former scheme. In the case of magnetic confinement, since the present international programme is strongly focused on next-step devices, particular attention is devoted to techniques and technologies viable in an environment with strong neutron fluxes. Indeed, in the first section, the various methods are considered in the perspective of performing the measurements of the relevant parameters in conditions approaching a burning plasma, mainly in the Tokamak configuration. The most demanding requirements, like the implications of the use of tritium and radiation resistance, are reviewed and the most challenging open issues, which require further research and development, are also clearly mentioned. The following three sections are devoted to some of the most recent developments in plasma diagnostics, which are grouped according to the following classification: `Neutron and particle diagnostics', `Optical and x-ray diagnostics' and `Interferometry, Polarimetry and Thomson Scattering'. In these chapters, several of the most recent results are given, covering measurements taken on the most advanced experiments around the world. Here the developments described deal more with the requirements imposed by the physical issues to be studied. They are therefore more focused on the approaches adopted to increase the spatial and time resolution of the diagnostics, on some methods to improve the characterisation of the turbulence and on fast particles. Good coverage is given to neutron diagnostics, which are assuming increasing relevance as the plasma parameters approach ignition. Spectroscopic systems and their recent developments are well represented, whereas edge diagnostics are somewhat thin on the ground. A dedicated section is devoted to the latest tests on radiation effects and technological issues. The problems of damage to optical components and the difficulties presented by the determination of the tritium inventory are described. In the last part, the new diagnostic systems of the most recent experiments (under construction or recently operated) are reported. Various aspects of some diagnostics not included in the three previous sections are also covered, with particular emphasis on microwaves and infrared diagnostics. The book is well suited for specialists and, more generally, for people involved in nuclear fusion, who need information about the most recent developments in the field of plasma diagnostics. The papers cover many aspects of the challenges and possible solutions for performing measurements in fusion machines approaching reactor conditions. On the other hand, the contributions are in general quite advanced and would be challenging for people without a significant background in plasma diagnostics and nuclear fusion. The quality of the paper is more than satisfactory both from the point of view of clarity and of graphics. Moreover, at the beginning of the book, several papers make a considerable effort to put diagnostic issues in the wider context of present day nuclear fusion research. For those topics, which are too involved to be completely described in a conference contribution, in general adequate references are provided for deeper investigation. A Murari Approximately one third of the papers included in this volume deal with diagnostics related to inertial confinement fusion plasmas (i.e., laser-produced plasmas and pulsed-power). These papers discuss recent developments in charged particle diagnostics, neutron diagnostics, optical and x-ray measurements along with laser and particle probing diagnostics. The resulting collection of papers is comprehensive and wide-ranging and all of the major laboratories in Europe, the US, and Japan are represented. There is important discussion on the development of diagnostics for the National Ignition Facility, LMJ, and future ultra-high intensity laser experiments as well as papers on wire array z-pinch experiments. It is especially useful to have the contributions from inertial confinement fusion experiments intermingled with those from magnetic confinement fusion. The separation between these two approaches to fusion is often unfortunately large, so one of the pleasing things about this book is that it is very easy for readers familiar with experimental research in one area to compare `state of the art' plasma diagnostics in the other area. Hopefully this will facilitate the development of new ideas in both areas. This book is a conference proceedings and as such, almost all of the papers included are quite brief and are highly technical. Consequently, the book is not particularly pedagogical and would be most useful to researchers already working in this area of physics. For these readers, however, Advanced Diagnostics for Magnetic and Inertial Confinement Fusion is an excellent overview of the present status of fusion plasma diagnostics. K Krushelnick

  2. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  3. Bumper wall for plasma device

    DOEpatents

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  4. Clinical Experiences of Non-fusion Dynamic Stabilization Surgery for Adjacent Segmental Pathology after Lumbar Fusion

