Science.gov

Sample records for fusion energy driver

  1. Systems modeling and analysis of heavy ion drivers for inertial fusion energy

    SciTech Connect

    Meier, W. R.

    1998-06-03

    A computer model for systems analysis of heavy ion drivers based on induction linac technology has been used to evaluate driver designs for inertial fusion energy (IFE). Design parameters and estimated costs have been determined for drivers with various ions, different charge states, different front-end designs, with and without beam merging, and various pulse compression and acceleration schedules. We have examined the sensitivity of the results to variations in component cost assumptions, design constraints, and selected design parameters

  2. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  3. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    SciTech Connect

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

  4. Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.

    2016-03-01

    We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.

  5. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  6. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  7. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    SciTech Connect

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-07-11

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

  8. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  9. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    SciTech Connect

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target

  10. Electron Cloud Measurements in Heavy-Ion Driver for HEDP and Inertial Fusion Energy

    SciTech Connect

    Covo, M K; Molvik, A W; Friedman, A; Cohen, R; Vay, J; Bieniosek, F; Baca, D; Seidl, P A; Logan, G; Vujic, J L

    2006-08-16

    The High Current Experiment (HCX) at LBNL is a driver scale single beam injector that provides a 1 MeV K+ ion beam current of 0.18 A for 5 {micro}s. It transports high-current beams with large fill factor (ratio of the maximum beam envelope radius to the beam pipe radius) and low emittance growth that are required to keep the cost of the power plant competitive and to satisfy the target requirements of focusing ion beams to high-power density. Beam interaction with the background gas and walls desorbs electrons that can multiply and accumulate, creating an electron cloud. This ubiquitous effect grows at higher fill factors and degrades the quality of the beam. We review simulations and diagnostics tools used to measure electron production, accumulation and its properties.

  11. Inertially confined fusion using heavy ion drivers

    SciTech Connect

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Bock, R.; Hogan, W.J.; Lindl, J.D.

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  12. Inertially confined fusion using heavy ion drivers

    SciTech Connect

    Herrmannsfeldt, W.B. ); Bangerter, R.O. ); Bock, R. ); Hogan, W.J.; Lindl, J.D. )

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  13. Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate

    SciTech Connect

    Payne, S.A.; Beach, R.J.; Bibeau, C.

    1997-12-23

    We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.

  14. Driver drowsiness detection using multimodal sensor fusion

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena O.; Aarabi, Parham; Philiastides, Marios G.; Mohajer, Keyvan; Emami, Majid

    2004-04-01

    This paper proposes a multi-modal sensor fusion algorithm for the estimation of driver drowsiness. Driver sleepiness is believed to be responsible for more than 30% of passenger car accidents and for 4% of all accident fatalities. In commercial vehicles, drowsiness is blamed for 58% of single truck accidents and 31% of commercial truck driver fatalities. This work proposes an innovative automatic sleep-onset detection system. Using multiple sensors, the driver"s body is studied as a mechanical structure of springs and dampeners. The sleep-detection system consists of highly sensitive triple-axial accelerometers to monitor the driver"s upper body in 3-D. The subject is modeled as a linear time-variant (LTV) system. An LMS adaptive filter estimation algorithm generates the transfer function (i.e. weight coefficients) for this LTV system. Separate coefficients are generated for the awake and asleep states of the subject. These coefficients are then used to train a neural network. Once trained, the neural network classifies the condition of the driver as either awake or asleep. The system has been tested on a total of 8 subjects. The tests were conducted on sleep-deprived individuals for the sleep state and on fully awake individuals for the awake state. When trained and tested on the same subject, the system detected sleep and awake states of the driver with a success rate of 95%. When the system was trained on three subjects and then retested on a fourth "unseen" subject, the classification rate dropped to 90%. Furthermore, it was attempted to correlate driver posture and sleepiness by observing how car vibrations propagate through a person"s body. Eight additional subjects were studied for this purpose. The results obtained in this experiment proved inconclusive which was attributed to significant differences in the individual habitual postures.

  15. Data fusion for driver behaviour analysis.

    PubMed

    Carmona, Juan; García, Fernando; Martín, David; Escalera, Arturo de la; Armingol, José María

    2015-01-01

    A driver behaviour analysis tool is presented. The proposal offers a novel contribution based on low-cost hardware and advanced software capabilities based on data fusion. The device takes advantage of the information provided by the in-vehicle sensors using Controller Area Network Bus (CAN-BUS), an Inertial Measurement Unit (IMU) and a GPS. By fusing this information, the system can infer the behaviour of the driver, providing aggressive behaviour detection. By means of accurate GPS-based localization, the system is able to add context information, such as digital map information, speed limits, etc. Several parameters and signals are taken into account, both in the temporal and frequency domains, to provide real time behaviour detection. The system was tested in urban, interurban and highways scenarios. PMID:26473875

  16. Data Fusion for Driver Behaviour Analysis

    PubMed Central

    Carmona, Juan; García, Fernando; Martín, David; de la Escalera, Arturo; Armingol, José María

    2015-01-01

    A driver behaviour analysis tool is presented. The proposal offers a novel contribution based on low-cost hardware and advanced software capabilities based on data fusion. The device takes advantage of the information provided by the in-vehicle sensors using Controller Area Network Bus (CAN-BUS), an Inertial Measurement Unit (IMU) and a GPS. By fusing this information, the system can infer the behaviour of the driver, providing aggressive behaviour detection. By means of accurate GPS-based localization, the system is able to add context information, such as digital map information, speed limits, etc. Several parameters and signals are taken into account, both in the temporal and frequency domains, to provide real time behaviour detection. The system was tested in urban, interurban and highways scenarios. PMID:26473875

  17. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  18. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  19. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  20. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  1. Heavy ion drivers for inertial confinement fusion

    SciTech Connect

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto.

  2. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  3. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver Drowsiness Detection

    PubMed Central

    Daza, Iván G.; Bergasa, Luis M.; Bronte, Sebastián; Yebes, J. Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-01

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study. PMID:24412904

  4. Laser targets compensate for limitations in inertial confinement fusion drivers

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.

    2005-10-01

    Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

  5. Integrated systems for pulsed-power driven inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.; Slutz, S. A.; Stygar, W. A.; Herrmann, M. C.; Sinars, D. B.; McBride, R. D.; Vesey, R. A.; Sefkow, A. B.; Mazarakis, M. G.; Vandevender, J. P.; Waisman, E. M.; Hansen, D. L.; Owen, A. C.; Jones, J. F.; Romero, J. A.; McKenney, J.

    2011-10-01

    Pulsed power fusion concepts integrate: (i) directly-magnetically-driven fusion targets that absorb large energies (10 MJ), (ii) efficient, rep-rated driver modules, (iii) compact, scalable, integrated driver architectures, (iv) driver-to-target coupling techniques with standoff and driver protection, and (v) long lifetime fusion chambers shielded by vaporizing blankets and thick liquid walls. Large fusion yields (3-30 GJ) and low rep-rates (0.1-1 Hz) may be an attractive path for IFE. Experiments on the ZR facility are validating physics issues for magnetically driven targets. Scientific breakeven (fusion energy = fuel energy) may be possible in the next few years. Plans for system development and integration will be discussed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Free-electron laser-fusion drivers for inertial-confinement fusion

    SciTech Connect

    Schlitt, L.G.

    1980-01-01

    The use of tapered wiggler, free electron lasers as drivers for inertial confinement fusion requires an electron beam source which must meet specific and stringent requirements. The characteristics of ICF targets are combined with those of the free electron laser to obtain a general set of requirements and to define parameter tradeoffs. In particular, low beam emittance is essential to the system. A conceptual point design of an ICF-FEL driver is discussed.

  7. Grand challenges of inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Nuckolls, J. H.

    2010-08-01

    As soon as practical, Earth's low-cost, abundant, environmentally attractive fusion energy resources should be applied to the urgent global challenges of climate change, energy supply, economic growth, and the developing world. A National Ignition Campaign is under way at the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to ignite high-gain inertial fusion targets in the 2010-2012 time frame. Achieving ignition on NIF could be the catalyst for national and global leaders to support the development of inertial fusion energy (IFE) to meet the future's worldwide electric power demand. With sustained, high-priority funding could practical IFE be possible by the 2020 timeframe? The answer lies in how well can the community address and solve technical challenges in four key areas: achieving ignition, producing advanced targets and drivers, creating a practical fusion engine, and developing economical fusion power plants.

  8. Glossary of fusion energy

    SciTech Connect

    Whitson, M.O.

    1985-02-01

    The Glossary of Fusion Energy is an attempt to present a concise, yet comprehensive collection of terms that may be beneficial to scientists and laymen who are directly or tangentially concerned with this burgeoning energy enterprise. Included are definitions of terms in theoretical plasma physics, controlled thermonuclear fusion, and some related physics concepts. Also, short descriptions of some of the major thermonuclear experiments currently under way in the world today are included.

  9. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  10. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  11. Fossil Energy: Drivers and Challenges.

    NASA Astrophysics Data System (ADS)

    Friedmann, Julio

    2007-04-01

    Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any

  12. New Capabilities for Modeling Intense Beams in Heavy Ion Fusion Drivers

    SciTech Connect

    Friedman, A; Barnard, J J; Bieniosek, F M; Celata, C M; Cohen, R H; Davidson, R C; Grote, D P; Haber, I; Henestroza, E; Lee, E P; Lund, S M; Qin, H; Sharp, W M; Startsev, E; Vay, J L

    2003-09-09

    Significant advances have been made in modeling the intense beams of heavy-ion beam-driven Inertial Fusion Energy (Heavy Ion Fusion). In this paper, a roadmap for a validated, predictive driver simulation capability, building on improved codes and experimental diagnostics, is presented, as are examples of progress. The Mesh Refinement and Particle-in-Cell methods were integrated in the WARP code; this capability supported an injector experiment that determined the achievable current rise time, in good agreement with calculations. In a complementary effort, a new injector approach based on the merging of {approx}100 small beamlets was simulated, its basic feasibility established, and an experimental test designed. Time-dependent 3D simulations of the High Current Experiment (HCX) were performed, yielding voltage waveforms for an upcoming study of bunch-end control. Studies of collective beam modes which must be taken into account in driver designs were carried out. The value of using experimental data to tomographically ''synthesize'' a 4D beam particle distribution and so initialize a simulation was established; this work motivated further development of new diagnostics which yield 3D projections of the beam phase space. Other developments, including improved modeling of ion beam focusing and transport through the fusion chamber environment and onto the target, and of stray electrons and their effects on ion beams, are briefly noted.

  13. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    SciTech Connect

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated.

  14. Numerical analysis of applied magnetic field dependence in Malmberg-Penning Trap for compact simulator of energy driver in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Sato, T.; Park, Y.; Soga, Y.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob

    2016-05-01

    To simulate a pulse compression process of space charge dominated beams in heavy ion fusion, we have demonstrated a multi-particle numerical simulation as an equivalent beam using the Malmberg-Penning trap device. The results show that both transverse and longitudinal velocities as a function of external magnetic field strength are increasing during the longitudinal compression. The influence of space-charge effect, which is related to the external magnetic field, was observed as the increase of high velocity particles at the weak external magnetic field.

  15. Fusion driver study. Final technical report, April 1, 1978-March 31, 1980

    SciTech Connect

    Friedman, H.W.

    1980-04-01

    A conceptual design of a multi-megajoule, repetitively pulsed CO/sub 2/ laser system for Inertial Confinement Fusion is presented. System configurations consisting of 50 to 100 kJ modules operating at subatmospheric pressures with multiple pass optical extraction appear feasible with present or near term technology. Overall laser system efficiencies of greater than 10% at repetition rates in excess of 10 Hz are possible with the state-of-the-art pulsed power technology. The synthesis of all the laser subsystems into a specific configuration for a Laser Fusion Driver depends upon the reactor chamber(s) layout, subsystem reliability and restrictions on overall dimensions of the fusion driver. A design is presented which stacks power amplifier modules in series in a large torus with centrally located reactor chamber. Cost estimates of the overall Laser Fusion Driver are also presented.

  16. The prospect for fusion energy with light ions

    SciTech Connect

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-09-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE.

  17. Magnetic fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  18. Progress toward fusion energy

    SciTech Connect

    Thomassen, K.I.

    1981-03-11

    This paper summarizes the basis for the present optimism in the magnetic fusion program, and describes some of the remaining tasks leading to a demonstration power reactor and the primary technologies necessary for that endeavor.

  19. On the Utility of Antiprotons as Drivers for Inertial Confinement Fusion

    SciTech Connect

    Perkins, L J; Orth, C D; Tabak, M

    2003-10-20

    By contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90MJ/{micro}g and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ({bar p}) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both {bar p}-driven ablative compression and {bar p}-driven fast ignition, in association with 0-D and 1-D target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of {approx}3x10{sup 15} injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains - i.e., fusion yields divided by the available p - {bar p} annihilation energy from the injected antiprotons (1.88GeV/{bar p}) - range from {approx}3 for volumetric ignition targets to {approx}600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply

  20. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  1. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    SciTech Connect

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2003-09-25

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs.

  2. A Smartphone-Based Driver Safety Monitoring System Using Data Fusion

    PubMed Central

    Lee, Boon-Giin; Chung, Wan-Young

    2012-01-01

    This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

  3. Heavy ion fusion science research for high energy density physics and fusion applications

    SciTech Connect

    LOGAN, B.G.; Logan, B.G.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Grisham, L.; Grote, D.P.; Henestroza, E.; Hoffmann, D.H.H.; Kaganovich, I.D.; Kireeff Covo, M.; Kwan, J.W.; LaFortune, K.N.; Lee, E.P.; Leitner, M.; Lund, S.M.; Molvik, A.W.; Ni, P.; Penn, G.E.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.; Startsev, E.A.; Varentsov, D.; Vay, J.-L.; Waldron, W.L.; Wurtele, J.S.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2007-06-25

    During the past two years, the U.S. heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high brightness beam transport, advanced theory and numerical simulations, and heavy ion target designs for fusion. First experiments combining radial and longitudinal compression of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2007, these results will enable initial ion beam target experiments in warm dense matter to begin next year at LBNL. We are assessing how these new techniques apply to low-cost modular fusion drivers and higher-gain direct-drive targets for inertial fusion energy.

  4. Pulsed power drivers for ICF and high energy density physics

    SciTech Connect

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-12-31

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  5. Global space fusion energy

    NASA Astrophysics Data System (ADS)

    Latyshev, L. A.; Semashko, N. N.

    The possibility of meeting future global energy demands by producing energy in space is addressed. Comparisons are made between the parameters of space plants producing solar electric power, nuclear electric power, and thermonuclear electric power.

  6. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers.

    PubMed

    Murray, J E; Downs, D C; Hunt, J T; Hermes, G L; Warren, W E

    1981-03-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage. PMID:20309212

  7. Prospects for inertial fusion as an energy source

    SciTech Connect

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  8. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S.; Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H.

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  9. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. ); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  10. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  11. The Path to Magnetic Fusion Energy

    SciTech Connect

    Prager, Stewart

    2011-05-04

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  12. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    SciTech Connect

    Larry R. Grisham

    2002-01-14

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10{sup -5} torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing.

  13. Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network.

    PubMed

    Huang, Zhihua; Lin, Honghuan; Xu, Dangpeng; Li, Mingzhong; Wang, Jianjun; Deng, Ying; Zhang, Rui; Zhang, Yongliang; Tian, Xiaocheng; Wei, Xiaofeng

    2013-07-15

    Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4 J with an effective mode field diameter of around 500 μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect. PMID:23938500

  14. Numerical analysis corresponding with experiment in compact beam simulator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Sakai, Y.; Komori, T.; Sato, T.; Hasegawa, J.; Horioka, K.; Takahashi, K.; Sasaki, T.; Harada, Nob

    2016-05-01

    Tune depression in a compact beam equipment is estimated, and numerical simulation results are compared with an experimental one for the compact beam simulator in a driver of heavy ion inertial fusion. The numerical simulation with multi-particle tracking is carried out, corresponding to the experimental condition, and the result is discussed with the experimental one. It is expected that the numerical simulation developed in this paper is useful tool to investigate the beam dynamics in the experiment with the compact beam simulator.

  15. A cost-effective target supply for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Goodin, D. T.; Alexander, N. B.; Brown, L. C.; Frey, D. T.; Gallix, R.; Gibson, C. R.; Maxwell, J. L.; Nobile, A.; Olson, C.; Petzoldt, R. W.; Raffray, R.; Rochau, G.; Schroen, D. G.; Tillack, M.; Rickman, W. S.; Vermillion, B.

    2004-12-01

    A central feature of an inertial fusion energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. This is true whether the driver is a laser system, heavy ion beams or Z-pinch system. The IFE target fabrication, injection and tracking programmes are focusing on methods that will scale to mass production. We are working closely with target designers, and power plant systems specialists, to make specifications and material selections that will satisfy a wide range of required and desirable target characteristics. One-of-a-kind capsules produced for today's inertial confinement fusion experiments are estimated to cost about US2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have suggested a cost goal of about 0.25-0.30 for each injected target (corresponding to ~10% of the 'electricity value' in a target). While a four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the design, specifications, requirements and proposed manufacturing processes for the future for laser fusion, heavy ion fusion and Z-pinch driven targets. These target manufacturing processes have been developed—and are proposed—based on the unique materials science and technology programmes that are ongoing for each of the target concepts. We describe the paradigm shifts in target manufacturing methodologies that will be needed to achieve orders of magnitude reductions in target costs, and summarize the results of 'nth-of-a-kind' plant layouts and cost estimates for future IFE power plant fuelling. These engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for electricity production.

  16. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  17. Activation of theMercury Laser System: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Beach, R J; Bibeau, C; Ebbers, C A; Freitas, B L; Kanz, V K; Payne, S A; Schaffers, K I; Skulina, K M; Smith, L K; Tassano, J B

    2001-09-10

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated inertial fusion energy. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. We report on the first Yb:S-FAP crystals grown to sufficient size for fabricating full size (4 x 6 cm) amplifier slabs. The first of four 160 kW (peak power) diode arrays and pump delivery systems were completed and tested with the following results: 5.5% power droop over a 0.75 ms pulse, 3.95 nm spectral linewidth, far field divergence of 14.0 mrad and 149.5 mrad in the microlensed and unmicrolensed directions respectively, and 83% optical-to-optical transfer efficiency through the pump delivery system.

  18. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  19. Energy Efficiency Handbook for Driver's Education.

    ERIC Educational Resources Information Center

    Berlowitz, Dan; And Others

    Presented are suggestions to help the automobile driver attain the saving of fuel and money. Discussed are starting and stopping; anticipation of traffic conditions; use of accessories; trip planning; and accomodation of pedestrians and cyclists. Additional topics covered include systematic car maintenance and safety considerations. (RE)

  20. Fusion: an energy source for synthetic fuels

    SciTech Connect

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  1. Progress in Z-pinch inertial fusion energy.

    SciTech Connect

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  2. Diode-pumped solid state laser for inertial fusion energy

    SciTech Connect

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW {center_dot} hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness.

  3. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications. PMID:26560597

  4. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  5. Complexity versus availability for fusion: The potential advantages of inertial fusion energy

    SciTech Connect

    Perkins, L.J.,

    1996-09-05

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. We examine these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compare these factors with corresponding scheduled and unscheduled outage data from present day fission experience. We stress that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself Given we must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. We indicate that such requirements can probably be met for IFE plants. We recommend that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggest that databases are probably adequate for this task.

  6. Feasibility study of a railgun as a driver for impact fusion: Final report

    SciTech Connect

    Thio. Y.C.

    1986-06-01

    The feasibility of a railgun as a driver for impact fusion is studied through a series of theoretical and experimental investigations. The results of both the theoretical and experimental investigations presented here have helped to identify the potential problems of the railgun launcher to attain velocity in excess of 100 km/s. These include ablation, viscous drag, and secondary arc formation due to either armature dispersion (instability) or restrike. These problems are analyzed and examined experimentally. The behavior of the conventional open-plasma-armature driven railguns have been shown to be quite complex and not easily controllable in the domain of ultrahigh velocity (>6 km/s). Methods to overcome these problems are proposed, analyzed in regards to their technological feasibility, and tested experimentally wherever possible. Techniques for reducing radiative ablation, the concept of a mechanically controlled plasma armature, and the concept of achieving super high augmentation by the technique of trans-augmentation are presented.

  7. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  8. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  9. Magnetic-fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  10. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  11. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  12. Gyro Drift Correction for An Indirect Kalman Filter Based Sensor Fusion Driver

    PubMed Central

    Lee, Chan-Gun; Dao, Nhu-Ngoc; Jang, Seonmin; Kim, Deokhwan; Kim, Yonghun; Cho, Sungrae

    2016-01-01

    Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX) quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE) before and after applying our mechanism are significantly reduced from 6.3×10-1 to 5.3×10-7, respectively. PMID:27294941

  13. Gyro Drift Correction for An Indirect Kalman Filter Based Sensor Fusion Driver.

    PubMed

    Lee, Chan-Gun; Dao, Nhu-Ngoc; Jang, Seonmin; Kim, Deokhwan; Kim, Yonghun; Cho, Sungrae

    2016-01-01

    Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX) quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE) before and after applying our mechanism are significantly reduced from 6.3 × 10(-1) to 5.3 × 10(-7), respectively. PMID:27294941

  14. Accelerators for Inertial Fusion Energy Production

    NASA Astrophysics Data System (ADS)

    Bangerter, R. O.; Faltens, A.; Seidl, P. A.

    2014-02-01

    Since the 1970s, high energy heavy ion accelerators have been one of the leading options for imploding and igniting targets for inertial fusion energy production. Following the energy crisis of the early 1970s, a number of people in the international accelerator community enthusiastically began working on accelerators for this application. In the last decade, there has also been significant interest in using accelerators to study high energy density physics (HEDP). Nevertheless, research on heavy ion accelerators for fusion has proceeded slowly pending demonstration of target ignition using the National Ignition Facility (NIF), a laser-based facility at Lawrence Livermore National Laboratory. A recent report of the National Research Council recommends expansion of accelerator research in the US if and when the NIF achieves ignition. Fusion target physics and the economics of commercial energy production place constraints on the design of accelerators for fusion applications. From a scientific standpoint, phase space and space charge considerations lead to the most stringent constraints. Meeting these constraints almost certainly requires the use of multiple beams of heavy ions with kinetic energies > 1 GeV. These constraints also favor the use of singly charged ions. This article discusses the constraints for both fusion and HEDP, and explains how they lead to the requirements on beam parameters. RF and induction linacs are currently the leading contenders for fusion applications. We discuss the advantages and disadvantages of both options. We also discuss the principal issues that must yet be resolved.

  15. The drivers to adopt renewable energy among residential users.

    NASA Astrophysics Data System (ADS)

    Rahman, Zahari Abdul; Elinda, Esa

    2016-03-01

    This study aims to examine the drivers to adopt renewable energy (RE) among residential users in Malaysia. Based on the theoretical framework of a consumer’s decision making process, an empirical study of the adoption of RE was conducted. A total of 501 residential users were used in this study. This study proved that perceived utility of new technology, perceived utility of new service, and perceived benefit of new technology are the drivers to adopt RE among residential users. These factors are knowing crucial to RE suppliers and producers because it will generates more demand from the residential users and the percentage of energy mix from RE sources can be increase.

  16. HEDP and new directions for fusion energy

    SciTech Connect

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  17. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  19. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  20. Target Designs for an Inertial Fusion Energy Power Plant Driven by Heavy Ions

    SciTech Connect

    Callahan, D A; Tabak, M

    2001-08-23

    We present two indirect drive inertial fusion targets driven by heavy ions beams for fusion energy production. Because there are uncertainties in the ion beam focal spot size and uncertainties in the accelerator cost, we have tried to design targets that cover a large parameter space. One of the designs requires small ion beam focal spots but produces more than adequate gain at low driver energy (gain 130 from 3.3 MJ of beam energy). The other design allows a large beam spot, but requires more driver energy (gain 55 from 6.7 MJ of beam energy). Target physics issues as well as the implications for the accelerator from each design are discussed.

  1. Efficient pumping of inertial fusion energy lasers

    NASA Astrophysics Data System (ADS)

    Wessling, C.; Rübenach, O.; Hambücker, S.; Sinhoff, V.; Banerjeea, S.; Ertel, K.; Mason, P.

    2013-02-01

    Solid-state lasers have been demonstrated as attractive drivers for laser-plasma interaction and have presently been developed for various applications like inertial confinement fusion (ICF) [1], particle acceleration and intense X-ray generation [3]. Viable real world applications like power production at industrial scale will require high laser system efficiency, repetition rate and lifetime which are only possible with semiconductor diode pumping. The paper describes the work conducted with two 20 kW diode laser sources pumping an ytterbium:YAG laser amplifier. The set-up acts as a small scale prototype for the DiPOLE project [2]. This project aims to develop scalable gas cooled cryogenic multi-slab diode pumped solid state lasers capable of producing KJ pulse energy. A scale-down prototype is currently under development at the Central Laser Facility (CLF) designed to generate 10 J at 10 Hz. To secure an efficient pumping process the sources have to fulfill aside power requirement in the spectral and time domain, the claim for high homogenization and low divergence of the spatial and angular beam distribution as well as a minimization of losses within the optical path. The existing diode laser sources designed and built by INGENERIC deliver 20 kW pulsed power, concentrated on a plateau of FWHM dimension of 20 x 20 mm² with a homogeneity of more than 90 %. The center wavelength of 939.5 nm is controlled in a range of ± 0.1 nm. The time and area integrated spectrum of at least 76 % of the total energy is contained within a 6 nm wide wavelength band around the center wavelength. Repetition rates can be adjusted between 0.1 Hz up to 10 Hz with rise and fall times less than 50 μs and pulse durations from 0.2 ms to 1.2 ms. The paper describes the impact of different designs on the performance of pump sources and puts special emphasis on the influence of the optical components on efficiency and performance. In addition the influence of the measuring principle is

  2. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  3. Modeling of direct beam extraction for a high-charge-state fusion driver

    NASA Astrophysics Data System (ADS)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  4. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  5. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  6. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  7. 76 FR 40714 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory... CONTACT: Albert L. Opdenaker, Designated Federal Officer, Office of Fusion Energy Sciences;...

  8. Progress in magnetic fusion energy research

    NASA Astrophysics Data System (ADS)

    Thomassen, Keith I.

