Science.gov

Sample records for fusion line cracks

  1. Fracture evaluations of fusion line cracks in nuclear pipe bimetallic welds

    SciTech Connect

    Scott, P.; Francini, R.; Rahman, S.; Rosenfield, A.; Wilkowski, G.

    1995-04-01

    In both BWRs and PWRs there are many locations where carbon steel pipe or components are joined to stainless steel pipe or components with a bimetallic weld. The objective of the research described in this report was to assess the accuracy of current fracture analyses for the case of a crack along a carbon steel to austenitic weld fusion line. To achieve the program objective, material property data and data from a large-diameter pipe fracture experiment were developed to assess current analytical methods. The bimetallic welds evaluated in this program were bimetallic welds obtained from a cancelled Combustion Engineering plant. The welds joined sections of the carbon steel cold-leg piping system to stainless steel safe ends that were to be welded to stainless steel pump housings. The major conclusion drawn as a result of these efforts was that the fracture behavior of the bimetallic weld evaluated in this program could be evaluated with reasonable accuracy using the strength and toughness properties of the carbon steel pipe material in conjunction with conventional elastic-plastic fracture mechanics or limit-load analyses. This may not be generally true for all bimetallic welds, as discussed in this report.

  2. Cracks and Lines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an odd area of the south polar region that has sets of fine, nearly parallel lines running from the northeast (upper right) toward southwest (lower left) and a darker, wider set of cracks with a major trend running almost perpendicular to the finer lines. The appearance of these features is enhanced by seasonal frost. Dark areas have no frost, bright areas still have frozen carbon dioxide ice. In summer, the ice would be gone and the cracks and lines less obvious when viewed from orbit. Although unknown, wind might be responsible for forming the fine set of lines, and perhaps freeze-thaw cycles of ground ice or structural deformation would have contributed to formation of the wider cracks. The image is located near 85.0oS, 324.0oW, and covers an area about 1.5 km (nearly 1 mi) across. The scene is illuminated by sunlight from the upper left.

  3. Sulfide stress corrosion cracking of line pipe

    SciTech Connect

    Kimuro, M.; Totsuka, N.; Kurisu, T.; Amano, K.; Matsuyama, J.; Nakai, Y. )

    1989-04-01

    This paper reports the sulfide stress corrosion cracking (SSC) behavior of line pipe steel investigated using the SSC test method in NACE Standard TMO177-77, Testing of Metals for Resistance to Sulfide Stress Cracking at Ambient Temperatures. SSC of base metal can be classified into two types, depending on microstructures. In ferrite-perlite steel, the first crack initiates parallel to the pipe surface and propagates perpendicularly to the axis of stress. In ferrite-bainite steel or low C-bainite steel, the crack initiates at the interface between the bainite particle and the ferrite. With decreasing carbon content, the threshold stress of SSC ({sigma}{sub th}) increases, but in low-carbon steel, the {sigma}{sub th} value of weld seam is lower than that of base metal. SSC of weld seams occurs at the softening zone in the heat-affected zone (HAZ) about 2 to 4 mm away from the fusion line.

  4. Stainless steel submerged arc weld fusion line toughness

    SciTech Connect

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M.

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  5. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  6. Analysis of long crack lines in paper webs

    NASA Astrophysics Data System (ADS)

    Salminen, L. I.; Alava, M. J.; Niskanen, K. J.

    2003-04-01

    We analyze 6500 mm long fracture lines of paper as an example of crack propagation involving disorder. The cracks are asymptotically self-affine, with a roughness exponent close to 0.6. Systematic deviations from the power-law-scaling exist below a lengthscale related to the microscopic heterogeneities and possibly to a cross-over from 3d to 2d crack propagation. Several analysis methods are discussed, including first return analysis and the detection of correlated trends.

  7. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 μm into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 μm without assistance from creep or grain erosion phenomena.

  8. The method of lines in analyzing solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.

    1990-01-01

    A semi-numerical method is reviewed for solving a set of coupled partial differential equations subject to mixed and possibly coupled boundary conditions. The line method of analysis is applied to the Navier-Cauchy equations of elastic and elastoplastic equilibrium to calculate the displacement distributions in various, simple geometry bodies containing cracks. The application of this method to the appropriate field equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. When decoupling of the equations and their boundary conditions is not possible, the use of a successive approximation procedure permits the analytical solution of the resulting ordinary differential equations. The use of this method is illustrated by reviewing and presenting selected solutions of mixed boundary value problems in three dimensional fracture mechanics. These solutions are of great importance in fracture toughness testing, where accurate stress and displacement distributions are required for the calculation of certain fracture parameters. Computations obtained for typical flawed specimens include that for elastic as well as elastoplastic response. Problems in both Cartesian and cylindrical coordinate systems are included. Results are summarized for a finite geometry rectangular bar with a central through-the-thickness or rectangular surface crack under remote uniaxial tension. In addition, stress and displacement distributions are reviewed for finite circular bars with embedded penny-shaped cracks, and rods with external annular or ring cracks under opening mode tension. The results obtained show that the method of lines presents a systematic approach to the solution of some three-dimensional mechanics problems with arbitrary boundary conditions. The advantage of this method over other numerical solutions is that good results are obtained even from the use of a relatively coarse grid.

  9. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-04-01

    Lipids and proteins are organized in cellular membranes in clusters, often called `lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

  10. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion.

    PubMed

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K

    2016-01-01

    Lipids and proteins are organized in cellular membranes in clusters, often called 'lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors. PMID:27113279

  11. Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksel, B.

    1986-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  12. Line spring model and its applications to part-through crack problems in plates and shells

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Aksel, Bulent

    1988-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  13. Low-pH stress corrosion crack propagation in API X-65 line pipe steel

    SciTech Connect

    Harle, B.A.; Beavers, J.A. )

    1993-10-01

    Preliminary results of ongoing crack growth studies being performed on an API X-65 line pipe steel in a low-pH cracking environment were reported. Objectives were to reproduce low-pH crack propagation in the laboratory, to identify a crack driving force parameter, and to evaluate the influence of environmental and mechanical parameters on crack growth. A J-integral test technique was used in the study. Significant crack growth was observed. The parameter J appeared to be a good driving force parameter to describe crack growth.

  14. Modeling crack growth processes in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Jones, Russell H.; Wolfer, Wilhelm G.

    1984-05-01

    Models for the effect of the chemical environment on crack growth processes in austenitic and ferritic stainless were evaluated. The effect of impurity segregation, yield strength, and hydrogen on crack growth of HT-9 and radiation induced phosphorus segregation on the intergranular stress corrosion of 316SS have been evaluated. Moderate increases in impurity segregation and/or yield strength caused significant decreases in the K IC and K TH of HT-9, while less than a 10 fold increase in the intergranular stress corrosion crack growth rate of 316SS was predicted for a fluence of 100 dpa using the radiation induced phosphorus segregation data of Brimhall et al. and the stress corrosion model of Parkins. Therefore, while radiation induced impurity segregation is greater in 316SS than HT-9, the effect of impurity segregation may be more pronounced in HT-9. The effect of hydrogen on fatigue crack thresholds was evaluated using a model by Tien which describes the threshold as a function of surface energy. A reduction in the surface energy by hydrogen adsorption was found to cause a decrease in the fatigue threshold a small but comparable amount to that observed for 2-1/4Cr-lMo steel.

  15. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G.

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  16. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    SciTech Connect

    Not Available

    1981-11-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems.

  17. SURVEY AND ANALYSIS OF CRACKS ON NATM CONCRETE LINING, AND A STUDY OF THE METHOD TO CONTROL CRACKS GENERATION

    NASA Astrophysics Data System (ADS)

    Takayama, Hirofumi; Masuda, Yasuo; Nakayama, Takashi; Shigeta, Yoshiyuki; Yingyograttanakul, Narentorn; Asakura, Toshihiro

    The concrete linings constructed by NATM often have cracks occurred near the tunnel crown in the longitudinal direction. In the results of the 1/4 scaled model tests, the authors have showed that in order to simulate the mechanism of cracks generation correctly, not only the coupled stress-thermal analysis but also the coupled stress-moisture analysis should be performed in numerical analysis procedures. We survey the strain produced inside of the second lining concrete and the progress of cracks occurred in the real tunnel used at the Shinkansen. And point out that not only the coupled stress-thermal analysis but also the coupled stress-moisture analysis can represent them. Further, we propose a method to control cracks generation, the adjustment of the temperature and the humidity.

  18. Dynamic crack curving and branching in line-pipe

    SciTech Connect

    Ramulu, M.; Kang, B.S.J.; Kobayashi, A.S.

    1982-11-01

    The newly derived dynamic crack curving and crack branching criteria are briefly reviewed. The two criteria are justified by a micro-mechanics model and are used to predict crack curving and crack branching of dynamic photoelastic experiments involving Homalite-100 fracture specimens. The latter crack branching criterion requires as a necessary condition a critical dynamic stress intensity factor, K /SUB lb/ , which is accompanied by a sufficient condition involving the former crack curving criterion. This criteria is further verified by a dynamic finite element analysis of a bursting steel pipe of Congleton (26) and Almond, et al. (27), where the numerically computed branching stress intensity factor and branching angle are in good agreement with experimental results.

  19. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    PubMed Central

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-01-01

    Lipids and proteins are organized in cellular membranes in clusters, often called ‘lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors. PMID:27113279

  20. On-line analysis of cracking in cortical bone under wedge penetration.

    PubMed

    Alam, Khurshid; Kerckhofs, Greet; Mitrofanov, Alexander V; Lomov, Stepan; Wevers, Martin; Silberschmidt, Vadim V

    2012-09-01

    Understanding the mechanism of crack propagation during bone cutting is necessary for the development of realistic bone cutting models. This article studies the on-line fractural behaviour of cortical bone caused by penetration with a sharp metallic wedge mounted on an on-line loading stage within an X-ray microfocus computed tomography system. The experimental results demonstrated anisotropy in crack propagation depending on the penetration direction with regard to the longitudinal bone axis and relate the crack growth to the extent of penetration. Scanning electron microscopy is performed to analyse the mechanism of cracking in the two phase microstructure of compact bone. PMID:23025172

  1. CIRCUMFERENTIAL MFL IN-LINE INSPECTION FOR CRACKS IN PIPELINES

    SciTech Connect

    J.B. Nestleroth

    2003-06-01

    Circumferential MFL is a new implementation of a widely used technology that has potential to provide improved detection and quantification of axially oriented defects such as cracks, seam weld defects, mechanical damage, and groove corrosion. This implementation works by orienting the magnetic field around the pipe rather that along the axis. By orienting the magnetic field around the pipe (the circumferential direction), the axial defects that were magnetically transparent can disrupt more of the magnetic field and can be more easily detected. Initial implementations of circumferential MFL have found that flux leakage from cracks at the interior of the pipe is small, and the signals from cracks are difficult to detect. The objective of this project is to improve detection of cracks by changing the implementation along with using data from overlapping and complementary inspection techniques. Two technology enhancements were investigated: Combining high- and low-magnetization technology for stress detection; and Combining axial and circumferential MFL methods. Although a method combining high- and low-magnetization technology showed promise for characterizing gouges cause by third party excavation equipment, its commercial development was not successful for two reasons. First, the stress diminishes the crack signal, while the opening of the crack increases the signal. The stress-induced changes in flux leakage around cracks were small and any critical information on the severity of cracks and crack-like defects is difficult to distinguish from changes caused by the crack opening and other inspection variables. Second, it is difficult to magnetize pipe material in the circumferential direction. A relatively low, non-uniform magnetization level produced by the circumferential magnetizer makes detection of changes due to stress extremely difficult. This project also examined combining axial and circumferential MFL to improve crack detection and distinguish cracks for

  2. Spectral Line Shapes as a Diagnostic Tool in Magnetic Fusion

    SciTech Connect

    Stamm, R; Capes, H; Demura, A; Godbert-Mouret, L; Koubiti, M; Marandet, Y; Mattioli, M; Rosato, J; Rosmej, F; Fournier, K B

    2006-07-22

    Spectral line shapes and intensities are used for obtaining information on the various regions of magnetic fusion devices. Emission from low principal quantum numbers of hydrogen isotopes is analyzed for understanding the complex recycling mechanism. Lines emitted from high principal quantum numbers of hydrogen and helium are dominated by Stark effect, allowing an electronic density diagnostic in the divertor. Intensities of lines emitted by impurities are fitted for a better knowledge of ion transport in the confined plasma.

  3. Inertial confinement fusion method producing line source radiation fluence

    DOEpatents

    Rose, Ronald P.

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  4. Application of a flight-line disk crack detector to a small engine

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1977-01-01

    A disk crack detector was developed and applied to a small military engine for use as a flight-line turbine crack monitor. The system consists of an eddy current type sensor and its cables within the engine, external connecting cables, and a remotely located electrical capacitance-conductance bridge and signal analyzer. As the turbine spins, the rotor is monitored by the sensor for radial surface cracks emanating from the interblade region of the rotor.

  5. Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Yang, Jinyeol; Hwang, Soonkyu; Sohn, Hoon

    2015-10-01

    This study proposes a new line laser lock-in thermography (LLT) technique for instantaneous inspection of surface cracks in semiconductor chips. First, a new line LLT system is developed by integrating a line scanning laser source, a high-speed infrared (IR) camera with a close-up lens, and a control computer. The proposed line LLT system scans a line laser beam onto a target semiconductor chip surface and measures the corresponding thermal wave propagation using an IR camera. A novel baseline-free crack visualization algorithm is then proposed so that heat blocking phenomena caused by crack formation can be automatically visualized and diagnosed without relying on the baseline data obtained from the pristine condition of a target semiconductor chip. The proposed inspection technique offers the following advantages over the existing semiconductor chip inspection techniques: (1) inspection is performed in a noncontact, nondestructive and nonintrusive manner; (2) the crack diagnosis can be accomplished using only current-state thermal images and thus past thermal images are unnecessary; and (3) crack detectability is significantly enhanced by achieving high spatial resolution for thermal images and removing undesired noise components from the measured thermal images. Validation tests are performed on two different types of semiconductor die chips with real micro-cracks produced during actual fabrication processes. The experiments demonstrate that the proposed line LLT technique can successfully visualize and detect semiconductor chip cracks with width of 28-54 μm.

  6. Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution

    SciTech Connect

    Pilkey, A.K.; Lambert, S.B.; Plumtree, A. . Dept. of Mechanical Engineering)

    1995-02-01

    An experimental system was developed to reproduce stress corrosion cracking (SCC) of API X-60 line pipe steels in highly alkaline (pH = 10) carbonate-bicarbonate (1 N sodium carbonate [Na[sub 2]CO[sub 3

  7. A note on the cracked plates reinforced by a line stiffener

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    The problem of a cracked plate reinforced by a line stiffener is reconsidered. The original solution of this problem was given in the literature. Also, a variation of the problem with debonding between the plate and the stiffener near the cracked region was reported in the literature. However, the special case of the problem in which the crack tip terminates at the stiffener does not appear to have been studied. In practice, the solution may be necessary in order to assess the crack arrest effectiveness of the stiffener. The problem of a stiffened plate with a crack is reformulated, the asymptotic stress state near the crack tip terminating at the stiffener is examined, and numerical results are given for various stiffness constants.

