Science.gov

Sample records for fusion devices including

  1. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or...

  2. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intervertebral body fusion device. 888.3080... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or...

  3. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intervertebral body fusion device. 888.3080... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or...

  4. Magnetic systems for fusion devices

    SciTech Connect

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France.

  5. Charge exchange recombination spectroscopy on fusion devices

    SciTech Connect

    Duval, B. P.

    2012-05-25

    For fusion, obtaining reliable measurements of basic plasma parameters like ion and electron densities and temperatures is a primary goal. For theory, measurements are needed as a function of time and space to understand plasma transport and confinement with the ultimate goal of achieving economic nuclear fusion power. Electron profile measurements and plasma spectroscopy for the plasma ions are introduced. With the advent of Neutral Beam auxiliary plasma heating, Charge Exchange Recombination Spectroscopy provides accurate and time resolved measurements of the ions in large volume fusion devices. In acknowledgement of Nicol Peacock's role in the development of these techniques, still at the forefront of plasma fusion research, this paper describes the evolution of this diagnostic method.

  6. Open-ended fusion devices and reactors

    SciTech Connect

    Kawabe, T.; Nariai, H.

    1983-12-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown.

  7. Planar geometry inertial electrostatic confinement fusion device

    NASA Astrophysics Data System (ADS)

    Knapp, Daniel R.

    2015-03-01

    In the classic gridded inertial electrostatic confinement (IEC) fusion reactor, ion bombardment of the grid leads to heating, thermionic electron emission, significant power loss, and ultimately melting of the grid. Gridless IEC devices have sought to overcome these limitations. Klein reported a gridless device in which ions are circulated as a linear beam in an electrostatic analogue of an optical resonator. To overcome limits of stored ions due to space charge effects at the turning regions, the device employed multiple overlapping traps. The work reported here seeks to further increase the turning region space in a gridless trap by employing a planar geometry. Ion trapping in the planar device was examined by simulating trajectories of 2H+ ions with SIMION 8.1 software. Simulations were carried out using multiple potentials as in Klein's device and for a single potential trap as a planar analogue of the anharmonic ion trap. Scattering by background gas was simulated using a hard sphere collision model, and the results suggested the device will require operation at low pressure with a separate ion source.

  8. Divertor for a linear fusion device

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Yushmanov, P. N.; Barnes, D. C.; Putvinski, S. V.

    2016-03-01

    Linear fusion devices can use large magnetic flux flaring in the end tanks to reduce the heat load on the end structures. In order to reduce parallel electron heat loss, one has to create conditions where the neutral gas density in the end tanks is low, as otherwise cold electrons produced by the ionization of the neutrals would cool down the core plasma electrons. The processes determining the neutral gas formation and spatial distribution are analysed for the case where neutrals are formed by the surface recombination of the outflowing plasma. The conditions under which the cooling of the core plasma is negligible are formulated.

  9. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media... United States after importation of certain electronic devices, including wireless communication devices... importation of certain electronic devices, including wireless communication devices, tablet computers,...

  10. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  11. Tritium and workers in fusion devices-lessons learnt.

    PubMed

    Rodriguez-Rodrigo, Lina; Elbez-Uzan, Joelle; Alejaldre, Carlos

    2009-09-01

    Fusion machines from all over the world have contributed to the knowledge accumulated in fusion science. This knowledge has been applied to design new experimental fusion machines and in particular ITER. Only two fusion devices based on magnetic confinement have used deuterium and tritium fuels to-date-the Tokamak Fusion Test Reactor, TFTR, in Princeton, USA, and JET, the European tokamak. These machines have demonstrated that the fusion reaction is achievable with these fuels, and have provided valuable lessons on radioprotection-related issues as concerns tritium and workers. Dedicated tritium installations for fusion research and development have also contributed to this knowledge base. PMID:19690360

  12. Particle simulation of transport in fusion devices

    SciTech Connect

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C. . Electronics Research Lab.); Cohen, B.I. )

    1989-10-17

    Our research in the area of transport processes in fusion devices has recently been centered on the development of particle simulation models of transport in the scrape-off layer (SOL) of a diverted tokamak. As part of this research, we have been involved in the development of a suitable boundary condition for the plasma current at a floating plate that allows use of long time- and space-scale implicit simulation techniques. We have also been involved in a comparison of results from our particle-in-cell (PIC) code and a bounce-averaged Fokker-Planck (FP) code for the study of particle confinement in an auxiliary heated mirror plasma. 3 refs., 1 fig.

  13. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  14. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (˜100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  15. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  16. Linear optimal control of tokamak fusion devices

    SciTech Connect

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  17. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data... infringing electronic devices, including wireless communication devices, portable music and data...

  18. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  19. Simulation of Carbon Production from Material Surfaces in Fusion Devices

    NASA Astrophysics Data System (ADS)

    Marian, J.; Verboncoeur, J.

    2005-10-01

    Impurity production at carbon surfaces by plasma bombardment is a key issue for fusion devices as modest amounts can lead to excessive radiative power loss and/or hydrogenic D-T fuel dilution. Here results of molecular dynamics (MD) simulations of physical and chemical sputtering of hydrocarbons are presented for models of graphite and amorphous carbon, the latter formed by continuous D-T impingement in conditions that mimic fusion devices. The results represent more extensive simulations than we reported last year, including incident energies in the 30-300 eV range for a variety of incident angles that yield a number of different hydrocarbon molecules. The calculated low-energy yields clarify the uncertainty in the complex chemical sputtering rate since chemical bonding and hard-core repulsion are both included in the interatomic potential. Also modeled is hydrocarbon break-up by electron-impact collisions and transport near the surface. Finally, edge transport simulations illustrate the sensitivity of the edge plasma properties arising from moderate changes in the carbon content. The models will provide the impurity background for the TEMPEST kinetic edge code.

  20. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false TV interface devices, including cable system... FREQUENCY DEVICES Unintentional Radiators § 15.115 TV interface devices, including cable system terminal devices. (a) Measurements of the radiated emissions of a TV interface device shall be conducted with...

  1. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false TV interface devices, including cable system... FREQUENCY DEVICES Unintentional Radiators § 15.115 TV interface devices, including cable system terminal devices. (a) Measurements of the radiated emissions of a TV interface device shall be conducted with...

  2. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false TV interface devices, including cable system... FREQUENCY DEVICES Unintentional Radiators § 15.115 TV interface devices, including cable system terminal devices. (a) Measurements of the radiated emissions of a TV interface device shall be conducted with...

  3. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false TV interface devices, including cable system... FREQUENCY DEVICES Unintentional Radiators § 15.115 TV interface devices, including cable system terminal devices. (a) Measurements of the radiated emissions of a TV interface device shall be conducted with...

  4. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false TV interface devices, including cable system... FREQUENCY DEVICES Unintentional Radiators § 15.115 TV interface devices, including cable system terminal devices. (a) Measurements of the radiated emissions of a TV interface device shall be conducted with...

  5. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  6. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  7. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  8. Coupling of transit time instabilities in electrostatic confinement fusion devices

    SciTech Connect

    Gruenwald, J. Fröhlich, M.

    2015-07-15

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  9. Computerized device for critical flicker fusion frequency determination

    NASA Astrophysics Data System (ADS)

    Racene, Diana

    2003-08-01

    The critical fusion flicker frequency of the human visual system is the threshold sensitivity for a sine wave-modulated patch of monochromatic flickering light measured as a function of its temporal frequency and average luminance level. The critical flicker fusion frequency changes in different ocular and non-ocular conditions, for example: high-myopia, AMR, glaucoma, schizophrenia, after alcohol intake, fatigue. A computerized test for critical flicker fusion frequency determination was developed. Visual stimuli are two monochromatic LED light sources that are connected to a microcircuit driven by a computer program. The control of the device is realized through the parallel port of the PC. During the test a patient has to choose which one of two light sources is flickering. The critical cliker fusion frequency is determined by a psychophysical procedure, where the stimulus frequency that showed detection probability 75% is considered as threshold.

  10. Coupling of transit time instabilities in electrostatic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.; Fröhlich, M.

    2015-07-01

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  11. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  12. Measurements of temperature and density in magnetic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Udintsev, Victor S.

    2010-11-01

    Controlled thermonuclear fusion can fulfil the demand of mankind to have an inexhaustible source of energy that does not cause any serious environmental pollution. The aim of fusion research is to build a continuously operating reactor in which the energy released by the fusion reactions is sufficiently high to keep the plasma hot and to produce more fusion reactions. The knowledge of the plasma temperature and density, together with the energy confinement time, is therefore very important for the effective control of the self-sustained fusion reactor. Various methods and diagnostics for measurements of the plasma temperature and density in present experimental fusion devices, as well as requirements for the future fusion reactors, will be discussed. A special attention will be given to the temperature and density diagnostics in ITER tokamak, which is presently under construction by several international partners at Cadarache in France. Development of these diagnostics is a major challenge because of severe environment, strict engineering requirements, safety issues and the need for high reliability in the measurements.

  13. RF plasma heating in toroidal fusion devices

    SciTech Connect

    Golant, V.E.; Fedorov, V.I. )

    1989-01-01

    The purpose of the present book is to provide, in seven chapters, a unified overview of the methods for rf heating of plasmas in toroidal fusion experiments. In Chapter 1 the problem of plasma heating in tokamaks and stellarators is formulated and the requirements for auxiliary heating techniques are described. This chapter also contains a brief review of the results of research on tokamaks and stellarators. Chapter 2 is devoted to a theoretical description of the principal physical effects involved in the rf heating of plasmas, especially the characteristics of wave propagation, of the mechanisms by which waves are absorbed and plasma heating takes place, and of the nonlinear effects that accompany heating. The primary emphasis is on a qualitative physical picture of these effects. Chapters 3-6, in turn, deal with the major rf heating techniques currently under investigation, electron cyclotron (ECH), ion cyclotron (ICH), lower hybrid (LHH), and Alfven wave heating. In each of these chapters the main schemes for heating are described, the results of theoretical analyses and numerical simulations are discussed, the technology of the heating systems is briefly described, and experimental work published through the end of 1984 is reviewed. Finally, in Chapter 7 the different rf heating techniques are compared; they are contrasted with neutral beam injection, and the feasibility of adiabatic compression as a means of heating plasmas is examined. Separate abstracts were prepared for each chapter of this book. 246 refs.

  14. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  15. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  16. Real-Time Decision Fusion for Multimodal Neural Prosthetic Devices

    PubMed Central

    White, James Robert; Levy, Todd; Bishop, William; Beaty, James D.

    2010-01-01

    Background The field of neural prosthetics aims to develop prosthetic limbs with a brain-computer interface (BCI) through which neural activity is decoded into movements. A natural extension of current research is the incorporation of neural activity from multiple modalities to more accurately estimate the user's intent. The challenge remains how to appropriately combine this information in real-time for a neural prosthetic device. Methodology/Principal Findings Here we propose a framework based on decision fusion, i.e., fusing predictions from several single-modality decoders to produce a more accurate device state estimate. We examine two algorithms for continuous variable decision fusion: the Kalman filter and artificial neural networks (ANNs). Using simulated cortical neural spike signals, we implemented several successful individual neural decoding algorithms, and tested the capabilities of each fusion method in the context of decoding 2-dimensional endpoint trajectories of a neural prosthetic arm. Extensively testing these methods on random trajectories, we find that on average both the Kalman filter and ANNs successfully fuse the individual decoder estimates to produce more accurate predictions. Conclusions Our results reveal that a fusion-based approach has the potential to improve prediction accuracy over individual decoders of varying quality, and we hope that this work will encourage multimodal neural prosthetics experiments in the future. PMID:20209151

  17. A laser device for fusion of nasal mucosa

    NASA Astrophysics Data System (ADS)

    Sooklal, Valmiki; McClure, Jesse; Hooper, Luke; Larson, Michael

    2010-02-01

    A prototype device has been created to fuse septal tissue membranes as an alternative to sutures or staples through the controlled application of laser heating and pressure to induce protein denaturation and subsequent tissue fusion, through renaturation and intertwining, across the interface. Lasers have been used to close wounds in controlled laboratory tests over the last 15 years. Many encouraging results have been obtained; however, no commercial delivery systems are currently available. This is due primarily to two factors: requiring an inordinate amount of experience on the part of the operator, and attempting to achieve general applicability for multiple tissue systems. The present device overcomes these barriers as it is tailored for the particular application of septal laser fusion, namely for the coaptation of mucoperichondrial membranes. The important parameters involved in fusing biological tissues are identified. The development of the device followed from computational modeling based on Monte Carlo simulation of photon transport and on engineering firstprinciples. Experiments were designed and analyzed using orthogonal arrays, employing a subset of the relevant parameters, i.e., laser irradiance, dwell time and spot size, for a range of wavelengths. The in vitro fusion experiments employed 1cm by 1cm sections of equine nasal mucosa having a nominal thickness of 1mm.

  18. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    SciTech Connect

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10/sup 6/ atoms/cm/sup 3/ with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed.

  19. Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

    SciTech Connect

    Rognlien, T

    2004-11-01

    A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

  20. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  1. Some considerations of cold fusion including the calculation of fusion rates in molecules of hydrogen isotopes

    SciTech Connect

    Cowley, S.C.; Kulsrud, R.M.

    1989-11-01

    We calculate the fusion reaction rates in molecules of hydrogen isotopes. The rates are calculated analytically (for the first time) as an asymptotic expansion in the ratio of the electron mass to the reduced mass of the nucleii. The fusion rates of the P-D, D-D, and D-T reactions are given for a variable electron mass by a simple analytic formula. However, we do not know any mechanism by which a sufficiently localized electron in solid can have an effective mass' large enough to explain the result of Fleischman and Pons (FP). This calculation indicates that P-D rates should exceed D-D rates for D-D fusion rates less than approximately 10{sup {minus}23} per molecule per second. The D-D fusion rate is enhanced by a factor of 10{sup 5} at 10,000{degree}K if the excited vibrational states are populated with a Boltzmann distribution and the rotational excitations suppressed. The suggestion that experimental results could be explained by bombardment of cold deuterons by kilovolt deuterons is shown to be an unlikely from an energetic point of view. 12 refs., 3 figs., 1 tab.

  2. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Telecommunications America, LLC of Richardson, Texas (collectively, ``Samsung''). 76 FR 45860 (Aug. 1, 2011). The... Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and...