    PubMed Central

    Lee, Soo Eon; Kim, Hyun-Jib

    2016-01-01

    Background As an alternative to spinal fusion, non-fusion dynamic stabilization surgery has been developed, showing good clinical outcomes. In the present study, we introduce our surgical series, which involves non-fusion dynamic stabilization surgery for adjacent segment pathology (ASP) after lumbar fusion surgery. Methods Fifteen patients (13 female and 2 male, mean age of 62.1 years) who underwent dynamic stabilization surgery for symptomatic ASP were included and medical records, magnetic resonance images (MRI), and plain radiographs were retrospectively evaluated. Results Twelve of the 15 patients had the fusion segment at L4-5, and the most common segment affected by ASP was L3-4. The time interval between prior fusion and later non-fusion surgery was mean 67.0 months. The Visual Analog Scale and Oswestry Disability Index showed values of 7.4 and 58.5% before the non-fusion surgery and these values respectively declined to 4.2 and 41.3% postoperatively at 36 months (p=0.027 and p=0.018, respectively). During the mean 44.8 months of follow-up, medication of analgesics was also significantly reduced. The MRI grade for disc and central stenosis identified significant degeneration at L3-4, and similar disc degeneration from lateral radiographs was determined at L3-4 between before the prior fusion surgery and the later non-fusion surgery. After the non-fusion surgery, the L3-4 segment and the proximal segment of L2-3 were preserved in the disc, stenosis and facet joint whereas L1-2 showed disc degeneration on the last MRI (p=0.032). Five instances of radiologic ASP were identified, showing characteristic disc-space narrowing at the proximal segments of L1-2 and L2-3. However, no patient underwent additional surgery for ASP after non-fusion dynamic stabilization surgery. Conclusion The proposed non-fusion dynamic stabilization system could be an effective surgical treatment for elderly patients with symptomatic ASP after lumbar fusion. PMID:27162710

  5. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  6. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    PubMed

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  7. Nonimaging radiant energy direction device

    DOEpatents

    Winston, Roland (Chicago, IL)

    1980-01-01

    A raidant energy nonimaging light direction device is provided. The device includes an energy transducer and a reflective wall whose contour is particularly determined with respect to the geometrical vector flux of a field associated with the transducer.

  8. Turbulent particle transport in magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.

    2005-05-01

    Understanding the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. A peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices (ASDEX Upgrade, DIII-D, JET, TCV, TEXT, TFTR) indicate the existence of a turbulent particle pinch. Recently, such a turbulent pinch has been unambiguously identified in Tore Supra very long discharges, in the absence of both collisional particle pinch and central particle source, for more than 4 min (Hoang et al 2003 Phys. Rev. Lett. 90 155002). This turbulent pinch is predicted by a quasilinear theory of particle transport (Weiland J et al 1989 Nucl. Fusion 29 1810), and confirmed by non-linear turbulence simulations (Garbet et al 2003 Phys. Rev. Lett. 91 035001) and general considerations based on the conservation of motion invariants (Baker et al 2004 Phys. Plasmas 11 992). Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Zabolotsky et al 2003 Plasma Phys. Control. Fusion 45 735, Weisen et al 2004 Plasma Phys. Control. Fusion 46 751, Baker et al 2000 Nucl. Fusion 40 1003), to the temperature profile (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Angioni et al 2004 Nucl. Fusion 44 827) and also to the collisionality that changes the nature of the microturbulence (Angioni et al 2003 Phys. Rev. Lett. 90 205003, Garzotti et al 2003 Nucl. Fusion 43 1829, Weisen et al 2004 31st EPS Conf. on Plasma Phys. (London) vol 28G (ECA) P-1.146, Lopes Cardozo N J 1995 Plasma Phys. Control. Fusion 37 799). The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density profile in ITER.

  9. Fusion-breeder program

    SciTech Connect

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  10. Label Fusion Strategy Selection

    PubMed Central

    Robitaille, Nicolas; Duchesne, Simon

    2012-01-01

    Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniquesSTAPLE, Voting, and Shape-Based Averaging (SBA)and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113

  11. Fission fusion hybrids- recent progress

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  12. National mirror fusion program plan

    SciTech Connect

    Not Available

    1980-01-01

    Experiments are under way in the Tandem Mirror Experiment (TMX) facility at Livermore, which was built to test the principles of the new tandem-mirror concept. Recently this idea has been greatly improved by incorporating a new element called the thermal barrier, a concept that promises a higher power gain factor (Q = 10 to 20) with much less demanding neutral-beam and magnet technology and a higher fusion power density in the reactor. In addition to the tandem-mirror experiments in TMX, a new attempt will be made in the Beta II facility during FY 1980 to create and sustain a field-reversed mirror configuration, which is a different mirror fusion approach that could lead to early commercialization of small reactors. The plan presented here is designed to exploit the results of these and other mirror experiments and theoretical developments toward a variety of applications. The main objective is electric power generation. Other applications being studied include a hybrid fusion reactor that breeds fuel for fission reactors and a reactor for producing synthetic fuel (H/sub 2/) by means of thermochemical processes.