  8. A note on the cracked plates reinforced by a line stiffener

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    The problem of a cracked plate reinforced by a line stiffener is reconsidered. The original solution of this problem was given in the literature. Also, a variation of the problem with debonding between the plate and the stiffener near the cracked region was reported in the literature. However, the special case of the problem in which the crack tip terminates at the stiffener does not appear to have been studied. In practice, the solution may be necessary in order to assess the crack arrest effectiveness of the stiffener. The problem of a stiffened plate with a crack is reformulated, the asymptotic stress state near the crack tip terminating at the stiffener is examined, and numerical results are given for various stiffness constants. Previously announced in STAR as N83-21388

  9. Evaluating Hydrogen Stress Cracking of Line Pipe Steels under Cathodic Protection Using Crack Tip Opening Displacement Tests

    NASA Astrophysics Data System (ADS)

    Hagiwara, Naoto; Meyer, Michel

    Crack tip opening displacement (CTOD, δ) tests were carried out for line pipe steels in buffer solutions, sand, and clay to evaluate initiation of hydrogen stress cracking (HSC) at surface defects in buried pipelines under cathodic protection. Four series of line pipe steels and two series of seam welds showed a similar tendency in cathodic current density (i) versus the critical CTOD (δc) curves, irrespective of types, pH and water content of the soils; δc showed a minimum (δHSC) when i>ith (ith=1mA/cm2) in all the testing conditions. δHSC increased with the increasing fracture toughness of the steel. Fluctuation of cathodic current density influenced δc when the maximum value of cathodic current density (imax) was larger than ith. HSC could be initiated at surface defects in pipelines only when imax>ith and δ≥δHSC.

  10. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    PubMed Central

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-01-01

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener. PMID:25046014

  11. Crack

    MedlinePlus

    ... sound the drug makes as it heats up. Short-Term Effects Crack is a stimulant that is absorbed through ... quickly, after about 5 or 10 minutes. Other short-term effects include: higher heart rate, breathing rate, blood pressure , ...

  12. Line-spring model for surface cracks in a Reissner plate

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper the line-spring model developed by Rice and Levy for a surface crack in elastic plates is reconsidered. The problem is formulated by using Reissner's plate bending theory. For the plane strain problem of a strip containing an edge crack and subjected to tension and bending new expressions for stress intensity factors are used which are valid up to a depth-to-thickness ratio of 0.8. The stress intensity factors for a semi-elliptic and a rectangular crack are calculated. Considering the simplicity of the technique and the severity of the underlying assumptions, the results compare rather well with the existing finite element solutions.

  13. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method

    PubMed Central

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-01-01

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method. PMID:26950130

  14. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-01-01

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method. PMID:26950130

  15. Effects of surface condition on the stress corrosion cracking of line pipe steel

    SciTech Connect

    Beavers, J.A.; Christman, T.K.; Parkins, R.N.

    1988-04-01

    The relationship between surface properties of line pipe steels and external stress corrosion cracking (SCC) is reviewed. Surface factors discussed include mill scale, surface pitting, decarburization, surface residual stresses, and near-surface stress state. Recent research results have demonstrated that the susceptibility of a line pipe steel to SCC initiation is dependent on complicated interaction among these properties. However, these studies also show that relatively simple surface preparation procedures such as grit blasting can be effective in reducing the susceptibility of pipelines to crack initiation.

  16. Fracture Analysis of Double-Side Adhesively Bonded Composite Repairs to Cracked Aluminium Plate Using Line Spring Model

    NASA Astrophysics Data System (ADS)

    Niu, Yong; Su, Weiguo

    2016-06-01

    A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.

  17. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  18. Sensor fusion for on-line monitoring of yoghurt fermentation.

    PubMed

    Cimander, Christian; Carlsson, Maria; Mandenius, Carl-Fredrik

    2002-11-13

    Measurement data from an electronic nose (EN), a near-infrared spectrometer (NIRS) and standard bioreactor probes were used to follow the course of lab-scale yoghurt fermentation. The sensor signals were fused using a cascade neural network: a primary network predicted quantitative process variables, including lactose, galactose and lactate; a secondary network predicted a qualitative process state variable describing critical process phases, such as the onset of coagulation or the harvest time. Although the accuracy of the neural network prediction was acceptable and comparable with the off-line reference assay, its stability and performance were significantly improved by correction of faulty data. The results demonstrate that on-line sensor fusion with the chosen analyzers improves monitoring and quality control of yoghurt fermentation with implications to other fermentation processes. PMID:12385712

  19. In-Line Crack and Stress Detection in Silicon Solar Cells Using Resonance Ultrasonic Vibrations

    SciTech Connect

    Ostapenko, Sergei

    2013-04-03

    Statement of Problem and Objectives. Wafer breakage in automated solar cell production lines is identified as a major technical problem and a barrier for further cost reduction of silicon solar module manufacturing. To the best of our knowledge, there are no commercial systems addressing critical needs for in-line inspection of the mechanical quality of solar wafers and cells. The principal objective of the SBIR program is to validate through experiments and computer modeling the applicability of the Resonance Ultrasonic Vibrations system, which ultimately can be used as a real-time in-line manufacturing quality control tool for fast detection of mechanically unstable silicon solar cells caused by cracks. The specific objective of Phase II is to move the technology of in-line crack detection from the laboratory level to commercial demonstration through development of a system prototype. The fragility of silicon wafers possessing low mechanical strength is attributed to peripheral and bulk millimeter-length cracks. The research program is based on feasibility results obtained during Phase I, which established that: (i) the Resonance Ultrasonic Vibrations method is applicable to as-cut, processed wafers and finished cells; (ii) the method sensitivity depends on the specific processing step; it is highest in as-cut wafers and lowest in wafers with metallization pattern and grid contacts; (iii) the system is capable of matching the 2.0 seconds per wafer throughput rate of state-of-art solar cell production lines; (iv) finite element modeling provides vibration mode analysis along with peak shift versus crack length and crack location dependence; (v) a high 91% crack rejection rate was confirmed through experimentation and statistical analysis. The Phase II project has the following specific tasks: (i) specify optimal configurations of the in-line system's component hardware and software; (ii) develop and justify a system prototype that meets major specifications for an

  20. R and D advances in corrosion and crack monitoring for oil and gas lines

    SciTech Connect

    Atherton, D.L.; Czura, W.; Krause, T.W.; Laursen, P.; Mergelas, B.; Hauge, C.

    1996-12-31

    Magnetic Flux Leakage (MFL) inspection techniques for in-line corrosion monitoring of pipelines continue to evolve rapidly. Current R and D is aimed at improving the accuracy and reliability of defect sizing. Major issues are the variability and consequent need to characterize the magnetic properties of the pipes and the effects of line pressure, residual and bending stresses on MFL signals. Magnetic Barkhausen Noise (MBN) measurements are being used to study the stress-induced changes in magnetic anisotropy. Remote Field Eddy Current (RFEC) techniques are being investigated for detection and measurement of stress corrosion cracking in gas pipelines. Anomalous defect source models have improved the detailed explanation of crack defect interactions greatly.

  1. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  2. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    PubMed

    Hennig, Anne; Kleinschmit, Jörg R G; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites. PMID:26042130

  3. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress

    PubMed Central

    Hennig, Anne; Kleinschmit, Jörg R. G.; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites. PMID:26042130

  4. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  5. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  6. Compliance calibration of specimens used in the R-curve practice. [for compact, crack-line-wedge-loaded, and center-crack tension specimens

    NASA Technical Reports Server (NTRS)

    Mccabe, D. E.; Sha, G. T.

    1977-01-01

    The compliance calibrations for the compact (CS) and crack-line-wedge-loaded (CLWL) specimens have been determined by experimental measurements and by boundary-collocation analysis. The CS and CLWL specimen configurations were modeled more accurately than those used in previous analytical investigations. Polynomial expressions for the compliance at various stations along the crack line for CS and CLWL specimens are presented. The compliance calibrations for the center-crack tension (CCT) specimen have been determined theoretically by boundary-collocation and finite-element analysis. The calculated compliance values for the CCT specimen are compared with values obtained from the Irwin-Westergaard expression and from a modification to the Irwin-Westergaard expression proposed by Eftis and Liebowitz. The Eftis-Liebowitz expression was found to be in good agreement (plus or minus 2 percent) with both analyses for crack aspect ratios up to 0.8 and for gage half-span to specimen width ratios up to 0.5.

  7. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagated both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.

  8. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    SciTech Connect

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  9. An expert system-based, on-line rotor crack monitor for utility steam turbines

    SciTech Connect

    Scheibel, J.R. ); Iman, I.; Ebben, T.G. . Corporate Research and Development Center); Blomgren, R. )

    1989-01-01

    A steam turbine vibration monitoring system is described that uses a rule-based expert system for data review and fault diagnosis. Steady-state, coast-down, and steam temperature transient vibration signature techniques used by the monitor to detect transverse rotor cracks are summarized. A histogram technique for enhancing the initial appearance of shallow crack 2/rev response is presented. The use of an expert system to fully automate diagnosis of turbine faults is discussed. Rotor crack and misalignment diagnostic rules are outlined.

  10. Spectral catalog of Kr optical lines for the development of diagnostics for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Chen, H.; Beiersdorfer, P.; Harris, C. L.; Utter, S. B.; Wong, K. L.

    2001-01-01

    We made an inventory of krypton spectra over the wavelength range 3700-6000 Å for the development of fusion plasma diagnostics. The measurements were performed using a prism spectrometer on the Lawrence Livermore National Laboratory low energy electron beam ion trap (EBIT II). With the electron energy from 150 to 17 000 eV, we recorded low ionization stages together with a number of magnetic dipole transitions from higher charge states. In total, we observed over 80 lines, of which about 70% of the lines have not been listed in the literature. This measurement established a baseline for future extension using spectrometers with very high resolution. As an example, we present the Kr spectra from 3770 to 3900 Å measured with a transmission grating spectrometer that has a resolving power of about 15 000. Among the 41 lines observed, only six lines have been listed in the databases.

  11. Spectral Catalogue of Kr Optical Lines for the Development of Diagnostics for Fusion Plasmas

    SciTech Connect

    Hui, C.; Beiersdorfer, P.; Harris, C.L.; Utter, S.B.; Wong, K.L.

    2000-06-14

    We made an inventory of krypton spectra over the wavelength range 3700-6000 {angstrom} for the development of fusion plasma diagnostics. The measurements were performed using a Steinheil prism spectrometer on the LLNL low energy electron beam ion trap (EBIT II). With the electron energy from 150 eV to 17000 eV, we recorded low ionization stages together with a number of magnetic dipole transitions from higher charge states. In total, we observed over 80 lines, of which about 70% of the lines have not been listed in the literature. This measurement established a baseline for future extension using spectrometers with very high resolution. As an example, we present the Kr spectra from 3770 {angstrom} to 3900 {angstrom} measured with a transmission grating spectrometer that has a resolving power of about 15000. Among the 41 lines observed, only 6 lines have been listed in the databases.

  12. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  13. Collescipoli - An unusual fusion crust glass. [chondrite

    NASA Technical Reports Server (NTRS)

    Nozette, S.

    1979-01-01

    An electron microprobe study was conducted on glass fragments taken from the fusion crust and an internal glass-lined vein in the H-5 chondrite Collescipoli. Microprobe analyses of the glasses revealed an unusual fusion crust composition, and analyses of glass from inside the meteorite showed compositions expected for a melt of an H-group chondrite. Studies of fusion crusts by previous workers, e.g., Krinov and Ramdohr, showed that fusion crusts contain large amounts of magnetite and other oxidized minerals. The Collescipoli fusion crusts do contain these minerals, but they also contain relatively large amounts of reduced metal, sulphide, and a sodium-rich glass. This study seems to indicate that Collescipoli preserved an early type of fusion crust. Oxidation was incomplete in the fusion crust melt that drained into a crack. From this study it is concluded that fusion crust formation does not invariably result in complete oxidation of metal and sulphide phases.

  14. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    SciTech Connect

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrum to order ten are calculated both with respect to the origin and with respect to the mean.

  15. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  16. Determination of crack morphology parameters from service failures for leak-rate analyses

    SciTech Connect

    Wilkowski, G.; Ghadiali, N.; Paul, D.

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  17. Fusion of multi-sensory NDT data for reliable detection of surface cracks: Signal-level vs. decision-level

    NASA Astrophysics Data System (ADS)

    Heideklang, René; Shokouhi, Parisa

    2016-02-01

    We present and compare two different approaches for NDT multi-sensor data fusion at signal (low) and decision (high) levels. Signal-level fusion is achieved by applying simple algebraic rules to strategically post-processed images. This is done in the original domain or in the domain of a suitable signal transform. The importance of signal normalization for low-level fusion applications is emphasized in regard to heterogeneous NDT data sets. For fusion at decision level, we develop a procedure based on assembling joint kernel density estimation (KDE). The procedure involves calculating KDEs for individual sensor detections and aggregating them by applying certain combination rules. The underlying idea is that if the detections from more than one sensor fall spatially close to one another, they are likely to result from the presence of a defect. On the other hand, single-senor detections are more likely to be structural noise or false alarm indications. To this end, we design the KDE combination rules such that it prevents single-sensor domination and allows data-driven scaling to account for the influence of individual sensors. We apply both fusion rules to a three-sensor dataset consisting in ET, MFL/GMR and TT data collected on a specimen with built-in surface discontinuities. The performance of the fusion rules in defect detection is quantitatively evaluated and compared against those of the individual sensors. Both classes of data fusion rules result in a fused image of fewer false alarms and thus improved defect detection. Finally, we discuss the advantages and disadvantages of low-level and high-level NDT data fusion with reference to our experimental results.

  18. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    SciTech Connect

    Jeff Aron; Jeff Jia; Bruce Vance; Wen Chang; Raymond Pohler; Jon Gore; Stuart Eaton; Adrian Bowles; Tim Jarman

    2005-02-01

    This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even more compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length

  19. Low mass recyclable transmission lines for Z-pinch driven inertial fusion

    NASA Astrophysics Data System (ADS)

    Slutz, S. A.; Olson, C. L.; Peterson, Per

    2003-02-01

    Recyclable transmission lines (RTLs) are being studied as a means to repetitively drive Z pinches. Minimizing the mass of the RTL should also minimize the reprocessing costs. Low mass RTLs could also help reduce the cost of a single shot facility such as the proposed X-1 accelerator and make Z-pinch driven nuclear space propulsion feasible. Calculations are presented to determine the minimum electrode mass to provide sufficient inertia against the magnetic pressure produced by the large currents needed to drive the Z pinches. The results indicate an electrode thickness which is much smaller than the initial resistive skin depth. This suggests that the minimum electrode thickness may be not be solely determined by inertial effects, but also by the ability of the electrode to efficiently carry the current. A series of experiments have been performed to determine the ability of the electrodes to carry current as a function of the electrode thickness. The results indicate that electrodes much thinner than the initial resistive skin depth can efficiently carry large currents presumably due to the formation of a highly conducting plasma. This result implies that a transmission line with only a few tens of kilograms of material can carry the large Z-pinch currents needed for inertial fusion.

  20. Effect of CTE on Fatigue Cracking of Stainless Steel Vessels

    SciTech Connect

    Bird, E. L.; Mustaleski, T. M.