  3. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... America, LLC of Richardson, Texas (collectively, ``Samsung''). 76 FR 45860 (Aug. 1, 2011). The complaint... Commission, and on the issues of remedy, the public interest, and bonding. 77 FR 70464. The Commission... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and...

  4. Conference report on the 3rd international symposium on lithium application for fusion devices

    DOE PAGESBeta

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less

  5. Conference report on the 3rd international symposium on lithium application for fusion devices

    SciTech Connect

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  6. Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-02-01

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  7. Conference report on the 3rd International Symposium on Lithium Application for Fusion Devices

    SciTech Connect

    Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  8. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  9. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  10. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1995-10-03

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.

  11. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    1995-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  12. A thermovoltaic semiconductor device including a plasma filter

    SciTech Connect

    Baldasaro, Paul F.

    1997-12-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential are disclosed. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  13. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... States after importation of certain portable electronic ] communications devices, including mobile phones... importation of certain portable electronic communications devices, including mobile phones and...

  14. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... Trade Commission has received a complaint entitled Certain Electronic Devices, Including Mobile Phones... electronic devices, including mobile phones and tablet computers, and components thereof. The complaint...

  15. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... devices, including mobile phones and tablet computers, and components thereof by reason of infringement of... certain electronics devices, including mobile phones and tablet computers, and components thereof...

  16. Development of multi-purpose MW gyrotrons for fusion devices

    NASA Astrophysics Data System (ADS)

    Minami, R.; Kariya, T.; Imai, T.; Numakura, T.; Endo, Y.; Nakabayashi, H.; Eguchi, T.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.; Ito, S.; Idei, H.; Zushi, H.; Yamaguchi, Y.; Sakamoto, K.; Mitsunaka, Y.; the GAMMA 10 Group

    2013-06-01

    The latest development achievements in the University of Tsukuba of over-1 MW power level gyrotrons required in present-day fusion devices, GAMMA 10, Large Helical Device (LHD), QUEST, Heliotron J and NSTX, are presented. The obtained maximum outputs are 1.9 MW for 0.1 s on the 77 GHz LHD tube and 1.2 MW for 1 ms on the 28 GHz GAMMA 10 one, which are new records in these frequency ranges. In long-pulse operation, 0.3 MW for 40 min at 77 GHz and 0.54 MW for 2 s at 28 GHz are achieved. A new programme of 154 GHz 1 MW development has started for high-density plasma heating in LHD. On the first 154 GHz tube, 1.0 MW for 1 s is achieved. As a next activity of the 28 GHz gyrotron, an over-1.5 MW gyrotron is designed and fabricated to study the multi-MW oscillation. The possibility of 0.4 MW continuous wave and 2 MW level output in operations of a few seconds, after the improvements of output window and mode converter, is shown. Moreover, a new design study of dual-frequency gyrotron at 28 and 35 GHz has started, which indicates the practicability of the multi-purpose gyrotron.

  17. Conference report on the 3rd International Symposium on Lithium Application for Fusion Devices

    DOE PAGESBeta

    Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less

  18. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  19. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  20. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    NASA Astrophysics Data System (ADS)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  1. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Music and Data Processing Devices, and Tablet Computers; Notice of Institution of Investigation... communication devices, portable music and data processing devices, and tablet computers by reason of... communication devices, portable music and data processing devices, and tablet computers that infringe one...

  2. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  3. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    PubMed Central

    He, Xiang; Aloi, Daniel N.; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  4. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.

    PubMed

    He, Xiang; Aloi, Daniel N; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  5. 75 FR 74080 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... COMMISSION Inv. No. 337-TA-749 In the Matter of Certain Liquid Crystal Display Devices, Including Monitors... sale within the United States after importation of certain liquid crystal display devices, including... importation of certain liquid crystal display devices, including monitors, televisions, and modules,...

  6. 75 FR 20860 - Certain Display Devices, Including Digital Televisions and Monitors; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... COMMISSION Certain Display Devices, Including Digital Televisions and Monitors; Notice of Investigation... devices, including digital televisions and monitors by reason of infringement of certain claims of U.S... after importation of certain display devices, including digital televisions or monitors that...

  7. 78 FR 40171 - Certain Wireless Devices, Including Mobile Phones and Tablets; Notice Of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... COMMISSION Certain Wireless Devices, Including Mobile Phones and Tablets; Notice Of Receipt of Complaint... complaint entitled Certain Wireless Devices, Including Mobile Phones and Tablets, DN 2964; the Commission is... importation of certain wireless devices, including mobile phones and tablets. The complaint names...

  8. 78 FR 47410 - Certain Wireless Devices, Including Mobile Phones and Tablets Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... COMMISSION Certain Wireless Devices, Including Mobile Phones and Tablets Institution of Investigation AGENCY... within the United States after importation of certain wireless devices, including mobile phones and... wireless devices, including mobile phones and tablets by reason of infringement of one or more of claims...

  9. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  10. Flywheel induction motor-generator for magnet power supply in small fusion device

    NASA Astrophysics Data System (ADS)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  11. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms). PMID:27131676

  12. JNM theme issue on models and data for plasma-material interaction and hydrogen retention in fusion devices

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2015-12-01

    Plasma-wall interaction in fusion devices encompasses a wide variety of processes. On a short timescale these include deposition of energetic plasma particles (primarily hydrogen and helium) into the surface, physical and chemical sputtering of surface material into the plasma, and reflection and desorption of particles from the surface. On a longer timescale the processes include diffusion of hydrogen and helium in the wall and changes in surface composition, morphology and material microstructure due to plasma bombardment and (in a reactor) neutron irradiation. Together these processes are extremely important in determining the plasma performance, the lifetime of plasma-facing components, trapping and retention of the tritium fusion fuel in the wall, and ultimately the feasibility of fusion power production.

  13. Photo-fusion reactions in a new compact device for ELI

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G.

    2012-07-01

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 109-1010 neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

  14. Photo-fusion reactions in a new compact device for ELI

    SciTech Connect

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G.

    2012-07-09

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 10{sup 9}-10{sup 10} neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

  15. Simulation of RF-fields in a fusion device

    SciTech Connect

    De Witte, Dieter; Bogaert, Ignace; De Zutter, Daniel; Van Oost, Guido; Van Eester, Dirk

    2009-11-26

    In this paper the problem of scattering off a fusion plasma is approached from the point of view of integral equations. Using the volume equivalence principle an integral equation is derived which describes the electromagnetic fields in a plasma. The equation is discretized with MoM using conforming basis functions. This reduces the problem to solving a dense matrix equation. This can be done iteratively. Each iteration can be sped up using FFTs.

  16. Minority carrier device comprising a passivating layer including a Group 13 element and a chalcogenide component

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)

    1999-01-01

    A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.

  17. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... application (PMA) or notice of product development protocol (PDP) is required. Devices described in paragraph (b)(2) of this section shall have an approved PMA or a declared completed PDP in effect before...

  18. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... application (PMA) or notice of product development protocol (PDP) is required. Devices described in paragraph (b)(2) of this section shall have an approved PMA or a declared completed PDP in effect before...

  19. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  20. Microfluidic device for high-yield pairing and fusion of stem cells with somatic cells

    NASA Astrophysics Data System (ADS)

    Gel, Murat; Hirano, Kunio; Oana, Hidehiro; Kotera, Hidetoshi; Tada, Takashi; Washizu, Masao

    2011-12-01

    Electro cell fusion has significant potential as a biotechnology tool with applications ranging from antibody production to cellular reprogramming. However due to low fusion efficiency of the conventional electro fusion methodology the true potential of the technique has not been reached. In this paper, we report a new method which takes cell fusion efficiency two orders magnitude higher than the conventional electro fusion method. The new method, based on one-toone pairing, fusion and selection of fused cells was developed using a microfabricated device. The device was composed of two microfluidic channels, a micro slit array and a petri dish integrated with electrodes. The electrodes positioned in each channel were used to generate electric field lines concentrating in the micro slits. Cells were introduced into channels and brought in to contact through the micro slit array using dielectrophoresis. The cells in contact were fused by applying a DC pulse to electrodes. As the electric field lines were concentrated at the micro slits the membrane potential was induced only at the vicinity of the micro slits, namely only at the cell-cell contact point. This mechanism assured the minimum damage to cells in the fusion as well as the ability to control the strength and location of induced membrane potential. We introduced mouse embryonic stem cells and mouse embryonic fibroblasts to the microfluidic channels and demonstrated high-yield fusion (> 80%). Post-fusion study showed the method can generate viable hybrids of stem cells and embryonic fibroblasts. Multinucleated hybrid cells adhering on the chip surface were routinely obtained by using this method and on-chip culturing.

  1. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... COMMISSION In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and... electronic devices, including mobile phones, portable music players, and computers, by reason of infringement... mobile phones, portable music players, or computers that infringe one or more of claims 1-12 of...

  2. 75 FR 63856 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and... sale for importation, and the sale within the United States after importation of certain liquid crystal... importation of certain liquid crystal display devices, including monitors, televisions, and modules,...

  3. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... published a notice (78 FR 12892, May 31, 2013) of receipt of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission...

  4. Non-superconducting magnet structures for near-term, large fusion experimental devices

    SciTech Connect

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design.

  5. [Change of Regulatory Requirement on Cohort Grouping and Endpoint Seting for Intervertebral Fusion Device Clinical Trial].

    PubMed

    Guo Xiaolei

    2015-07-01

    Combining technical requirement from main international administration and status quo of China administration, current regulatory requirement on clinical trail of conventional intervertebral fusion devices has been simplified. Cervical, thoracic and lumbar cases can be grouped into the same cohort, and primary endpoints are mainly based on imageology rather than clinical score. This is an attempt to rationally lessen industrial burdensome. PMID:26665950

  6. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  7. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    SciTech Connect

    Hedditch, John Bowden-Reid, Richard Khachan, Joe

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  8. 77 FR 3793 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and Modules, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and Modules, and Components Thereof; Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  9. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  10. Optimization of Compact Stellarator Configuration as Fusion Devices

    NASA Astrophysics Data System (ADS)

    Najmabadi, Farrokh

    2005-10-01

    Optimization of the stellarator configuration requires trade-offs among a large number of physics parameters and engineering constraints. An integrated study of compact stellarator power plants, ARIES-CS, aims at examining these trade-offs and defining key R&D areas. We developed configurations with A<=6 and excellent QA (both 2 and 3 field periods) while reducing α losses to ˜10% (still higher than desirable). Stability to the linear ideal MHD modes was attained but at the expense of reduced QA (and increased α losses) and increased complexity of the plasma shape. Recent experimental results indicate, however, linear MHD stability limits may not be applicable to stellarators. It appears that the plasma/coil stand-off distance is not as an important as envisioned previously. By utilizing a highly efficient shield-only region in strategic areas, we reduced the minimum stand-off by ˜20%-30%. This allows a comparable reduction in the machine size. The device configuration, assembly, and maintenance procedures appear to impose severe constraints. A cost-optimization system code has been developed and is utilized to guide the optimization process.

  11. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    NASA Astrophysics Data System (ADS)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  12. Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls

    SciTech Connect

    Krstic, Predrag S.; Allain, J. P.; Taylor, C. N.; Dadras, J.; Morokuma, K.; Jakowski, J.; Allouche, A.; Skinner, C. H.

    2013-01-01

    Lithium wall conditioning has lowered hydrogenic recycling and dramatically improved plasma performance in many magnetic-fusion devices. In this Letter, we report quantum-classical atomistic simulations and laboratory experiments that elucidate the roles of lithium and oxygen in the uptake of hydrogen in amorphous carbon. Surprisingly, we show that lithium creates a high oxygen concentration on a carbon surface when bombarded by deuterium. Furthermore, surface oxygen, rather than lithium, plays the key role in trapping hydrogen.

  13. Testing of low Z coated limiters in tokamak fusion devices

    SciTech Connect

    Whitely, J.B.; Mullendore, A.W.; Langley, R.A.

    1980-01-01

    Extensive testing on a laboratory scale has been used to select those coatings most suitable for this environment. From this testing which included pulsed electron beam heating, low energy ion bombardment and arcing, chemical vapor deposited coating of TiB/sub 2/ and TiC on Poco graphite substrates have been selected and tested as limiters in ISX. Both limiter materials gave clean, stable, reproducible tokamak discharges the first day of operation. After one weeks exposure, the TiC limiter showed only superficial damage with no coating failure. The TiB/sub 2/ limiter had some small areas of coating failure. TiC coated graphite limiters have also been briefly tested in the tokamaks Alcator and PDX with favorable results.

  14. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.

    2015-11-01

    An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  15. Characterization of charcoals for helium cryopumping in fusion devices

    NASA Astrophysics Data System (ADS)

    Sedgley, D. W.; Tobin, A. G.; Batzer, T. H.; Call, W. R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals- pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  16. Characterization of charcoals for helium cryopumping in fusion devices

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.; Batzer, T.H.; Call, W.R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals' pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  17. Solid radiographic fusion with a nonconstrained device 5 years after cervical arthroplasty.

    PubMed

    Heary, Robert F; Goldstein, Ira M; Getto, Katarzyna M; Agarwal, Nitin

    2014-12-01

    Cervical disc arthroplasty (CDA) has been gaining popularity as a surgical alternative to anterior cervical discectomy and fusion. Spontaneous fusion following a CDA is uncommon. A few anecdotal reports of heterotrophic ossification around the implant sites have been noted for the BRYAN, ProDisc-C, Mobi-C, PRESTIGE, and PCM devices. All CDA fusions reported to date have been in devices that are semiconstrained. The authors reported the case of a 56-year-old man who presented with left C-7 radiculopathy and neck pain for 10 weeks after an assault injury. There was evidence of disc herniation at the C6-7 level. He was otherwise healthy with functional scores on the visual analog scale (VAS, 4.2); neck disability index (NDI, 16); and the 36-item short form health survey (SF-36; physical component summary [PSC] score 43 and mental component summary [MCS] score 47). The patient underwent total disc replacement in which the DISCOVER Artificial Cervical Disc (DePuy Spine, Inc.) was used. The patient was seen at regular follow-up visits up to 60 months. At his 60-month follow-up visit, he had complete radiographic fusion at the C6-7 level with bridging trabecular bone and no motion at the index site on dynamic imaging. He was pain free, with a VAS score of 0, NDI score of 0, and SF-36 PCS and MCS scores of 61 and 55, respectively. Conclusions This is the first case report that identifies the phenomenon of fusion around a nonconstrained cervical prosthesis. Despite this unwanted radiographic outcome, the patient's clinical outcome was excellent. PMID:25303618

  18. Mammary analogue secretory carcinoma of salivary glands: a clinicopathologic and molecular study including 2 cases harboring ETV6-X fusion.