  13. Economics and Environmental Compatibility of Fusion Reactors —Its Analysis and Coming Issues— 4.Economic Effect of Fusion in Energy Market 4.1Economic Impact of Fusion Deployment in Energy Market

    NASA Astrophysics Data System (ADS)

    Konishi, Satoshi; Tokimatsu, Koji

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment.

  14. Developmental validation of the PowerPlex(®) Fusion 6C System.

    PubMed

    Ensenberger, Martin G; Lenz, Kristy A; Matthies, Learden K; Hadinoto, Gregory M; Schienman, John E; Przech, Angela J; Morganti, Michael W; Renstrom, Daniel T; Baker, Victoria M; Gawrys, Kori M; Hoogendoorn, Marlijn; Steffen, Carolyn R; Martín, Pablo; Alonso, Antonio; Olson, Hope R; Sprecher, Cynthia J; Storts, Douglas R

    2016-03-01

    The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System. PMID:26774099

  15. Fusion Power Demonstration (FPD) maintenance and disassembly considerations

    SciTech Connect

    Spampinato, P.T.

    1985-01-01

    The Fusion Power Demonstration study is the development of a tandem mirror reactor design that follows the operation of the Mirror Fusion Test Facility. It is a power-producing device utilizing the deuterium-tritium fuel cycle; hence, much of its maintenance must be accomplished remotely because of neutron-induced gamma activation. This paper discusses the maintenance philosophy adopted and its impact on the device configuration and examines some of the specific requirements of scheduled and unscheduled component replacements. This work is being used for the next phase of mirror reactor concepts: the Mini-Mars reactor study.

  16. Fusion Power Demonstration (FPD) maintenance and disassembly considerations

    NASA Astrophysics Data System (ADS)

    Spampinato, P. T.

    1985-02-01

    The Fusion Power Demonstration study is the development of a tandem mirror reactor design that follows the operation of the Mirror Fusion Test Facility. It is a power-producing device utilizing the deuterium-tritium fuel cycle; hence, much of its maintenance must be accomplished remotely because of neutron-induced gamma activation. The maintenance philosophy adopted and its impact on the device configuration are examined, as well as some of the specific requirements of scheduled and unscheduled component replacements. This work is being used for the next phase of mirror reactor concepts: the Mini-Mars reactor study.

  17. Fusion Power Demonstration (FPD) maintenance and disassembly considerations

    SciTech Connect

    Sampinato, P.T.

    1985-07-01

    The Fusion Power Demonstration study is the development of a tandem mirror reactor design that follows the operation of the Mirror Fusion Test Facility. It is a power-producing device utilizing the deuterium-tritium fuel cycle; hence, much of its maintenance must be accomplished remotely because of neutroninduced gamma activation. This paper discusses the maintenance philosophy adopted and its impact on the device configuration and examines some of the specific requirements of scheduled and unscheduled component replacements. This work is being used for the next phase of mirror reactor concepts: the Mini-Mars reactor study.

  18. Aneutronic fusion on the base of asymmetrical centrifugal trap

    NASA Astrophysics Data System (ADS)

    Volosov, V. I.

    2006-08-01

    A physical design of a device that can be a base for a direct-conversion nuclear electric power station is considered. The project considers the aneutronic reaction P-11B in the asymmetric centrifugal trap. Kinetic energy of nuclear particles (alpha particles) is converted into electrical energy inside this device; no thermal cycle is used. Heating and recuperation of energy of protons and boron ions take place in the plasma space. The presented scheme differs significantly from the conventional thermonuclear fusion. 'Fast' protons, which are the main energy component of plasma, have an almost monoenergetic spectrum. This makes it possible to realize the 'resonance' fusion.

  19. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  20. Fusion ignition research experiment

    SciTech Connect

    Dale Meade

    2000-07-18

    Understanding the properties of high gain (alpha-dominated) fusion plasmas in an advanced toroidal configuration is the largest remaining open issue that must be addressed to provide the scientific foundation for an attractive magnetic fusion reactor. The critical parts of this science can be obtained in a compact high field tokamak which is also likely to provide the fastest and least expensive path to understanding alpha-dominated plasmas in advanced toroidal systems.