    2002-01-31

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds. Most cracks were parallel to the weld in the bottom portion of the vessel. Sections were cut out of the vessel containing these cracks and examined using the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. most of the cracks originated on the outer surface just outside the weld fusion line in the heat affected zone and propagated along grain boundaries. Crack depth of those sections examined ranged from about 300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 0.32-cm (0.125-inch). The primary cause of cracking was the creation of high tensile stresses associated with the CTE differences between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue whereby crack propagation might have been aided by the presence of brittle chromium carbides along the grain boundaries, which is indicative of a slightly sensitized microstructure.

  1. Fusing complementary images for pavement cracking measurements

    NASA Astrophysics Data System (ADS)

    Yao, Ming; Zhao, Zuyun; Yao, Xun; Xu, Bugao

    2015-02-01

    Cracking is a major pavement distress that jeopardizes road serviceability and traffic safety. Automated pavement distress survey (APDS) systems have been developed using digital imaging technology to replace human surveys for more timely and accurate inspections. Most APDS systems require special lighting devices to illuminate pavements and prevent shadows of roadside objects that distort cracks in the image. Most artificial lighting devices are laser based, and are either hazardous to unprotected people or require dedicated power supplies on the vehicle. This study was aimed to develop a new imaging system that can scan pavement surface at highway speed and determine the level of severity of pavement cracking without using any artificial lighting. The new system consists of dual line-scan cameras that are installed side by side to scan the same pavement area as the vehicle moves. Cameras are controlled with different exposure settings so that both sunlit and shadowed areas can be visible in two separate images. The paired images contain complementary details useful for reconstructing an image in which the shadows are eliminated. This paper intends to present (1) the design of the dual line-scan camera system, (2) a new calibration method for line-scan cameras to rectify and register paired images, (3) a customized image-fusion algorithm that merges the multi-exposure images into one shadow-free image for crack detection, and (4) the results of the field tests on a selected road over a long period.

  2. Outcome of posterior decompression with instrumented fusion surgery for K-line (-) cervical ossification of the longitudinal ligament.

    PubMed

    Saito, Junya; Maki, Satoshi; Kamiya, Koshiro; Furuya, Takeo; Inada, Taigo; Ota, Mitsutoshi; Iijima, Yasushi; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato; Koda, Masao

    2016-10-01

    We investigated the outcome of posterior decompression and instrumented fusion (PDF) surgery for patients with K-line (-) ossification of the posterior longitudinal ligament (OPLL) of the cervical spine, who may have a poor surgical prognosis. We retrospectively analyzed the outcome of a series of 27 patients who underwent PDF without correction of cervical alignment for K-line (-) OPLL and were followed-up for at least 1 year after surgery. We had performed double-door laminoplasty followed by posterior instrumented fusion without excessive correction of cervical spine alignment. The preoperative Japanese Orthopedic Association (JOA) score for cervical myelopathy was 8.0 points and postoperative JOA score was 11.9 points on average. The mean JOA score recovery rate was 43.6%. The average C2-C7 angle was 2.2° preoperatively and 3.1° postoperatively. The average maximum occupation ratio of OPLL was 56.7%. In conclusion, PDF without correcting cervical alignment for patients with K-line (-) OPLL showed moderate neurological recovery, which was acceptable considering K-line (-) predicts poor surgical outcomes. Thus, PDF is a surgical option for such patients with OPLL. PMID:27591553

  3. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    SciTech Connect

    Jeff Aron; Jon Gore, Roger Dalton; Stuart Eaton; Adrian Bowles; Owen Thomas; Tim Jarman

    2003-07-01

    This report describes progress, experiments, and results for a project to develop a pipeline inline inspection tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). There is a brief introduction that gives background material about EMATs and relevant previous Tuboscope work toward a tool. This work left various choices about the modes and transducers for this project. The experimental section then describes the lab systems, improvements to these systems, and setups and techniques to narrow the choices. Improvements, which involved transducer matching networks, better magnetic biasing, and lower noise electronics, led to improved signal to noise (SNR) levels. The setups permitted transducer characterizations and interaction measurements in plates with man-made cracks, pipeline sections with SCC, and a full pipe with SCC. The latter were done with a moveable and compact EMAT setup, called a lab mouse, which is detailed. Next, the results section justifies the mode and transducer choices. These were for magnetostrictive EMATs and the use of EMAT launched modes: SH0 (at 2.1 MHz-mm) and SV1 (at 3.9 MHz-mm). This section then gives details of measurements on these modes. The measurements consisted of signal to noise ratio, insertion loss, magnetic biasing sensitivities crack reflection and transmission coefficients, beam width, standoff and tilt sensitivities. For most of the measurements the section presents analysis curves, such as reflection coefficient versus crack depth. Some notable results for the chosen modes are: that acceptable SNRs were generated in a pipe with magnetostrictive EMATs, that optimum bias for magnetostrictive transmitters and receivers is magnetic saturation, that crack reflection and transmission coefficients from crack interactions agree with 2 D simulations and seem workable for crack grading, and that the mouse has good waveform quality and so is ready for exhaustive measurement EMAT

  4. Fracture and crack growth resistance studies of 304 stainless steel weldments relating to retesting of cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.

  5. Role of Lorentz-Stark broadening of hydrogen spectral lines in magnetized plasmas: Applications to magnetic fusion and solar physics

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-05-01

    Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and below by "hydrogen atoms" and "hydrogen spectral lines" we mean atoms and spectral lines of hydrogen, deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field B experience a Lorentz electric field EL=v×B/c in addition to other electric fields. Since the velocity v has a distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. Compared to previous studies of this contribution, we cover the following new aspects. First, we consider the Lorentz-Doppler broadening of highly-excited hydrogen lines and produce new analytical results for arbitrary strength of the magnetic field B. We show for the first time that in the high-B case, the π-components of hydrogen lines are significantly suppressed compared to the σ-components. Second, we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions differ very significantly from the corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature. Third, we consider magnetized plasmas containing a low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen lines. We demonstrate that our findings lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the observational data in solar physics.

  6. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  7. Sensor Fusion of Monocular Cameras and Laser Rangefinders for Line-Based Simultaneous Localization and Mapping (SLAM) Tasks in Autonomous Mobile Robots

    PubMed Central

    Zhang, Xinzheng; Rad, Ahmad B.; Wong, Yiu-Kwong

    2012-01-01

    This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method. PMID:22368478

  8. Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.

    PubMed

    Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong

    2012-01-01

    This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method. PMID:22368478

  9. Fusion of CCL21 Non-Migratory Active Breast Epithelial and Breast Cancer Cells Give Rise to CCL21 Migratory Active Tumor Hybrid Cell Lines

    PubMed Central

    Reith, Georg; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S.; Dittmar, Thomas

    2013-01-01

    The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells. PMID:23667660

  10. Moving singularity creep crack growth analysis with the /Delta T/c and C/asterisk/ integrals. [path-independent vector and energy rate line integrals

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The physical meaning of (Delta T)c and its applicability to creep crack growth are reviewed. Numerical evaluation of (Delta T)c and C(asterisk) is discussed with results being given for compact specimen and strip geometries. A moving crack-tip singularity, creep crack growth simulation procedure is described and demonstrated. The results of several crack growth simulation analyses indicate that creep crack growth in 304 stainless steel occurs under essentially steady-state conditions. Based on this result, a simple methodology for predicting creep crack growth behavior is summarized.

  11. Development of aerogel-lined targets for inertial confinement fusion experiments

    SciTech Connect

    Braun, Tom

    2013-03-28

    This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, and the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.

  12. BNL development of H/sup -//D/sup -/ sources for fusion reactor neutral beam lines

    SciTech Connect

    Prelec, K

    1980-01-01

    The long range program of the BNL Neutral Beam Development Group is to design a neutral beam system based on neutralization of negative ions, with an energy of 200 keV or higher, a D/sup -/ beam current of 10 A and operating in pulses of 5 s duration or longer; the beam system would be used on fusion devices for plasma heating. Presently, work is concentrated on the development of an H/sup -/ or D/sup -/ ion source, to deliver about 1 A of beam current, at an energy of at least 10 keV and operating in pulses longer than 5 s. A source of the magnetron type was designed and fabricated and is to be tested soon; the paper describes the background experiments that were necessary for the source design, the source parameters and design features, as well as a method under consideration that would improve the gas efficiency by an order of magnitude.

  13. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  14. In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies.

    PubMed

    Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J

    2012-10-12

    Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. PMID:22939910

  15. Assessment of the effects of surface preparation and coatings on the susceptibility of line pipe to stress-corrosion cracking

    SciTech Connect

    Beavers, J.A. )

    1992-02-24

    Objectives were to evaluate susceptibility of pipeline steel to SCC when coated with coal-tar enamel, fusion-bonded epoxy (FBE), and polyethylene tape coatings. The tests included standard cathodic disbondment tests, potential gradients beneath disbonded coatings, electrochemical measurements, and SCC tests. It was concluded that factors affecting relative SCC susceptibility of pipelines with different coatings are the disbonding resistance of the coating and the ability of the coating to pass cathodic protection (CP) current. FBE coated pipelines would be expected to exhibit good SCC resistance, since the FBE coating had high cathodic disbonding resistance and could pass CP current. Grit blasting at levels used at coating mills may be beneficial or detrimental to SCC susceptibility. Excellent correlation was found between th Almen strip deflection and change in SCC threshold stress. It appears to be beneficial to remove as much mill scale as possible, and a white surface finish probably should also be specified. 50 figs, 10 tabs.

  16. Laser surface fusion of plasma sprayed ceramic turbine seals

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.; Bill, R. C. (Inventor)

    1981-01-01

    The thermal shock resistance of a ceramic layer is improved. An improved abradable lining that is deposited on a shroud forming a gas path seal in turbomachinery is emphasized. Improved thermal shock resistance of a shroud is effective through the deliberate introduction of 'benign' cracks. These are microcracks which will not propagate appreciably upon exposure to the thermal shock environment in which a turbine seal must function. Laser surface fusion treatment is used to introduce these microcracks. The ceramic surface is laser scanned to form a continuous dense layer. As this cools and solidifies, shrinkage results in the formation of a very fine crack network. The presence of this deliberately introduced fine crack network precludes the formation of a catastrophic crack during thermal shock exposure.

  17. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    PubMed

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future. PMID:25933858

  18. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE PAGESBeta

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; et al

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  19. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.; Fittinghoff, D. N.; Izumi, N.

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  20. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  1. Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction

    NASA Astrophysics Data System (ADS)

    Beger, Reinhard; Gedrange, Claudia; Hecht, Robert; Neubert, Marco

    2011-12-01

    The quality of remotely sensed data in regards of accuracy and resolution has considerably improved in recent years. Very small objects are detectable by means of imaging and laser scanning, yet there are only few studies to use such data for large scale mapping of railroad infrastructure.In this paper, an approach is presented that integrates extremely high resolution ortho-imagery and dense airborne laser scanning point clouds. These data sets are used to reconstruct railroad track centre lines. A feature level data fusion is carried out in order to combine the advantages of both data sets and to achieve a maximum of accuracy and completeness.The workflow consists of three successive processing steps. First, object-based image analysis is used to derive a railroad track mask from ortho-imagery. This spatial location information is then combined with the height information to classify the laser points. Lastly, the location of railroad track centre lines from these classified points were approximated using a feature extraction method based on an adapted random sample consensus algorithm. This workflow is tested on two railroad sections and was found to deliver very accurate results in a quickly and highly automated manner.

  2. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  3. CDinFusion--submission-ready, on-line integration of sequence and contextual data.

    PubMed

    Hankeln, Wolfgang; Wendel, Norma Johanna; Gerken, Jan; Waldmann, Jost; Buttigieg, Pier Luigi; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Glöckner, Frank Oliver

    2011-01-01

    State of the art (DNA) sequencing methods applied in "Omics" studies grant insight into the 'blueprints' of organisms from all domains of life. Sequencing is carried out around the globe and the data is submitted to the public repositories of the International Nucleotide Sequence Database Collaboration. However, the context in which these studies are conducted often gets lost, because experimental data, as well as information about the environment are rarely submitted along with the sequence data. If these contextual or metadata are missing, key opportunities of comparison and analysis across studies and habitats are hampered or even impossible. To address this problem, the Genomic Standards Consortium (GSC) promotes checklists and standards to better describe our sequence data collection and to promote the capturing, exchange and integration of sequence data with contextual data. In a recent community effort the GSC has developed a series of recommendations for contextual data that should be submitted along with sequence data. To support the scientific community to significantly enhance the quality and quantity of contextual data in the public sequence data repositories, specialized software tools are needed. In this work we present CDinFusion, a web-based tool to integrate contextual and sequence data in (Multi)FASTA format prior to submission. The tool is open source and available under the Lesser GNU Public License 3. A public installation is hosted and maintained at the Max Planck Institute for Marine Microbiology at http://www.megx.net/cdinfusion. The tool may also be installed locally using the open source code available at http://code.google.com/p/cdinfusion. PMID:21935468

  4. CDinFusion – Submission-Ready, On-Line Integration of Sequence and Contextual Data

    PubMed Central

    Hankeln, Wolfgang; Wendel, Norma Johanna; Gerken, Jan; Waldmann, Jost; Buttigieg, Pier Luigi; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Glöckner, Frank Oliver

    2011-01-01

    State of the art (DNA) sequencing methods applied in “Omics” studies grant insight into the ‘blueprints’ of organisms from all domains of life. Sequencing is carried out around the globe and the data is submitted to the public repositories of the International Nucleotide Sequence Database Collaboration. However, the context in which these studies are conducted often gets lost, because experimental data, as well as information about the environment are rarely submitted along with the sequence data. If these contextual or metadata are missing, key opportunities of comparison and analysis across studies and habitats are hampered or even impossible. To address this problem, the Genomic Standards Consortium (GSC) promotes checklists and standards to better describe our sequence data collection and to promote the capturing, exchange and integration of sequence data with contextual data. In a recent community effort the GSC has developed a series of recommendations for contextual data that should be submitted along with sequence data. To support the scientific community to significantly enhance the quality and quantity of contextual data in the public sequence data repositories, specialized software tools are needed. In this work we present CDinFusion, a web-based tool to integrate contextual and sequence data in (Multi)FASTA format prior to submission. The tool is open source and available under the Lesser GNU Public License 3. A public installation is hosted and maintained at the Max Planck Institute for Marine Microbiology at http://www.megx.net/cdinfusion. The tool may also be installed locally using the open source code available at http://code.google.com/p/cdinfusion. PMID:21935468

  5. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  6. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies.

    PubMed Central

    Gutekunst, C A; Levey, A I; Heilman, C J; Whaley, W L; Yi, H; Nash, N R; Rees, H D; Madden, J J; Hersch, S M

    1995-01-01

    The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7568002

  7. Evaluation of the eukaryotic expression of mtb32C-hbha fusion gene of Mycobacterium tuberculosis in Hepatocarcinoma cell line

    PubMed Central

    Teimourpour, Roghayeh; Zare, Hosna; Rajabnia, Ramazan; Yahyapour, Yousef; Meshkat, Zahra

    2016-01-01

    Background and Objectives: HBHA and Mtb32C have been isolated from culture supernatants of Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium bovis (M. bovis) and their immunogenicity previously studies have been confirmed. In this study, capability of constructed vector containing two mycobacterial immunodaminant antigens (Mtb32C-HBHA), in producing new chimeric protein under the in-vitro condition was examined. Materials and Methods: In present study Huh7.5 cells was transfected with Mtb32C-HBHA −pCDNA3.1+ recombinant vector using the calcium phosphate method and expression of chimeric protein was assessed by RT-PCR and Western blot methods. Results: Results of RT-PCR and Western blot showed expression of 35.5 KD recombinant protein (Mtb32C-HBHA) in this cell line. Conclusion: The constructed vector can produce two highly immunogenic antigens that fusion of them to gather makes chimeric antigen with new traits. Other attempts are needed to evaluate specific properties of this new antigen such as molecular conformation modeling and immunologic characteristics in future studies. PMID:27307979

  8. Identification of a lung adenocarcinoma cell line with CCDC6-RET fusion gene and the effect of RET inhibitors in vitro and in vivo.