    PubMed

    Ito, Yohei; Ishibashi, Kenichiro; Masaki, Ayako; Fujii, Kana; Fujiyoshi, Yukio; Hattori, Hideo; Kawakita, Daisuke; Matsumoto, Manabu; Miyabe, Satoru; Shimozato, Kazuo; Nagao, Toshitaka; Inagaki, Hiroshi

    2015-05-01

    Mammary analogue secretory carcinoma (MASC) is a recently described low-grade carcinoma with morphologic and genetic similarity, including ETV6-NTRK3 fusion, to secretory carcinoma of the breast. ETV6 is frequently involved in other epithelial and nonepithelial tumors, and many fusion partners of ETV6 have been reported. In the present study, 14 Japanese MASC cases were clinicopathologically and molecularly analyzed. The median age of the patients was 39 years, and the male:female ratio was 6:8. All cases showed histopathologic findings compatible with those previously described for MASC and harbored an ETV6 split as visualized by fluorescence in situ hybridization. Two cases showed thick fibrous septa and invasive features including vascular or perineural tumor involvement, findings that are rare in MASC. In addition, in these 2 cases, non-NTRK3 genes appeared to fuse with ETV6 (ETV6-X fusion). NTRK1 and NTRK2, both members of the NTRK family, were not involved. Of the 14 MASC cases, the ETV6-NTRK3 fusion transcript was positive in 6 cases, and the relative expression level of the ETV6-NTRK3 fusion transcript was variable, ranging from 1 to 5.8. Results of the present study of MASC suggest that (1) ETV6 occasionally fuses with unknown non-NTRK3 genes, (2) ETV6-X cases might have an invasive histology, (3) for molecular diagnosis of MASC, fluorescence in situ hybridization to detect ETV6 splits is the method of choice, and (4) the expression level of the ETV6-NTRK3 fusion transcript is considerably variable. These findings provide a novel insight into the oncogenesis, histopathology, diagnosis, treatment, and prognosis of this newly recognized carcinoma. PMID:25651470

  19. Design of an Ion Source for {sup 3}He Fusion in a Low Pressure IEC Device

    SciTech Connect

    Piefer, Gregory R.; Santarius, John F.; Ashley, Robert P.; Kulcinski, Gerald L.

    2005-05-15

    Recent developments in helicon ion sources and Inertial Electrostatic Confinement (IEC) device performance at UW-Madison have enabled low pressure (< 50 {mu}torr, 6.7 mPa) operating conditions that should allow the {sup 3}He-{sup 3}He fusion reaction to be observed in an IEC device. An ion source capable of delivering a {approx} 10 mA {sup 3}He ion beam into an IEC device with minimal neutral gas flow has been designed and tested. Furthermore, a new IEC device that has never been operated with deuterium has been constructed to avoid D-{sup 3}He protons from obstructing the {sup 3}He-{sup 3}He reaction product spectrum, and to minimize Penning ionization of deuterium by excited helium, which in the past is suspected to have limited the ionized density of He. These developments make it possible to study beam-background {sup 3}He-{sup 3}He fusion reactions with > 300 mA recirculating ion currents.

  20. [Nursing Care of Lumbar Spine Fusion Surgery Using a Semi-Rigid Device (ISOBAR)].

    PubMed

    Wu, Meng-Shan; Su, Shu-Fen

    2016-04-01

    Aging frequently induces degenerative changes in the spine. Patients who suffer from lumbar degenerative disease tend to have lower back pain, neurological claudication, and neuropathy. Furthermore, incontinence may be an increasing issue as symptoms become severe. Lumbar spine fusion surgery is necessary if clinical symptoms continue to worsen or if the patient fails to respond to medication, physical therapy, or alternative treatments. However, this surgical procedure frequently induces adjacent segment disease (ASD), which is evidenced by the appearance of pathological changes in the upper and lower sections of the spinal surgical sites. In 1997, ISOBAR TTL dynamic rod stabilization was developed for application in spinal fusion surgery to prevent ASD-related complications. The device has proven effective in reducing pain in the lower back and legs, decreasing functional disability, improving quality of life, and retarding disc degeneration. However, the effectiveness of this intervention in decreasing the incidence of ASD requires further research investigation, and relevant literature and research in Taiwan is still lacking. This article discusses lumbar degenerative disease, its indications, the contraindications of lumbar spine fusion surgery using ISOBAR, and related postoperative nursing care. We hope this article provides proper and new knowledge to clinical nurses for the care of patients undergoing lumbar spine fusion surgery with ISOBAR. PMID:27026564

  1. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  2. 2 CFR 200.453 - Materials and supplies costs, including costs of computing devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... costs of computing devices. 200.453 Section 200.453 Grants and Agreements Office of Management and... Provisions for Selected Items of Cost § 200.453 Materials and supplies costs, including costs of computing... performance of a Federal award may be charged as direct costs. In the specific case of computing...

  3. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Music Players, and Computers, and Components Thereof; Notice of Institution of Investigation AGENCY: U.S... tablets, portable music players, and computers, and components thereof by reason of infringement of... importation of certain electronic devices, including mobile phones, mobile tablets, portable music...

  4. 77 FR 37067 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... France and Thomson Licensing LLC of Princeton, New Jersey (collectively ``Thomson''). 75 FR 63856 (Oct... Thomson. 75 FR 74080 (Nov. 30, 2010). The complaint alleged violations of section 337 of the Tariff Act of... COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and...

  5. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  6. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and......

  7. Higgs boson production via gluon fusion: Soft-gluon resummation including mass effects

    NASA Astrophysics Data System (ADS)

    Schmidt, Timo; Spira, Michael

    2016-01-01

    We analyze soft and collinear gluon resummation effects at the N3LL level for Standard Model Higgs boson production via gluon fusion g g →H and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the next-to-next-to-next-to-leading-log (N3LL ) and next-to-next-to-leading-log (NNLL) level, respectively. We introduce refinements in the treatment of quark mass effects and subleading collinear gluon effects within the resummation. Soft and collinear gluon resummation effects amount to up to about 5% beyond the fixed-order results for scalar and pseudoscalar Higgs boson production.

  8. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    SciTech Connect

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  9. Development of a new two color far infrared laser interferometer for future fusion devices

    SciTech Connect

    Kawahata, K.; Tanaka, K.; Tokuzawa, T.; Akiyama, T.; Ito, Y.; Okajima, S.; Nakayama, K.; Wylde, R.J.

    2004-10-01

    A new two color far infrared (FIR) laser interferometer under development for future fusion devices will be presented. The laser wavelength is optimized from the consideration of the beam refraction effect due to plasma density gradient and signal-to-noise ratio for an expected phase shift due to plasmas. Laser lines of 57.2 and 47.6 {mu}m are found to be suitable for the applications to high performance plasmas of Large Helical Device and future fusion devices such as the International Thermonuclear Experimental Reactor. The output power of 57.2 {mu}m CH{sub 3}OD laser is estimated to be {approx}1.6 W, which is the highest laser power in the FIR wavelength regime. The optical configuration of a new interferometer system using two colors will be proposed. In the system, one detector simultaneously detects the beat signals of the 57.2 and 47.6 {mu}m laser lines, and each interference signal can be separated electronically (1 MHz for 57.2 {mu}m and 0.84 MHz expected for 47.6 {mu}m). Mechanical vibration can be compensated by using the two color interferometer. The present status of the development of the system is also presented.

  10. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  11. Spatial profiling using a Time of Flight Diagnostic and applications of deuterim-deuterium fusion in Inertial Electrostatic Confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Donovan, David C.

    2011-12-01

    The Inertial Electrostatic Confinement (IEC) Fusion Research Group at the University of Wisconsin-Madison utilizes IEC devices as small-scale neutron generators using D-D fusion to create 2.45 MeV neutrons for the purpose of detecting clandestine material. Detection of explosives in particular can be accomplished using thermal neutron capture methods to identify characteristic nitrogen signatures in explosive material. Research has been conducted to increase reliability of detection, decrease interrogation time, and increase the steady-state operational time. Efforts have also been made to increase the neutron production rate of the device. Optimization studies have varied the configuration and design of the electrodes and have resulted in system configurations with up to 50 percent higher neutron production rates than have previously been utilized. A new feedthrough design has been constructed that is intended to increase the maximum operating voltage from 175 kV with the previous feedthrough to 300 kV. Neutron production rates scale almost linearly with both current and voltage, so the IEC device will be capable of operation at higher neutron producing regimes than have ever before been achieved. The optimization efforts involve the use of several new diagnostic tools developed at UW, which are the Fusion Ion Doppler (FIDO) Diagnostic and the Time of Flight (TOF) Diagnostic. FIDO provides the energy spectra of the charged fusion products and reactants created in the IEC device. The FIDO Diagnostic was originally only capable of studying D-D fusion, but with recent advancements is now able to study both D-D and D-3He fusion. The TOF Diagnostic provides spatial information along with the energy resolution of where the fusion reactions are occurring in the IEC device. Development of the diagnostics has involved the implementation of timing electronics, alignment systems, data acquisition software, computational post-processing, and upgrades to the experimental

  12. Scaling, stability, and fusion mechanisms. Studies using plasma focus devices from tens of kilojoules to tenth of joules

    SciTech Connect

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Cardenas, Miguel; Tarifeno, Ariel

    2009-01-21

    Fusion studies using plasma focus devices from tens of kilojoules to less than one joule performed at the Chilean Nuclear Energy Commission are presented. The similarity of the physical behavior and the scaling observed in these machines are emphasized. Experiments on actual devices show that scaling holds at least through six order of magnitude. In particular all of these devices, from the largest to the smallest, keep the same quantity of energy per particle. Therefore, fusion reactions are possible to be obtained in ultraminiature devices (driven by generators of 0.1 J), as they are in the bigger devices (driven by generators of 1 MJ). However, the stability of the plasma depends on the size and energy of the device.

  13. Multi-feature fusion diagnosis for optoelectronic tracking devices using fuzzy measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zhang, Tianyong; Zhang, Xianming; Xiao, Jing

    2010-10-01

    With the rapid development of optoelectronic tracking and measurement technology, tracking equipments become more complex and more precise, and the system faults happen at higher probability. The fault orientation, the fault analysis and the fault exclusion change more difficult. The single information and the simple process of multi-information have many deficiencies, which need fusion to improve the reliability. The D-S theory of evidence is a way to resolve the uncertain problems, which fuses evidences to reason the decision results in the same recognition frame used at the decisional level. Using the D-S theory of evidence, a diagnosis frame of multi-feature information fusion is proposed. The deviation ranks of the fault characters is defined according to their offsets from the normal and their happening probabilities were also computed by using the statistical results and the existing knowledge. The data reasoning of rough set theory is employed to construct the key fault evidence space from the multi features. Further, Gaussian subjection function from the fuzzy theory is used to describe the distribution of the key evidences and the distribution of the test data, and the basic probabilities of the evidence are weighed by the matching degree of the two distributions. The multiperiod and space feature information are employed and fused, and the final diagnosis decision is made by some effective methods. A multi-feature information fusion diagnosis for the servo system of the tracking equipment is discussed. The test shows that the diagnosis reliability is improved and the diagnosis uncertainty is reduced, and the fault diagnosis for the precise device and other parts are also effectively resolved by using this fusion method.

  14. A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids.

    PubMed

    Munaz, Ahmed; Vadivelu, Raja K; John, James A St; Nguyen, Nam-Trung

    2016-08-01

    Understanding the process of fusion of olfactory ensheathing cell spheroids will lead to improvement of cell transplantation therapies to repair spinal cord injuries. The successful fusion of transplanted spheroids will enable alternative transplantation strategies to be developed for in vivo applications. This paper describes the use of a microfluidic device to trap and fuse olfactory ensheathing cell spheroids. The velocity, the pressure distribution in the device were simulated numerically to predict the trapping location. The simulation predicted the optimum flow rates for trapping the spheroids in the later experiments. Simulated particle trajectories were verified experimentally with tracing of fluorescent micro particles. The fusion process of the spheroids was investigated over a period of 48 hours. The microfluidic platform presented here can be used for testing potential drugs that can promote the fusion process and improve the transplantation therapy. PMID:27387270

  15. Predicting hydrogen isotope inventory in plasma-facing components during normal and abnormal operations in fusion devices

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2015-10-01

    Hydrogen isotope behavior and inventory in plasma-facing components (PFCs) of fusion devices are key concerns for safe, reliable, and economical operation. To accurately estimate hydrogen isotope retention and recovery in tungsten (the current leading candidate as a PFC), we have developed a model that was recently benchmarked against isotope depth profile and retention level in a tungsten target under various conditions and compared with both experimental data and simulation results. In this research, we have extended the model to include details of transient events. Therefore, one can use this model to estimate hydrogen isotope retention behavior in tungsten and potential other PFC candidates during normal operational pulse, effects of edge-localized modes (ELMs), and a possible cleaning processes scenario.

  16. SELF-SIMILAR SKELETAL STRUCTURES IN FUSION AND MATERIAL TEST DEVICES: NUMERICAL MODELING AND NEW OBSERVATIONAL DATA

    SciTech Connect

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2009-07-26

    The hypotheses for self-assembling of a fractal condensed matter in electric discharges and the probable role of a skeletal matter in the long-lived filamentary structures in fusion devices is studied in two directions. First, we append previous collection of respective data with recent evidences for skeletal structuring in peripheral plasmas and dust deposits in fusion and material test devices. Second, we demonstrate, via numerical modelling, the possibility of coaxial tubular structuring formation in a system of electric current filaments composed of magnetized, electrically conducting thin rods (nanodust), with an accent on self-reduction of spatial dimensionality of structuring and on the role of magnetic in such systems.

  17. Summary of the 19th International Atomic Energy Agency Technical Meeting on 'Research Using Small Fusion Devices'

    NASA Astrophysics Data System (ADS)

    Van Oost, G.; Mank, G.

    2011-08-01

    This paper presents a summary of recent results reported on several topics on magnetic confinement, dense magnetized plasmas, innovative fusion technology and applications, diagnostic systems and control and data acquisition systems. The main topics covered on the magnetic confinement devices, diagnostics and data acquisition concern the tokamak KTM (Kazakhstan Tokamak for Material testing) for materials research and testing, and IAEA Joint Experiments on small tokamaks. For the dense magnetized plasmas results on development and commissioning of plasma focus devices were reported. The plasmatron VISION I for innovative plasma-wall interaction studies, a lithium divertor for KTM and compact fusion reactors as neutron sources were presented.