    1993-03-01

    Remarkable scientific progress has been made in the Magnetic Fusion Energy Program since its inception 40 years ago. A key energy confinement parameter reflecting that progress has been improved 10,000,000-fold in that time. A formalized international collaborative effort of design and development for a 1000-MW experimental reactor (ITER) has been entered into by the United States, Russia, Japan, and the European Community. In the United States, a national project to build a superconducting steady-state advanced tokamak (SSAT) to improve the reactor prospects of fusion is underway. (The device has been newly renamed the Tokamak Physics Experiment.) Despite this very encouraging progress, the outlook for fusion as an energy source remains unclear, with both economic and technological attractiveness yet to be determined. However, with only limited options for long-term energy supplies, and with environmental consequences yet to play a more dominant role in our choices, the world can ill afford not to develop the potential of fusion in the decades to come.

  9. A Narrative Approach to Citizen Participation in Fusion Energy

    NASA Astrophysics Data System (ADS)

    Hanley, Patrick

    2006-10-01

    This paper examines how to increase citizen participation in fusion energy research. An increased sense of participation in fusion energy progress is essential for the acceptance of fusion energy by the general public. The obstacle this paper acknowledges is that fusion energy research needs to be in the hands of experts. The challenge is how to increase the sense of participation in fusion energy research without being able to greatly increase direct participation on the part of citizens. Individuals can cultivate a sense of participation in far off events by placing news of events, such as a war or political campaign, into a larger narrative structure. Individuals can have a sense of control over the larger narrative structure and how news of events fit into their own sense of the narrative. If citizens have a grasp of major past fusion energy events, the current status of fusion energy and what the future might hold for fusion energy research, then citizens will have a fundamental narrative structure in which to fit news of future fusion energy research events. This paper explores ways fusion energy educators can take a narrative approach to foster a sense of participation for a large number of citizens. How can educators help citizens internalize a fusion energy meta-narrative? How can educators help citizens fit news of progress in fusion energy into their internalized narratives?

  10. Assessment of the Fusion Energy Sciences Program. Final Report

    SciTech Connect

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  11. Application of Magnetized Target Fusion to High-Energy Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  12. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect

    Prost, Lionel Robert

    2007-02-14

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx}0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Reprogramming of energy metabolism as a driver of aging

    PubMed Central

    Feng, Zhaoyang; Berger, Nathan A.; Trubitsyn, Alexander

    2016-01-01

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis PMID:26919253

  14. Reprogramming of energy metabolism as a driver of aging.

    PubMed

    Feng, Zhaoyang; Hanson, Richard W; Berger, Nathan A; Trubitsyn, Alexander

    2016-03-29

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis. PMID:26919253

  15. 78 FR 15937 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee..., Designated Federal Officer, Office of Fusion Energy Sciences; U.S. Department of Energy; 1000...

  16. 77 FR 485 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee.... Synakowski, Designated Federal Officer, Office of Fusion Energy Sciences; U.S. Department of Energy;...

  17. 78 FR 2259 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee.... Synakowski, Designated Federal Officer, Office of Fusion Energy Sciences; U.S. Department of Energy;...

  18. Minimum energy information fusion in sensor networks

    SciTech Connect

    Chapline, G

    1999-05-11

    In this paper we consider how to organize the sharing of information in a distributed network of sensors and data processors so as to provide explanations for sensor readings with minimal expenditure of energy. We point out that the Minimum Description Length principle provides an approach to information fusion that is more naturally suited to energy minimization than traditional Bayesian approaches. In addition we show that for networks consisting of a large number of identical sensors Kohonen self-organization provides an exact solution to the problem of combing the sensor outputs into minimal description length explanations.

  19. Laser Inertial Fusion Energy Control Systems

    SciTech Connect

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  20. Target production for inertial fusion energy

    SciTech Connect

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of {approximately}16{cents} per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW{sub e} IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level.

  1. Radio-frequency-quadrupole linac in a heavy ion fusion driver system

    SciTech Connect

    Hansborough, L.D.; Stokes, R.; Swenson, D.A.; Wangler, T.P.

    1980-01-01

    A new type of linear accelerator, the radio-frequency quadrupole (RFQ) linac, is being developed for the acceleration of low-velocity ions. The RFQ accelerator can be adapted to any high-current applications. A recent experimental test carried out at the Los Alamos Scienific Laboratory (LASL) has demonstrated the outstandig properties of RFQ systems. The test linac accepts a 30-mA proton beam of 100-keV energy and focuses, bunches, and accelerates the beam to an energy to 640 keV. This ia done in a length of 1.1 m, with a transmission efficiency of 87% and with a radial emittance growth of less than 60%. The proven capability of the RFQ linac, when extended to heavy ion acceleration, should provide an ideal technique for use in the low-velocity portion of a heavy-ion linac for inertial-confinement fusion. A specific concept for such an RFQ-based system is described.

  2. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  3. Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion

    SciTech Connect

    Bayramian, A J; Bibeau, C; Beach, R J; Ebbers, C A; Kanz, K; Nakano, H; Orth, C D; Payne, S A; Powell, H T; Schaffers, K I; Seppala, L; Skulina, K; Smith, L K; Sutton, S B; Zapata, L E

    2000-09-19

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length.

  4. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  5. Measuring D(d,p)T fusion reactant energy spectra with Doppler shifted fusion products

    SciTech Connect

    Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Donovan, D. C.; Piefer, G. R.

    2010-06-15

    Deuterium fusion reactant energy spectra have been measured using a diagnostic that records the Doppler shift imparted to charged particle fusion products of the D(d,p)T reaction by the center-of-mass velocity of the deuterium reactants. This diagnostic, known as the fusion ion Doppler shift diagnostic (FIDO) measures fast deuterium energy spectra in the inertial electrostatic confinement (IEC) experiment at the University of Wisconsin-Madison {l_brace}Santarius et al. [Fusion Sci. Technol. 47, 1238 (2005)]{r_brace}, a device to confine high energy light ions in a spherically symmetric, electrostatic potential well. This article details the first measurements of the fusion reactant energy spectra in an IEC device as well as the design and principles of operation of the FIDO diagnostic. Scaling of reactant energy spectra with a variety of experimental parameters have been explored.

  6. Will drivers for home energy efficiency harm occupant health?

    PubMed

    Bone, Angie; Murray, Virginia; Myers, Isabella; Dengel, Andy; Crump, Derrick

    2010-09-01

    The U.K. government has committed to an 80% reduction in carbon emissions by 2050, with housing accounting for 27% of total current emissions. There are several drivers both to reduce emissions from homes and to reduce fuel poverty, promoting a range of building and behavioural measures in homes. The health benefits of warmer homes in winter have been described, but there has been less consideration of the potential negative impacts of some of these measures. We examine the changes in U.K. homes, and the possible consequences for health. The main concerns for health surround the potential for poor indoor air quality if ventilation is insufficient and the possible risks of overheating in heatwave conditions. This paper notes a limited evidence base and the need for further research on the health effects of energy-efficient homes, particularly with regard to ventilation. PMID:21086820

  7. The role of inertial fusion energy in the energy marketplace of the 21st century and beyond

    NASA Astrophysics Data System (ADS)

    John Perkins, L.

    The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.

  8. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... that the Fusion Energy Sciences Advisory Committee will be renewed for a two-year period beginning on...-range plans, priorities, and strategies for advancing plasma science, fusion science, and...

  9. Resonant gate driver with efficient gate energy recovery and switching loss reduction

    NASA Astrophysics Data System (ADS)

    Kim, I.-G.; Kwak, S.-S.

    2016-04-01

    This article describes a novel resonant gate driver for charging the gate capacitor of power metal-oxide semiconductor field-effect-transistors (MOSFETs) that operate at a high switching frequency in power converters. The proposed resonant gate driver is designed with three small MOSFETs to build up the inductor current in addition to an inductor for temporary energy storage. The proposed resonant gate driver recovers the CV2 gate loss, which is the largest loss dissipated in the gate resistance in conventional gate drivers. In addition, the switching loss is reduced at the instants of turn on and turn off in the power MOSFETs of power converters by using the proposed gate driver. Mathematical analyses of the total loss appearing in the gate driver circuit and the switching loss reduction in the power switch of power converters are discussed. Finally, the proposed resonant gate driver is verified with experimental results at a switching frequency of 1 MHz.

  10. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  11. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  12. US Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    SciTech Connect

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; et al.

    2005-09-19

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  13. US Heavy Ion Beam Research for Energy Density Physics Applicationsand Fusion

    SciTech Connect

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich,I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier,W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose,D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-09-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  14. The role of the NIF in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1995-03-16

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  15. Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets

    SciTech Connect

    Woolley, R.D.

    1998-08-19

    Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

  16. ITER on the road to fusion energy

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2010-01-01

    On 21 November 2006, the government representatives of China, the European Union, India, Japan, Korea, Russia and the United States firmly committed to building the International Thermonuclear Experimental Reactor (ITER) [1] by signing the ITER Agreement. The ITER Organization, which was formally established on 24 October 2007 after ratification of the ITER Agreement in each Member country, is the outcome of a two-decade-long collaborative effort aimed at demonstrating the scientific and technical feasibility of fusion energy. Each ITER partner has established a Domestic Agency (DA) for the construction of ITER, and the ITER Organization, based in Cadarache, in Southern France, is growing at a steady pace. The total number of staff reached 398 people from more than 20 nations by the end of September 2009. ITER will be built largely (90%) through in-kind contribution by the seven Members. On site, the levelling of the 40 ha platform has been completed. The roadworks necessary for delivering the ITER components from Fos harbour, close to Marseille, to the site are in the final stage of completion. With the aim of obtaining First Plasma in 2018, a new reference schedule has been developed by the ITER Organization and the DAs. Rapid attainment of the ITER goals is critical to accelerate fusion development—a crucial issue today in a world of increasing competition for scarce resources.

  17. Thermal management in inertial fusion energy slab amplifiers

    NASA Astrophysics Data System (ADS)

    Sutton, Steven B.; Albrecht, George F.

    1995-12-01

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, cooling flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, we introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.

  18. Role of supercomputers in magnetic fusion and energy research programs

    SciTech Connect

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained.

  19. Fusion-fission energy systems evaluation

    SciTech Connect

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  20. Snowmass 2002: The Fusion Energy Sciences Summer Study

    SciTech Connect

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-31

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report

  1. Progress in heavy ion driven inertial fusion energy: From scaledexperiments to the integrated research experiment

    SciTech Connect

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek,F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; deHoon, M.J.L.; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-06-22

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ({approx}100s Amperesheam) and ion energies ({approx}1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions. and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial Fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

  2. Scientific and technological advancements in inertial fusion energy

    DOE PAGESBeta

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  3. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  4. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  5. Design and testing of the 2 MV heavy ion injector for the Fusion Energy Research Program

    SciTech Connect

    Abraham, W.; Benjegerdes, R.; Reginato, L.; Stoker, J.; Hipple, R.; Peters, C.; Pruyn, J.; Vanecek, D.; Yu, S.

    1995-04-01

    The Fusion Energy Research Group at the Lawrence Berkeley Laboratory has constructed and tested a pulsed 2 MV injector that produces a driver size beam of potassium ions. This paper describes the engineering aspects of this development which were generated in a closely coupled effort with the physics staff. Details of the ion source and beam transport physics are covered in another paper at this conference. This paper discusses the design details of the pulse generator, the ion source, the extractor, the diode column, and the electrostatic quadrupole column. Included will be the test results and operating experience of the complete injector.

  6. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect

    Nuckolls, J.H.

    1994-06-01

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  7. Systematics for low energy incomplete fusion: Still a puzzle?

    NASA Astrophysics Data System (ADS)

    Yadav, Abhishek; Shuaib, Mohd; Aggarwal, Abhay V.; Sharma, Vijay R.; Bala, Indu; Singh, D. P.; Singh, P. P.; Unnati; Sharma, M. K.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.

    2016-05-01

    In order to have a better and clear picture of incomplete fusion reactions at energies ≈4-7MeV/nucleon, the excitation function measurements have been performed for 18O+159Tb system. The experimental data have been analyzed within the framework of compound nucleus decay. The cross-section for xn/pxn-channels are found to be well reproduced by PACE4 predictions, which suggest their production via complete fusion process. However, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. The incomplete fusion fractions have been deduced at each studied energy and compared with other nearby systems for better insight into the underlying dynamics. The incomplete fusion fraction has been found to be sensitive to the projectile's energy and α-Q-value.

  8. Economic potential of magnetic fusion energy

    SciTech Connect

    Henning, C.D.

    1981-03-10

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion.

  9. Activation of the Mercury Laser: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Bibeau, C; Beach, R J; Chanteloup, J C; Ebbers, C A; Kanz, K; Nakano, H; Payne, S A; Powell, H T; Schaffers, K I; Seppala, L; Skulina, K; Smith, L K; Sutton, S B; Zapata, L E

    2001-03-07

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. This laser is an angularly multiplexed 4-pass gas-cooled amplifier system based on image relaying to minimize wavefront distortion and optical damage risk at the 10 Hz operating point. The efficiency requirements are fulfilled using diode laser pumping of ytterbium doped strontium fluorapatite crystals.

  10. Direct energy conversion system for D(3)-He fusion

    NASA Astrophysics Data System (ADS)

    Tomita, Y.; Shu, L. Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D(3)-He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC'. The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DEC's bring about the high efficient fusion plant.

  11. Prospects for lasers for fusion energy assessed

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Rozanov, V.

    1985-06-01

    The authors assess the status of laser thermonuclear fusion research in the USSR and abroad, reviewing some of its major advances as well as current objectives of scientists working in this field. The possible development of an experimental laser thermonuclear reactor is discussed. Such a laser must operate with a pulse repetition frequency of 1 to 10 pulses per second, and it must have a service life of about 100 million pulses. It will be made up of individual modules (10 to 20 modules) with an overall energy of 2 to 3 megajoules, and it will ensure stable focusing of radiation on a target about 1 centimeter in size from a distance of about 50 meters. Its efficiency will be adequate and its cost low enough. Lasers of several types (including carbon-dioxide lasers and chemical and excimer lasers based on a mixture of noble gases with halogen) can meet these requirements, but incorporating them in a single unit is quite difficult from the engineering standpoint. The development of modules of such lasers is also an important task.

  12. Data Fusion to Develop a Driver Drowsiness Detection System with Robustness to Signal Loss

    PubMed Central

    Samiee, Sajjad; Azadi, Shahram; Kazemi, Reza; Nahvi, Ali; Eichberger, Arno

    2014-01-01

    This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs. PMID:25256113

  13. Data fusion to develop a driver drowsiness detection system with robustness to signal loss.

    PubMed

    Samiee, Sajjad; Azadi, Shahram; Kazemi, Reza; Nahvi, Ali; Eichberger, Arno

    2014-01-01

    This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs. PMID:25256113

  14. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  15. Inertial fusion: an energy-production option for the future

    SciTech Connect

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  16. 75 FR 8685 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee... Sciences; U.S. Department of Energy; 1000 Independence Avenue, SW.; Washington, DC 20585-1290;...

  17. Energy research: accelerator builders eager to aid fusion work.

    PubMed

    Metz, W D

    1976-10-15

    Useful fusion energy may be generated by means of heavy ion accelerator driven implosions if the contraints dictated by the physics and economics of thermonuclear targets and reactors can be satisfied. PMID:17738040

  18. Presentation at FTP: A review. [ORNL Fusion Energy Program

    SciTech Connect

    Sheffield, J.

    1987-01-01

    This series of vugraphs presents some information concerning ORNL's involvement in the fusion energy research program. Recent and future experiments are named, and a rough estimate of funding is given. (JDH)

  19. Analysis of the potential of the Tm/sup 3 +/:YLF:XeF laser system as a fusion driver

    SciTech Connect

    Manzo, P.R.; Schlecht, R.; Verdun, H.R.

    1981-02-01

    The element thulium (Tm) in the yttrium lithium floride lattice (YLF) has an absorption band which corresponds to the output wavelength of the Xenon floride (XeF) laser. Its fluorescence is centered around 451 nm and lasing has been demonstrated at this wavelength. The decays which take place within the energy level structure appear to be primarily radiative so that there is potentially low heat loading in this solid. In addition since it is a crystal the heat conduction properties of YLF are quite good. At first glance this appears to be a very interesting system for fusion applications. This study will examine this particular RGH/SS system further to determine its suitability for fusion applications.

  20. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    SciTech Connect

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

  1. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  2. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  3. 78 FR 48863 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... that the Fusion Energy Sciences Advisory Committee will be renewed for a two-year period beginning on August 2, 2013. The Committee will provide advice to the Office of Science (DOE), on long-range...

  4. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  5. Fusion energy for space: Feasibility demonstration. A proposal to NASA

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.

  6. Fusion energy for space: Feasibility demonstration. A proposal to NASA

    SciTech Connect

    Schulze, N.R.

    1992-10-01

    This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.

  7. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ≥ 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  8. Neutronics issues and inertial fusion energy: a summary of findings

    SciTech Connect

    Latkowski, J. F., LLNL

    1998-05-29

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

  9. Fusion energy in context: its fitness for the long term.

    PubMed

    Holdren, J P

    1978-04-14

    Long-term limits to growth in energy will be imposed not by inability to expand supply, but by the rising environmental and social costs of doing so. These costs will therefore be central issues in choosing long-term options. Fusion, like solar energy, is not one possibility but many, some with very attractive environmental characteristics and others perhaps little better in these regards than fission. None of the fusion options will be cheap, and none is likely to be widely available before the year 2010. The most attractive forms of fusion may require greater investments of time and money to achieve, but they are the real reason for wanting fusion at all. PMID:17818794

  10. Critical energy deposit in heavy ion complete fusion

    SciTech Connect

    Fonte, R.; Insolia, A. Dipartimento di Fisica dell'Universita di Catania corso Italia, 57-95129 Catania, Italy)

    1991-07-01

    In the framework of an {ital l}-window model for complete fusion reactions within a sharp cutoff approximation, the problem of the maximum excitation energy which can be deposited in a compound nucleus is discussed. Predictions about the spin distribution of the compound nucleus are compared with the conclusions of a recent analysis of the {sup 28}Si+{sup 28}Si fusion reaction.

  11. Application of small-signal fusion energy gain

    SciTech Connect

    Jassby, D.L.

    1986-11-01

    The measured burnup fraction of the 1-MeV tritons produced in a deuterium tokamak plasma, multiplied by 17.5, is essentially the small-signal fusion energy gain g/sub T/ for an ideal 1-MeV triton beam injected into the deuterium plasma. The measured g/sub T/ can be converted directly into the two-component fusion energy gain that would be realized if a lower energy tritium beam were injected into the plasma, or if a deuterium beam were injected into a tritium target plasma having the same parameters as the acutal deuterium plasma. Under certain conditions, g/sub T/ greater than or equal to 1 can be obtained by injection of a low-current 225-keV tritium beam into a hot deuterium plasma, thereby verifying that the plasma has the essential characteristics needed for achieving macroscopic fusion energy ''break-even.''

  12. The Role of Fusion in the Future World Energy Market

    NASA Astrophysics Data System (ADS)

    Sheffield, John

    1996-05-01

    The energy world, in which fusion energy must compete, has changed in recent years with the prospect of a 40-year supply of low-cost oil and gas. This cheap fuel represents a one-time opportunity for developing countries to raise their standards of living, and if historical trends continue, lower their rate of population growth. This brief opportunity for cheap fossil-fuel and the similar 40-year period to commercialize fusion are transients when viewed against the time scale of civilization. We need to develop and deploy the long-term energy sources, such as fusion (fission and 'renewables'), and in all cases improve energy efficiency before the fossil fuels rise in cost and a large fraction of a burgeoning world population is condemned to permanent poverty.

  13. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect

    Wang Zhehui; Wurden, Glen A.; Mansfield, Dennis K.; Roquemore, Lane A.; Ticos, Catalin M.

    2008-09-07

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  14. Inertial fusion: strategy and economic potential

    SciTech Connect

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity).

  15. A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense

    SciTech Connect

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We also lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. Deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass is also be possible.

  16. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    DOE PAGESBeta

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  17. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  18. Fusion energy for space missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1991-01-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

  19. Fusion energy for space missions in the 21st Century

    SciTech Connect

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

  20. Microwave generation for magnetic fusion energy applications

    SciTech Connect

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.

    1992-01-01

    This progress report encompasses work on two separate projects, both related to developing sources for electron cyclotron resonance heating of magnetic fusion plasmas. The report is therefore divided into two parts as follows: Free electron laser with small period wigglers; and theory and modeling of high frequency, high power gryotron operation. Task A is experimental and eventually aims at developing continuously tunable, cw sources for ECRH with power per unit as high as 5 megawatts. Task B provides gryotron theory and modeling in support of the gryotron development programs at MIT and Varian.

  1. Fusion: A necessary component of US energy policy

    NASA Astrophysics Data System (ADS)

    Correll, Donald L., Jr.

    1989-01-01

    U.S. energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that U.S. energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how U.S. energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal U.S. studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a U.S. energy policy that takes a balanced, long term view of U.S. needs.

  2. Fusion: A necessary component of US energy policy

    SciTech Connect

    Correll, D.L. Jr.

    1989-01-11

    US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs.

  3. Threshold energy for sub-barrier fusion hindrance phenomenon

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2013-02-01

    The relationship between the threshold energy for a deep sub-barrier fusion hindrance phenomenon and the energy at which the regime of interaction changes (the turning-off of the nuclear forces and friction) in the sub-barrier capture process is studied within the quantum diffusion approach. The quasielastic barrier distribution is shown to be a useful tool to clarify whether the slope of capture cross section changes at sub-barrier energies.

  4. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  5. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  6. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  7. 76 FR 4645 - Fusion Energy Sciences Advisory Committee; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Fusion... Science. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The..., Office of Fusion Energy Sciences; U.S. Department of Energy; 1000 Independence Avenue, SW.;...

  8. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  9. Can solid-state laser technology serve usefully beyond fusion ignition facilities?

    SciTech Connect

    Payne, S.A.; Powell, H.T.; Krupke, W.F.

    1995-07-28

    We have explored the major technical and conceptual issues relating to the suitability of a diode-pumped solid state laser as a driver for an inertial fusion energy power plant. While solid state lasers have long served as the workhorse of inertial confinement fusion physics studies, the deployment of a driver possessing adequate efficiency, reliability, and repetition rate for inertial fusion energy requires the implementation of several technical innovations discussed in this article.

  10. Overview of the US Magnetic Fusion Energy Program

    SciTech Connect

    Wiffen, F.W. ); Dowling, R.J.; Marton, W.A.; Eckstrand, S.A. . Office of Fusion Energy)

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan.

  11. Plasmonic energy nanofocusing for high-efficiency laser fusion ignition

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-08-01

    We propose an efficient laser fusion ignition system consisting of metal nanoparticles or nanoshells embedded in conventional deuterated polystyrene fuel targets. The incident optical energy of the heating laser is highly concentrated around the metallic particulates randomly dispersed inside imploded targets due to the electromagnetic-field-enhancement effect by surface plasmon resonance, and thus effectively triggers nuclear-fusion chain reactions. Our preliminary calculations exhibit field enhancement factors of around 50 and 1100 for spherical Ag nanoparticles and Ag/SiO2 nanoshells, respectively, in the 1-µm band.

  12. Comprehending Consumption: The Behavioral Basis and Implementation of Driver Feedback for Reducing Vehicle Energy Use

    NASA Astrophysics Data System (ADS)

    Stillwater, Tai

    A large body of evidence suggests that drivers who receive real-time fuel economy information can increase their vehicle fuel economy by 5%, a process commonly known as ecodriving. However, few studies have directly addressed the human side of the feedback, that is, why drivers would (or would not) be motivated to change their behavior and how to design feedback devices to maximize the motivation to ecodrive. This dissertation approaches the question using a mixed qualitative and quantitative approach to explore driver responses and psychology as well as to quantify the process of behavior change. The first chapter discusses the use of mile-per-gallon fuel economy as a metric for driver feedback and finds that an alternative energy economy metric is superior for real-time feedback. The second chapter reviews behavioral theories and proposes a number of practical solutions for the ecodriving context. In the third chapter the theory of planned behavior is tested against driver responses to an existing feedback system available in the 2008 model Toyota Prius. The fourth chapter presents a novel feedback design based on behavioral theories and drivers' responses to the feedback. Finally, chapter five presents the quantitative results of a natural-driving study of fuel economy feedback. The dissertation findings suggest that behavior theories such as the Theory of Planned Behavior can provide important improvements to existing feedback designs. In addition, a careful analysis of vehicle energy flows indicates that the mile-per-gallon metric is deeply flawed as a real-time feedback metric, and should be replaced. Chapters 2 and 3 conclude that behavior theories have both a theoretical and highly practical role in feedback design, although the driving context requires just as much care in the application. Chapters 4 and 5 find that a theory-inspired interface provides drivers with engaging and motivating feedback, and that integrating personal goal into the feedback is

  13. BOOK REVIEW: Fusion: The Energy of the Universe

    NASA Astrophysics Data System (ADS)

    Lister, J.

    2006-05-01

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the `nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call `false

  14. Second Review of the Department of Energy's Inertial Confinement Fusion Program

    NASA Astrophysics Data System (ADS)

    1990-09-01

    This report of the second review by the National Research Council of inertial confinement fusion (ICF) contains the appointed committee's final conclusions and recommendations. An interim report was issued in January 1990. The charge to the committee was as follows: determine whether the recommendations of the 1985 NAS review are still appropriate to advance the technology efficaciously. Provide an assessment of the most promising technologies for continuation of the program. Assess the potential contributions of the program under the following scenarios: a comprehensive test ban on underground nuclear testing and prohibition of underground nuclear testing to levels of 1 kiloton, 5 kilotons, and 10 kilotons. Assess the civilian energy potential of ICF. Assess the adequacy of the ICF target performance data base for supporting program plans and decision milestones. Identify major technical and programmatic issues facing the program. Determine the status of each major candidate inertial fusion driver, and specify the critical issues involved in the development of each. Recommend program priorities, particularly with regard to the Centurion/halite program, driver development, and laboratory experiments and theory. Recommend relative priorities of individual support laboratory activities. Examine the strategies and plans of the ICF Program, comment on their soundness, cohesiveness, and programmatic effectiveness, and recommend management initiatives that could improve the progress of the program toward achieving of its goals. The major difference between the 1985 and 1989 reviews is the request for greater attention to the energy potential of the ICF Program and the heavy-ion work being carried out by the Lawrence Berkeley Laboratory at the University of California.