    PubMed

    Suzuki, Makito; Makinoshima, Hideki; Matsumoto, Shingo; Suzuki, Ayako; Mimaki, Sachiyo; Matsushima, Koutatsu; Yoh, Kiyotaka; Goto, Koichi; Suzuki, Yutaka; Ishii, Genichiro; Ochiai, Atsushi; Tsuta, Koji; Shibata, Tatsuhiro; Kohno, Takashi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2013-07-01

    Rearrangements of the proto-oncogene RET are newly identified potential driver mutations in lung adenocarcinoma (LAD). However, the absence of cell lines harboring RET fusion genes has hampered the investigation of the biological relevance of RET and the development of RET-targeted therapy. Thus, we aimed to identify a RET fusion positive LAD cell line. Eleven LAD cell lines were screened for RET fusion transcripts by reverse transcription-polymerase chain reaction. The biological relevance of the CCDC6-RET gene products was assessed by cell growth, survival and phosphorylation of ERK1/2 and AKT with or without the suppression of RET expression using RNA interference. The efficacy of RET inhibitors was evaluated in vitro using a culture system and in an in vivo xenograft model. Expression of the CCDC6-RET fusion gene in LC-2/ad cells was demonstrated by the mRNA and protein levels, and the genomic break-point was confirmed by genomic DNA sequencing. Mutations in KRAS and EGFR were not observed in the LC-2/ad cells. CCDC6-RET was constitutively active, and the introduction of a siRNA targeting the RET 3' region decreased cell proliferation by downregulating RET and ERK1/2 phosphorylation. Moreover, treatment with RET-inhibitors, including vandetanib, reduced cell viability, which was accompanied by the downregulation of the AKT and ERK1/2 signaling pathways. Vandetanib exhibited anti-tumor effects in the xenograft model. Endogenously expressing CCDC6-RET contributed to cell growth. The inhibition of kinase activity could be an effective treatment strategy for LAD. LC-2/ad is a useful model for developing fusion RET-targeted therapy. PMID:23578175

  9. Molecular Characterization of TMPRSS2-ERG Gene Fusion in the NCI-H660 Prostate Cancer Cell Line: A New Perspective for an Old Model1*

    PubMed Central

    Mertz, Kirsten D.; Setlur, Sunita R.; Dhanasekaran, Saravana M.; Demichelis, Francesca; Perner, Sven; Tomlins, Scott; Tchinda, Joëlle; Laxman, Bharathi; Vessella, Robert L; Beroukhim, Rameen; Lee, Charles; Chinnaiyan, Arul M; Rubin, Mark A

    2007-01-01

    Recent studies have established that a significant fraction of prostate cancers harbor a signature gene fusion between the 5′ region of androgen-regulated TMPRSS2 and an ETS family transcription factor, most commonly ERG. Studies on the molecular mechanisms and functional consequences of this important chromosomal rearrangement are currently limited to the VCaP cell line derived from a vertebral bone metastasis of a hormone-refractory prostate tumor. Here we report on the NCI-H660 cell line, derived from a metastatic site of an extrapulmonary small cell carcinoma arising from the prostate. NCI-H660 harbors TMPRSS2-ERG fusion with a homozygous intronic deletion between TMPRSS2 and ERG. We demonstrate this by real-time quantitative polymerase chain reaction, a two-stage dual-color interphase fluorescence in situ hybridization (FISH) assay testing for TMPRSS2 and ERG break-aparts, and single-nucleotide polymorphism oligonucleotide arrays. The deletion is consistent with the common intronic deletion found on chromosome 21q22.2-3 in human prostate cancer samples. We demonstrate the physical juxtaposition of TMPRSS2 and ERG on the DNA level by fiber FISH. The androgen receptor-negative NCI-H660 cell line expresses ERG in an androgen-independent fashion. This in vitro model system has the potential to provide important pathobiologic insights into TMPRSS2-ERG fusion prostate cancer. PMID:17401460

  10. Fusion Toxin BLyS-Gelonin Inhibits Growth of Malignant Human B Cell Lines In Vitro and In Vivo

    PubMed Central

    Luster, Troy A.; Mukherjee, Ipsita; Carrell, Jeffrey A.; Cho, Yun Hee; Gill, Jeffrey; Kelly, Lizbeth; Garcia, Andy; Ward, Christopher; Oh, Luke; Ullrich, Stephen J.; Migone, Thi-Sau; Humphreys, Robin

    2012-01-01

    B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells. PMID:23056634

  11. Knuckle Cracking

    MedlinePlus

    ... older obese people. Question: Can cracking knuckles / joints lead to arthritis? Answer: There is no evidence of ... or damaged joints due to arthritis could potentially lead more easily to ligament injury or acute trauma ...

  12. Fusion of EBV with the surface of receptor-negative human hepatoma cell line Li7A permits virus penetration and infection.

    PubMed

    Lisi, A; Pozzi, D; Carloni, G; Da Villa, G; Iacovacci, S; Valli, M B; Grimaldi, S

    1995-01-01

    Our preliminary data suggest that Epstein-Barr virus (EBV) is able to bind to and fuse with the surface membranes of hepatoma cell line Li7A. In order to obtain further evidence, we utilized the relief of rhodamine fluorescence to monitor whether fusion would also take place when Li7A cells were exposed to experimental conditions such as neutral or low pH. It is well known that for some viruses, protonation in the endosomal compartment is needed to trigger the fusion. We show, furthermore, that the rate and extent of fusion are not affected by pretreatment of the cells with agents known to elevate the lysosomal and ensodomal pH, such as chloroquine or NH4Cl (lysosomotropic agent). By indirect immunofluorescence assay, in addition, we confirmed the binding of the EBV to the Li7A cell surface membrane. We attempted finally to correlate the above processes with successful infection of Li7A cells by EBV detected using the polymerase chain reaction technique. In spite of the apparent lack of viral receptor CD21, these nonlymphoid cells appeared susceptible to EBV penetration and infection through fusion with the plasma membrane at the surface of the cells. PMID:8539493

  13. Slow liner fusion

    SciTech Connect

    Shaffer, M.J.

    1997-08-01

    {open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

  14. The transition from subsonic to supersonic cracks

    PubMed Central

    Behn, Chris; Marder, M.

    2015-01-01

    We present the full analytical solution for steady-state in-plane crack motion in a brittle triangular lattice. This allows quick numerical evaluation of solutions for very large systems, facilitating comparisons with continuum fracture theory. Cracks that propagate faster than the Rayleigh wave speed have been thought to be forbidden in the continuum theory, but clearly exist in lattice systems. Using our analytical methods, we examine in detail the motion of atoms around a crack tip as crack speed changes from subsonic to supersonic. Subsonic cracks feature displacement fields consistent with a stress intensity factor. For supersonic cracks, the stress intensity factor disappears. Subsonic cracks are characterized by small-amplitude, high-frequency oscillations in the vertical displacement of an atom along the crack line, while supersonic cracks have large-amplitude, low-frequency oscillations. Thus, while supersonic cracks are no less physical than subsonic cracks, the connection between microscopic and macroscopic behaviour must be made in a different way. This is one reason supersonic cracks in tension had been thought not to exist. PMID:25713443

  15. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    PubMed Central

    Chakrabarti, Sanjukta; Barrow, Colin J.; Kanwar, Rupinder K.; Ramana, Venkata; Kanwar, Jagat R.

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  16. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization.

    PubMed

    Chakrabarti, Sanjukta; Barrow, Colin J; Kanwar, Rupinder K; Ramana, Venkata; Kanwar, Jagat R

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1-D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  17. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  18. Crack tip deformation and fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Liu, H.-W.

    1981-01-01

    Recent research on fatigue crack growth is summarized. Topics discussed include the use of the differential stress intensity factor to characterize crack tip deformation, the use of the unzipping model to study the growth of microcracks and the fatigue crack growth in a ferritic-martensitic steel, and the development of a model of fatige crack growth threshold. It is shown that in the case of small yielding, the differential stress intensity factor provides an adequate description of cyclic plastic deformation at the crack tip and correlates well with the crack growth rate. The unzipping model based on crack tip shear decohesion process is found to be in good agreement with the measured crack growth and striation spacing measurements. The proposed model of crack growth threshold gives correct predictions of the crack growth behavior in the near-threshold region.

  19. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  20. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  1. Interaction of part-through cracks in a flat plate

    NASA Technical Reports Server (NTRS)

    Aksel, B.; Erdogan, F.

    1985-01-01

    The accuracy of the line spring model is determined. The effect of interaction between two and three cracks is investigated, and extensive numerical results which may be useful in applications are provided. Line spring model with Reissner's plate theory is formulated to be used for any number and configurations of cracks provided that there is symmetry. This model is used to find stress intensity factors for elliptic internal cracks, elliptic edge cracks and two opposite elliptic edge cracks. Despite the simplicity of the line spring model, the results are found to be close.

  2. Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of human, simian and bat cell lines.

    PubMed

    Lawrence, Philip; Escudero Pérez, Beatriz; Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel A; Drosten, Christian; Volchkov, Viktor

    2014-03-01

    The recent discovery of a wide range of henipavirus-like viruses circulating in Megabats in Africa raises the question as to the zoonotic potential of these pathogens given the high human mortality rates seen with their pathogenic relatives Nipah virus and Hendra virus. In the absence of cultured infectious African Henipavirus we have performed experiments with recombinant F and G glycoproteins from the representative African Henipavirus strain M74a aimed at estimating its cellular tropism and capacity to use similar receptors to its highly pathogenic counterparts. The ability of the M74a virus G surface protein to use the ubiquitous Ephrin B2 host cell receptor and its heterologous cross-compatibility with Nipah virus could be expected to impart upon this virus a reasonable potential for species spillover, although differences in fusion efficiency seen with the M74a virus F protein in certain cell lines could present a barrier for zoonotic transmission. PMID:24452140

  3. Mechanics of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr. (Editor); Elber, Wolf (Editor)

    1988-01-01

    Papers are presented on plasticity induced crack closure, crack closure in fatigue crack growth, the dependence of crack closure on fatigue loading variables, and a procedure for standardizing crack closure levels. Also considered are a statistical approach to crack closure determination, the crack closure behavior of surface cracks under pure bending, closure measurements on short fatigue cracks, and crack closure under plane strain conditions. Other topics include fatigue crack closure behavior at high stress ratios, the use of acoustic waves for the characterization of closed fatigue cracks, and the influence of fatigue crack wake length and state of stress on crack closure.

  4. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  5. Quantifying weld solidification cracking susceptibility using the varestraint test

    SciTech Connect

    Lin, W.; Lippold, J.C.; Nelson, T.W.

    1994-12-31

    Since the introduction of the original Varestraint concept in the 1960`s, the longitudinal- and transverse-type Varestraint tests have become the most widely utilized techniques for quantifying weld solidification cracking susceptibility. Conventionally, cracking susceptibility is assessed by threshold strain to cause cracking and the degree of cracking as quantified by total crack strain to cause cracking and the degree of cracking as quantified by total crack length or maximum crack length. Although material-specific quantifications such as the brittle temperature range (BTR) have been proposed for the transverse-type test, similar quantifications have not been developed for the longitudinal type test. Various alloys including 304, 310, 316L, A-286, AL6XN, 20Cb-3, RA253, and RA333 stainless steels, 625, 690, and 718 nickel-base alloys, 2090, 2219, 5083, and 6061 aluminum alloys were investigated using both longitudinal- and transverse-type Varestraint tests. Tests were performed using a newly developed, computer-controlled Varestraint unit equipped with a 3-axis movable torch, spring-loaded fixture and a servo-hydraulic loading system. It was found that extensive cracking was observed in the fusion zone emanating radially from the solid-liquid inteface toward the fusion boundary in the longitudinal-type test, while weld centerline cracking was prevalent in the transverse-type test. The theoretical basis for the formation of the CSR is that liquation-related cracking only occurs in a certain temperature range known as the BTR. The detailed procedure in the development of the CSR in the fusion zone is described and discussed. This approach allows a weldability data base to be created and the comparison of results from different laboratories using different test techniques.

  6. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive. PMID:7611845

  7. On Production Mechanisms For Balmer Line Radiation From 'Cold' Atomic Hydrogen and Deuterium In Fusion Edge Plasmas

    SciTech Connect

    Hey, John Douglas

    2010-10-29

    Published arguments, which assign dominant roles to atomic metastability and molecular ion dissociation in the production of 'narrow' Zeeman component Balmer line radiation from the tokamak edge plasma, have been examined critically in relation to: l-redistribution by proton collisions, molecular ion-proton equipartition, and ion acceleration by the plasma sheath (scrape-off layer) potential. These processes are found to constrain the contributions from metastable atoms and from dissociative excitation of molecular ions to 'narrow' Balmer spectra emitted from the plasma edge, in relation to the corresponding contributions from electron impact-induced dissociative excitation of neutral molecules.

  8. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect

    Prost, Lionel Robert

    2007-02-14

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx}0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  9. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    SciTech Connect

    Wang, Ji-meng; Zhao, Hong-xi; Wang, Li; Gao, Zhi-ying; Yao, Yuan-qing

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expression of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.

  10. A potential peptide vector that allows targeted delivery of a desired fusion protein into the human breast cancer cell line MDA-MB-231

    PubMed Central

    LIU, WEI QING; YANG, JUN; HONG, MIN; GAO, CHANG E.; DONG, JIAN

    2016-01-01

    Effective control of breast cancer has been primarily hampered by a lack of tumor specificity in treatments. One potential way to improve targeting specificity is to develop novel vectors that specifically bind to and are internalized by tumor cells. Through a phage display library, an 11-L-amino acid peptide, PI (sequence, CASPSGALRSC), was selected. PI was labeled with fluorescein isothiocyanate (FITC) and named PI-FITC. Subsequently, the specific affinity of PI-FITC to MDA-MB-231 human breast cancer cells and other cancer cell lines was observed by confocal microscopy. Our previous study established that PI-FITC also shows affinity to Calu-1 human lung carcinoma cells and major histocompatibility complex class I antigen molecules; therefore, the cytomembrane proteins of the cell lines were analyzed to determine those that were common to the two cell lines and may be associated with transmembrane transduction. To further test the delivery ability of PI to MDA-MB-231 cells, PI-glutathione-S-transferase (GST) was constructed and the internalization of this fusion protein was visualized by immunofluorescence microscopy. The results revealed that PI exhibited specific affinity to MDA-MB-231 cells. Use of membrane transport inhibitors indicated that macropinocytosis and caveolin-mediated endocytosis may be involved in the endocytosis of PI. In addition, 11 membrane proteins common to MDA-MB-231 and Calu-1 may be associated with transmembrane transduction. In summary, PI was able to deliver PI-GST into MDA-MB-231 cells. Thus, PI could be modified to be a potential vector, and may contribute to the development of targeted therapeutic strategies for breast cancer. PMID:27313722

  11. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Christensen, K.; Danly, C.; Fatherley, V. E.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Merrill, F. E.; Skulina, K.; Volegov, P.; Wilde, C.