  18. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    NASA Astrophysics Data System (ADS)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  19. Study of the pores inside tungsten coating after thermal cycling for fusion device

    NASA Astrophysics Data System (ADS)

    Desgranges, C.; Firdaouss, M.; Hernandez, C.; Martin, C.; Ruset, C.; Grigore, E.; Missirlian, M.; Samaille, F.; Bucalossi, J.

    2016-02-01

    In the next fusion devices, all the plasma facing components will consist of bulk tungsten or tungsten coating on carbon. This paper focuses on the behaviour of tungsten coated on carbon fibre composite designed for the WEST project (Bucalossi et al 2011 Fusion Eng. Des. 86 684-688) under intensive thermal cycling delivered by an electron beam. The use of scanning electron microscope has allowed in particular, the observation of several pore lines inside the coating. These pore lines have different aspects depending on the observed zone according to the localisation of the electron beam, accentuated lines with more numerous enlarged pores in zone exposed to the electron beam. An analogous trend is also observed for JET tungsten-coated samples under similar thermal cycles despite their different properties due to an alternative manufacturing method of the substrate. A systematic and attentive comparison on the coating changes after the application of the electron beam heating is presented. The observed comportments as the formation of the pore lines or the pore shapes are assumed to be inherent to simultaneous diffusion processes. In association with the pore line formation, a migration of the carbon substrate towards the surface is presumed and discussed.

  20. Moving-Surface Plasma-Facing Components for Particle Control in Steady State Magnetic Fusion Devices

    SciTech Connect

    Hirooka, Yoshi; Fukushima, Hoju; Ohno, Noriyasu; Takamura, Shuichi; Nishikawa, Masahiro

    2004-01-15

    This paper will report on the proof-of-principle (POP) experiments conducted to demonstrate reduced wall recycling, using a laboratory-scale test unit, constructed based on the concept of moving-surface plasma-facing component (MS-PFC). In this concept, the moving-surface exposed to edge plasmas in steady state magnetic fusion devices is continuously deposited ex-situ with a getter material, so that particle trapping capabilities can be regenerated prior to the subsequent exposure. In our previous paper, the construction details of the MS-PFC test unit and the first results in the case of titanium gettering was reported, but in the present paper preliminary results in the case of lithium gettering will be presented for comparison. Results indicate that the H{sub {alpha}} light intensity used as the measure of hydrogen recycling is reduced by {approx}6% due to titanium gettering and by {approx}12% due to lithium gettering, both at steady state.

  1. Flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  2. Multiple cell photoresponsive amorphous photo voltaic devices including graded ban gaps

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-09-04

    This patent describes an improved photoresponsive tandem multiple cell device. It comprises: at least first and second superimposed solar cells; the first cell being formed of an amorphous silicon alloy material; the second amorphous silicon alloy cell having an active photoresponsive region in which radiation can impinge to produce charge carriers. The amorphous silicon alloy cell body including at least one element for reducing the density of defect states to about 10{sup 16} defects per cubic centimeter and a band gap adjusting element graded through at least a portion of the photoresponsive region thereof to enhance the radiation absorption; the adjusting element being germanium, and the band gap of the cell being adjusted for a specified photoresponse wavelength threshold function different from the first cell; the second cell being a multi-layer body having deposited silicon alloy layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct junction contact therebetween.

  3. Evidences for and the Models of Fast Nonlocal Transport of Heat in Magnetic Fusion Devices

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2009-07-01

    The paper gives a short survey of (i) recent evidences for fast nonlocal transport of the heat in magnetically confined plasmas (above all, the "cold/heat pulse" experiments), (ii) interpretations of such phenomena in terms of nonlocal transport formalisms, based on the dominance of long mean-free-path energy carriers, including the interpretations of "cold pulse" experiments, and gives (iii) quantitative evidence for the domination of nonlocality in the spatial profile of electron cyclotron net radiated power in fusion reactor-grade tokamak (strong toroidal magnetic field, BT>5 T, highly reflecting walls, Rwall>0.5, and hot electron plasma, >10 keV).

  4. 76 FR 42730 - In the Matter of Certain Univeral Serial Bus (“USB”) Portable Storage Devices, Including USB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... COMMISSION In the Matter of Certain Univeral Serial Bus (``USB'') Portable Storage Devices, Including USB... certain universal serial bus (``USB'') portable storage devices, including USB flash drives and components... importation, or the sale within the United States after importation of certain universal serial bus...

  5. 77 FR 35718 - Certain Universal Serial Bus (“USB”) Portable Storage Devices, Including USB Flash Drives and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ...,161. 76 FR 42730 (July 19, 2011). The notice of investigation named as respondents Imation Corporation... COMMISSION Certain Universal Serial Bus (``USB'') Portable Storage Devices, Including USB Flash Drives and... importation of certain universal serial bus (``USB'') portable storage devices, including USB flash drives...

  6. 76 FR 13432 - In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... COMMISSION In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice of... United States after importation of certain display devices, including digital televisions and monitors by... digital televisions and monitors that infringe one or more of claims 41-44 of the `468 patent; claims...

  7. Diagnostic study of steady state advanced fuel (deuterium-deuterium and deuterium-tritium) fusion in an IEC device

    NASA Astrophysics Data System (ADS)

    Subramanian, Krupakar Murali

    The ionized fusion fuels (D-D & D-3He) have been accelerated to fusion velocities using two concentric grids maintained at a high potential difference in an Inertial Electrostatic Confinement (IEC) device. Though the gridded IEC device currently has a low efficiency (Q ≡ fusion power/input power ˜10-5), the energetic protons and neutrons generated within this device can be used for many near-term applications, such as medical isotope production, landmine detection, neutron activation analysis, etc. The present work is centered upon understanding the operation of the device and finding new ways to increase the overall efficiency. The steady state fusion of D-3He fuel in an IEC device was successfully studied. At a pressure of ˜2 mtorr the source of such reactions was identified to be principally beam-target reactions and was theoretically explained using the Monte Carlo - Stopping and Range of Ions in Matter (SRIM) code. The first simultaneous measurement of DD and D-3He protons was accomplished during the present thesis work that confirmed that D- 3He fusion reactions indeed occur in an IEC device. A new pressure independent diagnostic was invented to measure the average ion energy. That diagnostic uses the D-D proton energy spectra from a single loop cathode grid and the SRIM code predictions. A second diagnostic called the eclipse disc was co-invented to characterize the various fusion regimes in an IEC device. This diagnostic verified that a converged core fusion source exists for the DD reactions but the D-3He reactions that are principally embedded source reactions. A third diagnostic called the chordwire was invented to study the effects of various sources of electrons---thermionic, photo and field emission electrons, that decrease the efficiency of the device. This diagnostic also helped map the ion flux into the cathode in 2D, besides helping identify the high performance grid materials (W-25%Re and pure Re). Understanding the electron current

  8. Modelling neutral beams in fusion devices: Beamlet-based model for fast particle simulations

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Govenius, J.; Budny, R.; Gorelenkova, M.; Tardini, G.; Kurki-Suonio, T.; Salmi, A.; Sipilä, S.

    2015-03-01

    Neutral beam injection (NBI) will be one of the main sources of heating and non-inductive current drive in ITER. Due to high level of injected power the beam induced heat loads present a potential threat to the integrity of the first wall of the device, particularly in the presence of non-axisymmetric perturbations of the magnetic field. Neutral beam injection can also destabilize Alfvén eigenmodes and energetic particle modes, and act as a source of plasma rotation. Therefore, reliable and accurate simulation of NBI is important for making predictions for ITER, as well as for any other current or future fusion device. This paper introduces a new beamlet-based neutral beam ionization model called BBNBI. It takes into account the fine structure of the injector, follows the injected neutrals until ionization, and generates a source ensemble of ionized NBI test particles for slowing down calculations. BBNBI can be used as a stand-alone model but together with the particle following code ASCOT it forms a complete and sophisticated tool for simulating neutral beam injection. The test particle ensembles from BBNBI are found to agree well with those produced by PENCIL for JET, and those produced by NUBEAM both for JET and ASDEX Upgrade plasmas. The first comprehensive comparisons of beam slowing down profiles of interest from BBNBI + ASCOT with results from PENCIL and NUBEAM/TRANSP, for both JET and AUG, are presented. It is shown that, for an axisymmetric plasma, BBNBI + ASCOT and NUBEAM agree remarkably well. Together with earlier 3D studies, these results further validate using BBNBI + ASCOT also for studying phenomena that require particle following in a truly three-dimensional geometry.

  9. Encoding technique for high data compaction in data bases of fusion devices

    SciTech Connect

    Vega, J.; Cremy, C.; Sanchez, E.; Portas, A.

    1996-12-01

    At present, data requirements of hundreds of Mbytes/discharge are typical in devices such as JET, TFTR, DIII-D, etc., and these requirements continue to increase. With these rates, the amount of storage required to maintain discharge information is enormous. Compaction techniques are now essential to reduce storage. However, general compression techniques may distort signals, but this is undesirable for fusion diagnostics. We have developed a general technique for data compression which is described here. The technique, which is based on delta compression, does not require an examination of the data as in delayed methods. Delta values are compacted according to general encoding forms which satisfy a prefix code property and which are defined prior to data capture. Several prefix codes, which are bit oriented and which have variable code lengths, have been developed. These encoding methods are independent of the signal analog characteristics and enable one to store undistorted signals. The technique has been applied to databases of the TJ-I tokamak and the TJ-IU torsatron. Compaction rates of over 80{percent} with negligible computational effort were achieved. Computer programs were written in ANSI C, thus ensuring portability and easy maintenance. We also present an interpretation, based on information theory, of the high compression rates achieved without signal distortion. {copyright} {ital 1996 American Institute of Physics.}

  10. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    SciTech Connect

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

  11. Properties of boron coatings used as plasma facing material of fusion device

    NASA Astrophysics Data System (ADS)

    Hino, T.; Iwamoto, K.; Hirohata, Y.; Yamashina, T.; Sagara, A.; Noda, N.; Inoue, N.; Kubota, Y.; Natsir, N.; Motojima, O.

    1994-12-01

    For the boron films made by a d.c. glow discharge for a gas mixture of diborane and helium, numerous surface properties were intestigated and the characteristics of the boron film as a plasma facing material in fusion devices were evaluated. The ability of the boron film to getter the oxygen was estimated as about 10(exp 21) O atoms/sq m. The gettered oxygen in the boron film was observed in the surface to a depth of less than about 30 nm. The hydrogen concentration of the boron film made at room temperature was approximately 30%. The hydrogen in the film desorbed at about 573 K. This desorption temperature was considerably lower than that of graphite. These results directly indicate that the boron film coated on the graphite wall can largely reduce the particle recycling, in addition to the reduction in the oxygen impurity level in the plasma. After the oxygen gettering, the oxygen existed in the form of B-O bonds. It is also noted that the boron film absorbed both the oxygen and the carbon after exposure to the atmosphere.

  12. III-V/Si hybrid photonic devices by direct fusion bonding.

    PubMed

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  13. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  14. Surface characterization of aluminum alloy 2017 as a vacuum vessel for nuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Mohri, M.; Odagiri, H.; Satake, T.; Yamashina, T.; Oikawa, H.; Kanedo

    1984-05-01

    The surface characterization of a type 2017 aluminum alloy was performed to examine their potentials for the use of nuclear fusion devices mainly from a view point of vacuum engineering. Three different samples treated with milling (Sample A), discharging (Sample B) and chemical etching (Sample C) were examined in terms of their surface morphology by surface profilometry, scanning electron microscopy, and xenon adsorption. The surface roughness factor was obtained as 5.9, 42.8 and 9.0 for sample A, Sample B and Sample C, respectively. The thicknesses of surface oxide layers were measured by the sputter-AES method as 40 Å, 80 Å and 70 Å for Sample A, Sample B and Sample C, respectively. Outgassing characteristics of these surfaces were measured by a thermal desorption method. H 2O, CO and CO 2 were main outgassing components and the maximum desorption temperature was observed in the range between 110 °C and 160 °C. The surface roughness factor and the thickness of the surface oxide layer were found to be important factors for outgassing characteristics.

  15. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    PubMed Central

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  16. Lighted display devices for producing static or animated visual displays, including animated facial features

    DOEpatents

    Heilbron, Valerie J; Clem, Paul G; Cook, Adam Wade

    2014-02-11

    An illuminated display device with a base member with a plurality of cavities therein. Illumination devices illuminate the cavities and emit light through an opening of the cavities in a pattern, and a speaker can emit sounds in synchronization with the pattern. A panel with translucent portions can overly the base member and the cavities. An animated talking character can have an animated mouth cavity complex with multiple predetermined mouth lighting configurations simulative of human utterances. The cavities can be open, or optical waveguide material or positive members can be disposed therein. Reflective material can enhance internal reflectance and light emission.

  17. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  18. Verification of scattering parameter measurements in waveguides up to 325 GHz including highly-reflective devices

    NASA Astrophysics Data System (ADS)

    Schrader, T.; Kuhlmann, K.; Dickhoff, R.; Dittmer, J.; Hiebel, M.

    2011-07-01

    Radio-frequency (RF) scattering parameters (S-parameters) play an important role to characterise RF signal transmission and reflection of active and passive devices such as transmission lines, components, and small-signal amplifiers. Vector network analysers (VNAs) are employed as instrumentation for such measurements. During the last years, the upper frequency limit of this instrumentation has been extended up to several hundreds of GHz for waveguide measurements. Calibration and verification procedures are obligatory prior to the VNA measurement to achieve accurate results and/or to obtain traceability to the International System of Units (SI). Usually, verification is performed by measuring well-matched devices with known S-parameters such as attenuators or short precision waveguide sections (shims). In waveguides, especially above 110 GHz, such devices may not exist and/or are not traceably calibrated. In some cases, e.g. filter networks, the devices under test (DUT) are partly highly reflective. This paper describes the dependency of the S-parameters a) on the calibration procedure, b) on the applied torque to the flange screws during the mating process of the single waveguide elements. It describes further c) how highly-reflective devices (HRD) can be used to verify a calibrated VNA, and d) how a measured attenuation at several hundreds of GHz can be substituted by a well-known coaxial attenuation at 279 MHz, the intermediate frequency (IF) of the VNA, to verify the linearity. This work is a contribution towards traceability and to obtain knowledge about the measurement uncertainty of VNA instrumentation in the millimetre-wave range.