  15. Materials research and development for fusion energy applications

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1998-11-01

    Some of the critical issues associated with materials selection for proposed magnetic fusion reactors are reviewed, with a brief overview of refractory alloys (vanadium, tantalum, molybdenum, tungsten) and primary emphasis on ceramic materials. SiC/SiC composites are under consideration for the first wall and blanket structure, and dielectric insulators will be used for the heating, control and diagnostic measurement of the fusion plasma. Key issues for SiC/SiC composites include radiation-induced degradation in the strength and thermal conductivity. Recent work has focused on the development of radiation-resistant fibers and fiber/matrix interfaces (porous SiC, SiC multilayers) which would also produce improved SiC/SiC performance for applications such as heat engines and aerospace components. The key physical parameters for dielectrics include electrical conductivity, dielectric loss tangent and thermal conductivity. Ionizing radiation can increase the electrical conductivity of insulators by many orders of magnitude, and surface leakage currents can compromise the performance of some fusion energy components. Irradiation can cause a pronounced degradation in the loss tangent and thermal conductivity. Fundamental physical parameter measurements on ceramics which are of interest for both fusion and non-fusion applications are discussed.

  16. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  17. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  18. Drivers for innovation in waste-to-energy technology.

    PubMed

    Gohlke, Oliver; Martin, Johannes

    2007-06-01

    This paper summarizes developments made in the field of waste-to-energy technology between the 1980s and the present. In the USA, many waste-to-energy systems were developed in the 1980s and early 1990s. These plants generated power relatively efficiently (typically 23%) in 60 bar/ 443 degrees C boilers. Unfortunately, the development came to a stop when the US Supreme Court rejected the practice of waste flow control in 1994. Consequently, waste was directed to mega-landfills, associated with very negative environmental impacts. However, given landfill taxes and increased fuel prices, new waste-to-energy projects have recently been developed. Attractive premiums for renewable power production from municipal waste have been introduced in several European countries. This triggered important innovations in the field of improved energy recovery. Examples of modern waste-to-energy plants are Brescia and Amsterdam with net efficiencies of 24 and 30%, respectively. Incineration is traditionally preferred in Japan due to space constraints. New legislation promoted ash melting or gasification to obtain improved ash quality. However, these processes reduce the efficiency in terms of energy, cost and availability. A new oxygen-enriched waste-to-energy system is under development in order to better achieve the required inert ash quality. PMID:17612320

  19. Model selection as a science driver for dark energy surveys

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin

    2006-07-01

    A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

  20. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  1. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related

  2. Driver Education Saves Gas.

    ERIC Educational Resources Information Center

    American Automobile Association, Falls Church, VA. Traffic Engineering and Safety Dept.

    The argument that driver education should be dropped because driver education cars use gas is shortsighted. High school driver education is an excellent vehicle for teaching concepts of energy conservation. A small investment in fuel now can result in major savings of gasoline over a student's lifetime. In addition good driver education courses…

  3. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  4. Optimization of a Ranchero driven high energy liner driver system

    SciTech Connect

    Atchison, Walter L; Kaul, Ann; Rousculp, Chris L; Watt, Robert G

    2008-01-01

    An experimental series is planned to implode a dense heavy liner to a velocity in excess of 1 cm/microsecond (10 mm/microsecond) using a RANCHERO coaxial explosive flux compression generator. The goal of this study is to choose the liner mass and starting radius that will deliver the greatest amount of kinetic energy to a target at 1 cm final radius. In this study we used the 1D-MHD simulation code RA YEN to search for the proper initial conditions. The results will be used as a starting point for 2-D simulations and preliminary designs for the first experiments planned in the 2009/2010 time frame. The preliminary results indicate that a liner velocity of 1.25 cm/microsecond and a kinetic energy of greater than 4 megajoules may be possible.

  5. 78 FR 2711 - Hours of Service of Drivers: U.S. Department of Energy (DOE); Application for Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... the complete Privacy Act Statement in the Federal Register published on December 29, 2010 (75 FR 82133... the FMCSA final rule on the ``Hours of Service of Drivers,'' dated December 27, 2011 (76 FR 81134... Federal Motor Carrier Safety Administration Hours of Service of Drivers: U.S. Department of Energy...

  6. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  7. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  8. Fusion at deep subbarrier energies: potential inversion revisited

    SciTech Connect

    Hagino, K.; Rowley, N.

    2009-03-04

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  9. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  10. Joining of silicon carbide composites for fusion energy applications

    NASA Astrophysics Data System (ADS)

    Lewinsohn, C. A.; Singh, M.; Shibayama, T.; Hinoki, T.; Ando, M.; Katoh, Y.; Kohyama, A.

    2000-12-01

    Joining of silicon carbide based materials has been recognized as one of the enabling technologies for the successful utilization of ceramic components in fusion energy systems. Sintered silicon carbide (Hexoloy SA) and silicon carbide (Hi-Nicalon™) fiber reinforced silicon carbide matrix composites have been joined using reaction forming/bonding based joining technologies. The room- and high-temperature mechanical properties and fractography of ceramic joints have been reported.

  11. Energy gain of a thin DT shell target in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Khoshbinfar, Soheil

    2014-11-01

    Estimation of maximum possible energy gain for a given energy of driver has always become a key point in inertial confinement fusion. It has direct impact on the cost of produced electricity. Here, we employ a hydrodynamics model to assess energy gain in the case of a symmetrical hydrodynamics implosion where a narrow fuel shell consisting of deuterium-tritium (DT), can experience an isentropic compression in a self-similar regime. Introducing a set of six state parameters {Hhs, Ths, Uimp, αc, ξhs and μhs}, the final fuel state close to ignition is fully described. It enables us to calculate energy gain curves for specific set of these state variables. The envelope of the energy gain family curves provide a limiting gain curve Gfuel fuel* ∝ Ef0.36. Next, we took into account the inertial of cold surrounding fuel on the ignition process. It changes the limiting gain curve slope to 0.41. Finally, the analytical model results assessed and validated using numerical simulation code.

  12. Some Things are Worth Saving...Like Energy. Driver Education Energy Packet, Transparency Masters, and Supplement II.

    ERIC Educational Resources Information Center

    Guise, Eric; Puckett, Kathy

    This resource guide and supplement contain class activities and discussion pieces for use in integrating energy education into driver education. Included are such activities as survey-taking, fuel consumption calculations, and extensive examination of transportation alternatives such as bicycling, carpooling, mass transit, and alternative means of…

  13. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    SciTech Connect

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2009-10-22

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  14. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  15. The energy flux of MHD wave modes excited by realistic photospheric drivers

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart

    The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.

  16. Upgrade of repetitive fast-heating fusion driver HAMA to implode a shell target by using diode pumped solid state laser

    NASA Astrophysics Data System (ADS)

    MORI, Yoshitaka; SEKINE, Takashi; KOMEDA, Osamu; NISHIMURA, Yasuhiko; SUNAHARA, Atsushi; MIURA, Eisuke; Nakayama, Suisei; HANAYAMA, Ryohei; ISHII, Katsuhiro; SATO, Nakahiro; KURITA, Takashi; KAWASHIMA, Toshiyuki; KAN, Hirofumi; NAKAMURA, Naoki; KONDO, Takuya; FUJINE, Manabu; AZUMA, Hirozumi; HIOKI, Tatsumi; KAKENO, Mitsutaka; KAJINO, Tsutomu; MOTOHIRO, Tomoyoshi; SENTOKU, Yasuhiko; KITAGAWA, Yoneyoshi

    2016-03-01

    The HAMA is 1-Hz fast heating fusion driver pumped by a 10 J second-harmonic of diode-pumped Nd:glass laser: KURE-1. We have upgraded HAMA to realize an implosion of spherical shell target by using a remaining fundamental beam from KURE-1. This beam of 6 J/1 Hz is transported to the current counter irradiation system. The resulting beam includes three pulses in sequence: 2.2 J/15 ns and 0.7 J/300 ps for implosion, and 0.5 J/ 190 fs for heating. We estimate the implosion dynamics from 1-D radiation hydrodynamic code (START- 1D). It indicates a possibility of tailored-pulse implosion by optimizing the beam spot sizes of imploding beams on the target surface. This upgrade leads to a demonstration of repetitive implosion and additional heating of a spherical shell target in accordance with a repetition of laser operation and that of a target injection system.

  17. The Spheromak path to fusion energy

    SciTech Connect

    Hooper, E.B., Barnes, C.W., Bellan, P.M.,

    1998-04-01

    The spheromak is a simple and robust magnetofluid configuration with several attractive reactor attributes including compact geometry, no material center post, high engineering {beta}, and sustained steady state operation through helicity injection. Spheromak physics was extensively studied in the US program and abroad (especially Japan) in the 1980` s with work continuing into the 1990s in Japan and the UK. Scientific results included demonstration of self-organization at constant helicity, control of the tilt and shift modes by shaped flux conservers, elucidation of the role of magnetic reconnection in the magnetic dynamo, and sustainment of a spheromak by helicity injection. Several groups attained electron temperatures above 100 eV in decaying plasmas, with CTX reaching 400 eV. This experiment had high magnetic field (>l T on the edge and {approximately} 3 T near the symmetry axis) and good confinement. More recently, analysis of CTX found the energy confinement in the plasma core to be consistent with Rechester-Rosenbluth transport in a fluctuating magnetic field, potentially scaling to good confinement at higher electron temperatures. The SPHEX group developed an understanding of the dynamo in sustained spheromaks but in a relatively cold device. These and other physics results provide a foundation for a new ``concept exploration`` experiment to study the physics of a hot, sustained spheromak. If successful, this work leads to a next generation, proof-of-principle program. The new SSPX experiment will address the physics of a large-scale sustained spheromak in a national laboratory (LLNL) setting. The key issue in near term spheromak research will be to explore the possibly deleterious effects of sustainment on confinement. Other important issues include exploring the {beta} scaling of confinement, scaling with Lundquist number S, and determining the need for active current-profile control. Collaborators from universities and other national laboratories are

  18. Designing Radiation Resistance in Materials for Fusion Energy

    SciTech Connect

    Zinkle, Steven J; Snead, Lance Lewis

    2014-01-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  19. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  20. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  1. Radiation Hydrodynamic Simulations of an Inertial Fusion Energy Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan Foster

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is carried out using the 1-D BUCKY radiation hydrodynamics code for a variety of differing chamber fills, radii, chamber obstructions and first wall materials. Discussion of the first wall temperature rise, x-ray spectrum incident on the wall, shock timing and maximum overpressure are presented. An additional discussion of the impact of different gas opacities and their effect on overall chamber dynamics, including the formation of two shock fronts, is also presented. This work is performed under collaboration with Lawrence Livermore National Laboratory at the University of Wisconsin-Madison's Fusion Technology Institute.

  2. Low-energy nuclear fusion data and their relation to magnetic and laser fusion

    SciTech Connect

    Jarmie, N.

    1980-04-01

    The accuracy of the basic fusion data for the T(d,n)/sup 4/He, /sup 3/He(d,p)/sup 4/He, T(t,2n)/sup 4/He, D(d,n)/sup 3/He, and D(d,p)T reactions was investigated in the 10- to 100-keV bombarding energy region, and the effects of inaccuracies on the design of fusion reactors were assessed. The data base for these reactions (particularly, the most critical T(d,n)/sup 4/He reaction) rests on 25-year-old experiments the accuracy (often assumed to be +- 5%) of which has rarely been questioned: yet, in all except the d + d reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d,n)/sup 4/He data base. The errors in the reactivity will propagate proportionately into the errors in fusion probabilities in reactor calculations. /sup 3/He(d,p)/sup 4/He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d,n)/sup 3/He and D(d,p)T cross sections appear to be well known and consistent. The T(t,2n)/sup 4/He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are (except for T(t,2n)/sup 4/He data, which could be lowered by about 50%). The apparent uncertainties of these data sets should be kept in mind. 14 figures.

  3. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    SciTech Connect

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  4. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition

  5. Propulsion concepts for nuclear matter compression energy and "cold" fusion energy sources in interstellar flight

    NASA Astrophysics Data System (ADS)

    Subotowicz, M.

    Various energy sources for interstellar flight are reviewed. Two more "non-conventional" energy sources were proposed in a recent paper: (1) energy delivery during "pionization" of nuclear matter through nuclear matter compression in heavy nuclei collisions and (2) generation of the energy in muon-catalysed "cold" fusion in compressed hydrogen. After a short discussion of the physical principles of the "pionization" of the nuclear matter, the engine design concept is sketched. It has some advantages in comparison to the annihilation propulsion. In laboratory reference system after nuclear matter pionization, all the pions and the resulting particles after decay of pions will move inside of the narrow pionization cone. Power supply of the heavy ion accelerator will extract some part of the energy from the nozzle of the propulsion engine. This would be the magneto-hydrodynamics (m-h-d) power unit based on the Hall effect. Muon-catalysed fusion as the energy source is possible thanks to the discovery of the multiple tritium + deuterium (T + D) synthesis catalysed by one muon. It is possible to combine muon-catalysed fusion with the nuclear fission process. Commercial fusion-fission hybrid reactor would require 100-300 fusions per muon. The principles of the muon-catalysed fusion are shortly discussed. The advantage of the muon-catalysis in T + D mixture is explained because existence of nuclear resonance in deuterium-tritium-muon fusion. This is the reason why the sticking probability muon-α particle is so small (0.4%). A conception of the muon-catalysed "cold" fusion reactor is presented. The pions and muons are produced and stopped in D + T fuel itself. Many technical details are discussed more briefly, e.g. the probability of negative pion production at various projectiles and targets, average energy to produce one negative muon, muon-catalysed fusion-fission systems, advantages of the fusion-fission systems. In the paper is shown a block scheme of the "cold

  6. Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy

    SciTech Connect

    Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A.; Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S.

    2006-05-15

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center.

  7. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  8. Optimal Path to a Laser Fusion Energy Power Plant

    NASA Astrophysics Data System (ADS)

    Bodner, Stephen

    2013-10-01

    There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.

  9. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.

  10. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    SciTech Connect

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  11. Progress in safety and environmental aspects of inertial fusion energy at Lawrence Livermore National Laboratory

    SciTech Connect

    Latkowski, J F; Reyes, S; Meier, W R

    2000-06-01

    Lawrence Livermore National Laboratory (LLNL) is making significant progress in several areas related to the safety and environmental (S and E) aspects of inertial fusion energy (IFE). A detailed accident analysis has been completed for the HYLIFE-II power plant design. Additional accident analyses are underway for both the HYLIFE-II and Sombrero designs. Other S and E work at LLNL has addressed the issue of the driver-chamber interface and its importance for both heavy-ion and laser-driven IFE. Radiation doses and fluences have been calculated for final focusing mirrors and magnets and shielding optimization is underway to extend the anticipated lifetimes for key components. Target designers/fabrication specialists have been provided with ranking information related to the S and E characteristics of candidate target materials (e.g., ability to recycle, accident consequences, and waste management). Ongoing work in this area will help guide research directions and the selection of target materials. Published and continuing work on fast ignition has demonstrated some of the potentially attractive S and E features of such designs. In addition to reducing total driver energies, fast ignition may ease target fabrication requirements, reduce radiation damage rates, and enable the practical use of advanced (e.g., tritium-lean) labels with significantly reduced neutron production rates, the possibility of self-breeding targets, and dramatically increased flexibility in blanket design. Domestic and international collaborations are key to success in the above areas. A brief summary of each area is given and plans for future work are outlined.

  12. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  13. Data management in a fusion energy research experiment

    SciTech Connect

    Glad, A.; Drobnis, D.; McHarg, B.

    1981-07-01

    Present-day fusion research requires extensive support for the large amount of scientific data generated, bringing about three distinct problems computer systems must solve: (1) the processing of large amounts of data in very small time frames; (2) the archiving, analyzing and managing of the entire data output for the project's lifetime; (3) the standardization of data for the exchange of information between laboratories. The computer system supporting General Atomic's Doublet III tokamak, a project funded by the United States Department of Energy, is the first to encounter and address these problems through a system-wide data base structure.

  14. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  15. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  16. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  17. Constraints on drivers for visible light communications emitters based on energy efficiency.

    PubMed

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-01

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79). PMID:27137609

  18. Decoding the nuclear genome using nuclear binding and fusion energies

    NASA Astrophysics Data System (ADS)

    Yablon, Jay R.

    2015-04-01

    In several publications the author has presented the theory that protons and neutrons and other baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory and used that to deduce the up and down current quark masses from the tightly-known Q = 0 empirical electron mass and the neutron minus proton mass difference with commensurately high precision. This is then used as a springboard to closely fit a wide range of empirical nuclear binding and fusion energy data and to obtain the proton and neutron masses themselves within all experimental errors. This presentation will systematically pull all of this together and a) establishes that this way of defining current quark masses constitutes a valid measurement scheme, b) lays out the empirical support for this theory via observed nuclear binding and fusion energies as well as the proton and neutron masses themselves, c) solidifies the interface used to connect the theory to these empirical results and uncovers a mixing between the up and down current quark masses, and d) presents clearly how and why the underlying theory is very conservative, being no more and no less than a deductive mathematical synthesis of Maxwell's classical theory with both the electric and magnetic field equations merged into one, Yang-Mills gauge theory, Dirac fermion theory, the Fermi-Dirac-Pauli Exclusion Principle, and to get from classical chromodynamics to QCD, Feynman path integration.

  19. Use of the National Driver Register in the U.S. Department of Energy Human Reliability Program

    SciTech Connect

    Phillip M. Kannan, Center for Human Reliability Studies

    2007-01-01

    The National Driver Register (NDR) is a complex information network established and maintained by the Secretary of the Department of Transportation (DOT) under the National Driver Register Act of 1982. This report analyzes the question of whether information from the NDR is available to officials making Human Reliability Program (HRP) certification and recertification decisions and to Department of Energy (DOE) personnel security specialists making access authorization determinations.

  20. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  1. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  2. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  3. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGESBeta

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  4. Investigation of contribution of incomplete fusion in the total fusion process induced by 9Be on 181Ta target at near barrier energies

    NASA Astrophysics Data System (ADS)

    Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv

    2016-02-01

    We have studied the relative contribution of incomplete fusion (ICF) and complete fusion (CF) in total fusion (TF) induced by 9Be on 181Ta target at energies in the vicinity of Coulomb barrier using classical dynamical model and Wong's formula in conjugation with energy dependent Woods-Saxon formula. It is found that at above barrier energies ICF contributes almost 30% in TF while at energies below the barrier qualitatively its contribution is much more than thirty percent.

  5. Economics and Environmental Compatibility of Fusion Reactors —Its Analysis and Coming Issues— 4.Economic Effect of Fusion in Energy Market 4.1Economic Impact of Fusion Deployment in Energy Market

    NASA Astrophysics Data System (ADS)

    Konishi, Satoshi; Tokimatsu, Koji

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment.

  6. Net energy payback and carbon dioxide emissions from helium-3 fusion and wind electrical power plants

    NASA Astrophysics Data System (ADS)

    White, Scott William

    1998-12-01

    A net energy analysis and life cycle CO2 emission analysis is performed on a D3He- fusion power plant using lunar helium-3 and five other electricity-generating power plant technologies, including a wind, conventional coal, PWR and two DT- fusion tokamak (UWMAK-I and ARIES-RS) power plants. The energy payback ratio is the amount of electrical energy produced over the lifetime of the power plant divided by the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The analysis focused on D3He-fusion and particularly the acquisition of the helium-3 fuel from the Moon. The energy payback ratio varies widely for the six power plants with a low of 11 for a conventional coal plant to a high of 31 for a D3 He-fusion power plant. Energy payback ratios for wind (23), nuclear fission (16), ARIES-RS DT-fusion (24) and UWMAK-I DT- fusion (27) power plants all fall in between. The CO2 emissions for each power plant were calculated from the life-cycle energy' requirements data. The coal plant was responsible for the greatest emissions with 974 tonnes CO2/GWeh, followed by fission and wind (15), ARIES-RS DT-fusion (11), ARIES- 111 D3He-fusion (10) and UWMAK-I DT-fusion power plant (9).

  7. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  8. Comment on "Compound nucleus aspect of sub-barrier fusion: A new energy scaling behavior"

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Rachkov, V. A.; Zagrebaev, V. I.

    2016-01-01

    We comment on a recently published paper by R. Wolski entitled "Compound nucleus aspect of sub-barrier fusion: A new energy scaling behavior" [1], which claims that the sub-barrier fusion is determined mostly by the Q value of the compound nucleus formation. This ignores the dynamical channel-coupling effects at near-barrier energies. We demonstrate that this simplified scaling of fusion cross sections is not a common case and has no predictive power.

  9. A Prospect on the Demonstration of Electric Power Production from Fusion Energy

    NASA Astrophysics Data System (ADS)

    Okano, Kunihiko; Ogawa, Yuichi; Tobita, Kenji

    This paper describes a prospect toward electric power production by the Fusion energy. In the first part of the paper, a principle of TOKAMAK system which is the successful magnetic-confinement-systems for fusion reactors are shown, and then the ITER project based on TOKAMAK and the present status of ITER is reviewed. In the remainder of the paper, a roadmap for fusion energy and conceptual designs of Demonstration reactors are briefly described.

  10. Background: Energy's holy grail. [The quest for controlled fusion

    SciTech Connect

    Not Available

    1993-01-22

    This article presents a brief history of the pursuit and development of fusion as a power source. Starting with the 1950s through the present, the research efforts of the US and other countries is highlighted, including a chronology of hey developments. Other topics discussed include cold fusion and magnetic versus inertial fusion issues.

  11. Status of inertial fusion

    NASA Astrophysics Data System (ADS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs RF linacs, synchrotrons, and storage rings - although the use of the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program.

  12. Energy Sprawl Is the Largest Driver of Land Use Change in United States.

    PubMed

    Trainor, Anne M; McDonald, Robert I; Fargione, Joseph

    2016-01-01

    Energy production in the United States for domestic use and export is predicted to rise 27% by 2040. We quantify projected energy sprawl (new land required for energy production) in the United States through 2040. Over 200,000 km2 of additional land area will be directly impacted by energy development. When spacing requirements are included, over 800,000 km2 of additional land area will be affected by energy development, an area greater than the size of Texas. This pace of development in the United States is more than double the historic rate of urban and residential development, which has been the greatest driver of conversion in the United States since 1970, and is higher than projections for future land use change from residential development or agriculture. New technology now places 1.3 million km2 that had not previously experienced oil and gas development at risk of development for unconventional oil and gas. Renewable energy production can be sustained indefinitely on the same land base, while extractive energy must continually drill and mine new areas to sustain production. We calculated the number of years required for fossil energy production to expand to cover the same area as renewables, if both were to produce the same amount of energy each year. The land required for coal production would grow to equal or exceed that of wind, solar and geothermal energy within 2-31 years. In contrast, it would take hundreds of years for oil production to have the same energy sprawl as biofuels. Meeting energy demands while conserving nature will require increased energy conservation, in addition to distributed renewable energy and appropriate siting and mitigation. PMID:27607423

  13. Inertial fusion target development for ignition and energy

    SciTech Connect

    Schultz, K.R.; Norimatsu, T.

    1994-12-01

    The target needs of the next ICF experiments that will lead toward ignition and energy are different from those of today`s experiments. The future experiments on OMEGA Upgrade, GEKKO XII Upgrade, the National Ignition Facility and Megajoule will need large, precise, cryogenic targets. Development is needed on a number of aspects of these targets, including shell fabrication, characterization, cryogenic layering and target handling. However, coordinated R and D programs are in place and work is in process to carry out the needed development. It is vital to the success of inertial fusion that this work be sustained. Coordinated effort, like the National Cryogenic Target Program in the USA, will help make the development activities as efficient and effective as possible, and should be encouraged.

  14. Status of Safety& Environmental Activities for Inertial Fusion Energy

    SciTech Connect

    Latkowski, J F; Reyes, S; Cadwallader, L C; Sharpe, J P; Marshall, T D; Merrill, B J; Moore, R L; Petti, D A; Falquina, R; Rodriguez, A; Sanz, J; Cabellos, O

    2002-11-25

    Over the past several years, significant progress has been made in the analysis of safety and environmental (S&E) issues for inertial fusion energy (IFE). Detailed safety assessments have been performed for the baseline power plant concepts, as well as for a conceptual target fabrication facility. Safety analysis results are helping to drive the agenda for experiments. A survey of the S&E characteristics--both radiological and chemical--of candidate target materials has been completed. Accident initiating events have been identified and incorporated into master logic diagrams, which will be essential to the detailed safety analyses that will be needed in the future. Studies of aerosol generation and transport will have important safety implications. A Monte Carlo-based uncertainty analysis procedure has been developed for use in neutron activation calculations. Finally, waste management issues are receiving increased attention and are deserving of further discussion.

  15. Atomic Physics in the Quest for Fusion Energy and ITER

    SciTech Connect

    Charles H. Skinner

    2008-02-27

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  16. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  17. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  18. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  19. Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, A.; Boselli, M.

    2016-05-01

    Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.

  20. Solenoid transport for heavy ion fusion

    SciTech Connect

    Lee, Edward

    2004-06-15

    Solenoid transport of high current, heavy ion beams is considered for several stages of a heavy ion fusion driver. In general this option is more efficient than magnetic quadrupole transport at sufficiently low kinetic energy and/or large e/m, and for this reason it has been employed in electron induction linacs. Ideally an ion beam would be transported in a state of Brillouin flow, i.e. cold in the transverse plane and spinning at one half the cyclotron frequency. The design of appropriate solenoids and the equilibrium and stability of transported ion beams are discussed. An outline of application to a fusion driver is also presented.

  1. Molecular potential energy surfaces for interstellar chemistry and fusion applications

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Huang, Xinchuan; Jin, Zhong; Xie, Zhen; Zhang, Xiubin; Bowman, Joel M.; Sharma, Amit Raj; Scheider, Ralf

    2006-04-01

    In the Born-Oppenheimer approximation the electronic Schr"odinger equation is solved given the nuclear positions as parameters, and this defines the potential energy surface. We have used computational invariant theory and the MAGMA computer algebra system as an aid to develop representations for the potential energy and dipole moment surfaces that are fully invariant under permutations of like nuclei, extending an approach that for 3-body and 4-body systems has a long history, e.g. [J. N. Murrell et al. Molecular Potential Energy Functions, Wiley, 1984]. A many-body (cluster) expansion is used to describe reaction complexes. The methods have been applied in an almost routine way for systems of up to 7 nuclei, including several molecules that are of interest for interstellar chemistry and for the issue of hydrocarbon breakdown in fusion edge plasma: H5^+, CH5, CH5^+, C2H3^+, and their fragments, with C2H5^+ on the way. The mathematical and computional methods and the hydrocarbon applications will be presented.

  2. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  3. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    none,

    1998-01-23

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  4. Safety and environmental constraints on space applications of fusion energy

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece

    1990-01-01

    Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.