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  12. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    SciTech Connect

    Simpson, R. Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C.; Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  13. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion.

    PubMed

    Simpson, R; Christensen, K; Danly, C; Fatherley, V E; Fittinghoff, D; Grim, G P; Izumi, N; Jedlovec, D; Merrill, F E; Skulina, K; Volegov, P; Wilde, C

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF. PMID:26724078

  14. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Liu, X.-H.; Erdogan, F.

    1986-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  15. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1984-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  16. Crack interaction with 3-D dislocation loops

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    CRACKS in a solid often interact with other crystal defects such as dislocation loops. The interaction effects are of 3-D character yet their analytical treatment has been mostly limited to the 2-D regime due to mathematical complications. This paper shows that distribution of the stress intensity factors along a crack front due to arbitrary dislocation loops may be expressed as simple line integrals along the loop contours. The method of analysis is based on the 3-D Bueckner-Rice weight function theory for elastic crack analysis. Our results have significantly simplified the calculations for 3-D dislocation loops produced in the plastic processes at the crack front due to highly concentrated crack tip stress fields. Examples for crack-tip 3-D loops and 2-D straight dislocations emerging from the crack tip are given to demonstrate applications of the derived formulae. The results are consistent with some previous analytical solutions existing in the literature. As further applications we also analyse straight dislocations that are parallel or perpendicular to the crack plane but are not parallel to the crack front.

  17. Short cracks in piping and piping wells. Volume 3, No. 2: Semiannual report, October 1992--March 1993

    SciTech Connect

    Wilkowski, G.M.; Brust, F.; Francini, R.

    1994-03-01

    This is the sixth semiannual report of the US Nuclear Regulatory Commission`s 4-year research program ``Short Cracks in Piping and Piping Welds`` which began in March 1990. The objective is to verify and improve fracture analyses for circumferentially cracked nuclear piping with cracks sizes typically found during in-service flaw evaluations. Progress is the through-wall-cracked pipe efforts involved (1) verification of deformation plasticity under nonproportional loading, (2) evaluation of the effect of weld metal strength on various J-estimation schemes, and (3) development of new GE/EPRI functions. Surface-cracked pipe evaluations involved (1) material characterization of B&W C-Mn-Mo submerged arc weld metal, and (2) 3D finite-element mesh refinement study. The toughness of the bimetallic weld fusion line was evaluated and showed unusual fracture behavior based on the results of the Charpy tests. The dynamic strain aging J-R tests confirmed the screening criterion developed earlier in the program. The results from this program to date necessitated several additional efforts. These were initiated and have been reported here. Presentation of the results from this program to the ASME Section XI Pipe Flaw Evaluation Working Group is also summarized here.

  18. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  19. On the role of atomic metastability in the production of Balmer line radiation from ‘cold’ atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2012-03-01

    Published arguments, which assign an important role to atomic metastability in the production of ‘narrow’ Zeeman component radiation from the boundary region of fusion plasmas, are examined critically in relation to l-redistribution by proton and electron collisions, and mixing of unperturbed atomic states by the ion microfield and microfield gradient. It is concluded that these important processes indeed severely constrain the contribution from ‘metastable’ states to the generation of the hydrogen Balmer spectra, for electron concentrations above 1012 cm-3, as pointed out before by the present author (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555). The analysis of collision-induced l-redistribution represents an extension of that used previously (Hey et al 1996 Contrib. Plasma Phys. 36 583), applicable up to higher electron densities. For comparison purposes, we also consider the question of metastability of ionized helium in a low-temperature plasma, and that of some common hydrogenic impurities (C5+ and Ne9+) in a hydrogen (deuterium) fusion plasma. While for low nuclear charge Z the metastability of 2s1/2 levels is quenched by the plasma environment, it is much reduced in high-Z ions owing to the rapid increase with Z of the two-photon electric dipole (2E1) and magnetic dipole (M1) spontaneous transition rates to the ground state, whereas the role of the plasma in these cases is less important. The main new principle elaborated in this work is the sensitivity of atomic line strengths, and hence collision strengths, to perturbation by the plasma environment for transitions between fine-structure sublevels of the same principal quantum number. As the plasma microfield strength grows, ‘allowed’ transitions diminish in strength, while ‘forbidden’ transitions grow. However, owing to violation of the parity selection rule, there is an overall loss of collision strength available to transitions, resulting from the appearance of significant

  20. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  1. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  2. Surface and through crack problems in orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Wu, B.-H.

    1988-01-01

    The present treatment of the general mode I crack problem in bending- and membrane-loaded orthotropic plates proceeds by formulating the bending problem for a series of planar and through-cracks; by independently varying the six independent constants, the effect of material orthotropy on the stress intensity factor is determined. The surface-crack problem is then formulated by means of the line-spring model, using a transverse-shear theory of plate bending. Attention is given to composite laminates with through-cracks or semielliptic surface cracks. A significant effect is noted for material orthotropy.

  3. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  4. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." Stacey is recovering from her ...

  5. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  6. Short crack growth behavior

    SciTech Connect

    Sadananda, K.; Vasudevan, A.K.

    1997-12-01

    The authors have re-evaluated short crack growth behavior using concepts developed recently, and they show that these concepts provide a unified framework that can explain both short and long crack growth behavior without resorting to the crack closure effect. They consider that the behavior of long cracks, including the effects of load ratio, R, is fundamental. they had shown previously that, since fatigue is at least a two-parameter problem in that at least two load parameters are required for an unambiguous description, there are two critical driving forces required simultaneously for fatigue cracks to grow. In extending this analysis to the growth of short cracks, they reject the current notion of the lack of similitude for short cracks and express the similitude as a fundamental postulate that, for a given crack growth mechanism, equal crack tip driving forces result in equal crack growth rates. Short crack growth behavior confirms the concept that two parameters are required to define fatigue; consequently, for fatigue cracks to grow, two thresholds need to be satisfied simultaneously. The authors present examples from the literature to illustrate the concepts discussed.

  7. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  8. Cracked tooth diagnosis and treatment: An alternative paradigm

    PubMed Central

    Mamoun, John S.; Napoletano, Donato

    2015-01-01

    This article reviews the diagnosis and treatment of cracked teeth, and explores common clinical examples of cracked teeth, such as cusp fractures, fractures into tooth furcations, and root fractures. This article provides alternative definitions of terms such as cracked teeth, complete and incomplete fractures and crack lines, and explores the scientific rationale for dental terminology commonly used to describe cracked teeth, such as cracked tooth syndrome, structural versus nonstructural cracks, and vertical, horizontal, and oblique fractures. The article explains the advantages of high magnification loupes (×6–8 or greater), or the surgical operating microscope, combined with co-axial or head-mounted illumination, when observing teeth for microscopic crack lines or enamel craze lines. The article explores what biomechanical factors help to facilitate the development of cracks in teeth, and under what circumstances a full coverage crown may be indicated for preventing further propagation of a fracture plane. Articles on cracked tooth phenomena were located via a PubMed search using a variety of keywords, and via selective hand-searching of citations contained within located articles. PMID:26038667

  9. Research of infrared laser based pavement imaging and crack detection

    NASA Astrophysics Data System (ADS)

    Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang

    2013-08-01

    Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.

  10. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  11. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  12. CRACK MODELLING FOR RADIOGRAPHY

    SciTech Connect

    Chady, T.; Napierala, L.

    2010-02-22

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  13. Thermal cracking of butadiene

    SciTech Connect

    Duisters, H.A.M. )

    1994-01-01

    This paper presents experimental data on the thermal cracking of butadiene in a pilot plant, under conditions representative of industrial operation. The product distribution of pure-butadiene cracking is shown. Results from cocracking experiments in naphtha and C[sub 4]-raffinate are also presented. It is shown that butadiene cracking can be an interesting outlet for the increasing butadiene overcapacity in steam crackers. Some aspects of coke formation during butadiene pyrolysis are addressed as well.

  14. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  15. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  16. A t(6;12)(q23;p13) results in the fusion of ETV6 to a novel gene, STL, in a B-cell ALL cell line.

    PubMed

    Suto, Y; Sato, Y; Smith, S D; Rowley, J D; Bohlander, S K

    1997-04-01

    ETV6 (TEL) is rearranged in various types of hematologic malignancies. The B-cell precursor acute lymphoblastic leukemia (ALL) cell line SUP-B2 has a t(6;12)(q23;p13) involving ETV6 at 12p13 and a submicroscopic deletion of the other ETV6 allele. The reciprocal translocation results in the fusion of ETV6 to a previously unknown gene at 6q23, which we named STL (six-twelve leukemia gene). Both reciprocal fusion transcripts can be detected: On the der(6) chromosome, the ETV6/STL mRNA shows an apparently out of frame fusion of ETV6 at nucleotide 187 to STL, which would result in the addition of 14 amino acids to the first 54 amino acids of ETV6. On the der(12) chromosome three different variants of the STL/ETV6 fusion mRNA could be detected; variable size segments were inserted at the breakpoint between STL and ETV6 exon 3. One of these variants could give rise to a protein in which the first 54 amino acids of ETV6 are replaced by 12 amino acids from one of the STL short open reading frames. Sequence analysis of a 1.4 kb STL cDNA clone from a skeletal muscle library revealed no long open reading frames. This cell line will be very useful in studying the different mechanisms by which alterations of ETV6 contribute to leukemogenesis and in testing the hypothesis that ETV6 might act as a tumor suppressor gene. PMID:9087565

  17. Comparison of finite element J-integral evaluations for the blunt crack model and the sharp crack model

    SciTech Connect

    Pan, Y.C.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is that of hot sodium coming into contact with either unprotected concrete or steel-lined concrete equipment cells and containment structures. An aspect of this is the potential of concrete cracking which would significantly influence the safety assessment. Concrete cracking in finite element analysis can be modeled as a blunt crack in which the crack is assumed to be uniformly distributed throughout the area of the element. A blunt crack model based on the energy release rate and the effective strength concepts which was insensitive to the element size was presented by Bazant and Cedolin. Some difficulties were encountered in incorporating their approach into a general purpose finite element code. An approach based on the J-integral to circumvent some of the difficulties was proposed by Pan, Marchertas, and Kennedy. Alternatively, cracking can also be modeled as a sharp crack where the crack surface is treated as the boundary of the finite element mesh. The sharp crack model is adopted by most researchers and its J-integral has been well established. It is desirable to establish the correlation between the J-integrals, or the energy release rates, for the blunt crack model and the sharp crack model so that data obtained from one model can be used on the other.

  18. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family.

    PubMed Central

    Dreyling, M H; Martinez-Climent, J A; Zheng, M; Mao, J; Rowley, J D; Bohlander, S K

    1996-01-01

    The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line. Images Fig. 1 Fig. 3 PMID:8643484

  19. Fc-fusion mimetics.

    PubMed

    Khalili, H; Khaw, P T; Brocchini, S

    2016-06-24

    The Fc-fusion mimetic RpR 2[combining low line] was prepared by disulfide bridging conjugation using PEG in the place of the Fc. RpR 2[combining low line] displayed higher affinity for VEGF than aflibercept. This is caused primarily by a slower dissociation rate, which can prolong a drug at its site of action. RpRs have considerable potential for development as stable, organ specific therapeutics. PMID:27127811

  20. In-service turbine wheel crack monitor

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1975-01-01

    System can be utilized in flight or at flight line. It monitors disk rim for surface cracks emanating from blade root interface. System consists of eddy-current sensor, mounted approximately 1 1/2 mm (1/16 in) away from face of disk, and remotely located electrical capacitance-conductance bridge and signal analyzer.

  1. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  2. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  3. 20. Detail, crack in southeast end wall showing hollow brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, crack in southeast end wall showing hollow brick lining of exterior wall; view to south, 135mm lens plus electronic flash illumination. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  4. Near-neutral pH SCC in pipelines: Effects of pressure fluctuations on crack propagation

    SciTech Connect

    Beavers, J.A.; Jaake, C.E.

    1998-12-31

    Currently, there is a poor understanding of the effects of pressure related parameters (operating pressure, pressure fluctuations, and hydrostatic testings) on external stress corrosion crack propagation in pipelines in near-neutral-pH environments. A better definition of the role of these parameters on crack propagation is needed to aid in the prediction of crack growth rates on operating pipelines and to develop strategies to mitigate this form of cracking. The objective of the research described in this paper was to determine the roles and synergistic effects of operating pressure, pressure fluctuations, and hydrostatic testing on crack growth in line pipe steels in a near-neutral-pH SCC environment. All testing was performed on one X-65 line pipe steel in a near-neutral-pH cracking environment, designated NS4. Fatigue precracked compact-type specimens of the line pipe steel were cyclically loaded while immersed in the cracking environment. The desired loading regime was applied using a servo-hydraulic tensile testing machine. Crack growth was monitored using the electric potential drop technique. The loading conditions applied to the specimen were related to field conditions using the J-integral parameter. It was found that the prior load history applied to the specimens had a significant effect on crack growth behavior. Overloading inhibited crack growth while unloading stimulated crack growth. Hydrostatic testing, which combines overloading and unloading, caused some crack extension but reduced the crack velocity.

  5. Small-crack test methods

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  6. Effect of crack surface geometry on fatigue crack closure

    SciTech Connect

    Drury, W.J.; Gokhale, A.M.; Antolovich, S.D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  7. Effect of crack surface geometry on fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Drury, W. J.; Gokhale, Arun M.; Antolovich, S. D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measures of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. Our objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such as height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scaledependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  8. Catalytic cracking process

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1980-04-29

    The octane number of a cracked naphtha can be significantly improved in a catalytic cracking unit, without significant decrease in naphtha yield, by maintaining certain critical concentrations of metals on the catalyst, suitably by blending or adding a heavy metals-containing component to the gas oil feed. Suitably, in a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking reactor (Zone) at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regenerator (Regeneration zone) by burning coke off the catalyst, and catalyst is circulated between the reactor and regenerator, sufficient of a metals-containing heavy feedstock is admixed, intermittantly or continuously, with the gas oil feed to deposit metals on said catalyst and raise the metals-content of said catalyst to a level of from about 1500 to about 6000 parts per million, preferably from about 2500 to about 4000 parts per million expressed as equivalent nickel, base the weight of the catalyst, and said metals level is maintained on the catalyst throughout the operation by withdrawing high metals-containing catalyst and adding low metals-containing catalyst to the regenerator.

  9. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  10. Surface cracks in a plate of finite width under tension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    The problem of a finite plate containing collinear surface cracks is considered and solved by using the line spring model with plane elasticity and Reissner's plate theory. The main focus is on the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors in an effort to provide extensive numerical results which may be useful in applications. Some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks, and two corner cracks for wide range of relative dimensions. Particularly in corner cracks, the agreement with the finite element solution is surprisingly very good. The results are obtained for semi-elliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  11. Surface cracks in a plate of finite width under extension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  12. Modelling of hydride cracking

    SciTech Connect

    Zheng, X.J.; Metzger, D.R.; Glinka, G.; Dubey, R.N.