  19. Posterior Interspinous Fusion Device for One-Level Fusion in Degenerative Lumbar Spine Disease : Comparison with Pedicle Screw Fixation - Preliminary Report of at Least One Year Follow Up

    PubMed Central

    Kim, Ho Jung; Chun, Hyoung Joon; Oh, Suck Jun; Kang, Tae Hoon; Yang, Moon Sool

    2012-01-01

    Objective Transpedicular screw fixation has some disadvantages such as postoperative back pain through wide muscle dissection, long operative time, and cephalad adjacent segmental degeneration (ASD). The purposes of this study are investigation and comparison of radiological and clinical results between interspinous fusion device (IFD) and pedicle screw. Methods From Jan. 2008 to Aug. 2009, 40 patients underwent spinal fusion with IFD combined with posterior lumbar interbody fusion (PLIF). In same study period, 36 patients underwent spinal fusion with pedicle screw fixation as control group. Dynamic lateral radiographs, visual analogue scale (VAS), and Korean version of the Oswestry disability index (K-ODI) scores were evaluated in both groups. Results The lumbar spine diseases in the IFD group were as followings; spinal stenosis in 26, degenerative spondylolisthesis in 12, and intervertebral disc herniation in 2. The mean follow up period was 14.24 months (range; 12 to 22 months) in the IFD group and 18.3 months (range; 12 to 28 months) in pedicle screw group. The mean VAS scores was preoperatively 7.16±2.1 and 8.03±2.3 in the IFD and pedicle screw groups, respectively, and improved postoperatively to 1.3±2.9 and 1.2±3.2 in 1-year follow ups (p<0.05). The K-ODI was decreased significantly in an equal amount in both groups one year postoperatively (p<0.05). The statistics revealed a higher incidence of ASD in pedicle screw group than the IFD group (p=0.029). Conclusion Posterior IFD has several advantages over the pedicle screw fixation in terms of skin incision, muscle dissection and short operative time and less intraoperative estimated blood loss. The IFD with PLIF may be a favorable technique to replace the pedicle screw fixation in selective case. PMID:23133725

  20. Evaluation of tungsten as a plasma-facing material for steady state magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Hirooka, Y.; Bourham, M.; Brooks, J. N.; Causey, R. A.; Chevalier, G.; Conn, R. W.; Eddy, W. H.; Gilligan, J.; Khandagle, M.; Ra, Y.

    1992-12-01

    Tungsten in the form of bulk-material, and relatively thick (1 mm) chemically deposited and plasma-sprayed coatings on molybdenum, has been evaluated as a plasma-facing material for near future steady state magnetic fusion devices, focusing on issues related to the divertor plate design. These issues are: (1) thermal outgassing; (2) plasma erosion; (3) deuterium retention; (4) disruption erosion; and (5) surface modifications. Total outgassing quantities from bulk tungsten and chemically deposited coatings are substantially smaller than those from graphites. Effects of redeposition and impurities on the erosion behavior due to deuterium plasma bombardment have been analyzed. Trace amounts of oxygen-containing impurities in the plasma can reduce the threshold energy for physical sputtering, affecting the overall erosion behavior of tungsten at energies below 500 eV. However, it has been found that at electron temperatures around 5 eV or lower, fragmentation of these impurities followed by positive ionization is significantly reduced, whereby plasma erosion data basically agree with sputtering theories and ion beam data. Thermal desorption measurements after plasma bombardment have indicated that the deuterium retention quantity in tungsten materials is of the order of 10 14-15 D atoms/cm 2. At simulated disruption with an energy deposition of 6 MJ/m 2, the effective heat deposition is found to be reduced to about 1%, due to a combined effect of molten layer protection and vapor shielding. Steady state plasma bombardment removes surface impurities and smooths the surface topography along with surface erosion whereas disruption causes microscopic cracking and surface melting.

  1. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  2. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    PubMed Central

    Pires, Ivan Miguel; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-01-01

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664

  3. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  4. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NASA Astrophysics Data System (ADS)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-09-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region.

  5. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  6. Directly laser-written integrated photonics devices including diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Choi, Jiyeon; Ramme, Mark; Richardson, Martin

    2016-08-01

    Femtosecond laser-written integrated devices involving Fresnel Zone Plates (FZPs) and waveguide arrays are demonstrated as built-in optical couplers. These structures were fabricated in borosilicate glass using a direct laser writing technique. The optical properties of these integrated photonic structures were investigated using CW lasers and high-resolution CCDs. For a single FZP coupled to a single waveguide, the overall coupling efficiency was 9%. A multiplexed optical coupler composed of three FZP layers was demonstrated to couple three waveguides simultaneously in a waveguide array. Structures of this type can be used as platforms for multichannel waveguide coupling elements or as microfluidic sensors that require higher light collecting efficiency.

  7. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  8. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability.

    PubMed

    Belwin Edward, J; Rajasekar, N; Sathiyasekar, K; Senthilnathan, N; Sarjila, R

    2013-09-01

    Obtaining optimal power flow solution is a strenuous task for any power system engineer. The inclusion of FACTS devices in the power system network adds to its complexity. The dual objective of OPF with fuel cost minimization along with FACTS device location for IEEE 30 bus is considered and solved using proposed Enhanced Bacterial Foraging algorithm (EBFA). The conventional Bacterial Foraging Algorithm (BFA) has the difficulty of optimal parameter selection. Hence, in this paper, BFA is enhanced by including Nelder-Mead (NM) algorithm for better performance. A MATLAB code for EBFA is developed and the problem of optimal power flow with inclusion of FACTS devices is solved. After several run with different initial values, it is found that the inclusion of FACTS devices such as SVC and TCSC in the network reduces the generation cost along with increased voltage stability limits. It is also observed that, the proposed algorithm requires lesser computational time compared to earlier proposed algorithms. PMID:23759251

  9. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    DOEpatents

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  10. A Simple Apparatus for the Injection of Lithium Aerosol into the Scrape-Off Layer of Fusion Research Devices

    SciTech Connect

    D. K. Mansfield, A.L Roquemore, H. Schneider, J. Timberlake, H. Kugel, M.G. Bell and the NSTX Research Team

    2010-10-11

    A simple device has been developed to deposit elemental lithium onto plasma facing components in the National Spherical Torus Experiment. Deposition is accomplished by dropping lithium powder into the plasma column. Once introduced, lithium particles quickly become entrained in scrape-off layer flow as an evaporating aerosol. Particles are delivered through a small central aperture in a computer-controlled resonating piezoelectric disk on which the powder is supported. The device has been used to deposit lithium both during discharges as well as prior to plasma breakdown. Clear improvements to plasma performance have been demonstrated. The use of this apparatus provides flexibility in the amount and timing of lithium deposition and, therefore, may benefit future fusion research devices.

  11. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  12. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nokia Corporation of Finland and Nokia Inc. of White Plains, New York (collectively, ``Nokia''). 75 FR... disapprove the Commission's action. See Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005... COMMISSION In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players,...

  13. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... White Plains, New York (collectively, ``Nokia''). 75 FR 4583-4 (Jan. 28, 2010). The complaint alleged... the parties on the issues under review. 76 FR 31938 (June 2, 2011). On June 9, 2011, the parties... COMMISSION In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players,...

  14. 76 FR 57075 - In the Matter of Certain Lighting Control Devices Including Dimmer Switches and Parts Thereof (IV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    .... (``Lutron'') of Coopersburg, Pennsylvania. 76 FR 35015-16. The complaint alleges violations of section 337... COMMISSION In the Matter of Certain Lighting Control Devices Including Dimmer Switches and Parts Thereof (IV... sale for importation, and the sale within the United States after importation of certain...

  15. Air Filter Devices Including Nonwoven Meshes of Electrospun Recombinant Spider Silk Proteins

    PubMed Central

    Lang, Gregor; Jokisch, Stephan; Scheibel, Thomas

    2013-01-01

    Based on the natural sequence of Araneus diadematus Fibroin 4 (ADF4), the recombinant spider silk protein eADF4(C16) has been engineered. This highly repetitive protein has a molecular weight of 48kDa and is soluble in different solvents (hexafluoroisopropanol (HFIP), formic acid and aqueous buffers). eADF4(C16) provides a high potential for various technical applications when processed into morphologies such as films, capsules, particles, hydrogels, coatings, fibers and nonwoven meshes. Due to their chemical stability and controlled morphology, the latter can be used to improve filter materials. In this protocol, we present a procedure to enhance the efficiency of different air filter devices, by deposition of nonwoven meshes of electrospun recombinant spider silk proteins. Electrospinning of eADF4(C16) dissolved in HFIP results in smooth fibers. Variation of the protein concentration (5-25% w/v) results in different fiber diameters (80-1,100 nm) and thus pore sizes of the nonwoven mesh. Post-treatment of eADF4(C16) electrospun from HFIP is necessary since the protein displays a predominantly α-helical secondary structure in freshly spun fibers, and therefore the fibers are water soluble. Subsequent treatment with ethanol vapor induces formation of water resistant, stable β-sheet structures, preserving the morphology of the silk fibers and meshes. Secondary structure analysis was performed using Fourier transform infrared spectroscopy (FTIR) and subsequent Fourier self-deconvolution (FSD). The primary goal was to improve the filter efficiency of existing filter substrates by adding silk nonwoven layers on top. To evaluate the influence of electrospinning duration and thus nonwoven layer thickness on the filter efficiency, we performed air permeability tests in combination with particle deposition measurements. The experiments were carried out according to standard protocols. PMID:23685883

  16. Quantum 1/f noise in high technology applications including ultrasmall structures and devices

    NASA Astrophysics Data System (ADS)

    Handel, Peter H.

    1994-05-01

    The present report brings a final answer to the question on the nature of fundamental 1/f noise and its ubiquity. A sufficient criterion for a 1/f spectrum in arbitrary chaotic nonlinear systems is derived for the first time. This criterion guarantees a 1/f spectrum for nonlinear systems which also satisfy a condition of mathematical homogeneity. Briefly stated, nonlinearity + homogeneity = 1/f noise. The criterion results because the 1/f spectrum reproduces itself in a self-convolution. Among the five examples to which the criterion is applied is also quantum electrodynamics (QED), resulting in quantum 1/f noise as a fundamental form of quantum chaos. Nonlinearity of the system of a charged particle and its field, plus the basic homogeneity of physical equations causes the criterion to predict the quantum 1/f effect. The simple universal quantum 1/f formula is applied to infrared detectors and yields quantum 1/f noise in the dark current, but not in the photogenerated current. The fractal dimension of quantum 1/f noise is determined on the basis of its quantum chaos definition and is obtained theoretically as a function of bandwidth in a simple model by applying the Grassberger-Procaccia-Takens algorithm to the quantum 1/f theory. The quantum 1/f effect is successfully applied to quartz resonators and bipolar junction transistors. Finally, the quantum 1/f mobility fluctuations are calculated in silicon and the coherent quantum 1/f effect is derived for the first time from a new QED propagator with branch-point singularity. This opens the way to better bridging the gap between coherent and conventional quantum 1/f noise in small and ultrasmall devices.

  17. Prospects for High Resolution Neutron Spectroscopy on high power fusion devices in view of the recent diagnostic developments at JET

    SciTech Connect

    Ericsson, Goeran; Sunden, E. Andersson; Conroy, S.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjsoetrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Ognissanto, F.; Tardocchi, M.; Angelone, M.; Popovichev, S.

    2008-03-12

    An evaluation of three different candidate techniques for a 14-MeV High Resolution Neutron Spectrometer for a high power fusion device is presented. The performance is estimated for a modelled neutron emission for ITER plasma scenario 4. As performance indicators we use the estimated time-resolution achieved in measurements of three plasma parameters, namely, the ion temperature, the intensity of neutron emission due to neutral beam--thermal plasma interactions and the intensity of the so-called alpha knock-on neutron tail. It is found that only the MPR technique can deliver results on all three parameters with reasonable time resolution.

  18. CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program

    SciTech Connect

    Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.

    1997-03-21

    In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.

  19. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  20. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    SciTech Connect

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  1. Device configuration-management system

    SciTech Connect

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information.

  2. Increased hematocrit after applications of conducted energy weapons (including TASER(®) devices) to Sus scrofa.

    PubMed

    Jauchem, James R

    2011-01-01

    Conducted energy weapons (CEWs) are used by law enforcement personnel to incapacitate individuals quickly and effectively, without intending to cause lethality. CEWs have been deployed for relatively long or repeated exposures in some cases. In laboratory animal models, central venous hematocrit has increased significantly after CEW exposure. Even limited applications (e.g., three 5-sec applications) resulted in statistically significant increases in hematocrit. Preexposure hematocrit was significantly higher in nonsurvivors versus survivors after more extreme CEW applications. The purpose of this technical note is to address specific questions that may be generated when examining these results. Comparisons among results of CEW applications, other electrical muscle stimulation, and exercise/voluntary muscle contraction are included. The anesthetized swine appears to be an acceptable animal model for studying changes in hematocrit and associated red blood cell changes. Potential detrimental effects of increased hematocrit, and considerations during law enforcement use, are discussed. PMID:21198623

  3. Fabrication of a heterostructure device with Au/PPani-TiO2/ITO configuration and study of device parameters including current conduction mechanism

    NASA Astrophysics Data System (ADS)

    Ara Hussain, Amreen; Ratan Pal, Arup; Bailung, Heremba; Chutia, Joyanti; Patil, Dinkar S.

    2013-08-01

    Polyaniline based composites incorporating titanium dioxide have been synthesized by an alternative pathway using reactive magnetron sputtering of titanium and plasma polymerization of aniline monomer. Structural, optical and morphological characterizations of plasma polymerized aniline (PPani) and titanium dioxide (TiO2) composites (PPani-TiO2) reveal the evidence for the incorporation of TiO2 in the PPani matrix. A hybrid heterostructure device having PPani-TiO2 composite with a top gold (Au) layer and bottom indium-tin oxide (ITO) layer is fabricated. The developed heterostructure device exhibits rectifying behaviour indicating the formation of a Schottky contact between Au and PPani-TiO2. The detailed electrical measurement of the device is performed under different temperatures. The ideality factor (n) and barrier height (φB) of the heterojunction diode at room temperature (300 K) are found to be 1.28 and 0.43 eV, respectively. Possible conduction mechanisms are examined using various plotting and curve fitting methods for space charge limited conduction mechanism (SCLC), Schottky emission mechanism and Poole-Frenkel (PF) emission mechanism. The heterostructure device shows best fit of SCLC process as compared to the other mechanisms including Schottky emission and PF emission.