  5. A 3.3 MJ, Rb{sup +1} Driver Design Based on an Integrated Systems Analysis

    SciTech Connect

    Meier, W.R.; Barnard, J.J.; Bangerter, R.O.

    2000-09-15

    A computer model for systems analysis of heavy ion drivers has been developed and used to evaluate driver designs for inertial fusion energy (IFE). The present work examines a driver for a close-coupled target design that requires less total beam energy but also smaller beam spots sizes than previous target designs. Design parameters and a cost estimate for a 160 beam, 3.3 MJ driver using rubidium ions (A = 85) are reported, and the sensitivity of the results to variations in selected design parameters is given.

  6. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed. PMID:25725838

  7. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  8. Fusion of {sup 6}Li with {sup 159}Tb at near-barrier energies

    SciTech Connect

    Pradhan, M. K.; Mukherjee, A.; Basu, P.; Goswami, A.; Kshetri, R.; Roy, Subinit; Chowdhury, P. Roy; Sarkar, M. Saha; Palit, R.; Parkar, V. V.; Santra, S.; Ray, M.

    2011-06-15

    Complete and incomplete fusion cross sections for {sup 6}Li + {sup 159}Tb have been measured at energies around the Coulomb barrier by the {gamma}-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by {approx}34% compared to coupled-channel calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data for {sup 11,10}B + {sup 159}Tb and {sup 7}Li + {sup 159}Tb shows that the extent of suppression is correlated with the {alpha} separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction {sup 6}Li + {sup 159}Tb at below-barrier energies are primarily due to the d transfer to unbound states of {sup 159}Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  9. Thermonuclear Fusion: An Energy Source for the Future

    ERIC Educational Resources Information Center

    Drummond, William E.

    1973-01-01

    Discusses current research in thermonuclear fusion with particular emphasis on the problem of confining hot plasma. Recent experiments indicate that magnetic bottles called tokamaks may achieve the necessary confinement times, and this break-through has given renewed optimism to the feasibility of commercial fusion power by the turn of the…

  10. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect

    Richard J. Hawryluk

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  11. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  12. Systematical Behavior of Breakup Effects on Complete Fusion at Energies above the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, Wei-Juan; Gomes, P. R. S.; Zhao, En-Guang; Zhou, Shan-Gui

    We investigate the systematical behavior of the breakup effects on the complete fusion (CF) cross sections at energies above the Coulomb barrier. The CF cross sections are suppressed by the prompt breakup of the projectiles. This suppression effect, expressed as the ratio of the reduced fusion function and the universal fusion function (UFF), for reactions induced by the same projectile, is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.

  13. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  14. Compact hadron driver for cancer therapies using continuous energy sweep scanning

    NASA Astrophysics Data System (ADS)

    Wah, Leo Kwee; Monma, Takumi; Adachi, Toshikazu; Kawakubo, Tadamichi; Dixit, Tanuja; Takayama, Ken

    2016-04-01

    A design of a compact hadron driver for future cancer therapies based on the induction synchrotron concept is presented. To realize a slow extraction technique in a fast-cycling synchrotron, which allows energy sweep beam scanning, a zero momentum-dispersion D (s ) region and a high flat D (s ) region are necessary. The proposed design meets both requirements. The lattice has two-fold symmetry with a circumference of 52.8 m, a 2-m dispersion-free straight section, and a 3-m-long large flat dispersion straight section. Assuming a 1.5-T bending magnet, the ring can deliver heavy ions (200 MeV /u ) at 10 Hz. A beam fraction is dropped from the barrier bucket at the desired timing, and the increasing negative momentum deviation of this beam fraction becomes large enough for the fraction to fall in the electrostatic septum extraction gap, which is placed at the large D (s ) region. The programmed energy sweep extraction enables scanning beam irradiation on a cancer site in depth without an energy degrader, avoiding the production of secondary particles and the degradation of emittance. Details of the lattice parameters and computer simulations for slow extraction are discussed. An example extraction scenario is presented. Qualities of the spilled beam such as emittance and momentum spread are discussed, as well as necessary functions and parameters required for the extraction system.

  15. Fusion measurements of 12C+12C at energies of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, D.; Jiang, C. L.; Rehm, K. E.; Alcorta, M.; Almaraz-Calderon, S.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bourgin, D.; Bucher, B.; Carpenter, M. P.; Courtin, S.; David, H. M.; Deibel, C. M.; Dickerson, C.; DiGiovine, B.; Fang, X.; Greene, J. P.; Haas, F.; Henderson, D. J.; Janssens, R. V. F.; Jenkins, D.; Lai, J.; Lauritsen, T.; Lefebvre-Schuhl, A.; Montanari, D.; Pardo, R. C.; Paul, M.; Seweryniak, D.; Tang, X. D.; Ugalde, C.; Zhu, S.

    2016-05-01

    The cross section of the 12C+12C fusion reaction at low energies is of paramount importance for models of stellar nucleosynthesis in different astrophysical scenarios, such as Type Ia supernovae and Xray superbursts, where this reaction is a primary route for the production of heavier elements. In a series of experiments performed at Argonne National Laboratory, using Gammasphere and an array of Silicon detectors, measurements of the fusion cross section of 12C+12C were successfully carried out with the γ and charged-particle coincidence technique in the center-of-mass energy range of 3-5 MeV. These were the first background-free fusion cross section measurements for 12C+12C at energies of astrophysical interest. Our results are consistent with previous measurements in the high-energy region; however, our lowest energy measurement indicates a fusion cross section slightly lower than those obtained with other techniques.

  16. NSTX Contributions to the FESAC Fusion Energy Sciences Development Plan*

    NASA Astrophysics Data System (ADS)

    Peng, Y.-K. M.

    2003-10-01

    The Spherical Torus configuration, together with other Innovative Confinement Concepts (ICCs) such as the Reversed Field Pinch and the Compact Stellarator, were identified as an integral part of a recent FESAC Fusion Energy Sciences Development Plan (March 2003), which aims to generate net electricity in 35 years. In the next 5 years, the NSTX National Research Team proposes to carry out research in the regime of order-unity beta and strong toroidicity and make contributions to this plan. The NSTX research plans to produce the physics database needed for the design of a Performance Extension stage ST (Next Step Spherical Torus, NSST) capable of testing solenoid-free plasma operations, transport and turbulence, MHD, heating and current drive, and boundary physics at 5 - 10 MA in plasma current. An ST-based Component Test Facility (CTF), with similar plasma conditions and capable of high steady-state neutron wall loading and accumulated dose, can then focus on nuclear technology development. These contributions, together with those from theory and simulation, burning plasmas (ITER), and materials testing, will in time establish the needed physics and technology basis for a Demonstration Power Plant. *Work supported by DoE Contract Nos. DE-AC02-76CH03073 and DE-AC05-96OR22464.

  17. A pathway to laser fusion energy in Japan

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi

    2016-05-01

    High-density compression of DT to one thousand times its liquid density is the critical path of inertial fusion and was demonstrated in Japan and US in late 1980's. The Osaka group has achieved high-density compression that meets one of the critical requirements for thermonuclear ignition and burn. Although the compression densities were well reproduced by computer simulations, the neutron yields were much lower than the simulation predictions by three orders of magnitudes, suggesting catastrophic collapse of a hot spark, from which thermonuclear reactions are triggered. In order to overcome this difficulty the international ICF community has adopted two approaches: one is to generate a larger hot spark than the mixed layer with MJ-Class lasers, such as NIF and LMJ. The other approach is to externally heat the compressed fuel. The second approach is the fast ignition. After the proof-of-concept experiment in 2002, we started the Fast Ignition Realization Experiment (FIREX) project to complete the world most powerful high-energy peta-watt laser “LFEX” as a heating laser.

  18. The Heavy Ion Fusion Program in the USA

    SciTech Connect

    Bangerter, R.O.

    2000-03-17

    The U.S. Department of Energy has established a new, larger inertial fusion energy program. To manage program growth, we have developed a new inertial fusion energy research and we have established a Virtual National Laboratory for Heavy Ion Fusion. There has been significant technical progress. Improvements in target design have reduced the predicted energy requirements by approximately a factor of two. There have also been important experiments on chamber dynamics and other inertial fusion technologies. The accelerator program has completed a number of small-scale experiments. Experiments with driver-scale beams are being designed -- including experiments with driver-scale ion sources and injectors. Finally we are developing the technologies needed to build a major research facility known as the Integrated Research Experiment (IRE)

  19. The role of the National Ignition Facility in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1996-06-01

    The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-{mu}m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design...; (2) to provide an above-ground simulation capability for nuclear weapon effects...; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

  20. The search for solid state fusion lasers

    SciTech Connect

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  1. Fusion cross section of 12C+13C at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Zhang, N. T.; Tang, X. D.; Chen, H.; Chesneanu, D.; Straticiuc, M.; Trache, L.; Burducea, I.; Li, K. A.; Li, Y. J.; Ghita, D. G.; Margineanu, R.; Pantelica, A.; Gomoiu, C.

    2016-02-01

    In the recent work at Notre Dame, correlations between three carbon isotope fusion systems have been studied and it is found that the fusion cross sections of 12C+13Cand 13C+13C provide an upper limit on the fusion cross section of the astrophysically important 12C+12C reaction.The aim of this work is to continue such research by measuring the fusion cross section of the 12C+13C reaction to lower energies. In this experiment, the off-line activity measurement was performed in the ultra-low background laboratory 12C+13C and the fusion cross section for has been determined in the energy range of Ec.m. =2.5-6.8 MeV. Comparison between this work and several models is also presented.

  2. FY-2013 FES (Fusion Energy Sciences) Joint Research Target Report

    SciTech Connect

    Fenstermacher, M. E.; Garofalo, A. M.; Gerhardt, S. P.; Hubbard, A.; Maingi, R.; Whyte, D.

    2013-09-30

    The H-mode confinement regime is characterized by a region of good thermal and particle confinement at the edge of the confined plasma, and has generally been envisioned as the operating regime for ITER and other next step devices. This good confinement is often interrupted, however, by edge-localized instabilities, known as ELMs. On the one hand, these ELMs provide particle and impurity flushing from the plasma core, a beneficial effect facilitating density control and stationary operation. On the other hand, the ELMs result in a substantial fraction of the edge stored energy flowing in bursts to the divertor and first wall; this impulsive thermal loading would result in unacceptable erosion of these material surfaces if it is not arrested. Hence, developing and understanding operating regimes that have the energy confinement of standard Hmode and the stationarity that is provided by ELMs, while at the same time eliminating the impulsive thermal loading of large ELMs, is the focus of the 2013 FES Joint Research Target (JRT): Annual Target: Conduct experiments and analysis on major fusion facilities, to evaluate stationary enhanced confinement regimes without large Edge Localized Modes (ELMs), and to improve understanding of the underlying physical mechanisms that allow acceptable edge particle transport while maintaining a strong thermal transport barrier. Mechanisms to be investigated can include intrinsic continuous edge plasma modes and externally applied 3D fields. Candidate regimes and techniques have been pioneered by each of the three major US facilities (C-Mod, D3D and NSTX). Coordinated experiments, measurements, and analysis will be carried out to assess and understand the operational space for the regimes. Exploiting the complementary parameters and tools of the devices, joint teams will aim to more closely approach key dimensionless parameters of ITER, and to identify correlations between edge fluctuations and transport. The role of rotation will be

  3. Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Trzaska, W. H.; Xu, X. X.; Yan, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2014-10-01

    The measured complete fusion (capture) excitation function is presented for the 28Si + 208Pb reaction at deep sub-barrier energies. This excitation function is compared with the one predicted with the quantum diffusion approach.

  4. Heavy ion fusion at sub-barrier energies: Progress and questions

    SciTech Connect

    Betts, R.R.

    1993-01-01

    The current status of the experimental study of heavy-ion fusion at sub-barrier energies is reviewed. Emphasis is placed on areas of disagreement between experimental data and theoretical predictions. Suggestions for future experiments are discussed.

  5. Heavy ion fusion at sub-barrier energies: Progress and questions

    SciTech Connect

    Betts, R.R.

    1993-04-01

    The current status of the experimental study of heavy-ion fusion at sub-barrier energies is reviewed. Emphasis is placed on areas of disagreement between experimental data and theoretical predictions. Suggestions for future experiments are discussed.

  6. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  7. Will fusion be ready to meet the energy challenge for the 21st century?

    NASA Astrophysics Data System (ADS)

    Bréchet, Yves; Massard, Thierry

    2016-05-01

    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.

  8. Repetitively pulsed, high energy KrF lasers for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Myers, M. C.; Sethian, J. D.; Giuliani, J. L.; Lehmberg, R.; Kepple, P.; Wolford, M. F.; Hegeler, F.; Friedman, M.; Jones, T. C.; Swanekamp, S. B.; Weidenheimer, D.; Rose, D.

    2004-12-01

    Krypton fluoride (KrF) lasers produce highly uniform beams at 248 nm, allow the capability of 'zooming' the spot size to follow an imploding pellet, naturally assume a modular architecture and have been developed into a pulsed-power-based industrial technology that readily scales to a fusion power plant sized system. There are two main challenges for the fusion power plant application: to develop a system with an overall efficiency of greater than 6% (based on target gains of 100) and to achieve a durability of greater than 3 × 108 shots (two years at 5 Hz). These two issues are being addressed with the Electra (700 J, 5 Hz) and Nike (3000 J, single shot) KrF lasers at the Naval Research Laboratory. Based on recent advances in pulsed power, electron beam generation and transport, hibachi (foil support structure) design and KrF physics, wall plug efficiencies of greater than 7% should be achievable. Moreover, recent experiments show that it may be possible to realize long lived electron beam diodes using ceramic honeycomb cathodes and anode foils that are convectively cooled by periodically deflecting the laser gas. This paper is a summary of the progress in the development of the critical KrF technologies for laser fusion energy.

  9. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    SciTech Connect

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  10. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    SciTech Connect

    Yasuda, Kayo; Hartman, Philip S.; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  11. Multimodal options for materials research to advance the basis for fusion energy in the ITER era

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Möslang, A.; Muroga, T.; Tanigawa, H.

    2013-10-01

    Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

  12. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  13. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  14. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    SciTech Connect

    Jiang, C.L.; Back, B.B.; Esbensen, H.; Janssens, R.V.F.; Rehm, K.E.

    2006-01-15

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the ''stiffness'' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  15. Older Drivers

    MedlinePlus

    ... Affects Driving Tips for Safe Driving Making Your Vehicle Safe Regulations Affecting Older Drivers When Driving Skills ... Like drivers of any age, they use their vehicles to go shopping, do errands, and visit the ...

  16. Illumination non-uniformity of spirally wobbling beam in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-03-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized.

  17. Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop

    SciTech Connect

    Seidl, P.A.; Barnard, J.J.

    2011-04-29

    The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

  18. Inertial confinement fusion. Quarterly report, July--September 1993: Volume 3, No. 4

    SciTech Connect

    Sacks, R.A.; Murphy, P.W.; Schleich, D.P.

    1993-12-31

    This report discusses the following research: Diode-pumped solid- state-laser driver for inertial fusion energy power plants; Longitudinal beam dynamics in heavy ion fusion accelerators; Design of the ion sources for heavy ion fusion; Measurement of electron density in laser-produced plasma with a soft x-ray moire deflectometer; and Analysis of weakly nonlinear three-dimensional Rayleigh-Taylor instability growth.

  19. Autocatalytic fission-fusion microexplosions for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2000-12-01

    Autocatalytic fission-fusion microexplosions, mutually amplifying fission and fusion reactions, are proposed for propulsion. Autocatalytic fission-fusion microexplosions can be realized by imploding a shell of uranium 235 (or plutonium) onto a magnetized deuterium-tritium (DT) plasma. After having reached a high temperature, the DT plasma releases fusion neutrons making fission reactions in the fissile shell increasing the implosion velocity which in turn increases the fusion reaction rate until full ignition of the DT plasma. To implode the fissile shell a small amount of high explosive and to magnetize the DT plasma a small auxiliary electric discharge are required. In comparison to nuclear bomb pulse propulsion, the energy released per pulse is much smaller and the efficiency higher. And in comparison to laser- or particle-beam-ignited fusion microexplosions, there is no need for a massive fusion ignition driver.

  20. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-01

    The excitation functions were measured for the 28Si + 208Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the 28Si + 124Sn, 208Pb; 30Si + 124Sn, 208Pb; 20Ne + 208Pb; 40Ca + 96Zr; and 134Te + 40Ca complete-fusion (capture) reactions is discussed.

  1. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  2. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    NASA Technical Reports Server (NTRS)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  3. Direct-driven target implosion in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-03-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination.

  4. Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy

    SciTech Connect

    Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

    1999-10-19

    We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

  5. Analysing the role of fusion power in the future global energy system

    NASA Astrophysics Data System (ADS)

    Cabal, H.; Lechón, Y.; Ciorba, U.; Gracceva, F.; Eder, T.; Hamacher, T.; Lehtila, A.; Biberacher, M.; Grohnheit, P. E.; Ward, D.; Han, W.; Eherer, C.; Pina, A.

    2012-10-01

    This work presents the EFDA Times model (ETM), developed within the European Fusion Development Agreement (EFDA). ETM is an optimization global energy model which aims at providing the optimum energy system composition in terms of social wealth and sustainability including fusion as an alternative technology in the long term. Two framework scenarios are defined: a Base case scenario with no limits to CO2 emissions, and a 450ppm scenario with a limit of 450ppm in CO2-eq concentrations set by 2100. Previous results showed that in the Base case scenario, with no measures for CO2 emission reductions, fusion does not enter the energy system. However, when CO2 emission restrictions are imposed, the global energy system composition changes completely. In a 450ppm scenario, coal technologies disappear in a few decades, being mainly replaced by nuclear fission technologies which experience a great increase when constrained only by Uranium resources exhaustion. Fission technologies are then replaced by the fusion power plants that start in 2070, with a significant contribution to the global electricity production by 2100. To conclude the work, a sensitivity analysis will be presented on some parameters that may affect the possible role of fusion in the future global energy system. Note to the reader: The article number has been corrected on web pages on November 22, 2013.

  6. Analysing the role of fusion power in the future global energy system

    NASA Astrophysics Data System (ADS)

    Cabal, H.; Lechón, Y.; Ciorba, U.; Gracceva, F.; Eder, T.; Hamacher, T.; Lehtila, A.; Biberacher, M.; Grohnheit, P. E.; Ward, D.; Han, W.; Eherer, C.; Pina, A.

    2012-10-01

    This work presents the EFDA Times model (ETM), developed within the European Fusion Development Agreement (EFDA). ETM is an optimization global energy model which aims at providing the optimum energy system composition in terms of social wealth and sustainability including fusion as an alternative technology in the long term. Two framework scenarios are defined: a Base case scenario with no limits to CO2 emissions, and a 450ppm scenario with a limit of 450ppm in CO2-eq concentrations set by 2100. Previous results showed that in the Base case scenario, with no measures for CO2 emission reductions, fusion does not enter the energy system. However, when CO2 emission restrictions are imposed, the global energy system composition changes completely. In a 450ppm scenario, coal technologies disappear in a few decades, being mainly replaced by nuclear fission technologies which experience a great increase when constrained only by Uranium resources exhaustion. Fission technologies are then replaced by the fusion power plants that start in 2070, with a significant contribution to the global electricity production by 2100. To conclude the work, a sensitivity analysis will be presented on some parameters that may affect the possible role of fusion in the future global energy system.

  7. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    NASA Astrophysics Data System (ADS)

    Miller, J. D.

    1986-11-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.

  8. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  9. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    PubMed

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-01

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. PMID:26958888

  10. TOPICAL PROBLEMS: Can the future world energy system be free of nuclear fusion?

    NASA Astrophysics Data System (ADS)

    Putvinskii, Sergei V.

    1998-11-01

    The available information on the dynamics of world population growth as well as global statistical data on today's energy production, consumption and distribution are presented. Natural restrictions on the modern world's fossil combustion energy system are discussed along with possible climatic and biospherical impacts for its part. Alternative energy sources capable of replacing the existing energy system are considered and prospects for controllable nuclear fusion are discussed.

  11. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  12. Experimental evidence for a fusion enhancement in 19O+12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.; Umar, A. S.; Oberacker, V. E.

    2016-03-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 x 104p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Evaporation residues were detected with high efficiency by measuring them in the angular range 4.4° <=θlab <= 11.7°. The fusion cross-section has been measured down to 170 mb level. As compared to 18O+12C the fusion cross-section for 19O+12C is enhanced by approximately a factor of 3 times at the lowest energy measured. The measured excitation function will be compared with theoretical calculations. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  13. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  14. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    NASA Astrophysics Data System (ADS)

    Lindemuth, I. R.

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.

  15. Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout

    NASA Astrophysics Data System (ADS)

    Glaser, A.; Goldston, R. J.

    2012-04-01

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  16. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  17. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum

  18. Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Shrivastava, A.; Mahata, K.; Pandit, S. K.; Nanal, V.; Ichikawa, T.; Hagino, K.; Navin, A.; Palshetkar, C. S.; Parkar, V. V.; Ramachandran, K.; Rout, P. C.; Kumar, Abhinav; Chatterjee, A.; Kailas, S.

    2016-04-01

    Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C +198Pt system but not in 7Li +198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C, 16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.

  19. Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Reupke, W. A.

    1974-01-01

    The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed.

  20. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    SciTech Connect

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H.

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  1. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  2. Photon gluon fusion cross sections at HERA energy

    NASA Astrophysics Data System (ADS)

    Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.

    1988-01-01

    Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.

  3. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    SciTech Connect

    Logan, G.; Moir, R.; Hoffman, M.

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  4. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  5. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect

    Lin, Zhenhong; Greene, David L

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  6. Study on the Feasibility of Direct Fusion Energy Conversion for Deep-Space Propulsion

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.; Miley, George H.; Scott, John H.

    2012-10-01

    A significant change in the current space mission capabilities can be achieved with a highly efficient integration of a fusion energy source with an advanced space propulsion thruster, both with low specific mass. With aneutronic nuclear fusion as the high-density primary energy source, this study considers first electric energy extraction from the fusion reaction products via direct energy conversion to recirculate power as required for the operation of the fusion core. Then the beam of remaining reaction products is conditioned to achieve the optimal thrust and specific impulse for the mission. The research is specifically focused on two key issues: (i) Efficiency improvement of a Traveling Wave Direct Energy Converter (TWDEC, [1]) by achieving a higher ion beam density and optimization of the electrode coupling and of the neutralizing electron flow. (ii) A fast-particle kinetic energy-to-thrust conversion process based on collective interaction between ion bunches well separated in space [2]. Computer simulation results and a design for a basic physics experiment currently under development are reported. [4pt] [1] H. Momota et al., Fus. Tech., 35, 60(1999)[0pt] [2] A. G. Tarditi et al. Proc. NETS 2012 Conf., Woodlands, TX (2012)

  7. Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2016-07-01

    This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

  8. Log-Gabor energy based multimodal medical image fusion in NSCT domain.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  9. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  10. Use of the National Ignition Facility for the development of inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Tobin, M.; Logan, G.; Anderson, A.; Delarubiadiaz, T.

    1994-06-01

    The primary purpose of the workshop was to gather input from the inertial confinement fusion (ICF) laboratories, private industry, and universities on the potential use of the NIF to conduct experiments in support of the development of Inertial Fusion Energy (IFE). To accomplish this, we asked over 60 workshop participants to identify key credibility and development issues for IFE in four areas: Target Physics --Issues related to the design and performance of targets for IFE; Chamber Dynamics -- Issues in IFE chambers resulting from the deposition of x-rays and debris; Inertial Fusion Power Technology -- Issues for energy conversion, tritium breeding and processing, and radiation shielding; interactions of neutrons with materials; and chamber design; Target System -- Issues related to automated, high-production-rate manufacture of low-cost targets for IFE, target handling and transport, target injection, tracking, and beam pointing. These topics are discussed in this report.

  11. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  12. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  13. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  14. Free Energy Landscape of Rim-Pore Expansion in Membrane Fusion

    PubMed Central

    Risselada, Herre Jelger; Smirnova, Yuliya; Grubmüller, Helmut

    2014-01-01

    The productive fusion pore in membrane fusion is generally thought to be toroidally shaped. Theoretical studies and recent experiments suggest that its formation, in some scenarios, may be preceded by an initial pore formed near the rim of the extended hemifusion diaphragm (HD), a rim-pore. This rim-pore is characterized by a nontoroidal shape that changes with size. To determine this shape as well as the free energy along the pathway of rim-pore expansion, we derived a simple analytical free energy model. We argue that dilation of HD material via expansion of a rim-pore is favored over a regular, circular pore. Further, the expanding rim-pore faces a free energy barrier that linearly increases with HD size. In contrast, the tension required to expand the rim-pore decreases with HD size. Pore flickering, followed by sudden opening, occurs when the tension in the HD competes with the line energy of the rim-pore, and the rim-pore reaches its equilibrium size before reaching the critical pore size. The experimental observation of flickering and closing fusion pores (kiss-and-run) is very well explained by the observed behavior of rim-pores. Finally, the free energy landscape of rim-pore expansion/HD dilation may very well explain why some cellular fusion reactions, in their attempt to minimize energetic costs, progress via alternative formation and dilation of microscopic hemifusion intermediates. PMID:25418297

  15. Complete Fusion and Break-up Fusion Reactions in Light Ion Interactions at Low Energies

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Gadioli, E.; Mairani, A.; Foertsch, S. V.; Buthelezi, E. Z.; Fujita, H.; Neveling, R.; Smit, F. D.; Dlamini, J.; Cowley, A. A.; Connell, S. H.

    2007-10-26

    Experimental spectra of intermediate mass fragments (IMFs) produced in the interaction of two {sup 12}C ions at incident energy of 200 MeV and their reproduction by a binary fragmentation model and the Boltzmann Master Equation theory as implemented into the Monte Carlo transport and interaction code FLUKA are shown.

  16. Lessons to be learned from the HIDIF-study for a full driver

    NASA Astrophysics Data System (ADS)

    Bongardt, K.