    1996-12-01

    Zirconium alloys may be susceptible to hydride formation under certain service conditions, due to hydrogen diffusion and precipitation in the presence of stress concentrations and temperature gradients. The inhomogeneous brittle hydride platelets that form are modeled as plane defects of zero thickness, with fracture toughness less than that of the matrix. A fracture criterion based on sufficient energy and stress is proposed for either delayed hydride cracking (DHC) under constant loading conditions, or hydride cracking at rising loads, such as in a fracture toughness test. The fracture criterion is validated against available experimental data concerning initiation of hydride fracture in smooth specimens, and DHC in cracked specimens under various loading and temperature conditions.

  13. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  14. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  15. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  16. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  17. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  18. Thermal cracking of hydrocarbons

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1988-09-01

    Knowledge of thermal cracking of hydrocarbons is important in understanding and modeling petroleum maturation. We have reviewed the literature on the thermal cracking of pure hydrocarbons and mixtures of hydrocarbons, with particular attention given to dependence of the kinetics on temperature, pressure, and phase. Major uncertainties remain with regard to pressure dependence. Based on this review, we developed a simple, four-component, three-reaction model for oil-cracking. We also developed a simple, kerogen-maturation, kinetic model that incorporates hydrogen and carbon balance and includes the most important oil- and gas-forming reactions: kerogen pyrolysis, three oil-cracking reactions, and three coke-pyrolysis reactions. Tentative stoichiometry parameters are given for lacustrine and marine kerogens. 35 refs., 5 figs., 5 tabs.

  19. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  20. Crack-growth analysis

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Creager, M.

    1976-01-01

    Flexible, adaptable, integrative routine, computer program incorporates Collipriest-Ehret and Paris-Forman equations. Calculates growth from initial defect size and terminates calculation when crack is sufficiently large for critical condition. Wheeler, Willenborg, and Grumman Closure models are available.

  1. The kinked interface crack

    NASA Astrophysics Data System (ADS)

    Heitzer, Joerg

    1992-05-01

    Two methods for the numerical solution of the integral equation describing the kinked interface crack, one proposed by Erdogan et al. (1973) and the other by Theokaris and Iokimidis (1979), are examined. The method of Erdogan et al. is then used to solve the equation in order to determine the kinking angle of the interface crack. Results are presented for two material combinations, aluminum/epoxy and glass/ceramic, under uniaxial tension in the direction normal to the interface.

  2. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  3. The surface and through crack problems in layered orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Wu, Binghua

    1991-01-01

    An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.

  4. Simulation on the motion of crankshaft with crack in crankpin-web fillet region

    NASA Astrophysics Data System (ADS)

    Lei, Xuanyang; Zhang, Guicai; Xigeng, Song; Chen, Jin; Dong, Guangming

    2006-08-01

    A new method for simulating nonlinear motion of cracked crankshaft is proposed, and the transient vibration response of a cracked crankshaft is evaluated and analyzed. First, the crankshaft without crack is simplified as a finite element model based on spatial Timoshenko beam element, and the vibration modes of the crankshaft are calculated and compared with the results presented in other published literatures. Then, the frequently occurred crack in crankpin-web fillet region is studied. According to the characteristic of this kind of crack, a new spatial crack beam element is developed, and a cracked crankshaft model, which combines crack beam element and Timoshenko beam elements, is established. Subsequently, the breathing behavior of the crack under operating condition is discussed, and the nonlinear equation of motion of cracked crankshaft is set up. Finally, the transient vibration response of the cracked crankshaft under fire condition is evaluated, and the influence of the crack depth on the vibration response of torsion, translation and bending are analyzed. The modeling and analysis procedures are applied to a crankshaft system of a four in-line cylinder engine. This investigation provides a useful tool for the vibration analysis and crack detection of cracked crankshaft system.

  5. Creep crack growth behavior of aluminum alloy 2519. Part 2: Numerical analysis

    SciTech Connect

    Hall, D.E.; Hamilton, B.C.; McDowell, D.L.; Saxena, A.

    1997-12-31

    The experimental analysis of high temperature fracture in Aluminum Alloy 2519-T87 presented in Part 1 of this paper highlighted the creep-brittle fracture characteristics of the material and showed reasonable correlation of crack growth rates with the stress intensity factor K. Part 2 continues this investigation numerically using growing crack finite element analyses. Experimentally observed crack growth histories of four aluminum 2519-T87 compact specimens are enforced by controlling the rate of release of finite element nodes along the crack growth path to gain insight into the relation of the crack tip fields to far field fracture parameters and to crack growth rates. A variable time-step, nodal-release algorithm is presented to model the high strain rates that occur during the initial stages of crack growth. The numerical results indicate an initial transient period of crack growth followed by a quasi-steady-state crack growth regime in which the crack tip fields change slowly with increasing crack length. Transition of crack growth to the quasi-steady-state regime, where similitude and small-scale creep conditions roughly exist, is given by a transition time t{sub g} that depends on the crack growth history and material properties. Excellent correlation of the stress intensity factor K with the crack growth rates is observed after time t{sub g}. Experimental difficulties in measuring the creep component of the load-line deflection rate are also discussed.

  6. Refinery ring groove cracking experience

    SciTech Connect

    Ehmke, E.F.

    1982-05-01

    This paper presents the results of a questionnaire on the problem of ring groove cracking in reactors. The results were found to be inconclusive in providing any information on correcting the problem. One report pertaining to a ring groove crack on a 24-inch reactor nozzle served as a warning that cracks may progress beyond the overlay, through it is not known if the base metal can easily crack at low temperatures. The results did not indicate at what point the cracks occurred, but what was common to almost all cracks was that the flange had been in high-temperature, high-pressure hydrogen suggesting that dissolved hydrogen or environmental hydrogen assisted the cracking. The type of stress that contributes in the cracking has not been determined. It is indicated that many cracks were found after the questionnaire was done.

  7. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  8. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    SciTech Connect

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  9. Low-pH stress corrosion cracking of natural gas pipelines

    SciTech Connect

    Harle, B.A.; Beavers, J.A.; Jaske, C.E.

    1994-12-31

    Stress corrosion cracking of natural gas pipelines in low-pH environments is a serious problem for the gas transmission industry. To date, researchers have experienced significant difficulties in reproducing cracking in the laboratory. This paper describes results of an ongoing program investigating crack growth of an API X-65 line pipe steel in a low-pH cracking environment using a J-integral technique. The primary objectives of this research are to reproduce the cracking observed in the field and identify an appropriate crack driving force parameter. Significant crack growth has been observed in the testing and the J-integral appears to be a good parameter for characterizing crack growth behavior.

  10. The transduction of His-TAT-p53 fusion protein into the human osteogenic sarcoma cell line (Saos-2) and its influence on cell cycle arrest and apoptosis.

    PubMed

    Jiang, Lei; Ma, Yushu; Wang, Jinzhi; Tao, Xinyi; Wei, Dongzhi

    2008-03-01

    The p53 gene is a tumor suppressor gene. It encodes a nuclear phosphoprotein p53 involved in the regulation of cell cycle arrest and apoptosis to maintain the genomic integrity of the cell. As mutations of p53 gene are found in most human cancers, p53 protein becomes a hot target in the research of anticancer therapy. In the present study, an 11-amino acid domain of TAT protein which has been demonstrated to be able to transduce across cell membranes was fused with p53. The result revealed that the fusion protein His-TAT-p53 accumulated in the nucleus and inhibited the growth of the Saos-2 cells. Besides apoptosis, an increased percentage of G2 phase suggested that the transduction of His-TAT-p53 into cells might be associated with a G2 arrest of cell cycle. PMID:17206471

  11. In-line inspection device to detect and size stress corrosion cracks utilizing low frequency eddy currents in combination with magnetic saturation of the pipe wall in natural gas pipelines

    SciTech Connect

    Hayford, D.T.; Davis, R.J.

    1992-12-21

    In two earlier research programs conducted for the NDT Supervisory Committee, Battelle developed low-frequency eddy current equipment for detecting and characterizing stress corrosion cracks from the outside of gas transmission pipelines without requiring the removal of the protective coating. In this program, Battelle examined the possibility of using this or similar equipment to detect stress corrosion cracks from the interior of the pipeline by magnetically saturating the pipeline to reduce the permeability of the pipeline material and thereby increase the penetration of eddy current fields into the pipeline. The study was divided into two parts, an analytical study to determine how well eddy currents could be used to detect cracks if the permeability of the pipeline material is reduced by using magnetic saturation and an experimental study to verify the results of the analytical study and to determine how much the permeability could be reduced using a large magnetizing field. The analytical study indicated that significant improvements could be made in the defect sensitivity of eddy current probes to external cracks even if the pipeline is not completely saturated; reducing the permeability to a value as high as 10 would be sufficient. However, the experimental study showed just how difficult it is to reduce the permeability of the pipeline to such a low value. The power required to reduce the permeability to 33 was about 5 kilowatts, which we believe is excessive for an internal inspection device; however, this power requirement may be reduced by a better design. With a transverse permeability of 33, we believe that defects which are 70 percent or more of the pipe wall in depth would be detectable with an eddy current device.

  12. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  13. Mode 2 fatigue crack growth specimen development

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Gross, B.; Srawley, J. E.

    1983-01-01

    A Mode II test specimen was developed which has potential application in understanding phemonena associated with mixed mode fatigue failures in high performance aircraft engine bearing races. The attributes of the specimen are: it contains one single ended notch, which simplifiers data gathering and reduction; the fatigue crack grous in-line with the direction of load application; a single axis test machine is sufficient to perform testing; and the Mode I component is vanishingly small.

  14. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  15. Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Lewicki, David G.

    1996-01-01

    Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.

  16. Surface crack problems in plates

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.; Erdogan, F.

    1989-01-01

    The mode I crack problem in plates under membrane loading and bending is reconsidered. The purpose is to examine certain analytical features of the problem further and to provide some new results. The formulation and the results given by the classical and the Reissner plate theories for through and part-through cracks are compared. For surface cracks the three-dimensional finite element solution is used as the basis of comparison. The solution is obtained and results are given for the crack/contact problem in a plate with a through crack under pure bending and for the crack interaction problem. Also, a procedure is developed to treat the problem of subcritical crack growth and to trace the evolution of the propagating crack.

  17. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  18. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit hour. If…

  19. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... limits for organic HAP emissions from catalytic cracking units required in paragraphs (a)(1) and (2)...

  20. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... limits for organic HAP emissions from catalytic cracking units required in paragraphs (a)(1) and (2)...

  1. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565 What... emissions from catalytic cracking units required in paragraphs (a)(1) and (2) of this section do not...

  2. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... limits for organic HAP emissions from catalytic cracking units required in paragraphs (a)(1) and (2)...

  3. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565 What... emissions from catalytic cracking units required in paragraphs (a)(1) and (2) of this section do not...

  4. Remote field eddy current detection of stress-corrosion cracks

    SciTech Connect

    Nestleroth, J.B.

    1990-02-01

    The feasibility of detecting stress-corrosion cracks (SSC) using the Remote Field Eddy Current (RFEC) technique was demonstrated. The RFEC technique interrogates the entire thickness of the pipe and is applicable for in-line inspection. If it can be shown that the RFEC technique is effective in detecting SSC, then the technique is an ideal method for detecting the defects of interest. A defect detection model is proposed for explaining the mechanism for crack detection. For axially oriented, closed cracks, such as SCC, the conventional defect detection model proved to be too simplistic and not applicable. Therefore, a new detection mode that examines the flow of circumferential eddy currents was developed based on experimental results. This model, though not rigorous, provides a general understanding of the applicability of the RFEC technique for finding SSC. The data from the cracks and various artificial defects is presented in three formats: isometric projections, pseudocolor images and line-of-sight data. Though only two cracks were found, the experimental results correlate well with the circumferential eddy current theory. A theoretical analysis of the effects of motion on the output signal of the receiver is presented. This analysis indicates that inspection speed of simple implementations may be limited to a few miles per hour. Remote field eddy current inspection has excellent potential for inspection of gas transmission lines for detecting stress corrosion cracks that should be further developed.

  5. Ewing sarcoma fusion protein EWSR1/FLI1 interacts with EWSR1 leading to mitotic defects in zebrafish embryos and human cell lines.

    PubMed

    Embree, Lisa J; Azuma, Mizuki; Hickstein, Dennis D

    2009-05-15

    The mechanism whereby the fusion of EWSR1 with the ETS transcription factor FLI1 contributes to malignant transformation in Ewing sarcoma remains unclear. We show that injection of human or zebrafish EWSR1/FLI1 mRNA into developing zebrafish embryos leads to mitotic defects with multipolar and disorganized mitotic spindles. Expression of human EWSR1/FLI1 in HeLa cells also results in mitotic defects, along with mislocalization of Aurora kinase B, a key regulator of mitotic progression. Because these mitotic abnormalities mimic those observed with the knockdown of EWSR1 in zebrafish embryos and HeLa cells, we investigated whether EWSR1/FLI1 interacts with EWSR1 and interferes with its function. EWSR1 coimmunoprecipitates with EWSR1/FLI1, and overexpression of EWSR1 rescues the mitotic defects in EWSR1/FLI1-transfected HeLa cells. This interaction between EWSR1/FLI1 and EWSR1 in Ewing sarcoma may induce mitotic defects leading to genomic instability and subsequent malignant transformation. PMID:19417137

  6. Crack patterns over uneven substrates.

    PubMed

    Nandakishore, Pawan; Goehring, Lucas

    2016-02-28

    Cracks in thin layers are influenced by what lies beneath them. From buried craters to crocodile skin, crack patterns are found over an enormous range of length scales. Regardless of absolute size, their substrates can dramatically influence how cracks form, guiding them in some cases, or shielding regions from them in others. Here we investigate how a substrate's shape affects the appearance of cracks above it, by preparing mud cracks over sinusoidally varying surfaces. We find that as the thickness of the cracking layer increases, the observed crack patterns change from wavy to ladder-like to isotropic. Two order parameters are introduced to measure the relative alignment of these crack networks, and, along with Fourier methods, are used to characterise the transitions between crack pattern types. Finally, we explain these results with a model, based on the Griffith criteria of fracture, that identifies the conditions for which straight or wavy cracks will be seen, and predicts how well-ordered the cracks will be. Our metrics and results can be applied to any situation where connected networks of cracks are expected, or found. PMID:26762761

  7. Random loading fatigue crack growth: Crack closure considerations

    NASA Technical Reports Server (NTRS)

    Ortiz, Keith

    1987-01-01

    The prediction of fatigue crack growth is an important element of effective fracture control for metallic structures and mechanical components, especially in the aerospace industry. The prediction techniques available and applied today are mostly based on fatigue crack growth measurements determined in constant amplitude testing. However, while many service loadings are constant amplitude, many more loadings are random amplitude. An investigation to determine which statistics of random loadings are relevant to fatigue crack closure was conducted. The fundamentals of random processes and crack closure are briefly reviewed, then the relevance of certain random process parameters to the crack closure calculation are discussed qualitatively. A course for further research is outlined.

  8. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1987-01-01

    Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient.

  9. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  10. Virulent Mycobacterium fortuitum restricts NO production by a gamma interferon-activated J774 cell line and phagosome-lysosome fusion.