  4. Cost comparison of patients with 3-level artificial total lumbar disc replacements versus 360° fusion at 3 contiguous lumbar vertebral levels: an analysis of compassionate use at 1 site of the US investigational device exemption clinical trial

    PubMed Central

    Buttacavoli, Frank A.; Delamarter, Rick B.; Kanim, Linda E.A.

    2010-01-01

    Background We sought to evaluate the difference between hospital service costs of 2 treatment options for patients diagnosed with 3-level degenerative disc disease (DDD) in the lumbar spine. In this retrospective analysis, itemized billing records of hospital stay for patients with 3-level DDD treated with artificial disc replacement (ADR) were compared with those treated with circumferential fusion (standard of care). Methods Sequential 3-level DDD patients treated with either ADR (ProDisc-L; Synthes, West Chester, Pennsylvania) or circumferential fusion during the period from January 2004 to October 2005 were included. Surgeries were performed at the same hospital for all patients. The ADR-treated patients were participating in the investigational device exemption clinical trial as part of the compassionate-use arm. Patients treated with fusion at the same institution during this same time interval were evaluated. Itemized billing records were collected at least 1 year after the index surgery. Costs according to hospital service categories were compared between ADR-treated and fusion-treated patients by use of analysis of variance and multivariate statistical techniques. Results There were 43 consecutive patients treated for 3-level DDD between January 2004 and October 2005. Of these, 21 underwent 3-level ADR and 22 had a 3-level fusion procedure. There was a mean of 3 fewer hospital days for patients treated with ADR (4.77 ± 1.11 days) than for those treated with fusion (8.00 ± 1.82 days) (P < .0001). The cost of hospital services for ADR-treated patients was 49% less excluding instrumentation costs and 54% less when accounting for instrumentation. The pattern of cost was similar when workers’ compensation patients were analyzed separately. Conclusions ADR-treated 3-level patients benefited from significantly lower costs from their in-hospital stay compared with those treated by fusion. Hospital service costs were 49% (54% when instrumentation was included

  5. Operative strategy and clinical outcomes of ROI-CTM fusion device in the treatment of Hangman’s fracture

    PubMed Central

    Cao, Guijun; Meng, Chunyang; Zhang, Weihong; Kong, Xiangqing

    2015-01-01

    Objective: to compare the clinical outcomes of anterior fusion with ROI-CTM and titanium plate in the treatment of Hangman’s fractures. Methods: From Dec 2005 to Jan 2015, a total of 21 patients with Hangman’s fracture, who underwent anterior internal fixation with titanium plate or ROI-CTM, were retrospectively reviewed. All patients underwent anteroposterior, lateral, and flexion-extension radiography and computed tomography of cervical spine preoperatively and postoperatively at 3 days and 3 months. Cervical visual analog scale (VAS) score, Bazaz dysphagia score, angular displacement (AD), horizontal displacement (HD), fusion rate, and blood loss were measured. Results: The VAS and Bazaz dysphagia score at postoperative 3 days were significantly lower in ROI-CTM group, as compared to titanium plate group (P<0.05). AD and HD were significantly decreased in both groups after operation (P<0.05). The postoperative rate of complete reduction of spondylolisthesis was significantly higher in ROI-CTM group than that in titanium plate group (P<0.05). The operative time and blood loss was significantly decreased in ROI-CTM group, as compared to titanium plate group (P<0.05). Conclusion: ROI-CTM device showed superiority to titanium plate in the treatment of Hangman’s fractures, suggesting that anterior operation with ROI-CTM device may be a better choice for treating Hangman’s fractures. PMID:26770480

  6. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G.

    2013-12-15

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (∼1 m), high-current (∼1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ∼5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  7. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Krzysztof J.

    2008-04-01

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which—besides photomultiplier itself—also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes—embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  8. A bioresorbable osteosynthesis device can induce an earlier sternal fusion after median sternotomy

    PubMed Central

    Tsunekawa, Tomohiro; Usui, Akihiko; Oshima, Hideki; Mizutani, Shinnichi; Araki, Yoshimori; Okada, Noritaka; Ueda, Yuichi

    2012-01-01

    OBJECTIVES We examined the impact of the bioresorbable osteosynthesis sternal pin (Super Fixsorb 30) on sternal healing after median sternotomy. METHODS Sixty-three patients who underwent aortic surgery through median sternotomy between January 2006 and March 2009 were analysed. Sternal pins were utilized in 36 patients in addition to the standard closure of the sternum with Ethibond sutures (Group A), and 27 patients received no pins with the standard Ethibond sternal closure (Group B). The occurrence of transverse sternal dehiscence, anterior–posterior displacement and complete fusion of the sternum were evaluated by a computed tomography scan. The cross-sectional cortical bone density area (CBDA) of the sternum was examined to evaluate the osteoconductivity of the sternal pin over a 12-month period. RESULTS There was no sternal displacement (0%) observed in Group A at discharge. Meanwhile, five displacements (18.5%) were observed in Group B (P = 0.007). The complete sternal fusion rates at 12 months postoperatively were 100% in Group A, and 21.6% in Group B (P < 0.001). A significant increase in the CBDA was observed in Group A (P < 0.001; between CBDA at discharge and 12 months postoperatively). CONCLUSIONS The Super Fixsorb 30 sternal pin reduced an anterior–posterior sternal displacement and facilitated an earlier sternal fusion. The pin may have the potential to promote osteogenesis. PMID:22623628

  9. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    SciTech Connect

    Combs, S.K.; Baylor, L.R.; Foust, C.R.

    1993-11-01

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to {approximately}1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to {approximately}1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described.

  10. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  11. Deuterium retention enhancement in lithiated graphite plasma-facing surfaces in fusion devices

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul

    2011-10-01

    Lithium conditioning has been adopted in a number of magnetic confinement devices resulting in significant effects on plasma performance. In NSTX for example effects include: reduction of ELMs, reduced edge neutral density, increased pedestal electron and ion temperature, and improved energy confinement. The main assumption conjectured for the effects observed in NSTX plasmas is the retention of hydrogen by coatings of lithium on ATJ graphite tile surfaces. The main binding channel understood to be the ionic lithium hydride bond. However, the likelihood that the dominant retention mechanism is governed by lithium-hydride bonding seems less probable based on well-known intercalation effects of lithium in graphite. The observed effects on plasma behavior in NSTX, despite the strong chemical interaction of D, Li, O and carbon, indicate an enhanced mechanism for retaining hydrogen in addition to Li-D binding. This paper summarizes the key mechanisms understood today of enhanced hydrogen retention in lithium-treated ATJ graphite surfaces. The mechanisms are elucidated by four major efforts: 1) controlled in-situ off-line experiments at Purdue,, 2) post-mortem NSTX tile analysis, 3) in-vacuo PMI probe data in NSTX, and 4) computational quantum-based atomistic simulations. Results show that a saturation limit of D pumping by lithium conditioning of ATJ graphite surfaces is reached in a few number of shots. Computational modeling using semi-empirical quantum mechanics of electrons and classical mechanics of nuclei elucidate on the polar-covalent interactions that emerge between lithium and the C-D-O system.

  12. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  13. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in fusion devices by using CCD images

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Kim, Kyung-Rae; Nam, Yong-Un; Chung, Jinil; Grisolia, Christian; Rohde, Volker; KSTAR Team; TORE SUPRA Team; ASDEX Upgrade Team

    2013-08-01

    Images of wide-angle visible standard CCD cameras contain information on Dust Creation Events (DCEs) that occur during plasma operations. Database on the DCEs can be built by analyzing the straight line-like dust trajectories in scrape-off layer caused by plasma-dust interaction along the vacuum vessel. The database provides short/long term temporal evolution and spatial distribution of origins of DCEs in fusion devices. We have studied DCEs of 2011 KSTAR campaign and compared with that of 2006 Tore Supra (TS) and 2007 ASDEX Upgrade (AUG) campaign. An analysis software, with which the location of dust trajectories in 3D position in the KSTAR vacuum vessel is identified, is developed and the dust velocity distribution in 2011 campaign is measured. ©2001 Elsevier Science.

  14. Development of finely dispersed Ti- and Zr-doped isotropic graphites for the divertor of next step fusion devices

    NASA Astrophysics Data System (ADS)

    López-Galilea, I.; García-Rosales, C.; Pintsuk, G.; Linke, J.

    2007-03-01

    Finely dispersed Ti- and Zr-doped isotropic graphites have been manufactured using three different starting raw materials. The aim is to obtain doped fine grain isotropic graphites with reduced chemical erosion, high thermal shock resistance and low cost, which aim to be competitive with present carbon-based candidate materials for next step fusion devices. First ITER relevant thermal shock loads were applied on test specimens of these materials. The brittle destruction behaviour of graphite is greatly improved by doping with Ti or Zr, most probably due to a significant increase of thermal conductivity related to the catalytic effect of TiC and ZrC on the graphitization. Doped graphites manufactured with the synthetic mesophase pitch 'AR' as raw material showed the best performance from the three investigated raw materials due to its higher graphitability. The eroded surfaces of doped graphites exhibit a thin solidified carbide layer, probably caused by the segregation of liquid carbide during the thermal shot.

  15. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    SciTech Connect

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  16. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices.

    PubMed

    Plyusnin, V V; Jakubowski, L; Zebrowski, J; Duarte, P; Malinowski, K; Fernandes, H; Silva, C; Rabinski, M; Sadowski, M J

    2012-08-01

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK. PMID:22938292

  17. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  18. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    NASA Technical Reports Server (NTRS)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  19. Evaluation of an electrostatic dust removal system with potential application in next-step fusion devices

    SciTech Connect

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-05-15

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass, and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm{sup 3} volume of carbon and tungsten particles were moved in under 5 s. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon and the change in particle distribution over short timescales (<1 s).

  20. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    SciTech Connect

    Friesen, F. QL.

    2011-01-20

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  1. Assessment of martensitic steels as structural materials in magnetic fusion devices

    SciTech Connect

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600/sup 0/C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity.

  2. INSTRUMENTS AND METHODS OF INVESTIGATION Nanostructures in controlled thermonuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Krauz, V. I.; Martynenko, Yurii V.; Svechnikov, N. Yu; Smirnov, Valentin P.; Stankevich, V. G.; Khimchenko, L. N.

    2011-01-01

    It is shown that the presence of nano-sized and nano-structured erosion products not only affects the operation of thermonuclear devices but also, to a large extent, determines the safety and economy of future thermonuclear reactors. The formation mechanisms and the characteristics and properties of deposited films and nano-sized dust that form in tokamaks are reviewed.

  3. Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.

    PubMed

    Lewandowski, Angela T; Yi, Hyunmin; Luo, Xiaolong; Payne, Gregory F; Ghodssi, Reza; Rubloff, Gary W; Bentley, William E

    2008-02-15

    We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic activation of the protein's "pro-tag." For our demonstration, the model target protein is green fluorescent protein (GFP) genetically fused with a pentatyrosine pro-tag at its C-terminus, which assembles onto both two-dimensional chips and within fully packaged microfluidic devices in situ and under flow. Our surface-assembly approach enables spatial selectivity and orientational control under mild experimental conditions. We believe that our integrated approach harnessing genetic manipulation, in situ enzymatic activation, and electro-assembly makes it advantageous for a wide variety of bioMEMS and biosensing applications that require facile "biofunctionalization" of microfabricated devices. PMID:17625789

  4. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    NASA Astrophysics Data System (ADS)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January

  5. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-12-31

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He{sup 2{plus}} and Fe{sup 24{plus}} transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He{sup 2{plus}} studies. By examining the electron and He{sup 2{plus}} responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed.

  6. Computation of stationary 3D halo currents in fusion devices with accuracy control

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Specogna, Ruben

    2014-09-01

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  7. Computation of stationary 3D halo currents in fusion devices with accuracy control

    SciTech Connect

    Bettini, Paolo; Specogna, Ruben

    2014-09-15

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  8. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Local thermal particle and energy transport studies of balanced-injection L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power have been performed on TFTR. The particle transport of He{sup 2+} and electrons following a small helium gas puff and Fe{sup 24+} induced by laser ablation has been examined and compared to the local energy transport characteristics inferred from power balance analysis. All particle perturbation diffusivities are radially hollow and are similar in magnitude and shape to the effective thermal conductivities found by power balance analysis. All particle diffusivities are 1--2 orders of magnitude larger than neoclassical values, except near the magnetic axis. A reduction in the helium diffusivity D{sub He} in the Supershot as compared to the L-mode is accompanied by a similar reduction in the effective single fluid thermal conductivity {chi}fluid. Also, the helium core convective velocity V{sub He} is found to increase in the Supershot over the L-Mode for r/a < 0.5. A quasilinear model of electrostatic drift waves has been used to calculate ratios between particle and energy fluxes in the Supershot. The measured ratios of the helium and iron particle diffusivities are in good accord with predictions, as are predicted ratios of V{sub He}/D{sub He}. Modelling indicates that the similarity in magnitude and profile shape of D{sub He} and {chi}fluid has generally favorable implications for helium ash content in a future fusion reactor. The core convection found in the Supershot increases the helium concentration on axis but does not reduce the plasma reactivity significantly.

  9. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Local thermal particle and energy transport studies of balanced-injection L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power have been performed on TFTR. The particle transport of He[sup 2+] and electrons following a small helium gas puff and Fe[sup 24+] induced by laser ablation has been examined and compared to the local energy transport characteristics inferred from power balance analysis. All particle perturbation diffusivities are radially hollow and are similar in magnitude and shape to the effective thermal conductivities found by power balance analysis. All particle diffusivities are 1--2 orders of magnitude larger than neoclassical values, except near the magnetic axis. A reduction in the helium diffusivity D[sub He] in the Supershot as compared to the L-mode is accompanied by a similar reduction in the effective single fluid thermal conductivity [chi]fluid. Also, the helium core convective velocity V[sub He] is found to increase in the Supershot over the L-Mode for r/a < 0.5. A quasilinear model of electrostatic drift waves has been used to calculate ratios between particle and energy fluxes in the Supershot. The measured ratios of the helium and iron particle diffusivities are in good accord with predictions, as are predicted ratios of V[sub He]/D[sub He]. Modelling indicates that the similarity in magnitude and profile shape of D[sub He] and [chi]fluid has generally favorable implications for helium ash content in a future fusion reactor. The core convection found in the Supershot increases the helium concentration on axis but does not reduce the plasma reactivity significantly.