    2001-05-01

    The scope of the European Bi + HIDIF study with its 3 MJ total driver energy was to demonstrate the feasibility of an RF linac and storage based scheme for ignition with an indirectly driven low gain target. More recent upgrade scenarios with at least 4.5 MJ total driver energy are focused on energy production and high gain targets. Keeping the linac beam current constant and increasing instead the number of storage rings from 12 to 18 will give the required 4.5 MJ total driver energy. Aiming for high total driver efficiency was not a topic for the ignition facility, however it is a very crucial item for a heavy ion fusion power plant. All RF linac components should be feasible for up to 50 Hz rep. rate in order to be cost effective for energy production. A total driver efficiency of 20% is only achievable at 50 Hz rep. rate. However, it is preferred to have the 20% driver efficiency at 10 Hz rep. rate, which is expected to be the maximal achievable rep. rate for a single target station. One elegant way to get the wanted 20% driver efficiency at 10 Hz rep. rate with 4.5 MJ total driver energy and 12 storage rings only, is to change the HIDIF layout from single charged Bi + to double charged Bi 2+ ions. The layout of a cost effective and less complex Bi 2+ separated section main linac from 10 MeV/n on is outlined. Reduced numbers of large apertures, high gradient external quadrupoles, feasible up to 50 Hz rep. rate are used for focusing the high intensity beam. Monte Carlo simulations for a Bi 2+ beam with 600 mA particle current are presented, demonstrating the feasibility of such a Bi 2+ linac as injector for the storage rings. By adding more target stations later on, the full potential of a 50 Hz rep. rate Bi 2+ fusion power plant can be realized.

  17. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  18. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  19. Magnetized Target Fusion and Prospects for Truly Low-Cost Energy

    NASA Astrophysics Data System (ADS)

    Simon, Richard E.

    1998-04-01

    As the world population grows, and standards of living improve, the demand for energy will increase considerably. At the same time, the importance of shifting away from burning fossil fuel and reducing emissions of CO2 is becoming widely recognized. Many technologies are possible in principle, but nuclear fission or nuclear fusion are among the more promising. Fission is technically well established, continues to be improved in its economics, reliability and safety, and in this speaker's opinion is bound to play a major role. Fusion is generally viewed as a long shot that remains to be proven technically. Not everyone realizes that fusion tokamak devices studied around the world have demonstrated impressive scientific advances. In recent years, tokamaks TFTR at Princeton and JET at Culham have come close to demonstrating energy break even. Some recent tokamak data will be described. The main problem with the tokamak is that it must operate with a very large unit size (many Gigawatts) for well-understood fundamental reasons. Consequently, tokamak cost of development is high, even invoking international collaborations to build future facilities such as the proposed 10-billion dollar International Thermonuclear Tokamak Reactor. An exciting alternative approach to fusion being examined at Los Alamos in collaboration with LLNL, SNL, AFRL, GA, PPPL, and other institutions is called Magnetized Target Fusion. The basic idea is to burn a small amount of DT fuel in a short very-high-pressure pulse. The 14-MeV neutrons produced by the fusion reactions could then be used to flash heat a blanket of lithium or lithium-containing material to a temperature of 10,000 to 20,000 degrees Kelvin. The vaporized neutron-absorbing blanket thus becomes a hot working fluid, which can be used to create electricity by passing it through a magnetohydrodynamic generator. Estimates of the capital cost for such a system are even lower than for fission reactors, suggesting 2-cent

  20. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Tobin, M.; Logan, G.; Diazdelarubia, T.; Schrock, V.; Schultz, K.; Tokheim, Robert E.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a (ge) 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of approximately 50 separated in time by approximately 0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments.

  1. Contributions of the National Ignition Facility to the development of inertial fusion energy. Revision 1

    SciTech Connect

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-10-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NM will use a {ge}1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. NIF will conduct more than 600 shots per year. The benefits of a micro-fusion capability in the laboratory include: Essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development, such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF.

  2. Fusion burn equilibria sensitive to the ratio between energy and helium transport

    NASA Astrophysics Data System (ADS)

    Jakobs, Merlijn; Lopes Cardozo, Niek; Jaspers, Roger

    2014-12-01

    An analysis of the burn equilibria of fusion reactors of the tokamak family is presented. The global (zero-dimensional) analysis is self-consistent in that it takes into account the dependence of the energy confinement on the variables of the burning plasma, such as temperature and density. Universal burn contours are presented for a selection of commonly used scaling laws for energy confinement. It is shown that the output power of a fusion reactor is to good approximation inversely proportional to the particle confinement time, due to the choking effect of the accumulation of helium, the ash of the fusion reaction. It is further shown that, whereas a fusion reactor requires a minimum energy confinement time to ignite, the output power reaches a maximum for an energy confinement that lies about 30% above this minimum. Further improvement of confinement will lower the output, although in some cases the β limit will be the limiting factor. Given that for maximum performance density the confinement and fuel mix are best chosen to be optimal, the particle confinement is proposed as an attractive parameter for burn control.

  3. Theory and modeling of radiation effects in materials for fusion energy systems

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The U.S./Japan Workshop on Theory and Modeling of Radiation Effects in Materials for Fusion Energy Systems, under Phase III of the DOE/Monbusho collaboration, convened on July 17-18, 1995, at Lawrence Livermore National Laboratory. A brief summary of the workshop is followed by the workshop program.

  4. Present and future status of thermochemical cycles applied to fusion energy sources

    SciTech Connect

    Booth, L.A.; Cox, K.E.; Krakowski, R.A.; Pendergrass, J.H.

    1980-01-01

    This paper reviews the status of current research on thermochemical hydrogen production cycles and identifies the needs for advanced cycles and materials research. The Los Alamos Scientific Laboratory (LASL) bismuth sulfate thermochemical cycle is characterized, and fusion reactor blanket concepts for both inertial and magnetic confinement schemes are presented as thermal energy sources for process heat applications.

  5. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  6. The US Program of Fusion Energy Research and Development: Report of the Fusion Review Panel of the President`s Council of Advisors on Science and Technology

    SciTech Connect

    Holdren, J.P.; Conn, R.W.; MacArthur, D.; Papay, L.T.

    1995-06-01

    Funding for fusion energy R&D by the Federal government is an important investment in the development of an attractive and possibly essential new energy source for this country and the world in the middle of the next century and beyond. This funding also sustains an important field of scientific research - plasma science - in which the United States is the world leader and which has generated a panoply of insights and techniques widely applicable in other fields of science and in industry. And U.S. funding has been crucial to a productive, equitable, and durable international collaboration in fusion science and technology that represents the most important instance of international scientific cooperation in history as well as the best hope for timely commercialization of fusion at this time because the development costs are too high and the potential economic returns too distant. But funding fusion is a bargain for society as a whole. However, in light of present congressional funding climates the authors are suggesting a program which falls far short of what US DOE is proposing, but provides monies to keep the program alive, and to retain limited participation in the international program which currently is aimed at the construction of ITER. This limited funding will severly strain the program as it exists domestically at present, will limit industrial participation, will stretch the reasonable date for an operating demonstation fusion reactor, but will maintain the basic stucture of a domestic fusion research program.

  7. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    SciTech Connect

    Hedditch, John Bowden-Reid, Richard Khachan, Joe

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  8. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  9. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  10. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    SciTech Connect

    Miller, J.D.

    1986-11-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions. 12 refs., 28 tabs.

  11. Some Simple Arguments about Cost Externalization and its Relevance to the Price of Fusion Energy

    SciTech Connect

    Budny, R.; Winfree, R.

    1999-09-27

    The primary goal of fusion energy research is to develop a source of energy that is less harmful to the environment than are the present sources. A concern often expressed by critics of fusion research is that fusion energy will never be economically competitive with fossil fuels, which in 1997 provided 75% of the world's energy. And in fact, studies of projected fusion electricity generation generally project fusion costs to be higher than those of conventional methods. Yet it is widely agreed that the environmental costs of fossil fuel use are high. Because these costs aren't included in the market price, and furthermore because many governments subsidize fossil fuel production, fossil fuels seem less expensive than they really are. Here we review some simple arguments about cost externalization which provide a useful background for discussion of energy prices. The collectively self-destructive behavior that is the root of many environmental problems, including fossil fuel use, was termed ''the tragedy of the commons'' by the biologist G. Hardin. Hardin's metaphor is that of a grazing commons that is open to all. Each herdsman, in deciding whether to add a cow to his herd, compares the benefit of doing so, which accrues to him alone, to the cost, which is shared by all the herdsmen using the commons, and therefore adds his cow. In this way individually rational behavior leads to the collective destruction of the shared resource. As Hardin pointed out, pollution is one kind of tragedy of the commons. CO{sub 2} emissions and global warming are in this sense classic tragedies.

  12. Sensitivity of the fusion cross section to the density dependence of the symmetry energy

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Umar, A. S.; Stevenson, P. D.; Piekarewicz, J.; Oberacker, V. E.; Maruhn, J. A.

    2016-04-01

    Background: The study of the nuclear equation of state (EOS) and the behavior of nuclear matter under extreme conditions is crucial to our understanding of many nuclear and astrophysical phenomena. Nuclear reactions serve as one of the means for studying the EOS. Purpose: It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities [A. B. Balantekin et al., Mod. Phys. Lett. A 29, 1430010 (2014), 10.1142/S0217732314300109]. In practice, we focus on 48Ca+48Ca fusion. Method: We employ three different approaches to calculate fusion cross sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. Results: The folding-potential model provides a reasonable first estimate of cross sections. DC-TDHF, which includes dynamical polarization, reduces the fusion barriers and delivers much better cross sections. Full TDHF near the barrier agrees nicely with DC-TDHF. Most of the Skyrme forces which we used deliver, on the average, fusion cross sections in good agreement with the data. Trying to read off a trend in the results, we find a slight preference for forces which deliver a slope of symmetry energy of L ≈50 MeV that corresponds to a neutron-skin thickness of 48Ca of Rskin=(0.180 -0.210 ) fm. Conclusions: Fusion reactions in the barrier and sub-barrier region can be a tool to study the EOS and the neutron skin of nuclei. The success of the approach will depend on reduced experimental uncertainties of fusion data as well as the development of fusion

  13. Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

    SciTech Connect

    Rognlien, T

    2004-11-01

    A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

  14. The Analytical Parametrization of Fusion Barrier by Using the Skyrme Energy-Density Function Model

    NASA Astrophysics Data System (ADS)

    Zanganeh, V.; Mirzaei, M.; N., Wang

    2015-08-01

    Using the skyrme energy density formalism, a pocket formula is introduced for barrier heights and positions of 95 fusion reactions (48 ≤ ZP ZT ≤ 1520) with respect to the charge and mass numbers of the interacting nuclei. It is shown that the parameterized values of RB and VB are able to reproduce the corresponding experimental data with good accuracy. Moreover, the absolute errors of our formulas are less than those obtained using the analytical parametrization forms of the fusion barrier based on the proximity versions. The ability of the parameterized forms of the barrier heights and its positions to reproduce the experimental data of the fusion cross section have been analyzed using the Wong model.

  15. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    NASA Astrophysics Data System (ADS)

    Logan, B. G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to $12.5 billion to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at $8/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway.

  16. Laser glass: a key material in the search for fusion energy

    SciTech Connect

    Campbell, J H

    1999-06-02

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation.

  17. The energy dependence of fusion in the 9Be+ 28Si system

    NASA Astrophysics Data System (ADS)

    Bodek, K.; Hugi, M.; Lang, J.; Müller, R.; Ungricht, E.; Jankowski, K.; Zipper, W.; Jarczyk, L.; Strzałkowski, A.; Willim, G.; Witała, H.

    1980-04-01

    The angular distributions of the energy spectra of the light charged particles (p, d and α) from the 9Be + 28Si reaction have been measured in the energy range 12 ≦ Elab ≦ 30 MeV. The particle evaporation spectra and the angular distributions were analyzed with a spin dependent statistical model. Angular distributions of 9Be ions elastically scattered on 28Si have been measured at the energies 12 MeV, 17 MeV, 23 MeV and 30 MeV and were analysed, together with previously measured cross sections, with the optical model. The fusion cut-off angular momentum lfus( E), the fusion cross section σfus( E) and the ratio σfus/ σROM( E) were deduced. The excitation function for fusion was analyzed with the Glas and Mosel model. The parameters obtained from the fusion excitation function were compared with the corresponding ones from the 9Be + 28Si optical-model interaction potential.

  18. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  19. Fusion energy for space missions in the 21st century: Executive summary

    SciTech Connect

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  20. Fusion energy for space missions in the 21st century: Executive summary

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1991-01-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  1. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 5: Conclusions and recomendations

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    Air pollution resulting from the use of fossil fuels is discussed. Phenomena relating to the emission of CO2 such as the greenhouse effect and multiplier effect are explored. Particulate release is also discussed. The following recommendations are made for the elimination of fossil fuel combustion products in the United States: development of nuclear breeder reactors, use of solar energy systems, exploration of energy alternatives such as geothermal and fusion, and the substitution of coal for gas and oil use.

  2. Arc driver operation for either efficient energy transfer or high-current generator

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Silva, A. F.

    1972-01-01

    An investigation is made to establish predictable electric arcs along triggered paths for research purposes, the intended application being the heating of the driver gas of a 1 MJ electrically driven shock tube. Trigger conductors consisting of wires, open tubes, and tubes pressurized with different gases were investigated either on the axis of the arc chamber or spiraled along the chamber walls. Design criteria are presented for successful arc initiation with reproducible voltage-current characteristics. Results are compared with other facilities and several application areas are discussed.

  3. Clarke Stations and mercurian mass-drivers: energy for large-scale transportation systems

    SciTech Connect

    Jones, E.M.

    1985-01-01

    Three-week voyages across 1 AU could be made in large sailing craft propelled by microwaves generated at power stations operating at 0.1 AU from the sun. The power stations could be built of mercurian materials launched by mass driver to building sites in solar orbit. A Clarke Station 28 km in radius could generate 64 TW of microwaves and support the operation of a 1000-tonne, 1000-passenger vessel. The ability to build near-sun power stations of mercurian materials would not only support high-speed transport but solar system development in general.

  4. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  5. Measurement of the fusion excitation function for 19O + 12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.

    2015-10-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 × 103 p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range θlab <= 23° with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions. Supported by the US DOE under Grand No. DEFG02-88ER-40404.

  6. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  7. Fast Ignition: Physics Progress in the US Fusion Energy Program and Prospects for Achieving Ignition.

    SciTech Connect

    Key, M H; Andersen, C; Cowan, T; Fisch, N; Freeman, R; Hatchett, S; Hill, J; King, J; Koch, J; Lasinski, B; Langdon, B; MacKinnon, A; Parks, P; Rosenbluth, M; Ruhl, H; Snavely, R; Stephens, R; Tabak, M; Town, R

    2002-10-16

    Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term roadmap for FI is defined.

  8. Energy Logic (EL): a novel fusion engine of multi-modality multi-agent data/information fusion for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2009-04-01

    The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.

  9. Conceptual design of data acquisition and control system for two Rf driver based negative ion source for fusion R&D

    NASA Astrophysics Data System (ADS)

    Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.

    2013-02-01

    Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.

  10. Modeling crossed-beam energy transfer for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Marion, D. J. Y.; Debayle, A.; Masson-Laborde, P.-E.; Loiseau, P.; Casanova, M.

    2016-05-01

    We developed a numerical code that describes both the energy transfer occurring when two or more laser beams overlap in a weakly non-homogeneous plasma, and the beam energy losses associated with the electron-ion collisions. The numerical solutions are validated with both the exact analytical solutions in homogeneous plasmas, and with new approximate analytical solutions in non-homogeneous plasmas that include the aforementioned inverse bremsstrahlung effect. Comparisons with kinetic particle-in-cell simulations are satisfactory, provided the acoustic wave-breaking limit and the self-focusing regime are not reached. An application of the Cross-Beam Energy Transfer model is shown for a typical case of indirect-drive implosion in a gold hohlraum.

  11. Systematic study of suppression of complete fusion in reactions involving weakly bound nuclei at energies above the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, Wei-Juan; Diaz-Torres, Alexis; Zhao, En-Guang; Zhou, Shan-Gui

    2016-01-01

    Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion is roughly independent of the target for the reactions involving the same projectile.

  12. a Tutorial on Ignition and Gain for Small Fusion Targets

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, R. C.

    2009-07-01

    Nuclear fusion was discovered experimentally in 1933-34[1] and other charged particle nuclear reactions were documented shortly thereafter. [2] Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (ρR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

  13. A review of research in ``cold fusion`` and its impact on energy conservation

    SciTech Connect

    Hurtak, J.J.; Bailey, P.G.

    1995-12-31

    During the past six years, cold fusion enhancement through a variety of research techniques has grown at a rapid rate to the point where it now can be regarded as a major field of endeavor, a second generation heat transfer technology. Observations have been made of deuteron-deuteron (d-d) fusion at room temperature during low voltage electrolytic infusion of deuterons into metallic titanium or palladium electrodes. Neutrons with and energy of approximately 2.5 MeV were with a sensitive neutron spectrometer at a rate of 2 {times} 10{sup {minus}3} n/s, which cannot be accounted for by ambient-neutron background variations. These reactions have been known to yield an excited helium nucleus ({sup 4} He) with approximately 23.8 MeV excess energy, where d+d= {sup 4}He + energy. In most successful experiments, 1% to 50% more heat than the input of electric power into the electrolytic cells has been recorded. These experiments are being successfully repeated on an international basis. Some of these results and various theories proposed to explain this phenomena are presented. Possible applications of ``cold fusion`` technology are given, and its impact on energy conservation is discussed.

  14. Shock ignition target design for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Bates, Jason W.; Obenschain, Steven P.; Zalesak, Steven T.; Fyfe, David E.

    2010-04-01

    Continuing work in the design of shock ignition targets is described. Because of reduced implosion velocity requirements, low target adiabats, and efficient drive by short wavelength lasers, these targets produce high gain (>100) at laser energies well below 1 MJ. Effects of hydrodynamic instabilities such as Rayleigh-Taylor or Richtmyer-Meshkov are greatly reduced in these low-aspect ratio targets. Of particular interest is the optimum ratio of ignitor to compression pulse energy. A simple pellet model and simulation-derived coupling coefficients are used to analyze optimal fuel assembly, and determine that shock ignition allows enough control to create theoretically optimum assemblies. The effects on target design due to constraints on the compression and ignitor pulse intensities are also considered and addressed. Significant sensitivity is observed from low-mode perturbations because of large convergence ratios, but a more powerful ignitor can mitigate this.

  15. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  16. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    SciTech Connect

    Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

    2008-10-02

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

  17. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  18. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  19. Symmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme.

    PubMed

    Davie, C J; Evans, R G

    2013-05-01

    We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy. PMID:23683207

  20. Drivers of U.S. Household Energy Consumption, 1980-2009

    EIA Publications

    2015-01-01

    In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy consumption in this sector. The analysis is based on the U.S. Energy Information Administration's (EIA) residential energy consumption surveys (RECS) 1980-2009.

  1. Implications of HARP Results for the Energy of the Proton Driver for a Neutrino Factory and Muon Collider

    SciTech Connect

    Strait, J.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2010-06-09

    Cross-section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross-section data are corrected for the beam-energy dependent 'amplification' due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T{sub beam} < 11 GeV, and within 20% of the maximum for T{sub beam} as low as 2 GeV. This result is insensitive to which of the two HARP groups results are used, and to which pion generator is used to compute the thick target effects.

  2. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  3. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  4. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  5. Fusion of Si28+Si28,30: Different trends at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Jiang, C. L.; Corradi, L.; Courtin, S.; Fioretto, E.; Grebosz, J.; Haas, F.; Jia, H. M.; Mazzocco, M.; Michelagnoli, C.; Mijatović, T.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Torresi, D.

    2014-10-01

    Background: The fusion excitation function of the system Si28+Si28 at energies near and below the Coulomb barrier is known only down to ≃15 mb. This precludes any information on both coupling effects on sub-barrier cross sections and the possible appearance of hindrance. For Si28+Si30 even if the fusion cross section is measured down to ≃50 μb, the evidence of hindrance is marginal. Both systems have positive fusion Q values. While Si28 has a deformed oblate shape, Si30 is spherical. Purpose: We investigate 1. the possible influence of the different structure of the two Si isotopes on the fusion excitation functions in the deep sub-barrier region and 2. whether hindrance exists in the Si+Si systems and whether it is strong enough to generate an S-factor maximum, thus allowing a comparison with lighter heavy-ion systems of astrophysical interest. Methods: Si28 beams from the XTU Tandem accelerator of the INFN Laboratori Nazionali di Legnaro were used. The setup was based on an electrostatic beam separator, and fusion evaporation residues (ER) were detected at very forward angles. Angular distributions of ER were measured. Results: Fusion cross sections of Si28+Si28 have been obtained down to ≃600 nb. The slope of the excitation function has a clear irregularity below the barrier, but no indication of a S-factor maximum is found. For Si28+Si30 the previous data have been confirmed and two smaller cross sections have been measured down to ≃4 μb. The trend of the S-factor reinforces the previous weak evidence of hindrance. Conclusions: The sub-barrier cross sections for Si28+Si28 are overestimated by coupled-channels calculations based on a standard Woods-Saxon potential, except for the lowest energies. Calculations using the M3Y+repulsion potential are adjusted to fit the Si28+Si28 and the existing Si30+Si30 data. An additional weak imaginary potential (probably simulating the effect of the oblate Si28 deformation) is required to fit the low-energy trend of

  6. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    SciTech Connect

    Kritz, A.; Keyes, D.

    2007-05-18

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  7. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    SciTech Connect

    2007-05-16

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  8. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  9. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  10. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Nebel, R. A.; Ribe, F. L.; Schauer, M. M.; Schranck, L. S.; Umstadter, K. R.

    1999-06-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q).

  11. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    NASA Astrophysics Data System (ADS)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  12. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Gomez del Rio, J; Sanz, J

    2000-02-23

    Previous studies of the safety and environmental (S and E) aspects of the HYLIFE-II inertial fusion energy (IFE) power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work a set of computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) has been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here the authors consider a severe lost of coolant accident (LOCA) producing simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the containment) and of the two barriers surrounding the chamber (inner shielding and containment building it self). Even though containment failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product release and transport. The results of these calculations show that the estimated off-site dose is less than 6 mSv (0.6 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  13. Remarks to SBS PCM based self-navigation of laser drivers

    NASA Astrophysics Data System (ADS)

    Kalal, M.; Matena, L.; Kong, HJ; Martinkova, M.; Cha, S.

    2016-03-01

    A novel technology of self-navigation of laser drivers on injected inertial fusion energy pellets employing phase conjugating mirrors based on stimulating Brillouin scattering was recently proposed. Its feasibility as well as various implications were gradually studied and working solutions to potential problems were always suggested. As this technology could help to overcome several burning key issues of inertial fusion (e.g., a sufficiently precise navigation of laser drivers on injected pellets in the case of a direct drive scheme and decreased requirements on high-repetition high-power lasers) it gradually started to attract a carefully measured tentative interest among the major inertial fusion oriented laboratories and projects. In this paper the next step in this research path will be reported. It concerns the resulting phase and amplitude structures created by multiple low energy drivers (glints) illuminating the pellet during the first stage of the process after their reflection and a subsequent superposition on the collecting/focusing final optics. It was demonstrated that with a large number of such drivers acting simultaneously from many angles the situation gets somewhat complicated and requires more detailed studies/suggestions of suitable configurations.

  14. Helium-3 on the Moon for Fusion Energy: the Persian Gulf of the 21st Century

    NASA Astrophysics Data System (ADS)

    Taylor, L. A.; Kulcinski, G. L.

    1999-09-01

    At the present and anticipated usage rates of energy in the world, the reserves of oil and natural gas will be exhausted by the mid-21st century, with coal reserves lasting up to 50 years more. But there is 10 times more 3He fusion energy on the Moon than in all these Earthly reserves. The potential use of D-3He fusion for energy generation requires a ready supply of 3He, and there is a distinct paucity of this fuel on Earth. However, compared to the Earth, the Moon is a virtual "oasis with springs of solar-wind helium." Conservative estimates of the helium contents of the regolith on a Moon-wide basis are 3.7 ppb (6.7 mg/m3) of 3He for the highland areas and 7.8 ppb (14 mg/m3) for the maria. At the 1998 energy consumption rate and a 50% mining recovery rate, there is sufficient 3He in the upper 3 meters of only the maria of the Moon to supply the entire energy needs of the Earth for over a thousand years. The potential for greatly enhanced supplies of 3He at the lunar poles may make the utilization of this energy-generation process even more attractive.

  15. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.

    PubMed

    Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion. PMID:26723597

  16. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    SciTech Connect

    Kawamoto, Shuhei; Shinoda, Wataru; Klein, Michael L.

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  17. Carbon-12 + Carbon-12 Fusion: Measurement and Advances Toward the Gamow Energy

    NASA Astrophysics Data System (ADS)

    Zickefoose, James

    Knowledge of carbon fusion reaction rates at stellar temperatures is necessary for a complete picture of stellar evolution. The minimum stellar mass necessary for quiescent carbon burning as well as the conditions necessary for type Ia supernovae depend on them. The astrophysically relevant region of reaction rates is contained within a narrow energy band (the Gamow window), which lies on the fax low energy end of the cross section curve. Due to the difficulty in measurements of cross sections at low energies, current rates in this regime rely heavily on extrapolated values from higher energies and ignore the effects of possible resonances in or near the Gamow window. The challenge in obtaining data at low energy primarily stems from observing very low counting rates, due to the exponentially falling cross section, in the presence of background that is insignificant at higher energies. Historically the measurement of the total fusion cross section has been halted at the high energy edge of the Gamow window by background radiation from hydrogen isotopes. Recent advances in target preparation have extended the data near the region of stellar interest, but the emergence of a highly improbable two-step reaction has again limited the lowest attained energy. However, improvements in target quality and vacuum composition have yielded promising results. In the present work the identification and reduction of this background will be discussed along with carbon fusion data, implications, and future techniques. The 12 -- (12C, p)23 Na fusion reaction has been studied by charged particle spectroscopy from Ecm = 2.1 -- 4 MeV. Thick targets were used in an ultra low hydrogen environment in order to suppress beam induced background. Confirmation of previously measured resonances below Ecm = 4 MeV as well as new structure down to Ecm= 2.25 MeV have been studied. Furthermore a Bragg ionization chamber has been developed for the purpose of future charged particle measurements of the

  18. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  19. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  20. One Cold Fusion Speaker is One Too Many for a Future Energy Conference

    NASA Astrophysics Data System (ADS)

    Vallone, Thomas

    2001-04-01

    In 1998, a Conference on Future Energy (COFE) was scheduled to take place at the State Department Open Forum in April, 1999. Only one speaker, Ed Storms (formerly with Los Alamos Lab), was scheduled to talk about cold fusion as part of fourteen plenary lectures over a two-day period. However, the entire meeting was labeled a "cold fusion" conference by APS Spokesperson Bob Park who repeated the words four times in one 1999 What's New column. What transpired afterwards has become a part of the cold fusion suppression history, including several APS ``pseudoscience" presentations mocking COFE scientists. A review of the actual COFE contents reveals the rational side of emerging energy technologies normally associated with the scientific process. The Park-related events display an opposite pattern of behavior ultimately designed to discredit the COFE organizer and deprive him of his livelihood (see APS News, March, 2000). The compiled record shows how the communication of scientific information becomes distorted by undue prejudice and unethical lobbying.