    PubMed

    Da Silva, Tânia Regina Marques; De Freitas, Juliana Ribeiro; Silva, Queilan Chagas; Figueira, Cláudio Pereira; Roxo, Eliana; Leão, Sylvia Cardoso; De Freitas, Luiz Antônio Rodrigues; Veras, Patrícia Sampaio Tavares

    2002-10-01

    The virulence of different isolates of Mycobacterium has been associated with two morphologically distinguishable colonial variants: opaque (SmOp) and transparent (SmTr). In this report we used an in vitro assay to compare macrophage (Mphi) responses to SmOp and SmTr Mycobacterium fortuitum variants, taking advantage of the fact that these variants were derived from the same isolate. Cells preactivated or not with gamma interferon (IFN-gamma) were infected with SmOp or SmTr M. fortuitum. We showed that SmOp and SmTr induced different levels of nitric oxide (NO) production by IFN-gamma-stimulated Mphi. Indeed, the amount of IFN-gamma-induced NO production by J774 cells was 4.8 to 9.0 times higher by SmOp (23.1 to 37.7 micro M) compared to SmTr infection (3.9 to 4.8 micro M) (P = 0.0332), indicating that virulent SmTr bacilli restricted NO production. In addition, IFN-gamma-induced NO production by Mphi was higher when correlated with reduction of only avirulent SmOp bacillus viability. SNAP (S-nitroso-N-acetyl-DL-penicillamine)-induced NO production did not modify SmTr viability, indicating its resistance to nitrogen radicals. Electron microscopy studies were performed to evaluate the capacity of phagosomes to fuse with lysosomes labeled with bovine serum albumin-colloidal gold particles. By 24 h postinfection, 69% more phagosome-containing SmOp variant had fused with lysosomes compared to the SmTr-induced phagosomes. In conclusion, these data indicate that virulent SmTr bacilli may escape host defense by restricting IFN-gamma-induced NO production, resisting nitrogen toxic radicals, and limiting phagosome fusion with lysosomes. PMID:12228291

  11. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity

  12. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    SciTech Connect

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  13. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  14. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  15. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  16. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  17. Fusion neutronics experiments and analysis

    SciTech Connect

    Not Available

    1992-01-01

    UCLA has led the neutronics R D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  18. Membrane tension and membrane fusion.

    PubMed

    Kozlov, Michael M; Chernomordik, Leonid V

    2015-08-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually large membrane tensions or, alternatively, low line tensions of the pore resulting from accumulation in the pore rim of membrane-bending proteins. Increase of the inter-membrane distance facilitates the reaction. PMID:26282924

  19. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Wang, Hui-Ping; Wang, Xiaojie; Cui, Haichao; Lu, Fenggui

    2015-03-01

    This paper investigates hot cracking rate in Al fiber laser welding under various process conditions and performs corresponding process optimization. First, effects of welding process parameters such as distance between welding center line and its closest trim edge, laser power and welding speed on hot cracking rate were investigated experimentally with response surface methodology (RSM). The hot cracking rate in the paper is defined as ratio of hot cracking length over the total weld seam length. Based on the experimental results following Box-Behnken design, a prediction model for the hot cracking rate was developed using a second order polynomial function considering only two factor interaction. The initial prediction result indicated that the established model could predict the hot cracking rate adequately within the range of welding parameters being used. The model was then used to optimize welding parameters to achieve cracking-free welds.

  20. Elastic-plastic fracture of cylindrical shells containing a part-through circumferential crack

    SciTech Connect

    Ezzat, H.; Erdogan, F.

    1982-11-01

    The problem of fatigue crack propagation and ductile fracture of a cylindrical shell containing a macroscopic circumferential flaw is considered. The main interest in the study is in applications to line pipes and other cylindrical containers under secondary axial stresses in addition to the primary stresses coming from the internal pressure. The stress intensity factor for the part-through crack used in analyzing and correlating the fatigue crack propagation rate is obtained by using a line spring model in conjunction with Reissner's shell theory. To analyze the ductile fracture instability and to correlate the experimental and theoretical results, the crack mouth opening displacement is used as the parameter. The limited data on fatigue crack propagation give the expected result, namely that the crack propagation rate in pipes may be predicted from the fatigue results performed on simpler geometries provided the stress intensity factors in pipes are calculated with sufficient accuracy. 14 references.

  1. Stress analysis and stress-intensity factors for finite geometry solids containing rectangular surface cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.

    1977-01-01

    The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement field in a finite geometry bar containing a variable depth rectangular surface crack under extensionally applied uniform loading. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. Using the obtained displacement field, normal stresses, and the stress-intensity factor variation along the crack periphery are calculated for different crack depth to bar thickness ratios. Crack opening displacements and stress-intensity factors are also obtained for a through-thickness, center-cracked bar with variable thickness. The reported results show a considerable potential for using this method in calculating stress-intensity factors for commonly encountered surface crack geometries in finite solids

  2. Stress analysis and stress intensity factors for finite geometry solids containing rectangular surface cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.

    1975-01-01

    The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement field in a finite geometry bar containing a variable depth rectangular surface crack under extensionally applied uniform loading. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. Using the obtained displacement field, normal stresses and the stress intensity factor variation along the crack periphery are calculated for different crack depth to bar thickness ratios. Crack opening displacements and stress intensity factors are also obtained for a through-thickness, center cracked bar with variable thickness. The reported results show a considerable potential for using this method in calculating stress intensity factors for commonly encountered surface crack geometries in finite solids.

  3. Thermographic imaging of cracks in thin metal sheets

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Winfree, William P.; Howell, Patricia A.; Syed, Hazari; Renouard, Keith A.

    1992-01-01

    The presence of cracks significantly decreases the structural integrity of thin metal sheets used in aerospace applications. Thermographic detection of surface temperature variations due to these cracks is possible after external heating. An approximate line source of heat is used to produce an inplane flow of heat in the sheet. A crack in the sheet perturbs the inplane flow of heat and can be seen in an image of the surface temperature of the sheet. An effective technique for locating these perturbations is presented which reduces the surface temperature image to an image of variations in the inplane heat flow. This technique is shown to greatly increase the detectability of the cracks. This thermographic method has advantages over other techniques in that it is able to remotely inspect a large area in a short period of time. The effectiveness of this technique depends on the shape, position and orientation of the heat source with respect to the cracks as well as the extent to which the crack perturbs the surface heat flow. The relationship between these parameters and the variation in the heat flow is determined both by experimental and computational techniques. Experimental data is presented for through-the-thickness, subsurface and surface EDM notches. Data for through-the-thickness fatigue cracks are also presented.

  4. Application of new experimental methods to pipeline stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Schmidt, C. G.; Kobayashi, T.; Crocker, J. E.; Kanazawa, C. H.; Kempf, J. A.

    1992-07-01

    The objective of the investigation is to develop a physically based understanding of the mechanisms of stress corrosion cracking (SCC) in pipeline steels by applying advanced fracture surface and electrochemical characterization techniques to samples taken from fielded pipeline and to laboratory corrosion test specimens. SCC is a well-known concern of the gas industry that occasionally affects natural gas treatment plants, gathering lines, and transmission lines. The research program is designed to increase the understanding of pipeline degradation by identifying the specific mechanisms that control SCC. From the results, the authors expect to improve the ability to identify features in the metallurgy of pipeline steel, the environmental conditions that affect the susceptibility to SCC. The effect of overloads (possibly from hydrotests or pressure fluctuations) on the propagation of stress corrosion cracks was readily evident from an analysis of the topographies of conjugate fracture surfaces. Crack branching usually resulted from overloads. Corrosion products were removed from the fracture surfaces of a stress corrosion crack in a pipeline specimen recovered from service. The topography of the underlying metal surface appears to be preserved with little corrosion damage after crack formation. This allowed the cracking process to be reconstructed and details to be investigated.

  5. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  6. Detection of Axial Cracks in Tube and Pipe Using Torsional Guided Waves

    NASA Astrophysics Data System (ADS)

    Kwun, Hegeon; Kim, Sang Y.; Matsumoto, Hirotoshi; Vinogradov, Sergey

    2008-02-01

    Guided-waves are now widely used for long-range inspection of piping and tubing for detection of corrosion metal loss areas and circumferential cracks. The reflection coefficient of guided-waves from a defect is proportional to the circumferential cross-sectional area of the defect. Since axial cracks have negligibly small circumferential cross-sectional area, they are usually undetectable. However, when the depth of axial crack reaches about 70-percent of wall thickness, the interaction mechanism between the torsional wave and the axial crack changes and the crack begins to produce detectable signals accompanied with characteristic tailing signals. Experimental data from various sized pipes including a seam-welded pipe with lack of fusion are presented and potential interaction mechanisms are discussed.

  7. Automatic crack growth tracking of bimaterial interface cracks

    NASA Technical Reports Server (NTRS)

    Yehia, Nabil A. B.; Shephard, Mark S.

    1988-01-01

    The propagation process of an interfacial crack in composite material is studied using the modified maximum dilatational strain energy density criterion, NT-criterion. Some necessary assumptions have been adopted to facilitate the use of the NT-criterion in this case. The stress intensity factors at the crack tip are extracted from the complex displacement field and finite element results. A simple algorithm for automatic crack propagation is presented with an illustrative example.

  8. Evaluation on Fatigue Crack Propagation of Reduced Activation Ferritic Steel (JLF-1) at High Temperature

    NASA Astrophysics Data System (ADS)

    Yoon, Han Ki; Kim, Sa Woong; Lee, Sang Pill; Katoh, Yutai; Kohyama, Akira

    Recently, reduced activation ferritic/martensitic steel, vanadium alloy and SiC/SiC composite are embossed for nuclear fusion reactor in accordance with the coolant. Especially, reduced activation ferritic/martensitic steel is very suitable material for nuclear fusion reactor, because it has low coefficient of thermal expansion and excellent heat conductivity. The objective of this study is to investigate fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (JLF-1). The fatigue crack propagation behavior of the JLF-1 steel was investigated by the constant-amplitude loading test for the stress ratios R = 0.1, 0.3 and 0.5 respectively. The fatigue crack growth tests carried out at room temperature and 400°C for base metal and weld metal. The effects of stress ratio, test temperature, specimen size and TIG welding on the fatigue crack propagation behaviors for JLF-1 steel were discussed within the Paris law. Particularly, the fatigue crack propagation rate of a weld metal was similar to that of base metal at the stress ratio of 0.3. Also, the fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. From this result, we can recognize that the fatigue crack propagation behavior of this material can be evaluated by using the half size specimens.

  9. Asperities, Crack Front Waves and Crack Self Healing

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    We have performed petascale simulations to study nanomaterial systems capable of sensing and repairing damage in high temperature/high pressure operating conditions. The system we have studied is a ceramic nanocomposite consisting of silicon carbide/silicon dioxide core/shell nanoparticles embedded in alumina. We observe that the interaction of the crack with core/shell asperities gives rise to crack-front waves. We also study crack healing by diffusion of silica into the crack as a function of nanoparticle size and inter-particle distance. Our results are well supported by experimental observations.

  10. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  11. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  12. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  13. Fatigue-Crack-Tip Locator

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Clendenin, C. Gerald; Wincheski, Buzz; Fulton, James P.; Todhunter, Ronald G.; Simpson, John W.

    1994-01-01

    Fatigue-testing system includes automated subsystem continuously tracking location of fatigue-crack tip in metal or other highly electrically conductive specimen. Fatigue-crack-tip-locating subsystem also searches specimen to find initial fatigue crack and its tip and to trace out hidden fatigue cracks and other flaws inside specimen. Subsystem operates under overall control of personal computer, which also controls load frame applying prescribed cyclic stresses to specimen. Electromagnetic flaw detector based on eddy-current principle scanned over surface of specimen. Flaw detector described in "Electromagnetic Flaw Detector Is Easier To Use" (LAR-15046). System provides automated control and monitoring of fatigue experiments, saving time for researchers and enabling experiments to run unattended 24 hours a day. All information on crack-tip trajectories and rates of growth of cracks recorded automatically, so researchers have access to more information.

  14. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect

    Saha, Dulal Chandra; Chang, InSung; Park, Yeong-Do

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties.

  15. Improved load ratio method for predicting crack length

    SciTech Connect

    Chen, X.; Albrecht, P.; Wright, W.; Joyce, J.A.

    1995-04-01

    The elastic compliance from unloading/reloading sequences in a load-displacement record estimates well crack length in elastic-plastic fracture toughness tests of compact tension [C(T)] and bending type specimens. The need for partial unloading of the specimen makes it difficult to run the test under static loading and impossible under either dynamic loading or very high temperatures. Furthermore, fracture toughness testing in which crack length is determined from elastic compliance requires high precision testing equipment and highly skilled technicians. As a result, such tests are confined usually to research laboratories and seldom used under production settings. To eliminate these problems, an improved load ratio method of predicting crack length is proposed that utilizes only the recorded load versus load-line displacement curve (or load versus crack-mouth-opening displacement curve) without unloading/reloading sequences. As a result, the instrumentation is much simpler than in the elastic compliance or potential drop methods. If only a monotonic load-displacement record is to be measured the fracture toughness test becomes almost as simple to perform as a tension test. The method described here improves in three ways the ``original load ratio method`` proposed by Hu et al. First, a blunting term is added to the crack length before maximum load. Second, a strain hardening correction is included after maximum load. And, third, the initial crack length and the physical (final) crack length measured at the end of the test serve to anchor the predicted crack lengths, forcing agreement between predicted and measured values. The method predicts crack extension with excellent accuracy in specimens fabricated from A302, A508, and A533B piping and pressure vessel steels, A588 and A572 structural steels, and HY-80 ship steel.

  16. Avalanche structural rearrangement through cracking-healing in weakly stressed cold dusty plasma liquids

    NASA Astrophysics Data System (ADS)

    Yang, Chi; Wang, Wen; I, Lin

    2016-01-01

    We experimentally investigate the spatiotemporal dynamical behaviors of the avalanche structural rearrangement through micro-cracking-healing in weakly stressed cold dusty plasma liquids, and the kinetic origins for their different spatial and temporal classifications. The crystalline ordered domains can be cracked or temporarily sustain and transfer the weak stress to remote regions for cracking-healing. It is found that cracking sites form a fractal network with cluster size following power law distribution in the x y t space. The histograms of the persistent times for sustaining regional ordered and disordered structure, the temporal cracking burst width, and quiescent time between two bursts all follow power law decays with fast descending tails. Cracking can be classified into a single temporal burst with simple line like spatial patterns and the successive cracking fluctuation with densely packed cracking clusters. For an ordered region, whether the Burgers vectors of the incoming dislocations from the boundary allow direct dislocation reduction is the key for the above two classifications through cracking a large ordered domain into medium scale corotating ordered domains or small patches. The low regional structural order at the end of a cracking burst can be regarded as an alarm for predicting the short quiescent period before the next cracking burst.

  17. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  18. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  19. Fusion and reactions of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Martel, I.; Aguilera, E. F.; Acosta, L.; Sánchez-Benítez, A. M.; Wolski, R.

    2011-10-01

    Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  20. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  1. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  2. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  3. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  4. Fatigue crack propagation behavior of a single crystalline superalloy

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Antolovich, Stephen D.

    1990-01-01

    Crack propagation mechanisms occurring at various temperatures in a single crystalline Ni-base alloy, Rene N4, were investigated. The rates of crack growth at 21, 704, 927, 1038, and 1093 C were measured in specimens with 001-line and 110-line directions parallel to the load axis and the machined notch, respectively, using a pulsed dc potential drop apparatus, and the fracture surfaces at each temperature were examined using SEM. Crack growth rates (CGRs) for specimens tested at or below 927 C were similar, while at two higher temperatures, the CGRs were about an order of magnitude higher than at the lower temperatures. Results of SEM observations showed that surface morphologies depended on temperature.