  10. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  11. Irradiation creep at temperatures of 400 {degrees}C and below for application to near-term fusion devices

    SciTech Connect

    Grossbeck, M.L.; Gibson, L.T.; Mansur, L.K.

    1996-12-31

    To study irradiation creep at 400{degrees}C and below, a series of six austenitic stainless steels and two ferritic alloys was irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor; and, after an atomic displacement level of 7.4 dpa, the specimens were moved to the High Flux Isotope Reactor for the remainder of the 19 dpa accumulated. Irradiation temperatures of 60, 200, 330, and 400{degrees}C were studied with internally pressurized tubes of type 316 stainless steel, PCA, HT 9, and a series of four laboratory heats of: Fe-13.5Cr-15Ni, Fe-13.5Cr-35Ni, Fe-1 3.5Cr-1 W-0.18Ti, and Fe-16Cr. At 330{degrees}C, irradiation creep was shown to be linear in fluence and stress. There was little or no effect of cold-work on creep under these conditions at all temperatures investigated. The HT9 demonstrated a large deviation from linearity at high stress levels, and a minimum in irradiation creep with increasing stress was observed in the Fe-Cr-Ni ternary alloys.

  12. Static and Dynamic Fatigue Behavior of Topology Designed and Conventional 3D Printed Bioresorbable PCL Cervical Interbody Fusion Devices

    PubMed Central

    Knutsen, Ashleen R.; Borkowski, Sean L.; Ebramzadeh, Edward; Flanagan, Colleen L.; Hollister, Scott J.; Sangiorgio, Sophia N.

    2015-01-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650N in compression, 395N in compression-shear, and 0.25Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. PMID:26072198

  13. ECR heating power modulation as a means to ease the overcoming of the radiation barrier in fusion devices

    SciTech Connect

    Morozov, D. Kh.; Pshenov, A. A.; Mineev, A. B.

    2010-06-15

    A method is proposed to ease the overcoming of the impurity radiation barrier during current drive in tokamaks, as well as in alternative fusion and plasmochemical systems with ECR plasma heating. The method is based on the fact that the dependence of the ionization rate on the electron temperature is strongly nonlinear and the dependence of the recombination rate on the latter is weaker. The result is that, during temperature oscillations, the effective temperature for ionization-recombination processes is higher than that in a steady state, so the ionization equilibrium is shifted and strongly emitting ions are stripped more rapidly. Thereby, ECR plasma heating in the initial discharge stage can be made more efficient by modulating the heating power at a low frequency. The evolution of the electron temperature in a homogeneous hydrogen plasma with a carbon impurity and in small ISX-scale tokamaks is simulated numerically, as well as the evolution of the electron and ion temperatures and of the current during discharge startup in the ITER device. Numerical simulations of the effect of modulation of the ECR heating power on the rate of heating of nitrogen, oxygen, and argon plasmas were also carried out. The assumption of coronal equilibrium is not used. It is shown that the low-frequency modulation of the heating power can substantially ease the overcoming of the radiation barrier.

  14. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  15. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.

    PubMed

    Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N

    2015-09-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. PMID:26072198

  16. Three-dimensional modeling of the thermoelectric MHD problem of the LIMIT liquid lithium divertor for fusion devices

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Xu, Wenyu; Lindquist, Kyle; Andruczyk, Daniel; Ruzic, David N.

    2012-10-01

    Flowing liquid lithium is a promising technique for the continuous heat removal from plasma-facing components in fusion devices. In ITER-like conditions, the divertor has to handle stationary fluxes of the order 10 MW/m^2; heat fluxes even bigger occur during H-mode-related instabilities and disruptions. The Lithium-Metal Infused Trenches (LIMIT) concept, proposed at University of Illinois, offers a viable and self-adaptive solution, thanks to the use of a thermoelectric MHD drive of liquid lithium inside elongated metal trenches. We present a 3D finite-element-based model for the solution of the TEMHD. The continuity of mass, momentum, energy and current are solved together with the generalized constitutive laws of thermoelectricity. The numerical results show that TE currents are generated at the interface between the two metals; under the action of the toroidal magnetic field, the resulting JxB force pushes the liquid lithium along the channels. The force acts mainly at the interface, where the Hartmann and the fluid boundary layers are present, developing early turbulence and fluid bi-shaped macrostructures on the velocity field. The stability of the method is discussed, together with further developments toward turbulent average of the convective noise.

  17. Optimization of transistor design including large signal device/circuit interactions at extremely high frequencies (20-100+GHz)

    NASA Technical Reports Server (NTRS)

    Levy, Ralph; Grubin, H. L.

    1991-01-01

    Transistor design for extremely high frequency applications requires consideration of the interaction between the device and the circuit to which it is connected. Traditional analytical transistor models are to approximate at some of these frequencies and may not account for variations of dopants and semiconductor materials (especially some of the newer materials) within the device. Physically based models of device performance are required. These are based on coupled systems of partial differential equations and typically require 20 minutes of Cray computer time for a single AC operating point. A technique is presented to extract parameters from a few partial differential equation solutions for the device to create a nonlinear equivalent circuit model which runs in approximately 1 second of personal computer time. This nonlinear equivalent circuit model accurately replicates the contact current properties of the device as computed by the partial differential solver on which it is based. Using the nonlinear equivalent circuit model of the device, optimization of systems design can be performed based on device/circuit interactions.

  18. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    NASA Astrophysics Data System (ADS)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January

  19. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    SciTech Connect

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-15

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  20. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-01

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  1. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries?

    PubMed Central

    Ghaly, Ramsis F.; Tverdohleb, Tatiana; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulation is currently approved to treat chronic intractable pain of the trunk and limbs. However, such implantable electronic devices are vulnerable to external electrical currents and magnetic fields. Within the hospitals and modern operating rooms (ORs), there is an abundance of electrical devices and other types of equipment that could interfere with such devices. Despite the increasing number of patients with neuromodulation implantable devices, there are no written guidelines available or consensus of cautions for such patients undergoing unrelated surgery. Case Descriptions: A 60-year-old female with a permanent St. Jude's spinal cord stimulator (SCS) presented for open total abdominal hysterectomy. Both the anesthesia and gynecology staffs were aware of the device presence, but were unaware of any precautions regarding intraoperative management. The device was found to be nonmagnetic resonance imaging compatible, and bipolar cautery was used instead of monopolar cautery. A 59-year-old female with a 9-year-old permanent Medtronic SCS, presented for right total hip arthroplasty. The device was switched off prior to entering the OR, bipolar cautery was used, and grounding pads were placed away from her battery site. In each case, the manufacturer's representative was contacted preoperative. Both surgeries proceeded uneventfully. Conclusions: The Food and Drug Administration safety information manual warns about the use of diathermy, concomitant implanted stimulation devices, lithotripsy, external defibrillation, radiation therapy, ultrasonic scanning, and high-output ultrasound, all of which can lead to permanent implant damage if not turned off prior to undertaking procedures. Lack of uniform guidelines makes intraoperative management, as well as remote anesthesia care of patients with previously implanted SCSs unsafe. PMID:26958424

  2. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  3. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  4. QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC

    NASA Astrophysics Data System (ADS)

    Caola, Fabrizio; Dowling, Matthew; Melnikov, Kirill; Röntsch, Raoul; Tancredi, Lorenzo

    2016-07-01

    We compute next-to-leading order (NLO) QCD corrections to the production of two massive electroweak bosons in gluon fusion. We consider both the prompt production process gg → V V and the production mediated by an exchange of an s-channel Higgs boson, gg → H ∗ → V V . We include final states with both on- and off-shell vector bosons with leptonic decays. The gluonic production of vector bosons is a loop-induced process, including both massless and massive quarks in the loop. For gg → ZZ production, we obtain the NLO QCD corrections to the massive loops through an expansion around the heavy top limit. This approximation is valid below the top production threshold, giving a broad range of invariant masses between the Higgs production and the top production thresholds in which our results are valid. We explore the NLO QCD effects in gg → ZZ focusing, in particular, on the interference between prompt and Higgs-mediated processes. We find that the QCD corrections to the interference are large and similar in size to the corrections to both the signal and the background processes. At the same time, we observe that corrections to the interference change rapidly with the four-lepton invariant mass in the region around the ZZ production threshold. We also study the interference effects in gg → W + W - production where, due to technical limitations, we only consider contributions of massless loops. We find that the QCD corrections to the interference in this case are somewhat larger than those for either the signal or the background.

  5. Tritium accountancy in fusion systems

    SciTech Connect

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  6. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  7. A comparative study of mouse embryo freeze-preservation including the examination of a thermoelectric freezing device.

    PubMed

    Schiewe, M C; Schmidt, P M; Wildt, D E

    1987-06-01

    In Study 1 over 2000 4- to 8-cell mouse embryos were randomly pooled and assigned to 1 of 12 treatment groups. A 2 X 2 X 3 factorial design was used to analyze two types of cryoprotectant/post-thaw (PT) dilutions (dimethyl sulfoxide [Me2SO]/stepwise dilution versus glycerol/sucrose dilution), two storage containers (glass ampoules versus plastic straws), and three cooling treatments. Two commercial, controlled-rate freezing machines were examined, employing either nitrogen gas (Planer) or thermoelectric (Glacier) cooling. Embryos were cooled slowly (0.5 degrees C/min) to -35 or -80 degrees C and then cooled rapidly by transfer into liquid nitrogen (LN2). Thawed embryos were cultured for 24 hr after which developmental stage, post-thaw survival (PTS), embryo degeneration rate (EDR), quality grade (QG), and fluorescein diacetate viability grade (VG) were assessed. Overall, PTS and EDR were similar (P greater than 0.05) among the three freezing unit/plunge temperature treatments. Cumulative results of container and cryoprotectant/PT dilution treatments consistently demonstrated greater PTS, QG, and VG ratings and lower EDR values when embryos were frozen in ampoules using glycerol/sucrose dilution. Embryos treated with Me2SO/stepwise dilution were particularly sensitive to freezing damage when stored in plastic straws and plunged into LN2 at -35 degrees C. Study 2 was directed at determining whether Study 1 methods for diluting Me2SO-protected embryos markedly affected PTS rates. Post-thaw culture percentages were no different (P greater than 0.05) for four- to eight-cell Me2SO-treated embryos frozen in ampoules (using the forced-LN2 device), thawed, and diluted either conventionally in reduced concentrations of Me2SO or in the sucrose treatment normally accorded glycerolated embryos.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3595167

  8. Programmed Learning: A Bibliography of Programs and Presentation Devices. Fourth Edition with Supplements Including the 1971 Release.

    ERIC Educational Resources Information Center

    Hendershot, Carl H.

    Over 3,500 commercial programs for use in programed instruction are listed by subject and publisher. For each title or series, the following information is provided: approximate length in hours, approximate length in frames or pages, appropriate level for use, list price, and "other information," which often includes a description of the contents.…

  9. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  10. Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized β-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models

    PubMed Central

    Cao, Lu; Duan, Ping-Guo; Li, Xi-Lei; Yuan, Feng-Lai; Zhao, Ming-Dong; Che, Wu; Wang, Hui-Ren; Dong, Jian

    2012-01-01

    Purpose The aim of this study was to investigate the biomechanical stability provided by a novel, polylactic acid/nano-sized, β-tricalcium phosphate, bioabsorbable, self-retaining cervical fusion cage (BCFC). Methods Quasistatic nonconstraining torques (maximum 1.5 NM) induced flexion, extension, lateral bending (±1.5 NM), and axial rotation (±1.5 NM) on 32 sheep cervical spines (C2–C5). The motion segment C3–C4 was first tested intact; the following groups were tested after complete discectomy: autologous tricortical iliac crest bone graft, Medtronic–Wego polyetheretherketone (PEEK) cage, Solis PEEK cage, and BCFC. The autologous bone graft group was tested with an anterior plate. The mean range of motion (ROM) was calculated from the load-displacement curves. Results BCFC significantly decreased ROM in lateral bending and axial rotation compared to other implants, and no significant difference in ROM between two types of PEEK cages and BCFC could be observed in flexion and extension. Anterior cervical plate (ACP) significantly decreased ROM in flexion and extension, but no significant difference in ROM between BCFC and bone graft plus ACP could be determined in lateral bending and axial rotation. Conclusion The BCFC device showed better stability to autologous tricortical iliac crest bone graft and PEEK cages in single-level anterior cervical discectomy and fusion models and thus may be a potential alternative to the current PEEK cages. PMID:23226018

  11. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  12. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  13. Recent results obtained by use of accelerators on plasma-edge properties in controlled-fusion devices and on properties of high-power neutral beams

    SciTech Connect

    Langley, R.A.

    1982-01-01

    The study of plasma-wall interactions is of primary importance in present fusion devices. Measurements of incident fuel and impurity fluxes, retention and release of fuel atoms, and erosion of internal components are of particular interest. Accelerators in the megaelectronvolt range are being used both to measure the depth profile of fuel atoms implanted in samples placed in the plasma edge by use of nuclear reactions and to measure impurities and film thicknesses by use of elastic scattering reactions. Secondary ion mass spectrometry (SIMS) is used to determine flux and energy distributions of fuel atoms and to measure species composition and impurities in the beams of high power neutral beam injectors. Recent results obtained with these techniques are presented and areas of future study are discussed.

  14. Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Gonderman, Sean; Efe, Mert; De Temmerman, Gregory; Morgan, Thomas; Bystrov, Kirill; Klenosky, Daniel; Qiu, Tian; Allain, J. P.

    2014-08-01

    This work discusses the response of ultrafine-grained tungsten materials to high-flux, high-fluence, low energy pure He irradiation. Ultrafine-grained tungsten samples were exposed in the Pilot-PSI (Westerhout et al 2007 Phys. Scr. T128 18) linear plasma device at the Dutch Institute for Fundamental Energy Research (DIFFER) in Nieuwegein, the Netherlands. The He flux on the tungsten samples ranged from 1.0 × 1023-2.0 × 1024 ions m-2 s-1, the sample bias ranged from a negative (20-65) V, and the sample temperatures ranged from 600-1500 °C. SEM analysis of the exposed samples clearly shows that ultrafine-grained tungsten materials have a greater fluence threshold to the formation of fuzz by an order or magnitude or more, supporting the conjecture that grain boundaries play a major role in the mechanisms of radiation damage. Pre-fuzz damage analysis is addressed, as in the role of grain orientation on structure formation. Grains of (1 1 0) and (1 1 1) orientation showed only pore formation, while (0 0 1) oriented grains showed ripples (higher structures) decorated with pores. Blistering at the grain boundaries is also observed in this case. In situ TEM analysis during irradiation revealed facetted bubble formation at the grain boundaries likely responsible for blistering at this location. The results could have significant implications for future plasma-burning fusion devices given the He-induced damage could lead to macroscopic dust emission into the fusion plasma.