  1. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  2. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin; Canik, John; Diem, Stephanie J; Milora, Stanley L; Park, J. M.; Sontag, Aaron C; Fogarty, P. J.; Lumsdaine, Arnold; Murakami, Masanori; Burgess, Thomas W; Cole, Michael J; Katoh, Yutai; Korsah, Kofi; Patton, Bradley D; Wagner, John C; Yoder, III, Graydon L

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  3. Progress in bright ion beams for industry, medicine and fusion at LBNL

    SciTech Connect

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  4. Pre-evaluation of fusion shielding benchmark experiment

    SciTech Connect

    Hayashi, K.; Handa, H.; Konno, C.

    1994-12-31

    Shielding benchmark experiment is very useful to test the design code and nuclear data for fusion devices. There are many types of benchmark experiments that should be done in fusion shielding problems, but time and budget are limited. Therefore it will be important to select and determine the effective experimental configurations by precalculation before the experiment. The authors did three types of pre-evaluation to determine the experimental assembly configurations of shielding benchmark experiments planned in FNS, JAERI. (1) Void Effect Experiment - The purpose of this experiment is to measure the local increase of dose and nuclear heating behind small void(s) in shield material. Dimension of the voids and its arrangements were decided as follows. Dose and nuclear heating were calculated both for with and without void(s). Minimum size of the void was determined so that the ratio of these two results may be larger than error of the measurement system. (2) Auxiliary Shield Experiment - The purpose of this experiment is to measure shielding properties of B{sub 4}C, Pb, W, and dose around superconducting magnet (SCM). Thickness of B{sub 4}C, Pb, W and their arrangement including multilayer configuration were determined. (3) SCM Nuclear Heating Experiment - The purpose of this experiment is to measure nuclear heating and dose distribution in SCM material. Because it is difficult to use liquid helium as a part of SCM mock up material, material composition of SCM mock up are surveyed to have similar nuclear heating property of real SCM composition.

  5. Device for cutting protrusions

    DOEpatents

    Bzorgi, Fariborz M.

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  6. Engineering the fusion reactor first wall

    SciTech Connect

    Wurden, Glen; Scott, Willms

    2008-01-01

    Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

  7. Fusion energy breakthrough

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The physics of harnessing nuclear fusion as a heat source is not well known. No such power generator has been made yet and significant breakthroughs will be necessary before the concept is proven. All such advances in energy research are followed with keen interest by geophysicists. One such breakthrough was made recently at the Massachusetts Institute of Technology (MIT) in experiments with a model Tokamak fusion reactor.The MIT experimental high-field nuclear fusion reactor with the name of Alcator-C experienced a large technological advance when its operating parameters exceeded the socalled “Lawson criterion,” one of the minimum requirements of a successful nuclear fusion power generator. The nuclear fusion of hydrogen to form helium releases heat, but to make such a process workable for a power plant, there must be a sizable efficiency in the ratio of energy input to bring about the reaction to the thermal energy released by the reaction, and even this advance falls far short of the breakeven point. The advance is, however, a great step in the learning curve about fusion magnetohydrodynamic plasma systems.

  8. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  9. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  10. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  11. Direct observation of intermediate states in model membrane fusion.

    PubMed

    Keidel, Andrea; Bartsch, Tobias F; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  12. Direct observation of intermediate states in model membrane fusion

    NASA Astrophysics Data System (ADS)

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-03-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.

  13. Direct observation of intermediate states in model membrane fusion

    PubMed Central

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  14. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  15. Inverted organic photosensitive device

    DOEpatents

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  16. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S&E potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behaviour of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state-of-the-art S&E computer codes and risk tools for safety assessment, and evaluating and improving fusion facility design in terms of accident safety, worker safety, and waste disposal. There are three papers considering safety issues of the test blanket modules (TBM) producing tritium to be installed in ITER. These modules represent different concepts of demonstration fusion power facilities (DEMO). L. Boccaccini et al (Germany) analyses the possibility of jeopardizing the ITER safety under specific accidents in the European helium-cooled pebble-bed TBM, e.g. pressurization of the vacuum vessel (VV), hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and VV causing air ingress. Safety analysis is also presented for Chinese TBM with a helium-cooled solid breeder to be tested in ITER by Z. Chen et al (China). Radiological inventories, afterheat, waste disposal ratings, electromagnetic characteristics, LOCA and tritium safety management are considered. An overview of a preliminary safety analysis performed for a US proposed TBM is presented by B. Merrill et al (USA). This DEMO relevant dual coolant liquid lead-lithium TBM has been explored both in the USA and EU. T. Pinna et al (Italy) summarize the six-year development of a failure rate database for fusion specific components on the basis of data coming from operating experience gained in various fusion laboratories. The activity began in 2001 with the study of the Joint European Torus vacuum and active gas handling systems. Two years later the neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  17. Contribution to fusion research from IAEA coordinated research projects and joint experiments