  1. Pixel level image fusion for medical imaging: an energy minimizing approach

    NASA Astrophysics Data System (ADS)

    Miles, Brandon; Law, Max W. K.; Ben-Ayed, Ismail; Garvin, Greg; Fenster, Aaron; Li, Shuo

    2012-03-01

    In an attempt to improve the visualisation techniques for diagnosis and treatment of musculoskeletal injuries, we present a novel image fusion method for a pixel-wise fusion of CT and MR images. We focus on the spine and it's related diseases including osteophyte growth, degenerate disc disease and spinal stenosis. This will have benefit to the 50-75% of people who suffer from back pain, which is the reason for 1.8% of all hospital stays in the United States.1 Pre-registered CT and MR image pairs were used. Rigid registration was performed based on soft tissue correspondence. A pixel-wise image fusion algorithm has been designed to combine CT and MR images into a single image. This is accomplished by minimizing an energy functional using a Graph Cut approach. The functional is formulated to balance the similarity between the resultant image and the CT image as well as between the resultant image and the MR image. Furthermore the variational smoothness of the resultant image is considered in the energy functional (to enforce natural transitions between pixels). The results have been validated based on the amount of significant detail preserved in the final fused image. Based on bone cortex and disc / spinal cord areas, 95% of the relevant MR detail and 85% of the relevant CT detail was preserved. This work has the potential to aid in patient diagnosis, surgery planning and execution along with post operative follow up.

  2. Evidence for Critical Energy for Ion Confinement in Magnetic Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Tim; Scott, Dan; Calsec Collaboration

    2015-03-01

    It is shown here that fusion test reactors could not ignite for half-a-century because trials were conducted at thermonuclear ion energies 10-30 KeV, an order of magnitude lower than critical energy, Ec ~ 200 KeV. At subcritical energies, plasma is destroyed by neutralization of ions via overlooked atomic (non-nuclear) charge transfer collisions with giant cross-section, 109 barns, 100 times greater than that for ionization collisions that counters neutralization. Neutral injection sets limit on ion magnetic confinement time <10-6 s vs. >1 s required for ignition. In contrast, at energies above Ec, ionization prevails; near ~ 1 MeV, stable confinement of 20 s was routinely observed with charged injection. - To render ITER viable, ion energy must be increased to >/ = 1 MeV; neutral radioactive DT fuel replaced with charged, nonradioactive deuterium, giving rise to compact aneutronicreactor with direct conversion into RF power.

  3. High-energy tritium beams as current drivers in tokamak reactors

    SciTech Connect

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  4. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  5. Recent Progress on Spherical Torus Research and Implications for Fusion Energy Development Path

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2014-10-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A =R0 / a) reduced to A near 1.5, well below the normal tokamak operating range of A equal to 2.5 or greater. As the aspect ratio is reduced, the ideal tokamak beta (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural plasma elongation which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to the longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in the UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all areas of fusion research, including fundamental fusion energy science as well as technological innovation. These results suggest exciting future prospects for ST research in both the near and longer term. The talk will summarize the key physics results from worldwide ST experiments, and describe ST community plans to provide the database for FNSF design while improving predictive capabilities for ITER and beyond. This work supported by DoE Contract No. DE-AC02-09CH11466.

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. Laser driver

    SciTech Connect

    Culpepper, C.F.

    1989-03-14

    A laser driver for a laser diode is described, consisting of: an impedance matched input buffer amplifier to which a modulation signal is applied; and a current source coupled to the output of the impedance matched input buffer amplifier, the output of the current source providing an essentially constant amplitude a.c. current component coupled to drive the laser diode.

  8. Hindrance of complete fusion in the {sup 8}Li+{sup 208}Pb system at above-barrier energies

    SciTech Connect

    Aguilera, E. F.; Martinez-Quiroz, E.; Rosales, P.; Kolata, J. J.; DeYoung, P. A.; Peaslee, G. F.; Mears, P.; Guess, C.; Becchetti, F. D.; Lupton, J. H.; Chen, Yu

    2009-10-15

    The {sup 211,212}At yields resulting from the interaction of the radioactive projectile {sup 8}Li with a {sup 208}Pb target have been measured at energies between 3 and 8.5 MeV above the Coulomb barrier. They are signatures for fusion of the whole charge but not necessarily the whole mass of the projectile, so they are included in a corresponding operational definition of complete fusion. Within this definition, a fusion suppression factor of 0.70{+-}0.02 (stat.) {+-}0.04 (syst.) is deduced from a comparison to a one-dimensional barrier-penetration-model calculation using parameters extrapolated from values for {sup 6,7}Li+{sup 209}Bi and {sup 9}Be+{sup 208}Pb taken from the literature. Possible incomplete fusion processes are discussed and the results are fitted with a phenomenological model assuming breakup prior to fusion followed by capture of a {sup 7}Li fragment.

  9. Soft Fusion Energy Path: Isotope Production in Energy Subcritical/Economy Hypercritical D +D Colliding-Beam Mini Fusion Reactor `Exyder'

    NASA Astrophysics Data System (ADS)

    Hester, Tim; Maglich, Bogdan; Calsec Collaboration

    2015-03-01

    Bethe1 and Sakharov2 argued for soft fusion energy path via isotope production, substantiated by Manheimer3. - Copious T and 3He production4 , 5 from D(d, p) T and D(d, n) 3He reactions in 725 KeV D +D colliding beams was measured in weak-focusing Self-Collider6 , 7 radius 0.15 m, in B = 3.12 T, non-linearly stabilized by electron cloud oscillations8 to confinement time = 24 s. Simulations6 predict that by switching to strong focusing9, 10 deuterons 0.75 MeV each, generate 1 3He +1T +1p + 1n at total input energy cost 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom, respectively. We obtain economic gain 205MeV/10.72 MeV ~ 2,000% i.e. 3He production funds cost of T. If first wall is made of Thorium n's will breed 233U releasing 200 MeV/fission, at neutron cost 5.36 MeV versus 160 MeV in beam on target, resulting in no cost 3He production, valued 75K/g. 1. Physics Today, May 1979, p.44; 2. Memoirs, Vintage Books, (1992); 3. Phys. Today, May 2012 p. 12; 4. Phys. Rev. Lett. 54, 796 (1985); 5. Bull. APS, 57, No. 3 (2012); 6. Part. Acc.1, (1970); 7. ANEUTRONIC FUSION NIM A 271 1-167 (1988); 8. Phys. Rev. Lett. 70, 1818 (1993); 9. Part. Acc. 34, 13 (1990).

  10. Inertial Confinement Fusion Program at Lawrence Livermore National Laboratory:. The National Ignition Facility, Inertial Fusion Energy, 100-1000 TW Lasers, and the Fast Igniter Concept

    NASA Astrophysics Data System (ADS)

    Howard Lowdermilk, W.

    The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility (NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL) for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35 μm laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. France and the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents key aspects of the laser design, and descriptions of principal laser and optical components. Follow-on development of lasers to meet the demands of an inertial fusion energy (IFE) power plant is reviewed. In parallel with the NIF Project and IFE developments, work is proceeding on ultrashort pulse lasers with peak power in the range of 100-1000 TW. A beamline on the Nova laser at LLNL recently delivered nearly 600 J of 1 μm light in a 0.5 ps duration pulse, for a peak power in excess of a petawatt (1015 W). This beamline, with advanced adaptive optics, will be capable of focused intensities in excess of 1021 W/cm2. Its primary purpose will be to test technological and scientific aspects of an alternate ignition concept, called the "Fast Igniter", that has the potential to produce higher fusion gain than conventional ICF.

  11. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  12. Critical Drivers for Safety Culture: Examining Department of Energy and U.S. Army Operational Experiences - 12382

    SciTech Connect

    Lowes, Elizabeth A.

    2012-07-01

    Evaluating operational incidents can provide a window into the drivers most critical to establishing and maintaining a strong safety culture, thereby minimizing the potential project risk associated with safety incidents. By examining U.S. Department of Energy (DOE) versus U.S. Army drivers in terms of regulatory and contract requirements, programs implemented to address the requirements, and example case studies of operational events, a view of the elements most critical to making a positive influence on safety culture is presented. Four case studies are used in this evaluation; two from DOE and two from U.S. Army experiences. Although the standards guiding operations at these facilities are different, there are many similarities in the level of hazards, as well as the causes and the potential consequences of the events presented. Two of the incidents examined, one from a DOE operation and the other from a U.S. Army facility, resulted in workers receiving chemical burns. The remaining two incidents are similar in that significant conduct of operations failures occurred resulting in high-level radioactive waste (in the case of the DOE facility) or chemical agent (in the case of the Army facility) being transferred outside of engineering controls. A review of the investigation reports for all four events indicates the primary causes to be failures in work planning leading to ineffective hazard evaluation and control, lack of procedure adherence, and most importantly, lack of management oversight to effectively reinforce expectations for safe work planning and execution. DOE and Army safety programs are similar, and although there are some differences in contractual requirements, the expectations for safe performance are essentially the same. This analysis concludes that instilling a positive safety culture comes down to management leadership and engagement to (1) cultivate an environment that values a questioning attitude and (2) continually reinforce expectations

  13. Increased food energy supply as a major driver of the obesity epidemic: a global analysis

    PubMed Central

    Chow, Carson C; Hall, Kevin D; Umali, Elaine; Swinburn, Boyd A

    2015-01-01

    Abstract Objective We investigated associations between changes in national food energy supply and in average population body weight. Methods We collected data from 24 high-, 27 middle- and 18 low-income countries on the average measured body weight from global databases, national health and nutrition survey reports and peer-reviewed papers. Changes in average body weight were derived from study pairs that were at least four years apart (various years, 1971–2010). Selected study pairs were considered to be representative of an adolescent or adult population, at national or subnational scale. Food energy supply data were retrieved from the Food and Agriculture Organization of the United Nations food balance sheets. We estimated the population energy requirements at survey time points using Institute of Medicine equations. Finally, we estimated the change in energy intake that could theoretically account for the observed change in average body weight using an experimentally-validated model. Findings In 56 countries, an increase in food energy supply was associated with an increase in average body weight. In 45 countries, the increase in food energy supply was higher than the model-predicted increase in energy intake. The association between change in food energy supply and change in body weight was statistically significant overall and for high-income countries (P < 0.001). Conclusion The findings suggest that increases in food energy supply are sufficient to explain increases in average population body weight, especially in high-income countries. Policy efforts are needed to improve the healthiness of food systems and environments to reduce global obesity. PMID:26170502

  14. Kinetic energy of rainfall an important driver of soil erosion - how reliable are our estimates?

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Fiener, Peter

    2016-04-01

    The most important process initiating interrill erosion is the detachment of soil particles via splash processes. Splash erosion intensity is depending on soil and rainfall characteristics. Rainfall characteristics are essentially determined by the drop size and fall velocity, leading to a specific kinetic energy of rainfall. In consequence, the kinetic energy of rain events is often directly or indirectly included in erosion models to calculate splash erosion. Therefore, rainfall kinetic energy is commonly derived by empirical functions (e.g. RUSLE; Renard et al. 1997) from available rainfall intensity measurements. The aim of this study is to analyze the event type-specific uncertainties inherent in these empirical functions purely based on rainfall intensity measurements. Therefore, we compare rainfall energies calculated from rainfall intensities measured with a standard tipping bucket rain gauge to rainfall energy measurements taken by laser distrometers. These allow to calculate rainfall kinetic energy from a spectrum of measured drop sizes and fall velocities. The study was carried out in NE-Germany in a test area with an average annual precipitation of approximately 500 mm dominated by intense convective precipitation. We compare one year of data from two laser distrometers and two tipping buckets installed at two locations about 1 km apart. Our results show distinct differences for high intensity events between the measuring techniques. We found notably higher rainfall kinetic energy for high intensity events measured by the laser distrometer compared to the tipping bucked derived kinetic energy. This points to a measurement bias of high erosive rainfall events which would be of particular relevance for erosion studies.

  15. An Overview of High Energy Short Pulse Technology for Advanced Radiography of Laser Fusion Experiments

    SciTech Connect

    Barty, C J; Key, M; Britten, J; Beach, R; Beer, G; Brown, C; Bryan, S; Caird, J; Carlson, T; Crane, J; Dawson, J; Erlandson, A C; Fittinghoff, D; Hermann, M; Hoaglan, C; Iyer, A; Jones, L; Jovanovic, I; Komashko, A; Landen, O; Liao, Z; Molander, W; Mitchell, A; Moses, E; Nielsen, N; Nguyen, H; Nissen, J; Payne, S; Pennington, D; Risinger, L; Rushford, M; Skulina, K; Spaeth, M; Stuart, B; Tietbohl, G; Wattellier, B

    2004-06-18

    The technical challenges and motivations for high-energy, short-pulse generation with NIF-class, Nd:glass laser systems are reviewed. High energy short pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on the NIF. Development of meter-scale, high efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of HEPW pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fiber-based, seed-laser systems. The key motivations for high energy petawatt pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  16. Low-energy d+d fusion via the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Aliotta, M.; Burjan, V.; Gimenez del Santo, M.; Kiss, G. G.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Pizzone, R. G.; Piskor, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartà, R.

    2013-04-01

    The 2H(d,p)3H and 2H(d,n)3He reactions have been recently investigated from Edd=1.5 MeV down to 2 keV, by means of the Trojan Horse Method (THM) applied to the Quasi Free 3He+d interaction at 18 MeV [1]. The knowledge of their fusion cross section at low energies is of interest for pure and applied physics. Both reactions belong to the network of processes to fuel the first inertial confinement fusion reactors in the range of kT= 1 to 30 keV. These energies overlap with the burning temperatures of deuterium in the Pre-main sequence of stellar evolution. They are key processes in the Standard Big Bang Nucleosynthesis (SBBN), in an energy region from 50 to 300 keV and experimental data at least up to 1 MeV are required for an accurate calculation of the reaction rate. Providing experimental data for both channels from a single experiment and over the entire energy range of interest is crucial for an accurate calculation of the reaction rates. This is what has been obtained from the present Trojan Horse (TH) investigation with new reaction rates which deviate by more than 20% from available direct data. This represents also the first pioneering experiment in quasi free regime where the charged spectator is detected.

  17. Efficient Energy Conversion of the 14 MeV Neutrons in DT Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2013-02-01

    In DT fusion 80 % of the energy released goes into 14 MeV neutrons, and only the remaining 20 % into charged particles. Unlike the charged particles, the uncharged neutrons cannot be confined by a magnetic field, and for this reason cannot be used for a direct conversion into electric energy. Instead, the neutrons have to be slowed down in some medium, heating this medium to a temperature of less than 103 K, with the heat removed from this medium to drive a turbo-generator. This conversion of nuclear into electric energy has a Carnot efficiency of about 30 %. For the 80 % of the energy released into neutrons, the efficiency is therefore no more than 24 %. While this low conversion efficiency cannot be overcome in magnetic confinement concepts, it can be overcome in inertial confinement concepts, by surrounding the inertial confinement fusion target with a sufficiently thick layer of liquid hydrogen and a thin outer layer of boron, to create a hot plasma fire ball. The hydrogen layer must be chosen just thick and dense enough to be heated by the neutrons to 100,000 K. The thusly generated, fully ionized, and rapidly expanding fire ball can drive a pulsed magnetohydrodynamic generator at an almost 100 % Carnot efficiency, or possibly be used to generate hydrocarbons.

  18. FGFR Fusions in the Driver’s Seat

    PubMed Central

    Sabnis, Amit J.; Bivona, Trever G.

    2013-01-01

    Summary Through a clinical deep sequencing protocol, Wu and colleagues have identified multiple FGFR fusion proteins in diverse cancers. Pharmacologic inhibition of FGFR suppressed the growth of FGFR fusion positive tumor models, suggesting that these FGFR fusions are oncogenic drivers and highlighting the utility of streamlined clinical sequencing efforts to identify novel, actionable driver oncoproteins in human tumors. PMID:23749526

  19. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    SciTech Connect

    M. Ono; M. Peng; C. Kessel; C. Neumeyer; J. Schmidt; J. Chrzanowski; D. Darrow; L. Grisham; P. Heitzenroeder; T. Jarboe; C. Jun; S. Kaye; J. Menard; R. Raman; T. Stevenson; M. Viola; J. Wilson; R. Woolley; I. Zatz

    2003-10-27

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction.

  20. Novel Hybrid Monte Carlo/Deterministic Technique for Shutdown Dose Rate Analyses of Fusion Energy Systems

    SciTech Connect

    Ibrahim, Ahmad M; Peplow, Douglas E.; Peterson, Joshua L; Grove, Robert E

    2013-01-01

    The rigorous 2-step (R2S) method uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the neutron transport calculation of the R2S method. The prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their use in the accurate full-scale neutronics analyses of fusion reactors. This paper describes a novel hybrid Monte Carlo/deterministic technique that uses the Consistent Adjoint Driven Importance Sampling (CADIS) methodology but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) method speeds up the Monte Carlo neutron calculation of the R2S method using an importance function that represents the importance of the neutrons to the final SDDR. Using a simplified example, preliminarily results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the increase over analog Monte Carlo is higher than 10,000.

  1. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  2. On the transition from strombolian to fountaining activity: a thermal energy-based driver

    NASA Astrophysics Data System (ADS)

    Bombrun, Maxime; Spampinato, Letizia; Harris, Andrew; Barra, Vincent; Caltabiano, Tommaso

    2016-02-01

    Since 1999, Mount Etna's (Italy) South-East crater system has been characterised by episodic lava fountaining. Each episode is characterised by initial strombolian activity followed by transition to sustained fountaining to feed high-effusion rate lava flow. Here, we use thermal infrared data recorded by a permanent radiometer station to characterise the transition to sustained fountaining fed by the New South-East crater that developed on the eastern flank of the South-East crater starting from January 2011. We cover eight fountaining episodes that occurred between 2012 and 2013. We first developed a routine to characterise event waveforms apparent in the precursory, strombolian phase. This allowed extraction of a database for thermal energy and waveform shape for 1934 events. We detected between 66 and 650 events per episode, with event durations being between 4 and 55 s. In total, 1508 (78 %) of the events had short waxing phases and dominant waning phases. Event frequency increased as climax was approached. Events had energies of between 3.0 × 106 and 5.8 × 109 J, with rank order analysis indicating the highest possible event energy of 8.1 × 109 J. To visualise the temporal evolution of retrieved parameters during the precursory phase, we applied a dimensionality reduction technique. Results show that weaker events occur during an onset period that forms a low-energy "sink". The transition towards fountaining occurs at 107 J, where subsequent events have a temporal trend towards the highest energies, and where sustained fountaining occurs when energies exceed 109 J. Such an energy-based framework allows researchers to track the evolution of fountaining episodes and to predict the time at which sustained fountaining will begin.

  3. Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear force driven plasma blocks

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.; Ghoranneviss, M.; Malekynia, B.; Azizi, N.

    2009-10-01

    Anomalous interaction of terawatt-picosecond laser pulses allows side-on ignition of solid state density fusion fuel with the unexpected possibility of igniting uncompressed hydrogen-boron p- 11B. Suppression of relativistic self-focusing by using very clean laser pulses with an extremely high contrast ratio is essential to achieve ignition thresholds only ten times more difficult than fusion of deuterium-tritium (DT). This opens the possibility for laser driven fusion energy without neutrons and less radioactivity than from burning coal. The complex nonlinear optical properties involved are elaborated.

  4. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  5. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    Berk, Herb; Betti, Riccardo; Dahlburg, Jill; Freidberg, Jeff; Hopper, Bick; Meade, Dale; Navritil, Jerry; Nevins, Bill; Ono, Masa; Perkins, Rip; Prager, Stewart; Schoenburg, Kurt; Taylor, Tony; Uckan, Nermin

    2001-09-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called “burning plasma” regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It “sets the stage” for the remainder of the report.

  6. Hindrance of heavy-ion fusion at extreme sub-barrier energies in open-shell colliding systems

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Rehm, K. E.; Esbensen, H.; Janssens, R. V.; Back, B. B.; Davids, C. N.; Greene, J. P.; Henderson, D. J.; Lister, C. J.; Pardo, R. C.; Pennington, T.; Peterson, D.; Seweryniak, D.; Shumard, B.; Sinha, S.; Tang, X. D.; Tanihata, I.; Zhu, S.; Collon, P.; Kurtz, S.; Paul, M.

    2005-04-01

    The excitation function for the fusion-evaporation reaction 64Ni+100Mo has been measured down to a cross section of ˜5 nb. Extensive coupled-channels calculations have been performed, which cannot reproduce the steep falloff of the excitation function at extreme sub-barrier energies. Thus, this system exhibits a hindrance for fusion, a phenomenon that has been discovered only recently. In the S-factor representation introduced to quantify the hindrance, a maximum is observed at Es=120.6MeV, which corresponds to 90% of the reference energy Erefs, a value expected from systematics of closed-shell systems. A systematic analysis of Ni-induced fusion reactions leading to compound nuclei with mass A=100-200 is presented in order to explore a possible dependence of fusion hindrance on nuclear structure.

  7. Cluster-impact fusion

    SciTech Connect

    Echenique, P.M.; Manson, J.R.; Ritchie, R.H. )

    1990-03-19

    We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

  8. Computational Plasma Physics at the Bleeding Edge: Simulating Kinetic Turbulence Dynamics in Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Tang, William

    2013-04-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).

  9. Developing a plasma focus research training system for the fusion energy age

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2014-08-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  10. Two-photon fusion in high-energy electron-nucleus scattering

    SciTech Connect

    Faeldt, Goeran

    2011-04-15

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering are now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus to create the meson. The process takes place in the small-angle Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  11. Probing the fusion of 7Li with 64Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Nanal, V.; Pal, S.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-04-01

    Background: The stable isotopes of Li, 6Li6 and 7Li, have two-body cluster structures of α +d and α +t with α -separation energies or breakup thresholds at 1.47 and 2.47 MeV, respectively. The weak binding of these projectiles introduces several new reaction channels not usually observed in the case of strongly bound projectiles. The impact of these breakup or breakup-like reaction channels on fusion, the dominant reaction process at near-barrier energies, with different target masses is of current interest. Purpose: Our purpose is to explore the fusion, at above and below the Coulmb barrier, of 7Li with 64Ni target in order to understand the effect of breakup or breakup-like processes with medium-mass target in comparison with 6Li, which has a lower breakup threshold. Measurement: The total fusion (TF) excitation of the weakly bound projectile 7Li with the medium-mass target 64Ni has been measured at the near-barrier energies (0.8 to 2 VB). The measurement was performed using the online characteristic γ -ray detection method. The complete fusion (CF) excitation function for the system was obtained using the x n -evaporation channels with the help of statistical model predictions. Results: At the above barrier energies CF cross sections exhibit an average suppression of about 6.5% compared to the one-dimensional barrier penetration model (1DBPM) predictions, while the model describes the measured TF cross section well. But below the barrier, both TF and CF show enhancements compared to 1DBPM predictions. Unlike 6Li, enhancement of CF for 7Li could not be explained by inelastic coupling alone. Conclusion: Whereas the σTF cross sections are almost the same for both the systems in the above barrier region, the suppression of σCF at above the barrier is less for the 7Li+64Ni system than for the 6+64Ni system. Also direct cluster transfer has been identified as the probable source for producing large enhancement in TF cross sections.

  12. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  13. Fusion Energy Sciences Advisory Committee Reports on Review of the Fusion Materials Research Program, Review of the Proposed Proof-of-Principle Programs, Review of the Possible Pathways for Pursuing Burning Plasma Physics, and Comments on the ER Facilities Roadmap

    SciTech Connect

    none,

    1998-07-01

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of current scientific excellence and recommendations for future goals and balance within the Program was requested.

  14. Experimental study of the 13C+12C fusion reaction at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Tudor, D.; Chilug, A. I.; Straticiuc, M.; Trache, L.; Chesneanu, D.; Toma, S.; Ghita, D. G.; Burducea, I.; Margineanu, R.; Pantelica, A.; Gomoiu, C.; Zhang, N. T.; Tang, X.; Li, Y. J.

    2016-04-01

    Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied because of their significance for a wide variety of stellar burning scenarios. One important stellar reaction is 12C+12C, but it is difficult to measure it in the Gamow window because of very low cross sections and several resonances occurring. Hints can be obtained from the study of 13C+12C reaction. We have measured this process by an activation method for energies down to Ecm=2.5 MeV using 13C beams from the Bucharest 3 MV tandetron and gamma-ray deactivation measurements in our low and ultralow background laboratories, the latter located in a salt mine about 100 km north of Bucharest. Results obtained so far are shown and discussed in connection with the possibility to go even further down in energy and with the interpretation of the reaction mechanism at such deep sub-barrier energies.