  15. Fusion - A potential power source

    SciTech Connect

    Jensen, T.H. )

    1994-10-01

    Duplicating the fusion process of the sun and the stars for energy production on earth would present many difficulties. The state of matter at such temperatures--the plasma state--may be considered a gas of electrons and nuclei, so one problem is the need to confine a hot, reacting plasma. Because the plasma is an electric conductor, it is subject to magnetic forces. Thus, one approach is to confine the hot plasma by a magnetic field. Another approach is to heat the matter so rapidly that the fusion reactions take place before the matter has had time to fly apart, that is, to use inertial confinement. At the United Nations' Atoms for Peace Conference in 1958, a remarkably cooperative, international research effort began. In spite of many difficulties, substantial progress has been made. Initially, many tokamaks were built with circular cross sections. However, shaped plasmas were shown to have clear advantages. The cross sections of some of the larger ones are illustrated here. The two largest devices in the US are the Tokamak Fusion Test Reactor (TFTR) at Princeton and the Doublet III-D (DIII-D) at General Atomics in San Diego. The TFTR device is constructed with neutron shielding and equipped to handle the superheavy hydrogen isotope tritium, which is radioactive. This makes it possible to operate the device with the optimum fuel mixture: an equal mixture of deuterium and tritium. This mixture is optimal because the cross section for the DT reaction has by far the largest cross section of the fusion reactions mentioned above. A large effort is presently under way to design the International Thermonuclear Experimental Reactor (ITER). This is a joint effort by the European Community, Japan, Russia, and the US. Goals include the production of fusion power in excess of 1,000 MW for studying the physics of igniting plasmas, and the integrated demonstration of fusion-reactor technologies.

  16. The Anesthetic Implications of Aqueous Drainage Devices and Glaucoma: A Report of a Patient Undergoing Urgent Prone Cervical Decompression and Fusion.

    PubMed

    Blackney, Kevin A; Zavodni, Zachary J; Saddawi-Konefka, Daniel

    2016-08-01

    The pathophysiology of glaucoma and perioperative visual loss is similar. A patient with glaucoma may be at increased risk of perioperative visual loss. For both, goals of management include optimizing ocular perfusion pressure and oxygen delivery. One treatment for refractory glaucoma is an aqueous drainage device; however, there is no published literature on the anesthetic management of patients with these devices. We present the case of a patient with recalcitrant glaucoma treated with an Ahmed Glaucoma Valve who underwent urgent prone surgery. Anesthetic implications of aqueous drainage devices and glaucoma are discussed, and recommendations are made. PMID:27258174

  17. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    DOE PAGESBeta

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; Braunecker, W. A.; Larsen, R. E.; Ratcliff, E. L.; Olson, D. C.

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymersmore » that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.« less

  18. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    SciTech Connect

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; Braunecker, W. A.; Larsen, R. E.; Ratcliff, E. L.; Olson, D. C.

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymers that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.

  19. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  20. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  1. Advanced digital subtraction angiography and MR fusion imaging protocol applied to accurate placement of flow diverter device.

    PubMed

    Faragò, Giuseppe; Caldiera, Valentina; Tempra, Giovanni; Ciceri, Elisa

    2016-02-01

    In recent years there has been a progressive increase in interventional neuroradiology procedures, partially due to improvements in devices, but also to the simultaneous development of technologies and radiological images. Cone beam CT (Dyna-CT; Siemens) is a method recently used to obtain pseudo CT images from digital subtraction angiography (DSA) with a flat panel detector. Using dedicated software, it is then possible to merge Dyna-CT images with images from a different source. We report here the usefulness of advanced DSA techniques (Syngo-Dyna CT, three-dimensional DSA iPilot) for the treatment of an intracranial aneurysm with a flow diverter device. Merging MR and Dyna-CT images at the end of the procedure proved to be a simple and rapid additional method of verifying the success of the intervention. PMID:25589548

  2. The origin of convective structures in the scrape-off layer of linear magnetic fusion devices investigated by fast imaging

    SciTech Connect

    Antar, G. Y.; Yu, J. H.; Tynan, G.

    2007-02-15

    A fast imaging camera is used to unveil the spatio-temporal properties of radially convective events in the CSDX linear plasma device [M. J. Burin et al., Phys. Plasmas, 12, 052320 (2005)]. The exposure time is set to 1 {mu}s and the time between frames to 10 {mu}s. The time series from a Langmuir probe and from a pixel in the 50000-frame movie are compared and cross-correlated. Excellent agreement between the two diagnostics is found for spatial scales greater than 2.5 mm. The fluctuations inside the main plasma column are found to change between different poloidal mode numbers as a function of time. Accordingly, the power spectra determined in these linear devices reflect the sum over these modes. Outside the main plasma column, avaloids are observed to remain attached to the main plasma, hence their behavior does not become independent of the dynamics inside the main plasma column. Avaloid properties, assessed from imaging, agree with Langmuir probes done on various devices, except that the radial length is found to be much larger than previously determined because the blob-shape assumption is not valid. The link between fluctuations inside and outside the main plasma column indicates that the nonlinear evolution of the m=1 poloidal mode number is responsible for the creation of avaloids.

  3. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  4. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  5. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  6. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  7. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    SciTech Connect

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-29

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  8. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect

    Wang Zhehui; Wurden, Glen A.; Mansfield, Dennis K.; Roquemore, Lane A.; Ticos, Catalin M.

    2008-09-07

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  9. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  10. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  11. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  12. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  13. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing...

  14. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    SciTech Connect

    Klepper, C. C. Isler, R. C.; Biewer, T. M.; Caughman, J. B.; Green, D. L.; Harris, J. H.; Hillis, D. L.; Martin, E. H.; Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, S.; Pegourié, B.; Jacquot, J.; Lotte, Ph.; Colledani, G.; Ekedahl, A.; Litaudon, X.; Shannon, S. C.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  15. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher. PMID:25430306

  16. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    SciTech Connect

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C; Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, Stephanie; Jacquot, Jonathan; Lotte, Ph.; Colledani, G.; Biewer, Theodore M; Caughman, J. B. O.; Ekedahl, A.; Green, David L; Harris, Jeffrey H; Hillis, Donald Lee; Shannon, Prof. Steven; Litaudon, X

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  17. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  18. Multi-center, Prospective, Randomized, Controlled Investigational Device Exemption Clinical Trial Comparing Mobi-C Cervical Artificial Disc to Anterior Discectomy and Fusion in the Treatment of Symptomatic Degenerative Disc Disease in the Cervical Spine

    PubMed Central

    Bae, Hyun W.; Davis, Reginald; Gaede, Steven; Hoffman, Greg; Kim, Kee; Nunley, Pierce D.; Peterson, Daniel; Rashbaum, Ralph; Stokes, John

    2014-01-01

    Background Anterior cervical discectomy and fusion (ACDF) is the gold standard for treating symptomatic cervical disc degeneration. Cervical total disc replacements (TDRs) have emerged as an alternative for some patients. The purpose of this study was to evaluate the safety and effectiveness of a new TDR device compared with ACDF for treating single-level cervical disc degeneration. Methods This was a prospective, randomized, controlled, multicenter Food and Drug Administration (FDA) regulated Investigational Device Exemption (IDE) study. A total of 245 patients were treated (164 TDR: 81 ACDF). The primary outcome measure was overall success based on improvement in Neck Disability Index (NDI), no subsequent surgical interventions, and no adverse events (AEs) classified as major complications. Secondary outcome measures included SF-12, visual analog scale (VAS) assessing neck and arm pain, patient satisfaction, radiographic range of motion, and adjacent level degeneration. Patients were evaluated preoperatively and postoperatively at 6 weeks, 3, 6, 12, 18, and 24 months. The hypothesis was that the TDR success rate was non-inferior to ACDF at 24 months. Results Overall success rates were 73.6% for TDR and 65.3% for ACDF, confirming non-inferiority (p < 0.0025). TDR demonstrated earlier improvements with significant differences in NDI scores at 6 weeks and 3 months, and VAS neck pain and SF-12 PCS scores at 6 weeks (p<0.05). Operative level range of motion in the TDR group was maintained throughout follow-up. Radiographic evidence of inferior adjacent segment degeneration was significantly greater with ACDF at 12 and 24 months (p < 0.05). AE rates were similar. Conclusions Mobi-C TDR is a safe and effective treatment for single-level disc degeneration, producing outcomes similar to ACDF with less adjacent segment degeneration. Level of Evidence: Level I. Clinical relevance: This study adds to the literature supporting cervical TDR as a viable option to ACDF in

  19. Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigational device exemption clinical trial.

    PubMed

    Radcliff, Kris; Coric, Domagoj; Albert, Todd

    2016-08-01

    OBJECTIVE The purpose of this study was to report the outcome of a study of 2-level cervical total disc replacement (Mobi-C) versus anterior cervical discectomy and fusion (ACDF). Although the long-term outcome of single-level disc replacement has been extensively described, there have not been previous reports of the 5-year outcome of 2-level cervical disc replacement. METHODS This study reports the 5-year results of a prospective, randomized US FDA investigational device exemption (IDE) study conducted at 24 centers in patients with 2-level, contiguous, cervical spondylosis. Clinical outcomes at up to 60 months were evaluated, including validated outcome measures, incidence of reoperation, and adverse events. The complete study data and methodology were critically reviewed by 3 independent surgeon authors without affiliation with the IDE study or financial or institutional bias toward the study sponsor. RESULTS A total of 225 patients received the Mobi-C cervical total disc replacement device and 105 patients received ACDF. The Mobi-C and ACDF follow-up rates were 90.7% and 86.7%, respectively (p = 0.39), at 60 months. There was significant improvement in all outcome scores relative to baseline at all time points. The Mobi-C patients had significantly more improvement than ACDF patients in terms of Neck Disability Index score, SF-12 Physical Component Summary, and overall satisfaction with treatment at 60 months. The reoperation rate was significantly lower with Mobi-C (4%) versus ACDF (16%). There were no significant differences in the adverse event rate between groups. CONCLUSIONS Both cervical total disc replacement and ACDF significantly improved general and disease-specific measures compared with baseline. However, there was significantly greater improvement in general and disease-specific outcome measures and a lower rate of reoperation in the 2-level disc replacement patients versus ACDF control patients. Clinical trial registration no. NCT00389597

  20. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  1. Trends in fusion reactor safety research

    NASA Astrophysics Data System (ADS)

    Herring, J. S.; Holland, D. F.; Piet, S. J.

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex, with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g., for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions.

  2. EDITORIAL: Stochasticity in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Finken, K. H.

    2006-04-01

    In recent years the importance of externally imposed resonant magnetic fields on plasma has become more and more recognized. These fields will cause ergodization at well defined plasma layers and can induce large size islands at rational q-surfaces. A hope for future large scale tokamak devices is the development of a reliable method for mitigating the large ELMs of type 1 ELMy-H-modes by modifying the edge transport. Other topics of interest for fusion reactors are the option of distributing the heat to a large area and optimizing methods for heat and particle exhaust, or the understanding of the transport around tearing mode instabilities. The cluster of papers in this issue of Nuclear Fusion is a successor to the 2004 special issue (Nuclear Fusion 44 S1-122 ) intended to raise interest in the subject. The contents of this present issue are based on presentations at the Second Workshop on Stochasticity in Fusion Plasmas (SFP) held in Juelich, Germany, 15-17 March 2005. The SFP workshops have been stimulated by the installation of the Dynamic Ergodic Divertor (DED) in the TEXTOR tokamak. It has attracted colleagues working on various plasma configurations such as tokamaks, stellarators or reversed field pinches. The workshop was originally devoted to phenomena on the plasma edge but it has been broadened to transport questions over the whole plasma cross-section. It is a meeting place for experimental and theoretical working groups. The next workshop is planned for February/March 2007 in Juelich, Germany. For details see http://www.fz-juelich.de/sfp/. The content of the workshop is summarized in the following conference summary (K.H. Finken 2006 Nuclear Fusion 46 S107-112). At the workshop experimental results on the plasma transport resulting from ergodization in various devices were presented. Highlights were the results from DIII-D on the mitigation of ELMs (see also T.E. Evans et al 2005 Nuclear Fusion 45 595 ). Theoretical work was focused around the topics

  3. Research on fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.

    2012-06-01

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. "Fusion for Neutrons" (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  4. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  5. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  6. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    DOEpatents

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  7. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    NASA Astrophysics Data System (ADS)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  8. Fusion power demonstration

    SciTech Connect

    Henning, C.D.; Logan, B.G.

    1983-09-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  9. Effect of superbanana diffusion on fusion reactivity in stellarators

    SciTech Connect

    Hinton, Fred L.

    2012-08-15

    Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in the calculation.

  10. Numerical investigations on a compact magnetic fusion device for studying the effect of external applied magnetic field oscillations on the nuclear burning efficiency of D-T and p-11B fuels

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Larour, J.; Auvray, P.; Balcou, P.; Ducret, J.-E.; Martin, P.

    2015-05-01

    The burning process of high density (about 1018cm-3), high temperature (tens to hundreds of keV) plasma trapped by a high mirror-like magnetic field in a Compact Magnetic Fusion (CMF) device is numerically investigated.. The initial high density and high temperature plasma in the CMF device is produced by ultrashort high intensity laser beam interaction with clusters or thin foils, and two fuels, D-T and p-11B are studied. The spatio-temporal evolution of D-T and p-11B plasmas, the production of alphas, the generated electric fields and the high external applied magnetic field are described by a 1-D multifluid code. The initial values for the plasma densities, temperatures and external applied magnetic field (about 100 T) correspond to high β plasmas. The main objectives of the numerical simulations are: to study the plasma trapping, the neutron and alpha production for both fuels, and compare the effect of the external applied magnetic field on the nuclear burning efficiency for the two fuels.. The comparisons and the advantages for each fuel will be presented. The proposed CMF device and the potential operation of the device within the ELI-NP pillar will be discussed.