  5. ''KN'' series cracking catalysts

    SciTech Connect

    Klapstov, V.F.; Khlebrikova, M.A.; Maslova, A.A.; Nefedov, B.K.

    1986-09-01

    The basic directions in improving high-activity zeolitic cracking catalysts at the present stage are improvements in the resistance to attrition and increases in the bulk density of the catalysts, along with a changeover to relatively waste-free catalyst manufacturing technology. Catalysts of the ''KN'' series have been synthesized recently with improved quality characteristics. Low-waste technology is used in manufacturing them. Data are presented which show that the KN catalysts are better than the other Soviet catalysts. The starting materials and reagents in preparing the KN catalysts are technical alumina, rare-earth element nitrates, a natural component (such as clay conforming to specification TU-21-25-146-75), sodium hydroxide, and granulated sodium silicate. The preparation of the KN catalysts is described and no silica gel is used in manufacturing the KN series catalyst, in contrast to the RSG-6Ts catalyst. The use of KN series catalysts in place of KMTsR in catalytic cracking units will result in an increase in the naphtha yield by at least 20% by weight, as well as a reduction of the catalyst consumption by a factor of 2-3. A changeover to the commerical production of this catalyst will make it possible to reduce saline waste by a factor of 8-10 and reduce the catalyst cost by a factor of 1.5-2.

  6. Numerical investigations on applicability of permanent magnet method to crack detection in HTS film

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Saitoh, A.

    2014-09-01

    The scanning permanent-magnet (PM) method was originally developed for determining the spatial distribution of the critical current density in a high-temperature superconducting (HTS) film. In the present study, its applicability to the crack detection in an HTS film is investigated numerically. To this end, a defect parameter is defined for characterizing a crack position and it is calculated along various scanning lines. The results of computations show that, only when the scanning position is near a crack, the defect parameter shows a violent change. On the basis of the behavior of the defect parameter, the method for roughly identifying a crack is also proposed.

  7. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  8. Reciprocity principle and crack identification

    NASA Astrophysics Data System (ADS)

    Andrieux, Stéphane; Ben Abda, Amel; Duong Bui, Huy

    1999-02-01

    In this paper we are concerned with the planar crack identification problem defined by a unique complete elastostatic overdetermined boundary datum. Based on the reciprocity gap principle, we give a direct process for locating the host plane and we establish a new constuctive identifiability result for 3D planar cracks.

  9. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  10. Interface cracks in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  11. Shapes Formed By Interacting Cracks

    NASA Astrophysics Data System (ADS)

    Daniels, K.

    2014-12-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in rocks to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed "en passant" crack pattern by fracturing a rectangular slab which is notched on two sides and then subjected to quasistatic uniaxial, biaxial, or shear strain. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. Under uniaxial strain, we find that each crack path has a universal shape and aspect ratio which is independent of the material. By changing the geometry of the applied strain, we are able to achieve different aspect ratios for the crack paths. With birefringent materials, it is possible to interpret these patterns in light of the stress geometry, and we are able to explain the origins of these universal shapes with a simple geometrical model. Since a variety of aspect ratios have similarly been observed in geological contexts, this raises the possibility of using observed crack shapes as a diagnostic for the stress conditions under which cracks were formed in nature. In particular, the shape may serve as a means to infer the boundary loading in situations where history and dynamics are inaccessible.

  12. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  13. What Crack Does to Babies.

    ERIC Educational Resources Information Center

    Hutchinson, Janice

    1991-01-01

    Describes the effect of crack on the user and on the pregnant user's offspring. Children of the first crack addicts are now in school and exhibit an array of behavioral and cognitive difficulties. Early intervention in a supportive environment has succeeded in preparing some of these children for the classroom. (DM)

  14. Novel kinase fusion transcripts found in endometrial cancer

    PubMed Central

    Tamura, Ryo; Yoshihara, Kosuke; Yamawaki, Kaoru; Suda, Kazuaki; Ishiguro, Tatsuya; Adachi, Sosuke; Okuda, Shujiro; Inoue, Ituro; Verhaak, Roel G. W.; Enomoto, Takayuki

    2015-01-01

    Recent advances in RNA-sequencing technology have enabled the discovery of gene fusion transcripts in the transcriptome of cancer cells. However, it remains difficult to differentiate the therapeutically targetable fusions from passenger events. We have analyzed RNA-sequencing data and DNA copy number data from 25 endometrial cancer cell lines to identify potential therapeutically targetable fusion transcripts, and have identified 124 high-confidence fusion transcripts, of which 69% are associated with gene amplifications. As targetable fusion candidates, we focused on three in-frame kinase fusion transcripts that retain a kinase domain (CPQ-PRKDC, CAPZA2-MET, and VGLL4-PRKG1). We detected only CPQ-PRKDC fusion transcript in three of 122 primary endometrial cancer tissues. Cell proliferation of the fusion-positive cell line was inhibited by knocking down the expression of wild-type PRKDC but not by blocking the CPQ-PRKDC fusion transcript expression. Quantitative real-time RT-PCR demonstrated that the expression of the CPQ-PRKDC fusion transcript was significantly lower than that of wild-type PRKDC, corresponding to a low transcript allele fraction of this fusion, based on RNA-sequencing read counts. In endometrial cancers, the CPQ-PRKDC fusion transcript may be a passenger aberration related to gene amplification. Our findings suggest that transcript allele fraction is a useful predictor to find bona-fide therapeutic-targetable fusion transcripts. PMID:26689674

  15. Cracking Codes & Launching Rockets

    ERIC Educational Resources Information Center

    Paoletti, Teo J.

    2013-01-01

    To engage students, many teachers wish to connect the mathematics they are teaching to other branches of mathematics or to real-world applications. The lesson presented in this article, which uses the algebraic skill of finding the equation of a line between two points and the geometric axiom that any two points define a line, does both. A…

  16. Hot-cracking studies of Inconel 718 weld- heat-affected zones

    NASA Technical Reports Server (NTRS)

    Thompson, E. G.

    1969-01-01

    Hot ductility tests, gas-tungsten-arc fillerless fusion tests, and circle patch-weld-restraint tests were conducted on Inconel 718 to better understand and correlate the weldability /resistance to hot cracking/ of the alloy. A correlation of the test results with composition, heat-treat condition, grain size, and microstructure was made.

  17. Cracked and broken teeth--definitions, differential diagnosis and treatment.

    PubMed

    Paul, R A; Tamse, A; Rosenberg, E

    2007-04-01

    Cracked and broken teeth present a diagnostic dilemma to the dentist and the sooner a correct diagnosis is made the greater are the chances to save the tooth. As the location, direction and size of the crack or fracture dictates the choice of treatment, it is important to first define the types of cracks and fractures in the coronal and radicular tooth structure. Cracks and fractures can be classified as follows: 1. craze lines 2. fractured cusps 3. cracked teeth 4. split teeth 5. vertical root fractures. The vertical root fracture has been described recently in two articles in this publication, and therefore will not be discussed here. Diagnosis of a cracked tooth is not always initially obvious. The patient's response to clinical testing is the primary diagnostic tool along with the dental history provided by the patient. Radiographs are secondary in making a diagnosis. Clinical aids for reproducing the patient's symptoms such as occlusal bite devices, observing occlusal wear facets and the application of cold water to one tooth at a time may isolate the offending tooth. In situations where an irreversible pulpitis is diagnosed, endodontic treatment is indicated. In the case of a questionable diagnosis, or one in which a potential reversible pulpitis is made, a provisional restoration can be placed for an unspecified time as a diagnostic aid. If endodontic therapy were indicated, consultation with the patient as to the compromised prognosis and the alternatives to endodontic treatment is essential. PMID:17696060

  18. Effect of crack length-to-width ratio on crack resistance of high Cr-ODS steels at high temperature for fuel cladding application

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.; Ramesh, M.; Gavrilov, S.

    2013-11-01

    Oxide dispersion strengthened (ODS) steels with high Cr-content are extensively investigated in Europe, Japan and United States by the nuclear materials community for application to both advanced fission reactors and fusion systems. In comparison to standard high Cr-steels, the expected operation temperature range can be extended to 650 °C or more because of their improved creep resistance. However, their crack resistance behavior in the high temperature range was less investigated.The aim of the present paper is to provide some insight on their fracture behavior at high temperature and different crack configurations, in particular shallow crack. Crack resistance measurements were performed on a 12%Cr-ODS steel using compact tension specimens at 650 °C considering both shallow and deep crack configurations. Finite element calculations were performed on a typical fuel cladding tube geometry to assess the performances in terms of crack resistance. It is found that the temperature gradient across the wall should be maintained low enough to avoid cracking. After irradiation in corrosive environment, the boundary conditions might be further affected limiting therefore the lifetime of ODS cladding.

  19. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. First, the problem of cracks fully imbedded into the homogeneous strips is considered. Then, the singular behavior of the stresses for two special crack geometries is studied in some detail. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Finally, some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  20. Hydrocarbon cracking and reforming process

    SciTech Connect

    Le, Q.N.; Schipper, P.H.; Owen, H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C{sub 7+} alkanes and naphthenes with medium pore acid cracking catalyst under low pressure selective cracking conditions effective to produce 4-C5 isoalkene and C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain an olefinic fraction rich in C4-C5 isoalkene and a C6+ fraction; etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower alkanol to produce tertiary-alkyl ether product; and reforming the C6+ fraction to provide high octane gasoline components.

  1. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  2. A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery

    NASA Astrophysics Data System (ADS)

    Stoisser, C. M.; Audebert, S.

    2008-05-01

    -flexibility induced by the crack in the shaft. The validated crack model is then applied to predict the dynamical behaviour of large industrial rotating machinery and to verify the crack detection capability based on the vibratory response. With respect to 900 MW turboset units, with cracks affecting LP rotors, a map of crack detection capabilities, based on 1× rev. and 2× rev. components as a function of circumferential extension ratio and crack depth, is drawn. If the crack depth is higher than 37% of the rotor diameter, on-line measurements of 2× rev. vibratory level shift allow to detect the crack. On the opposite, 1× rev. monitoring is necessary for cracks with circumferential extension superior to 270°. It is also observed that LP rotor bending mode shift monitoring theoretically allows to detect cracks with depths equal to or greater than 20% of the rotor diameter or with circumferential extension greater than 120°. The difficulties encountered for distinguishing the LP rotor bending mode frequencies, which may also evolve in time, independently from the cracks, limit the industrial application of this latter technique. Therefore new studies will focus on the analysis of torsion dynamic behaviour and on its sensitivity to cracks. With respect to RCP units, when half of the shaft section is cracked, the 2× rev. component remains very small. Whilst the result is simply due to a small excitation, a more accurate estimation of the external forces acting on the shaft could lead to more accurate numerical predictions.

  3. Mode I crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results of this study are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  4. Mode 1 crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  5. Adaptive road crack detection system by pavement classification.

    PubMed

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement. PMID:22163717

  6. Adaptive Road Crack Detection System by Pavement Classification

    PubMed Central

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement. PMID:22163717

  7. Stress corrosion cracking resistance of alloys 600 and 690 and compatible weld metals in BWRs: Final report

    SciTech Connect

    Page, R. A.; McMinn, A.

    1988-07-01

    The relative susceptibilities of alloy 600 and 690 base metals and I-82, I-182, R-127 and R-135 weld metals to intergranular stress corrosion cracking (IGSCC) in either pure water or a simulated resin intrusion environment at 288/degree/C were evaluated. Alloy 600, I-182, and I-82 weld metals were susceptible to various degrees of IGSCC in oxygen containing pure water when creviced, and immune to IGSCC when uncreviced. Alloy 690 was immune to IGSCC under all pure water conditions. Alloy 500, alloy 690, I-182, and I-82 were all susceptible to cracking in the simulated resin intrusion environment, although alloy 690 exhibited the greatest resistance to SCC. The high chromium experimental weld alloy were immune to cracking under all conditions examined. The IGSCC susceptibility of seven different weld metals used to weld alloy 600 and A508 were also evaluated in the resin intrusion environment at 288/degree/C. Weldments made with I-625, I-182, and I-82 (GTAW) were the most susceptible, whereas welds made with I-132 were the least susceptible. Most of the weldments failed at the fusion line between the weld metal and the A508 steel, and the SCC susceptibility increased with increasing hardness measured at the fusion line. There was no effect of crevice condition or heat treatment on SCC susceptibility. The SCC susceptibility of Type 316 NG stainless steel welded with R-127, R-135, I-72 and Type 308L weld metals was evaluated in pure water and resin intrusion environments at 288/degree/C. All of the materials were immune to SCC in the pure water environment. In the resin intrusion environment, both the I-72 and R-135 weld metals were immune to SACC, but the R-127 and Type 308L weld metals exhibited SCC. The Type 316 NG stainless steel was susceptible to transgranular SCC in the resin intrusion environment, except when welded with I-72, in which case it was immune. 36 refs., 4 tabs.

  8. Prediction of fatigue crack-growth patterns and lives in three-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1984-01-01

    Fatigue crack growth patterns and lives for surface cracks, surface cracks at holes, and corner cracks at holes in three dimensional bodies were predicted using linear-elastic fracture mechanics concepts that were modified to account for crack-closure behavior. The predictions were made by using stress intensity factor equations for these crack configurations and the fatigue crack-growth (delta K against rate) relationship for the material of interest. The crack configurations were subjected to constant-amplitude fatigue loading under either remote tension or bending loads. The predicted crack growth patterns and crack growth lives for aluminum alloys agreed well with test data from the literature.

  9. Effects of stress ratio and fiber orientation on fatigue crack growth behavior in APAL

    SciTech Connect

    Oh, S.W.; Park, W.J.; Yoon, H.K.; Lee, K.G.; Cho, J.M.; Lee, K.B.

    1993-12-31

    A new hybrid composite (APAL; Aramid Patched Aluminum Alloy), consisting of 2024-T3 aluminum alloy plate sandwiched between aramid/epoxy prepregs (HK 285/RS 1222), was developed. Fatigue crack growth behavior was examined at stress ratios of R = 0.2, 0.5 using two kinds of APAL with different fiber orientation (0{degree}/90{degree} and {+-} 45{degree} for crack direction). The APAL showed superior fatigue crack growth resistance, which may be attributed to the crack bridging effect imposed by the intact fibers in the crack wave. The magnitude of crack bridging was estimated quantitatively and determined by a new technique on the basis of the compliances of 2024-T3 aluminum alloy and APAL specimens. The crack growth rate of the APAL specimens was reduced significantly as comparison to the monolithic aluminum alloy and was not adequately correlated with the conventional stress intensity factor range ({Delta}K). It was found that the crack growth rate was successfully correlated with the effective stress intensity factor range ( {Delta}K{sub eff} = K{sub br} {minus} K{sub cl}) allowing for the crack closure and the crack bridging. The relation between da/dN and {Delta}K{sub eff} was plotted within a narrow scatter band regardless at loading line of 2024-T3 aluminum alloy, two kinds of the APAL (APAL 0{degree}/90{degree}, APAL {+-} 45{degree}) and two kinds of stress ratios (R = 0.2, 0.5).

  10. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.