  15. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  16. Bone mineral content as a driver of energy expenditure in prepubertal boys

    PubMed Central

    Hanks, Lynae J.; Gutiérrez, Orlando M.; Ashraf, Ambika; Casazza, Krista

    2015-01-01

    Objective To examine the associations of bone and bone-secreted factors with measures of energy metabolism in prepubertal boys. Study design Participants in this cross-sectional, observational study included 37 (69% black, 31% white) boys, 7–12y (Tanner stage<3). DXA was used to measure bone mineral content (BMC) and percent body fat. Indirect calorimetry was used to assess resting energy expenditure (REE). Fasting blood measures of osteocalcin (OCN), fibroblast growth factor-23 (FGF23), insulin, glucose, pre-cursor product of type-1 collagen (N-terminal pro-peptide; P1NP) and type-I collagen, C-terminal cross-linked telopeptide (CTX) were obtained. Pearson correlations were performed to evaluate relationships among BMC, OCN, FGF23, fasting insulin and glucose, and REE. Multiple linear regression models were used to test associations between OCN and BMC (independent variables) with fasting insulin and glucose, and REE, adjusting for bone turnover markers, and further adjusted for percent body fat. Results BMC was correlated with REE and insulin. OCN was correlated with glucose in blacks only (r=0.45, P<0.05). FGF23 was not correlated with any markers of energy metabolism. BMC was associated with insulin in blacks (β =0.95, P=0.001); which was attenuated by percent body fat (β=0.47, P=0.081). BMC was associated with REE in whites (β=0.496.7, P<0.05) and blacks (β=619.5, P<0.0001); but accounting for percent body fat attenuated the association in whites (β=413.2, P=0.078). Conclusions Our findings suggest that BMC is a determinant of fasting insulin and REE, and the contribution of body fat appears to be race-specific. An endocrine effect of FGF23 and OCN on energy metabolism was not apparent. PMID:25841541

  17. Energy transfer between fusion biliproteins co-expressed with phycobiliprotein in Escherichia coli.

    PubMed

    Ma, Qiong; Zhou, Nan; Zhou, Ming

    2016-10-01

    In cyanobacteria, phycobiliproteins (PBS) show excellent energy transfer among the chromophores absorbing over most of the visible. The energy transfers are used to study phycobilisome assembly and bioimaging. Using All4261GAF2(C81L) as energy donor, ApcE(1-240/Δ87-130) as energy acceptor, we co-expressed fusion protein ApcE(1-240/Δ87-130)::All4261GAF2(C81L) with phycobiliprotein in Escherichia Coli and studied the energy transfer between two protein domains. With N-terminal His6 tag, ApcE(1-240/Δ87-130)::All4261GAF2(C81L) cannot be purified by nickel-affinity column. We added six histidines in the C-terminal of ApcE(1-240/Δ87-130)::All4261GAF2(C81L) and co-expressed it with phycobiliprotein. ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was purified successfully and only singly chromophorylated at All4261GAF2(C81L)His6 domain. The singly chromophorylate ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was incubated with fresh PCB and the doubly chromophorylated PCB-ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was obtained. The double chromophored fusion protein absorbed light in the range of 615-660 nm, and fluoresced only at 668 nm. Photochemistry analysis showed that excitation energy transfer from the short-wavelength absorbing at All4261GAF2(C81L) domain was achieved successfully to the long-wavelength absorbing at the ApcE(1-240/Δ87-130) domain. PMID:27260968

  18. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  19. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    PubMed Central

    Anemaet, Ida G.; Bekker, Martijn

    2010-01-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid hydrolysis—as a complex, animal-free serum for growth of mammalian cells in vitro. PMID:20640935

  20. A carbon-carbon composite materials development program for fusion energy applications

    SciTech Connect

    Burchell, T.D.; Eatherly, W.P. ); Engle, G.B. ); Hollenberg, G.W. )

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible.

  1. Plasma Physics/Fusion Energy Education at the Liberty Science Center

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff

    2007-11-01

    The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.

  2. Teardrop Shapes Minimize Bending Energy of Fusion Pores Connecting Planar Bilayers

    PubMed Central

    Ryham, Rolf J.; Ward, Mark A.; Cohen, Fredric S.

    2015-01-01

    A numerical gradient flow procedure was devised to characterize minimal energy shapes of fusion pores connecting two parallel planar bilayer membranes. Pore energy, composed of splay, tilt, and stretching, was obtained by modeling each bilayer as two monolayers and treating each monolayer of a bilayer membrane as a freely deformable surface described with a mean lipid orientation field. Voids between the two monolayers were prevented by a steric penalty formulation. Pore shapes were assumed to possess both axial and reflectional symmetry. For fixed pore radius and bilayer separation, the gradient flow procedure was applied to initially toroidal pore shapes. Using initially elliptical pore shapes yielded the same final shape. The resulting minimal pore shapes and energies were analyzed as a function of pore dimension and lipid composition. Previous studies either assumed or confined pore shapes, thereby tacitly supplying an unspecified amount of energy to maintain shape. The shapes derived in the present study were outputs of calculations and an externally provided energy was not supplied. Our procedure therefore yielded energy minima significantly lower than those reported in prior studies. The membrane of minimal energy pores bowed outward near the pore lumen, yielding a pore length that exceeded the distance between the two fusing membranes. PMID:24483480

  3. Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers

    NASA Astrophysics Data System (ADS)

    Ryham, Rolf J.; Ward, Mark A.; Cohen, Fredric S.

    2013-12-01

    A numerical gradient flow procedure was devised to characterize minimal energy shapes of fusion pores connecting two parallel planar bilayer membranes. Pore energy, composed of splay, tilt, and stretching, was obtained by modeling each bilayer as two monolayers and treating each monolayer of a bilayer membrane as a freely deformable surface described with a mean lipid orientation field. Voids between the two monolayers were prevented by a steric penalty formulation. Pore shapes were assumed to possess both axial and reflectional symmetry. For fixed pore radius and bilayer separation, the gradient flow procedure was applied to initially toroidal pore shapes. Using initially elliptical pore shapes yielded the same final shape. The resulting minimal pore shapes and energies were analyzed as a function of pore dimension and lipid composition. Previous studies either assumed or confined pore shapes, thereby tacitly supplying an unspecified amount of energy to maintain shape. The shapes derived in the present study were outputs of calculations and an externally provided energy was not supplied. Our procedure therefore yielded energy minima significantly lower than those reported in prior studies. The membrane of minimal energy pores bowed outward near the pore lumen, yielding a pore length that exceeded the distance between the two fusing membranes.

  4. Cities as development drivers: from waste problems to energy recovery and climate change mitigation.

    PubMed

    Johnson, Björn H; Poulsen, Tjalfe G; Hansen, Jens Aage; Lehmann, Martin

    2011-10-01

    There is a strong connection between economic growth and development of cities. Economic growth tends to stimulate city growth, and city economies have often shaped innovative environments that in turn support economic growth. Simultaneously, social and environmental problems related to city growth can be serious threats to the realization of the socio-economic contributions that cities can make. However, as a result of considerable diversity of competences combined with interactive learning and innovation, cities may also solve these problems. The 'urban order' may form a platform for innovative problem solving and potential spill-over effects, which may stimulate further economic growth and development. This paper discusses how waste problems of cities can be transformed to become part of new, more sustainable solutions. Two cases are explored: Aalborg in Denmark and Malmö in Sweden. It is shown that the cities have the potential to significantly contribute to a more sustainable development through increased material recycling and energy recovery. Waste prevention may increase this potential. For example, instead of constituting 3% of the total greenhouse gas emission problem, it seems possible for modern European cities to contribute to greenhouse gas emission reduction by 15% through up to date technology and integrated waste management systems for material and energy recovery. Going from being part of the problem to providing solutions; however, is not an easy endeavour. It requires political will and leadership, supportive regulatory frameworks, realistic timetables/roadmaps, and a diverse set of stakeholders that can provide the right creative and innovative mix to make it possible. PMID:21890877

  5. Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M.

    2014-11-01

    The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalaya of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterised by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail.

  6. Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M.

    2015-04-01

    The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalayas of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterized by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail.

  7. Science Education Outreach Activities in the Fusion Energy Division of UCSD’s Center for Energy Research*

    NASA Astrophysics Data System (ADS)

    Moyer, R. A.; Stewart, P.; van Fleet, J.

    2001-10-01

    Since 1995, the Fusion Energy Division of the Center for Energy Research at UCSD has been engaged in a variety of volunteer activities in science education outreach. FED staff have developed demonstration tools on energy and plasma science which are used effectively with middle and high school students as well as teacher/student groups at: the APS DPP Plasma Expos and the San Diego Co. Educational Technology Fair. These demonstration tools have proven effective in communicating with elementary students at community science and technology exhibits at the Reuban H. Fleet Science Center (San Diego) and in elementary school classes. UCSD scientists have also participated as team members of the GA Fusion Group’s programs: "Scientist in the Classroom" , and the two Plasma Institutes for in-service science teachers. In the coming year, we plan to: 1) expand the "Scientist in the Classroom" to home-schooled children in San Diego; 2) participate in local elementary school Family Science Nights; and 3) assist in training a new group of future San Diego Unified School District ninth grade physics teachers.

  8. Diode-pumped medium-aperture-size square Nd,Y:CaF2 rod amplifier for Inertial Confinement Fusion laser drivers

    NASA Astrophysics Data System (ADS)

    Tang, Xiongxin; Qiu, Jisi; Fan, Zhongwei; Su, Liangbi; Wang, Haocheng

    2016-08-01

    We demonstrate, for the first time, an 12 mm × 12 mm 0.5%Nd,5% Y:CaF2 crystal rod having a uniformly-distributed fluorescence spectrum and capable of operating as an amplifying medium at high repetition frequencies. A small gain of 2.7 is experimentally achieved at repetition frequency of 10 Hz for a pump center wavelength of 802 nm, power and absorption efficiency, 61.2 kW and 63.7%, respectively. Spatial-uniformity degradation of the output near-field beam distribution is observed, which should be attributed to the inhomogeneity of Nd,Y:CaF2 crystal. For a pump power of 61.2 kW, the stored energy of Nd,Y:CaF2 amplifier is 3.73 J. When the input energy is 50 mJ, the output laser energy is 1.4 J of extraction efficiency up to 37.53% after four-pass amplification.

  9. Diode-pumped medium-aperture-size square Nd,Y:CaF2 rod amplifier for Inertial Confinement Fusion laser drivers

    NASA Astrophysics Data System (ADS)

    Tang, Xiongxin; Qiu, Jisi; Fan, Zhongwei; Su, Liangbi; Wang, Haocheng

    2016-08-01

    We demonstrate, for the first time, an 12 mm × 12 mm 0.5%Nd,5% Y:CaF2 crystal rod having a uniformly-distributed fluorescence spectrum and capable of operating as an amplifying medium at high repetition frequencies. A small gain of 2.7 is experimentally achieved at repetition frequency of 10 Hz for a pump center wavelength of 802 nm, power and absorption efficiency, 61.2 kW and 63.7%, respectively. Spatial-uniformity degradation of the output near-field beam distribution is observed, which should be attributed to the inhomogeneity of Nd,Y:CaF2 crystal. For a pump power of 61.2 kW, the stored energy of Nd,Y:CaF2 amplifier is 3.73 J. When the input energy is 50 mJ, the output laser energy is 1.4 J of extraction efficiency up to 37.53% after four-pass amplification.

  10. Proposal of Boost Motor Driver with Electric Double Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hirokazu

    This paper proposes a boost motor driver with EDLC as a new boost motor driver. The boost motor driver has two advantages against conventional boost motor drivers. The first is that the boost motor driver can decrease an input power peak. The second is that the boost motor driver can charge almost all regeneration energy. The dynamic performance of boost voltage and these advantages of the boost motor driver is simulated. From the simulation, results that the boost motor driver has good performance are derived.

  11. Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

    SciTech Connect

    DERZON,MARK S.

    2000-03-01

    The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

  12. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    SciTech Connect

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  13. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    SciTech Connect

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  14. Symmetric inertial confinement fusion implosions at ultra-high laser energies

    SciTech Connect

    Glenzer, S H; MacGowan, B J; Michel, P; Meezan, N B; Suter, L J; Dixit, S N; Kline, J L; Kyrala, G A; Callahan, D A; Dewald, E L; Divol, L; Dzenitis, E; Edwards, J; Hamza, A V; Haynam, C A; Hinkel, D E; Kalantar, D H; Kilkenny, J D; Landen, O L; Lindle, J D; LePape, S; Moody, J D; Nikroo, A; Parham, T; Schneider, M B; Town, R J; Wegner, P; Widmann, K; Whitman, P; Young, B F; Van Wonterghem, B; Atherton, J E; Moses, E I

    2009-12-03

    The first indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 MJ. 192 simultaneously fired laser beams heat ignition hohlraums to radiation temperatures of 3.3 million Kelvin compressing 1.8-millimeter capsules by the soft x rays produced by the hohlraum. Self-generated plasma-optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum producing symmetric x-ray drive as inferred from capsule self-emission measurements. These experiments indicate conditions suitable for compressing deuterium-tritium filled capsules with the goal to achieve burning fusion plasmas and energy gain in the laboratory.

  15. Symmetric inertial confinement fusion implosions at ultra-high laser energies.

    PubMed

    Glenzer, S H; MacGowan, B J; Michel, P; Meezan, N B; Suter, L J; Dixit, S N; Kline, J L; Kyrala, G A; Bradley, D K; Callahan, D A; Dewald, E L; Divol, L; Dzenitis, E; Edwards, M J; Hamza, A V; Haynam, C A; Hinkel, D E; Kalantar, D H; Kilkenny, J D; Landen, O L; Lindl, J D; LePape, S; Moody, J D; Nikroo, A; Parham, T; Schneider, M B; Town, R P J; Wegner, P; Widmann, K; Whitman, P; Young, B K F; Van Wonterghem, B; Atherton, L J; Moses, E I

    2010-03-01

    Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium-filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory. PMID:20110465

  16. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Armijo, J.; Bailey, D. S.; Friedman, A.; Bieniosek, F. M.; Henestroza, E.; Kaganovich, I.; Leung, P. T.; Logan, B. G.; Marinak, M. M.; More, R. M.; Ng, S. F.; Penn, G. E.; Perkins, L. J.; Veitzer, S.; Wurtele, J. S.; Yu, S. S.; Zylstra, A. B.

    2009-07-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy-related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single-pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam-target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies.

  17. Incomplete fusion studies in the 19F+159Tb system at low energies and its correlation with various systematics

    NASA Astrophysics Data System (ADS)

    Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj Kumar; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.

    2016-07-01

    The excitation functions of reaction residues populated via the complete fusion and incomplete fusion process in the interaction of the 19F+159Tb system have been measured at energies ≈4 -6 MeV/nucleon, using off-line γ -ray spectroscopy. The analysis of data was done within the framework of statistical model code pace4 (a compound nucleus model). A significant fraction of incomplete fusion was observed in the production of reaction residues involving α particle(s) in the exit channels, even at energies as low as near the Coulomb barrier. The incomplete fusion strength function was deduced from the experimental excitation functions and the dependence of this strength function on various entrance channel parameters was studied. The present results show a strong dependence on the projectile α -Q value that agrees well with the existing data. To probe the dependence of incomplete fusion on entrance channel mass asymmetry, the present work was compared with the results obtained in the interaction of 12C, 16O, and 19F with nearby targets available in the literature. It was observed that the mass asymmetry linearly increases for each projectile separately and turns out to be a projectile-dependent mass-asymmetry systematics. The deduced incomplete fusion strength functions in the present work are also plotted as a function of ZPZT (Coulomb effect) and compared with the existing literature. A strong dependence of the Coulomb effect on the incomplete fusion fraction was observed. It was found that the fraction of incomplete fusion linearly increases with ZPZT and was found to be more for larger ZPZT values indicating significantly important linear systematics.

  18. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    NASA Astrophysics Data System (ADS)

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; McDougal, Robert R.

    2015-05-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  19. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    USGS Publications Warehouse

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  20. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is

  1. Developing an animal model for the study of fusion using RF energy

    NASA Astrophysics Data System (ADS)

    Olson, Jessica E. C.; Monnet, Eric; Cosgriff, Ned; Maul, Don; Roy, Jeff; Maass, Janet; Tetzlaff, Philip

    2004-07-01

    BACKGROUND: A reliable method of blood vessel fusion or sealing has been developed. This method works by applying RF energy and pressure to the walls of a vessel to create a seal. Several methods are used to evaluate the quality of the seal. The main criteria include pressurizing the vessel to failure and using histology to evaluate the integrity of the seal. Burst pressure testing quantifies seal quality, and histology stains reveal the fusion quality of the seal. In addition, histology can show the comparison of morphology and degree of fusion in different tissues. The purpose of the study was to develop an animal model for the human coronary artery bypass graft (CABG) and saphenous vein harvest procedure. METHODS: Experiments were conducted on ovine femoral veins and porcine epigastric veins to demonstrate, through histology and burst testing, the quality of seals. This research details the process of developing an animal model that best approximates the traditional harvest of the saphenous vein for the CABG procedure. RESULTS: Through a series of acute and chronic labs, this research developed a procedure on the ovine model to simulate a peripheral vascular procedure, similar to a femoral bypass. This peripheral vascular procedure on the ovine uses the femoral vein as an interpositional graft onto the femoral artery. In addition, this research identified a second animal model on which to evaluate the healing effects of sealed side branches in a cardiovascular procedure. This research path used the porcine model for a CABG procedure. The epigastric vein was harvested as an autologous vein graft for bypassing the LAD on the pig heart.

  2. Fusion Energy and Stopping Power in a Degenerate DT Pellet Driven by a Laser-Accelerated Proton Beam

    NASA Astrophysics Data System (ADS)

    Mehrangiz, M.; Ghasemizad, A.; Jafari, S.; Khanbabaei, B.

    2016-06-01

    In this paper, we have improved the fast ignition scheme in order to have more authority needed for high-energy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma. It is found that the wavelength of 0.53 μm and the intensity of about 1020 W/cm2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances. Supported by the Research Council of University of Guilan

  3. Measuring the neutron energy spectrum of laser-fusion targets with CR-39

    SciTech Connect

    Lane, S.M.

    1983-09-01

    We are developing a detector capable of measuring the neutron energy spectrum from a laser fusion target containing DT fuel. From such a spectrum the compressed areal density of the DT can be inferred by observing the fraction of 14.1 MeV neutrons down-shifted in energy by elastic scattering. The detector consists of a 0.1 cm thick Ta x-ray and debris shield backed by a 50 to 200 ..mu..m polyethylene radiator followed by layers of CR-39. The energy of each neutron producing a knock-on proton in the radiatior, that in turn creates a damage track in the CR-39, can be derived from the resultant track diameter, location, and orientation. We have analyzed the proton sensitivity and sample readability of 5 types of CR-39 in the energy range 3 to 11 MeV and have found a type fabricated by American Acrylics from a monomer made by a French company, Allymer, to be the most acceptable. Calibration curves were obtained for this plastic at energies of 3 to 15 MeV and dip angles ranging from 75 to 90/sup 0/. These curves were subsequently used to unfold a 14.7 MeV spectrum generated at the Livermore Rotating Target Neutron Source.

  4. Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University

    NASA Astrophysics Data System (ADS)

    Nassar, Abdalla R.; Reutzel, Edward W.; Brown, Stephen W.; Morgan, John P.; Morgan, Jacob P.; Natale, Donald J.; Tutwiler, Rick L.; Feck, David P.; Banks, Jeffery C.

    2016-04-01

    Additive manufacturing of metal components through directed energy deposition or powder bed fusion is a complex undertaking, often involving hundreds or thousands of individual laser deposits. During processing, conditions may fluctuate, e.g. material feed rate, beam power, surrounding gas composition, local and global temperature, build geometry, etc., leading to unintended variations in final part geometry, microstructure and properties. To assess or control as-deposited quality, researchers have used a variety of methods, including those based on sensing of melt pool and plume emission characteristics, characteristics of powder application, and layer-wise imaging. Here, a summary of ongoing process monitoring activities at Penn State is provided, along with a discussion of recent advancements in the area of layer-wise image acquisition and analysis during powder bed fusion processing. Specifically, methods that enable direct comparisons of CAD model, build images, and 3D micro-tomographic scan data will be covered, along with thoughts on how such analyses can be related to overall process quality.

  5. The Role of Theory and Modeling in the Development of Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Ghoniem, Nasr M.

    The environmental and operational conditions of First Wall/ Blanket (FW/B) structural materials in fusion energy systems are undoubtedly amongst the harshest in any technological application. These materials must operate reliably for extended periods of times without maintenance or repair. They must withstand the assaults of high particle and heat fluxes, as well as significant thermal and mechanical forces. Rival conditions have not been experienced in other technologies, with possible exceptions in aerospace and defense applications. Moreover, the most significant dilemma here is that the actual operational environment cannot be experimentally established today, with all of the synergistic considerations of neutron spectrum, radiation dose, heat and particle flux, and gigantic FW/B module sizes. Because of these considerations, we may rely on a purely empirical and incremental boot-strapping approach (as in most human developments so far), or an approach based on data generation from non prototypical setups (e.g., small samples, fission spectra, ion irradiation, etc.), or a theoretical/computational methodology. The first approach would have been the most direct had it not been for the unacceptable risks in the construction of successively larger and more powerful fusion machines, learning from one how to do it better for the next. The last approach (theory and modeling alone) is not a very viable option, because we are not now in a position to predict materials behavior in all its aspects from purely theoretical grounds.

  6. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  7. Fusion Energy Division annual progress report, period ending December 31, 1988

    SciTech Connect

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  8. COLLABORATIVE: FUSION SIMULATION PROGRAM

    SciTech Connect

    Chang, Choong Seock

    2012-06-05

    New York University, Courant Institute of Mathematical Sciences, participated in the “Fusion Simulation Program (FSP) Planning Activities” [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP’s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

  9. High energy resummation of transverse momentum distributions: Higgs in gluon fusion

    NASA Astrophysics Data System (ADS)

    Forte, Stefano; Muselli, Claudio

    2016-03-01

    We derive a general resummation formula for transverse-momentum distributions of hard processes at the leading logarithmic level in the high-energy limit, to all orders in the strong coupling. Our result is based on a suitable generalization of high-energy factorization theorems, whereby all-order resummation is reduced to the determination of the Born-level process but with incoming off-shell gluons. We validate our formula by applying it to Higgs production in gluon fusion in the infinite top mass limit. We check our result up to next-to-leading order by comparison to the high energy limit of the exact expression and to next-to-next-to leading order by comparison to NNLL transverse momentum (Sudakov) resummation, and we predict the high-energy behaviour at next3-to-leading order. We also show that the structure of the result in the small transverse momentum limit agrees to all orders with general constraints from Sudakov resummation.

  10. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-12-31

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He{sup 2{plus}} and Fe{sup 24{plus}} transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He{sup 2{plus}} studies. By examining the electron and He{sup 2{plus}} responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed.

  11. Development of position measurement unit for flying inertial fusion energy target

    NASA Astrophysics Data System (ADS)

    Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.

    2016-03-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.

  12. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016  W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  13. Reaction-Based SiC Materials for Joining Silicon Carbide Composites for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Singh, M.; Serizawa, H.; Katoh, Y.; Kohyama, A.

    2000-09-01

    The fabrication of large or complex silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) components for fusion energy systems requires a method to assemble smaller components that are limited in size by manufacturing constraints. Previous analysis indicates that silicon carbide should be considered as candidate joint materials. Two methods to obtain SiC joints rely on a reaction between silicon and carbon to produce silicon carbide. This report summarizes preliminary mechanical properties of joints formed by these two methods. The methods appear to provide similar mechanical properties. Both the test methods and materials are preliminary in design and require further optimization. In an effort to determine how the mechanical test data is influenced by the test methodology and specimen size, plans for detailed finite element modeling (FEM) are presented.

  14. The status of Fast Ignition Realization Experiment (FIREX) and prospects for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Azechi, H.; FIREX Project Team

    2016-05-01

    Here we report recent progress for the fast ignition inertial confinement fusion demonstration. The fraction of low energy (< 1 MeV) component of the relativistic electron beam (REB), which efficiently heats the fuel core, increases by a factor of 4 by enhancing pulse contrast of heating laser and removing preformed plasma sources. Kilo-tesla magnetic field is studied to guide the diverging REB to the fuel core. The transport simulation of the REB accelerated by the heating laser in the externally applied and compressed magnetic field indicates that the REB can be guided efficiently to the fuel core. The integrated simulation shows > 4% of the heating efficiency and > 4 keV of ion temperature are achievable by using GEKKO-XII and LFEX, properly designed cone-fuel and an external magnetic field.

  15. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  16. Considerations of the high magnetic field tokamak path on the approach to fusion energy

    NASA Astrophysics Data System (ADS)

    Marmar, Earl

    2015-11-01

    This tutorial will review the physics basis, and its applications, for high magnetic field, compact visions of steady-state pilot plants and fusion reactors. This includes: energy and particle confinement; transport barriers; heating and current drive; scrape-off layer and divertor physics including implications for power handling, and ash/impurity control. The development of new technologies, particularly high-temperature, high critical magnetic field superconducting materials opens a new opportunity to consider the leverage of on-axis magnetic fields of 10T or more, enabling the feasibility of smaller sized devices on the path to fusion energy, including a pilot plant which could produce hundreds of megawatts of net electricity in a 10T tokamak with major radius of order 3 meter. Incorporating jointed magnetic coils, also made feasible by the high temperature superconductors, can dramatically improve flexibility of experimental superconducting facilities, and ultimately maintainability for reactor systems. Steady-state requires high bootstrap fraction, combined with efficient off-axis current drive, and existing and new approaches for RF sustainment will be covered, including Lower Hybrid Current Drive (both from the low- and high-field side), ECCD, and fast-wave techniques. External torque drive from neutral beams, routinely used in most present-day experiments to enhance confinement and suppress instabilities, will be weak or absent in reactors. Alternative, RF-based flow drive, using mode-converted ICRF waves will be discussed. All reactor concepts have extraordinary power handling requirements, combined with stringent limits on PFC erosion and impurity sources; the current state of the art in divertor configurations will be compared with emerging and new concepts, including snowflake, x-point, x-divertor and liquid metals, to meet these challenges. Supported by USDOE.

  17. Teaching Driver Education Technology to Novice Drivers.

    ERIC Educational Resources Information Center

    Young, Anthony

    A cybernetic unit in driver education was developed to help grade 10 students develop the skills needed to acquire and process driver education information and prepare for the driving phase of driver education in grade 11. Students used a simulator to engage in a series of scenarios designed to promote development of social, behavioral, and mental…

  18. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  19. Status of inertial fusion and prospects for practical power plants

    SciTech Connect

    Blink, J.A.; Monsler, M.J.

    1982-06-30

    We have produced a series of reactor designs to meet the variety of driver-target combinations that could possibly result from the inertial-confinement fusion program. In this paper we discuss four reactor designs, the goals of which are low cost; a low probability of risk to the public, the plant employees, and the utility investment; and a minimal environmental impact under normal plant operation. HYLIFE is a low pulse rate, lithium-cooled reactor. Pulse*Star and Cascade are high pulse rate reactors. In Pulse*Star, fusion energy is absorbed in the PbLi pool; in Cascade it is absorbed by Li/sub 2/O particles. Sunburst, a very low pulse rate, lithium-cooled reactor, directly converts over 40% of the fusion energy to electricity using a pulsed magnetic field.

  20. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E. Victor; Swingle, James C.

    1985-01-01

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  1. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E.V.; Swingle, J.C.

    1982-03-31

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  2. ORELA measurements to meet fusion energy neutron cross section needs. [2 to 80 MeV

    SciTech Connect

    Larson, D C

    1980-01-01

    Major neutron cross section measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) that are useful to the fusion energy program are reviewed. Cross sections for production of gamma rays with energies 0.3 < E/sub ..gamma../ < 10.5 MeV were measured as a function of neutron energy over the range 0.1 < E/sub n/ < 20.0 MeV for Li, C, N, O, F, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Nb, Mo, Ag, Sn, Ta, W, Au, Pb, and Th. Neutron emission cross sections have been measured for /sup 7/Li, Al, Ti, Cu, and Nb for 1 < E/sub n/ < 20 MeV. Some results of recent neutron total cross section measurements from 2 to 80 MeV for eleven materials (C, O, Al, Si, Ca, Cr, Fe, Ni, Cu, Au, and Pb) of interest to the FMIT project are presented. Finally, future directions of the ORELA program are outlined. 4 figures, 3 tables.