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M.; Van Oost, G.; Stöckel, J.; Kamendje, R.; Kuteev, B. N.; Melnikov, A.; Popov, T.; Svoboda, V.; The IAEA CRP Teams

    2015-10-01

    The paper presents objectives and activities of IAEA Coordinated Research Projects ‘Conceptual development of steady-state compact fusion neutron sources’ and ‘Utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research’. The background and main projects of the CRP on FNS are described in detail, as this is a new activity at IAEA. Recent activities of the second CRP, which continues activities of previous CRPs, are overviewed.

  18. Clinical and Radiological Outcomes of Segmental Spinal Fusion in Transforaminal Lumbar Interbody Fusion with Spinous Process Tricortical Autograft

    PubMed Central

    Tangviriyapaiboon, Teera

    2014-01-01

    Study Design A retrospective study. Purpose To investigate clinical and radiological outcomes when using spinous process as a tricortical autograft for segmental spinal fusion in transforaminal lumbar interbody fusion (TLIF). Overview of Literature Interbody spinal fusion is one of the important procedures in spinal surgery. Many types of autografts are harvested at the expense of complications. Clinical and radiographic results of patients who underwent TLIF with intraoperative harvested spinous process autograft in Prasat Neurological Institue, Bangkok, Thailand, were assessed as new technical innovation. Methods Between October 2005 to July 2009, 30 cases of patients who underwent TLIF with spinous process tricortical autograft were included. Clinical evaluations were assessed by visual analog scales (VAS) and Prolo functional and economic scores at the preoperation and postoperation and at 2 years postoperation. Static and dynamic plain radiograph of lumbar spine were reviewed for achievement of fusion. Results Initial successful fusion time in lumbar interbody fusion with spinous process tricortical autograft was 4.72 months (range, 3.8-6.1 months) postoperation and 100% fusion rate was reported at 2 years. Our initial successful fusion time in lumbar interbody fusion was compared to the other types of grafts in previous literatures. Conclusions The use of intraoperative harvested spinous process tricortical autograft has overcome many disadvantages of harvesting autograft with better initial successful fusion time (4.72 months). VAS and Prolo scores showed some improvement in the outcomes between the preoperative and postoperative periods. PMID:24761199

  19. Lateral Lumbar Interbody Fusion: Indications, Outcomes, and Complications.

    PubMed

    Kwon, Brian; Kim, David Hanwuk

    2016-02-01

    Lateral lumbar interbody fusion is a minimally invasive spinal fusion technique that uses the retroperitoneal approach to the anterior spinal column. Mechanical and technical results of the technique compare favorably with those of anterior lumbar interbody fusion in regard to large graft placement, graft volumes, and early initial stability. Lateral lumbar interbody fusion uses the transpsoas approach and traverses near the lumbar plexus. It is not, however, without its unique complications. Groin pain or numbness is well tolerated and often temporary; however, quadriceps palsy can be long-lasting and debilitating. Rarer but serious complications include vascular and visceral injury. Lateral lumbar interbody fusion has been used successfully to treat common degenerative spinal conditions such as spinal instability, stenosis, scoliosis, and degenerative disk disease. While understanding of the lumbar plexus and the technical challenges of the procedure improves, lateral lumbar interbody fusion will continue to provide safe and successful clinical outcomes with less morbidity than traditional procedures. PMID:26803545

  20. Helium-3 fusion fuel resources for space power

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Santarius, J. F.; Kulcinski, G. L.

    The need to develop fusion power for multimegawatt extraterrestrial space station and for large, deep-space propulsion systems is recognized. This need is based upon the fact that fission nuclear fuels release nearly 1000000 times more energy than chemical fuels while fusion fuels release approx. 3 times as much energy as fission fuels on a mass basis. Additionally, fusion fuels utilizing the easily fusible hydrogen and helium isotopes are 10 to the 10th times more numerically abundant in the solar system than the fission fuel, U-235. Consequently, fusion fuel resources and conceptual design studies of fusion power plants must be developed for potential application as extraterrestrial power sources. The abundant resource of lunar He-3 makes it imperative to consider this fusion fuel for space power applications. Such use may include, Earth orbiting power stations, lunar and Martian base camp power stations, and perhaps propulsion systems for distant planetary missions.