  3. Dynamics of magnetic fields in high-energy-density plasmas for fusion and astrophysics

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Ji, H.; Fox, W.; Hill, K.; Efthimion, P.; Nilson, P.; Igumenshchev, I.; Froula, D.; Betti, R.; Meyerhofer, D.; Fiksel, G.; Blackman, E.; Schneider, M.; Chen, H.; Smalyuk, V.; Li, H.; Casner, A.

    2015-11-01

    An overview of our recent experimental and theoretical work on the dynamics of magnetic fields in high-energy-density plasmas will be presented. This includes: (1) precision mapping of the self-generated magnetic fields in the coronal plasma and the Nernst effect on their evolution, (2) characterizing the strong magnetic field generated by a laser-driven capacitor-coil target using ultrafast proton radiography, and (3) creating MHD turbulence in Rayleigh-Taylor unstable plasmas. The experimental results are compared with resistive MHD simulations providing a stringent test for their predictions. Applications in relevance to ignition target designs in inertial confinement fusion, material strength studies in high-energy-density physics, and astrophysical systems such as plasma dynamos and magnetic reconnection will be discussed. Future experiments proposed on the National Ignition Facility will be described. This material is supported in part by the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, and the National Laser Users Facility under Grant No. DE-NA0002205.

  4. 25th IAEA Fusion Energy Conference: summary of sessions EX/S, EX/W and ICC

    NASA Astrophysics Data System (ADS)

    Sen, A.

    2015-10-01

    This paper provides a summary overview, based on papers presented at the 25th IAEA Fusion Energy Conference (FEC), in the area of magnetic confinement experiments related to stability (EX/S), wave-plasma interactions, current drive, heating, energetic particles (EX/W) and innovative confinement concepts (ICCs). A selection of results that represent progress made since the last FEC in a few important thematic areas that are relevant for the successful and safe operation of future fusion devices like ITER, is highlighted.

  5. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  6. Investigation of complete and incomplete fusion dynamics of {sup 20}Ne induced reactions at energies above the Coulomb barrier

    SciTech Connect

    Singh, D.; Ali, R.; Kumar, Harish; Ansari, M. Afzal; Rashid, M. H.; Guin, R.

    2014-08-14

    Experiment has been performed to explore the complete and incomplete fusion dynamics in heavy ion collisions using stacked foil activation technique. The measurement of excitation functions of the evaporation residues produced in the {sup 20}Ne+{sup 165}Ho system at projectile energies ranges ≈ 4-8 MeV/nucleon have been done. Measured cumulative and direct cross-sections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. The analysis indicates the presence of contributions from incomplete fusion processes in some α-emission channels following the break-up of the projectile {sup 20}Ne in the nuclear field of the target nucleus {sup 165}Ho.

  7. Liquid Scoping Study for Tritium-Lean, Fast Ignition Inertial Fusion Energy Power Plants

    SciTech Connect

    Schmitt, R C; Latkowski, J F; Durbin, S G; Meier, W R; Reyes, S

    2001-08-14

    In a thick-liquid protected chamber design, such as HYLIFE-II, a molten-salt is used to attenuate neutrons and protect the chamber structures from radiation damage. The molten-salt absorbs some of the material and energy given off by the target explosion. In the case of a fast ignition inertial fusion system, advanced targets have been proposed that may be Self-sufficient in the tritium breeding (i.e., the amount of tritium bred in target exceeds the amount burned). These ''tritium-lean'' targets contain approximately 0.5% tritium and 99.5% deuterium, but require a large pr of 10-20 g/cm{sup 2}. Although most of the yield is provided by D-T reactions, the majority of fusion reactions are D-D, which produces a net surplus of tritium. This aspect allows for greater freedom when selecting a liquid for the protective blanket (lithium-bearing compounds are not required). This study assesses characteristics of many single, binary, and ternary molten-salts. Using the NIST Properties of Molten Salts Database, approximately 4300 molten-salts were included in the study [1]. As an initial screening, salts were evaluated for their safety and environmental (S&E) characteristics, which included an assessment of waste disposal rating, contact dose, and radioactive afterheat. Salts that passed the S&E criteria were then evaluated for neutron shielding ability and pumping power. The pumping power was calculated using three components: velocity head losses, frictional losses, and lift. This assessment left us with 57 molten-salts to recommend for further analysis. Many of these molten-salts contain elements such as sodium, lithium, beryllium, boron, fluorine, and oxygen. Recommendations for further analysis are also made.

  8. DIII-D research to address key challenges for ITER and fusion energy

    NASA Astrophysics Data System (ADS)

    Buttery, R. J.; the DIII-D Team

    2015-10-01

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modelling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelength turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully noninductively with βN = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a βN = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behaviour. Scenarios are shown to be compatible with radiative and snowflake divertor techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. Future facility development targets burning plasma physics with torque free electron heating, the

  9. EDITORIAL: Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010) Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010)

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2011-09-01

    The group of 27 papers published in this special issue of Nuclear Fusion aims to monitor the worldwide progress made in the period 2008-2010 in the field of thermonuclear fusion. Of these papers, 22 are based on overview reports presented at the 23rd Fusion Energy Conference (FEC 2010) and five are summary reports. The conference was hosted by the Republic of Korea and organized by the IAEA in cooperation with the National Fusion Research Institute and the Daejeon Metropolitan City. It took place in Daejeon on 11-16 October 2010. The overviews presented at the conference have been rewritten and extended for the purpose of this special issue and submitted to the standard double-referee peer-review of Nuclear Fusion. The articles are placed in the following sequence: Conference summaries of the sessions devoted to: Tokamak and stellarator experiments, experimental divertor physics and plasma wall interaction experiments, stability experiments and waves and fast particles; ITER activities, fusion technology, safety and economics; Magnetic confinement theory and modelling; Inertial confinement fusion; Innovative confinement concepts, operational scenarios and confinement. Overview articles, presented in programme order, are as follows: Tokamaks Overview of KSTAR initial experiments; Recent progress in RF heating and long-pulse experiments on EAST; Overview of JET results; DIII-D contributions toward the scientific basis for sustained burning plasmas; Overview of JT-60U results toward the resolution of key physics and engineering issues in ITER and JT-60SA; Overview of physics results from NSTX; Overview of ASDEX Upgrade results; Overview of physics results from MAST; Contribution of Tore Supra in preparation of ITER; Overview of FTU results; Overview of experimental results on the HL-2A tokamak; Progress and scientific results in the TCV tokamak; Overview of the JT-60SA project; Recent results of the T-10 tokamak; The reconstruction and research progress of the TEXT

  10. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  11. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2015-11-01

    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, <~50MW for an ITER scale tokamak. It is unlikely, considering ``conservative design rules'' that tokamaks can ever be economical pure fusion power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  12. Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout

    SciTech Connect

    R.J. Goldston, A. Glaser, A.F. Ross

    2009-08-13

    Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards.

  13. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a

  14. KrF lasers for inertial confinement fusion

    SciTech Connect

    Harris, D.B.; Cartwright, D.C.; Figueira, J.F.; McDonald, T.E.; Sorem, M.E.

    1989-01-01

    The KrF laser has been proposed for inertial confinement fusion (ICF) since its discovery in 1975. Since that time, the laser has seen significant development and has been increased in energy many orders of magnitude to the several kilojoule energy level. The suitability of the KrF laser as a driver for ICF energy applications has been continually reviewed. The latest assessments indicate that the KrF laser still appears to be the leading laser candidate. A worldwide effort exists to advance the KrF laser for ICF applications. 21 refs., 1 fig.

  15. Diode-pumped solid state lasers (DPSSLs) for Inertial Fusion Energy (IFE)

    SciTech Connect

    Krupke, W.F.

    1996-10-01

    The status of diode-pumped, transverse-gas-flow cooled, Yb-S-FAP slab lasers is reviewed. Recently acquired experimental performance data are combined with a cost/performance IFE driver design code to define a cost-effective development path for IFE DPSSL drivers. Specific design parameters are described for the Mercury 100J/10 Hz, 1 kW system (first in the development scenario).

  16. The technology benefits of inertial confinement fusion research

    SciTech Connect

    Powell, H T

    1999-05-26

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup {minus}6} m) with picosecond (10{sup {minus}12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal

  17. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  18. [Human life and energy production. Prospects opened up by controlled thermonuclear fusion].

    PubMed

    Escande, D

    1997-03-18

    The massive and presently increasing energy production is going to confront mankind with a very important problem in the forthcoming decades, in particular due to the vanishing of resources and to the greenhouse effect. The share of fossil fuels in the energy production will have to decrease, and other energy sources will be needed. Among them controlled thermonuclear fusion has may assets due to its non-radioactive fuel with plentiful supply, its non radioactive and non polluting ashes, its safety, its weak environmental impact, and its irrelevance to nuclear proliferation in a normal setting. During the last three decades, physicists have made a series of steps toward the peaceful use of the dominant source of energy in the Universe. They have learned how to confine by magnetic fields plasmas at temperatures of 200 millions degrees centigrade, and they have developed several specific technologies. This way, they produced 11 million watts of nuclear power by fusing two isotopes of hydrogen. These investigations are conducted in a responsible spirit, that of ecoproduction, where possible negative consequences are anticipated, are made as low as reasonably achievable, and their management is studied. Yet several fundamental issues still have to be solved before on economically efficient industrial thermonuclear power plant be operated. A huge international collaboration involving Japan, the USA, the Russian Federation, and the European Union joined with Switzerland and Canada, is presently designing the first experimental thermonuclear reactor, the International Thermonuclear Experimental Reactor (ITER). It would cost 9 billion dollars, a cost similar to other large scientific projects. This is an important step toward an electricity producing thermonuclear reactor that would be both safe and respectful of human health and of environment. PMID:9203740

  19. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-11-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  20. StarDriver: Recent results on beam smoothing and LPI mitigation

    NASA Astrophysics Data System (ADS)

    Eimerl, D.; Skupsky, S.; Campbell, E. M.

    2016-05-01

    StarDriver was recently proposed as a highly flexible laser driver for inertial confinement fusion and high energy density physics. It envisions a laser drive consisting of very many beams at an aperture and energy where the optical technology is well-developed, used in concert to create a large scale laser driver system. In this paper we describe a StarDriver-class laser with 5120 physical beamlets disposed about the target chamber in 80 evenly spaced ports, each port containing 64 beamlets, each beamlet having about ∼1.5THz of 2D SSD bandwidth and suitable phase plates, an aperture of ∼65mm, an energy of 80J, and frequency-converted to ∼351nm.many beamlets at an aperture where optical technology is well-developed, and each beamlet has energy ∼100J in a several times diffraction limited beam. The ensemble of beamlets has frequency bandwidth 2%-10%, thereby providing significant control of both hydrodynamic and laser-plasma instabilities The drive at the target is ∼400kJ, has a well-behaved low L-mode spectrum, and smooths very rapidly, reaching an asymptotic smoothness of <1% in less than Ins.

  1. Experimental Research in Boost Driver with EDLCs

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hirokazu

    The supply used in servo systems tends to have a high voltage in order to reduce loss and improve the response of motor drives. We propose a new boost motor driver that comprises EDLCs. The proposed driver has a simple structure, wherein the EDLCs are connected in series to the supply, and comprises a charge circuit to charge the EDLCs. The proposed driver has three advantages over conventional boost drivers. The first advantage is that the driver can easily attain the stable boost voltage. The second advantage is that the driver can reduce input power peaks. In a servo system, the input power peaks become greater than the rated power in order to accelerate the motor rapidly. This implies that the equipments that supply power to servo systems must have sufficient power capacity to satisfy the power peaks. The proposed driver can suppress the increase of the power capacity of supply facilities. The third advantage is that the driver can store almost all of the regenerative energy. Conventional drivers have a braking resistor to suppress the increase in the DC link voltage. This causes a considerable reduction in the efficiency. The proposed driver is more efficient than conventional drivers. In this study, the experimental results confirmed the effectiveness of the proposed driver and showed that the drive performance of the proposed driver is the same as that of a conventional driver. Furthermore, it was confirmed that the results of the simulation of a model of the EDLC module, whose capacitance is dependent on the frequency, correspond well with the experimental results.

  2. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    SciTech Connect

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of {approximately}17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, {approximately}200 g/cm{sup 3} and {approximately}20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases {approximately}350 MJ of energy in optimized power plant scenarios.

  3. Exploring a unique vision for heavy ion fusion

    SciTech Connect

    LOGAN, B.G.; Logan, B.G.

    2007-08-06

    A quest for more efficient beam-to-fuel energy coupling via polar direct drive (30% overall), to enable: (1) Self-T-breeding, self-neutron-energy-absorbing, large {pi}r, T-Lean targets {at} < 4 MJ driver energies; (2) Efficient fusion energy coupling into plasma for direct MHD conversion with moderate yields < 1 GJ; (3) Balance-of-plant costs 10X lower than steam cycle (e.g., < 80 $/kWe instead of 800 $/kWe); (4) CoE low enough (<3 cts/kWehr) for affordable water and H{sub 2} fuel for 10 B people on a hot planet; and (5) Enough fissile fuel production for 38 LWR's per GW{sub fusion} if uranium gets too expensive meantime.

  4. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance Balances

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman; Schmidt, George R.

    2000-01-01

    Rapid transportation of large payloads and human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (I (sub sp) greater than or equal to 10 (exp 4) to 10 (exp 5) sec) but also extremely low mass-power ratios (alpha less than or equal to 10 (exp -1) kg/kW). Such low a are difficult to achieve with power-limited propulsion systems. but may be attainable with fusion and other high I (sub SP) nuclear concepts that produce energy within the propellant. The magnitude of this energy gain is of fundamental importance. It must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive power-intensive subsystems associated with these types of concepts. This paper evaluates the energy gain and mass-power characteristics required for a consistent with 1-year roundtrip planetary missions ranging up to 100 AU. Central to this analysis is an equation for overall system a, which is derived from the power balance of a generalized "gain-limited" propulsion system. Results show that the gain required to achieve alpha approximately 10 (exp -1) kg/kW with foreseeable subsystem technology can vary from 50 to as high as 10,000, which is 2 to 5 orders of magnitude greater than current state-of-the art. However, order of magnitude improvements in propulsion subsystem mass and efficiency could reduce gain requirements to 10 to 1,000 - still a very challenging goal.

  5. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Local thermal particle and energy transport studies of balanced-injection L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power have been performed on TFTR. The particle transport of He{sup 2+} and electrons following a small helium gas puff and Fe{sup 24+} induced by laser ablation has been examined and compared to the local energy transport characteristics inferred from power balance analysis. All particle perturbation diffusivities are radially hollow and are similar in magnitude and shape to the effective thermal conductivities found by power balance analysis. All particle diffusivities are 1--2 orders of magnitude larger than neoclassical values, except near the magnetic axis. A reduction in the helium diffusivity D{sub He} in the Supershot as compared to the L-mode is accompanied by a similar reduction in the effective single fluid thermal conductivity {chi}fluid. Also, the helium core convective velocity V{sub He} is found to increase in the Supershot over the L-Mode for r/a < 0.5. A quasilinear model of electrostatic drift waves has been used to calculate ratios between particle and energy fluxes in the Supershot. The measured ratios of the helium and iron particle diffusivities are in good accord with predictions, as are predicted ratios of V{sub He}/D{sub He}. Modelling indicates that the similarity in magnitude and profile shape of D{sub He} and {chi}fluid has generally favorable implications for helium ash content in a future fusion reactor. The core convection found in the Supershot increases the helium concentration on axis but does not reduce the plasma reactivity significantly.

  6. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Local thermal particle and energy transport studies of balanced-injection L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power have been performed on TFTR. The particle transport of He[sup 2+] and electrons following a small helium gas puff and Fe[sup 24+] induced by laser ablation has been examined and compared to the local energy transport characteristics inferred from power balance analysis. All particle perturbation diffusivities are radially hollow and are similar in magnitude and shape to the effective thermal conductivities found by power balance analysis. All particle diffusivities are 1--2 orders of magnitude larger than neoclassical values, except near the magnetic axis. A reduction in the helium diffusivity D[sub He] in the Supershot as compared to the L-mode is accompanied by a similar reduction in the effective single fluid thermal conductivity [chi]fluid. Also, the helium core convective velocity V[sub He] is found to increase in the Supershot over the L-Mode for r/a < 0.5. A quasilinear model of electrostatic drift waves has been used to calculate ratios between particle and energy fluxes in the Supershot. The measured ratios of the helium and iron particle diffusivities are in good accord with predictions, as are predicted ratios of V[sub He]/D[sub He]. Modelling indicates that the similarity in magnitude and profile shape of D[sub He] and [chi]fluid has generally favorable implications for helium ash content in a future fusion reactor. The core convection found in the Supershot increases the helium concentration on axis but does not reduce the plasma reactivity significantly.

  7. Magnetic-tunnel-junction based low-energy nonvolatile flip-flop using an area-efficient self-terminated write driver

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Hanyu, Takahiro

    2015-05-01

    A nonvolatile flip-flop (NV-FF) that makes it possible to minimize the backup energy before power-off is proposed. The use of a self-terminated write driver with continuous voltage monitoring enables automatic write-current termination to be performed immediately after the desired data are written, resulting in great energy saving. Moreover, by utilizing single-ended circuitry together with a symmetrical write current path structure, both a nonvolatile storage function and self-termination are compactly embedded in the NV-FF without performance degradation. As a result, the backup energy is reduced by 83% compared to that of the average of conventional magnetic tunnel junction (MTJ)-based NV-FFs with no self-termination. It is also demonstrated that total transistor counts are reduced by 43% compared to a conventional MTJ-based NV-FF with self-termination.

  8. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy 1983 review

    SciTech Connect

    Haight, R.C.; Larson, D.C.

    1983-11-01

    This review was prepared during a coordination meeting held at Oak Ridge National Laboratory on September 28-29, 1983. Participants included research scientists working for this program, a representative from the OFE's Coordination of Magnetic Fusion Energy (MFE) Nuclear Data Needs Activities, and invited specialists.

  9. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  10. Smartwatch-based driver alertness monitoring with wearable motion and physiological sensor.

    PubMed

    Lee, Boon-Giin; Lee, Boon-Leng; Chung, Wan-Young

    2015-08-01

    Studies have shown that a high precision driver alertness monitoring system is an essential and a monetary countermeasure to reduce the road accidents. This paper presents a novel approach to measure the driver alertness, evaluated by a smartwatch device based on fusion of direct and indirect method. The driver chronic physiological state is monitor by adopting a photoplethysmography sensor on the driver finger that is connected to a wrist-type wearable device. A Bluetooth Low Energy module connected to the wearable device transmits the PPG data to the smartwatch in real-time. Meanwhile, the indirect method, driver steering wheel movement can be derived by utilizing the motion sensors integrated in the smartwatch which include a tri-axis accelerometer and a gyroscope sensors. The respiration signals can be derived from the PPG time- and frequency-domains attributes. The data obtained from both methods aforementioned are subsequently decomposed into relevant features in time, spectral context and phase space domain, and thus computes the alertness index. Here, the correlations between the extracted features and the subjective Koralinska Sleepiness Scale are studied as well along with the recorded experimental videos. This study reveals that the alertness index prediction accuracy can be reached up to 96.3% based on the descriptive extracted features. PMID:26737690

  11. Entrance Channel Mass Asymmetry Effects in Sub-Barrier Fusion Dynamics by Using Energy Dependent Woods-Saxon Potential

    NASA Astrophysics Data System (ADS)

    Manjeet Singh, Gautam

    2015-12-01

    The present article highlights the inconsistency of static Woods-Saxon potential and the applicability of energy dependent Woods-Saxon potential to explore the fusion dynamics of {}4822Ti+58,60,6428Ni, {}4622Ti+{}6428Ni,{}5022Ti+{}6028Ni, and {}199F+9341Nb reactions leading to formation of different Sn-isotopes via different entrance channels. Theoretical calculations based upon one-dimensional Wong formula obtained by using static Woods-Saxon potential unable to provide proper explanation for sub-barrier fusion enhancement of these projectile-target combinations. However, the predictions of one-dimensional Wong formula based upon energy dependent Woods-Saxon potential model (EDWSP model) accurately describe the observed fusion dynamics of these systems wherein the significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm is required to address the experimental data in whole range of energy. Therefore, the energy dependence in nucleus-nucleus potential simulates the influence of the nuclear structure degrees of freedom of the colliding pairs. Supported by Dr. D.S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  12. Beam dynamics in heavy ion fusion

    SciTech Connect

    Seidl, P.

    1995-04-01

    A standard design for heavy ion fusion drivers under study in the US is an induction linac with electrostatic focusing at low energy and magnetic focusing at higher energy. The need to focus the intense beam to a few-millimeter size spot at the deuterium-tritium target establishes the emittance budget for the accelerator. Economic and technological considerations favor a larger number of beams in the low-energy, electrostatic-focusing section than in the high-energy, magnetic-focusing section. Combining four beams into a single focusing channel is a viable option, depending on the growth in emittance due to the combining process. Several significant beam dynamics issues that are, or have been, under active study are discussed: large space charge and image forces, beam wall clearances, halos, alignment, longitudinal instability, and bunch length control.

  13. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGESBeta

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  14. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  15. Radiation damage microstructures in nuclear ceramics with applications in fusion energy technology and nuclear waste disposal

    SciTech Connect

    Hobbs, L.W.

    1989-09-01

    This final technical report documents the accomplishments of the program of research entitled Radiation Damage Microstructures in Nuclear Ceramics'' funded between July 1984 and July 1988 under DOE Grant FG02-84ER45090. The initial program, begun at MIT in 1983, had as its objective investigation of the radiation responses of ceramics, heavily-irradiated with electrons, neutrons and ions, with potential applications to fusion energy technology and high-level nuclear waste storage. Materials investigated included SiO{sub 2}, MgAl{sub 2}O{sub 4}, Al{sub 23}O{sub 27}N{sub 5}, SiC, BeO, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, CaTiO{sub 3}, KTaO{sub 3} and Ca(Zr,Pu)Ti{sub 2}O{sub 7}. The issues involved have been the subject of a series of DOE-sponsored workshops in which the principal investigator has prominently participated, as well as of two informal collaborative meetings among DOE-supported groups at MIT, Los Alamos, University of New Mexico, Boeing, Oak Ridge National Laboratory and Battelle-Pacific Northwest Laboratory.

  16. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers

    SciTech Connect

    Rhodes, M.A.; Woods, B.; DeYoreo, J.J.; Roberts, D.; Atherton, L.J.

    1995-08-20

    We describe the design and performance of large-aperture ({lt}30 cm {times} 30 cm) optical switches that have demonstrated, for the first time to our knowledge, active switching of a high-energy ({lt}5 kJ) optical pulse in an inertial-confinement fusion laser. These optical switches, which consist of a plasma-electrode Pockels cell (PEPC) and a passive polarizer, permit the design of efficient, multipass laser amplifiers. In a PEPC, plasma discharges on the faces of a thin (1-cm) electro-optic crystal (KDP or KD{bold |}P) act as highly conductive and transparent electrodes. These plasma electrodes facilitate rapid ({lt}100 ns) and uniform charging of the crystal to the half-wave voltage and discharging back to 0 V. We discuss the operating principles, design, optical performance, and technical issues of a 32 cm {times} 32 cm prototype PEPC with both KDP and KD{bold |}P crystals, and a 37 cm {times} 37 cm PEPC with a KDP crystal for the Beamlet laser. This PEPC recently switched a 6-kJ, 3-ns pulse in a four-pass cavity.

  17. Low-Energy Fusion-Fission Dynamics of Heavy Nuclear Systems

    SciTech Connect

    Zagrebaev, Valery; Greiner, Walter

    2006-08-14

    A new approach is proposed for a unified description of strongly coupled deep-inelastic (DI) scattering, fusion, fission, and quasi-fission (QF) processes of heavy ion collisions. A unified driving-potential and a unified set of dynamic Langevin-type equations of motion are used in this approach. This makes it possible to perform a full (continuous) time analysis of the evolution of heavy nuclear systems, starting from the approaching stage, moving up to the formation of the compound nucleus or emerging into two final fragments. The calculated mass, charge, energy and angular distributions of the reaction products agree well with the corresponding experimental data for heavy and superheavy nuclear systems. Collisions of very heavy nuclei (such as 238U+248Cm) are investigated as an alternative way for production of superheavy elements. Large charge and mass transfer was found in these reactions due to the inverse (anti-symmetrizing) quasi-fission process leading to formation of surviving superheavy long-lived neutron-rich nuclei.

  18. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Dryepondt, S.; Unocic, K. A.; Hoelzer, D. T.

    2014-12-01

    Oxide dispersion strengthened (ODS) FeCrAl alloys with 12-15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  19. A novel microfluidic system for the mass production of Inertial Fusion Energy shells

    NASA Astrophysics Data System (ADS)

    Inoue, N. T.

    2016-04-01

    A system which can mass produce millimetre sized spherical polymer shells economically and with high precision will be a great step towards the Inertial Fusion Energy goal. Microfluidics has shown itself to be a disruptive technology, where a rapid and continuous production of compound emulsions can be processed into such shells. Planar emulsion generators co-flow-focus in one step (COFON) and cascaded co-flow- focus (COFUS) enable millimetre compound emulsions to be produced using a one or two step formation process respectively. The co-flow-focus geometry uses symmetric and curved carrier fluid entrance walls to create a focusing orifice-minima and a carrier flow which aids movement and shaping of the dispersed fluid(s) towards the outlet, whilst maintaining operation in the dripping regime. Precision concentric alignment of these compound emulsions remains one of the greatest challenges. However steps to solve this passively using curved channel modulation to perturbate the emulsion have shown that rapid alignment can be achieved. Issues with satellite droplet formation, repeatability of the emulsion generation and cost are also addressed.

  20. U.S. Heavy Ion Beam Science towards inertial fusion energy

    SciTech Connect

    Logan, B.G.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Burkhart, C.; Celata, C.M.; Chacon-Golcher, E.; Cohen, R.H.; Davidson, R.C.; Efthimion P.; Faltens, A.; Friedman, A.; Grisham, L.; Grote, D.P.; Haber, I.; Henestroza, E.; Kaganovich, I.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; O'Shea, P.G.; Olson, C.; Olson, R.E.; Prost, L.R.; Qin, H.; Reiser, M.; Rose, D.; Sabbi, G.; Seidl, P.A.; Sharp, W.M.; Shuman, D.B.; Vay, J-L.; Waldron, W.L.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2002-10-01

    Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments.