Science.gov

Sample records for fusion plasma heating

  1. RF plasma heating in toroidal fusion devices

    SciTech Connect

    Golant, V.E.; Fedorov, V.I. )

    1989-01-01

    The purpose of the present book is to provide, in seven chapters, a unified overview of the methods for rf heating of plasmas in toroidal fusion experiments. In Chapter 1 the problem of plasma heating in tokamaks and stellarators is formulated and the requirements for auxiliary heating techniques are described. This chapter also contains a brief review of the results of research on tokamaks and stellarators. Chapter 2 is devoted to a theoretical description of the principal physical effects involved in the rf heating of plasmas, especially the characteristics of wave propagation, of the mechanisms by which waves are absorbed and plasma heating takes place, and of the nonlinear effects that accompany heating. The primary emphasis is on a qualitative physical picture of these effects. Chapters 3-6, in turn, deal with the major rf heating techniques currently under investigation, electron cyclotron (ECH), ion cyclotron (ICH), lower hybrid (LHH), and Alfven wave heating. In each of these chapters the main schemes for heating are described, the results of theoretical analyses and numerical simulations are discussed, the technology of the heating systems is briefly described, and experimental work published through the end of 1984 is reviewed. Finally, in Chapter 7 the different rf heating techniques are compared; they are contrasted with neutral beam injection, and the feasibility of adiabatic compression as a means of heating plasmas is examined. Separate abstracts were prepared for each chapter of this book. 246 refs.

  2. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  3. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  4. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  5. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  6. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  7. Application of rf-thruster technique for fusion plasma heating

    NASA Astrophysics Data System (ADS)

    Freisinger, J.; Loeb, H. W.

    On the basis of RF ion thruster devices, a family of RF injector generators (RIGs) for the heating of fusion plasmas up to the temperature of thermonuclear burn has been developed. Hydrogen ion beams of 10-40 amps can be accelerated by means of the RIGs to 30 kV, so that ion beam densities of more than 250 mA/sq cm are achievable at uniform profiles within only 1 deg of divergence angle. The use of electrodeless quartz ionizers yields a very high atomic ion fraction, low admixture of impurities, long lifetime, high reliability, simple mechanical elements, and easy control.

  8. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  9. Advanced simulation of electron heat transport in fusion plasmas

    SciTech Connect

    Lin, Zhihong; Xiao, Y.; Klasky, Scott A; Lofstead, J.

    2009-01-01

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  10. Advanced Simulation of Electron Heat Transport in Fusion Plasmas

    SciTech Connect

    Lin, Z.; Xiao, Y.; Holod, I.; Zhang, W. L.; Deng, Wenjun; Klasky, Scott A; Lofstead, J.; Kamath, Chandrika; Wichmann, Nathan

    2009-01-01

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  11. Fast frequency-step-tunable gyrotrons for plasma heating and fusion diagnostics

    SciTech Connect

    Dumbrajs, O.; Heikkinen, J.

    1994-11-01

    Usefulness of frequency tunable sources for plasma heating and fusion diagnostics is studied. Applicability of fast frequency-step-tunable gyrotrons for these purposes is examined. A gyrotron based on a coaxial cavity with impedance rod is considered as an example.

  12. Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Michel, P.; Rozmus, W.; Williams, E. A.; Divol, L.; Berger, R. L.; Town, R. P. J.; Glenzer, S. H.; Callahan, D. A.

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (∝N2) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm3-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ˜4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems.

  13. Stochastic ion heating from many overlapping laser beams in fusion plasmas.

    PubMed

    Michel, P; Rozmus, W; Williams, E A; Divol, L; Berger, R L; Town, R P J; Glenzer, S H; Callahan, D A

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems. PMID:23215392

  14. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  15. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  16. Secondary electron emission and the bifurcation of the heat flux to the targets in fusion plasmas

    SciTech Connect

    Lee, Wonjae; Krasheninnikov, Sergei I.

    2013-12-15

    The presence of secondary electron emission (SEE) from plasma facing components in fusion devices can result in a strong localization of the heat flux from plasma to the wall and subsequent wall erosion. Usually, the impact of the SEE is considered assuming the Maxwellian distribution of the electrons coming to the surface. As a result, the SEE coefficient only depends on the temperature of primary electrons. However, the tail of primary electron distribution function in the scrape off layer (SOL) of fusion devices can be far from Maxwellian due to preferential loss of fast electrons. Consequently, it is shown that the SEE coefficient will depend on the wall potential and multiple solutions can be possible corresponding to different regimes of plasma flow to the wall: with and without SEE effects. This effect can cause two-slope electron temperature profiles in the SOL, which are often seen in experiments.

  17. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    SciTech Connect

    Park, Hyeon, K.; Sabbagh, S.A.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  18. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  19. High-power microwave transmission and launching systems for fusion plasma heating systems

    SciTech Connect

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE/sub 0,2/) or a whispering-gallery mode (such as TE/sub 15,2/), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE/sub 0,1/ mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs.

  20. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  1. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  2. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  3. Facility for high-heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Harper, David C.; Snead, Lance L.; Schaich, Charles R.

    2014-04-01

    A new high-heat flux testing (HHFT) facility using water-wall stabilized high-power high-pressure argon plasma arc lamps (PALs) has been developed for fusion applications. It can accommodate irradiated plasma facing component materials and sub-size mock-up divertor components. Two PALs currently available at Oak Ridge National Laboratory can provide maximum incident heat fluxes of 4.2 and 27 MW m-2, which are prototypic of fusion steady state heat flux conditions, over a heated area of 9 × 12 and 1 × 10 cm2, respectively. The use of PAL permits the heat source to be environmentally separated from the components of the test chamber, simplifying the design to accommodate safe testing of low-level irradiated articles and materials under high-heat flux. Issues related to the operation and temperature measurements during testing of tungsten samples are presented and discussed. The relative advantages and disadvantages of this photon-based HHFT facility are compared to existing e-beam and particle beam facilities used for similar purposes.

  4. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  5. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGESBeta

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  6. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  7. Adaptive {delta}f Monte Carlo Method for Simulation of RF-heating and Transport in Fusion Plasmas

    SciTech Connect

    Hoeoek, J.; Hellsten, T.

    2009-11-26

    Essential for modeling heating and transport of fusion plasma is determining the distribution function of the plasma species. Characteristic for RF-heating is creation of particle distributions with a high energy tail. In the high energy region the deviation from a Maxwellian distribution is large while in the low energy region the distribution is close to a Maxwellian due to the velocity dependency of the collision frequency. Because of geometry and orbit topology Monte Carlo methods are frequently used. To avoid simulating the thermal part, {delta}f methods are beneficial. Here we present a new {delta}f Monte Carlo method with an adaptive scheme for reducing the total variance and sources, suitable for calculating the distribution function for RF-heating.

  8. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  9. Simulation Science for Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Skoric, M. M.; Sudo, S.

    2008-07-01

    The world fusion effort has recently entered a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and future demo fusion reactors, an advanced ability for comprehensive computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to develop the capability to predict reliably the behavior of plasmas in toroidal magnetic confinement devices on all relevant time and space scales. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics and computer science is envisaged. In this talk we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. 2003). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor. Finally, a perspective role is given on the ITER Broad Approach program at Rokkasho Center, as an integrated part of ITER and Development of Fusion Energy Agreement.

  10. Simulation science for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Škorić, M. M.; Watanabe, T.-H.; Todo, Y.; Ishizawa, A.; Miura, H.; Ishizaki, R.; Ito, A.; Ohtani, H.; Usami, S.; Nakamura, H.; Ito, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; Sato, M.; Yamamoto, T.; Den, M.; Sakagami, H.; Horiuchi, R.; Okamura, S.; Nakajima, N.

    2008-10-01

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. [1]). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.

  11. EDITORIAL: Stochasticity in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Finken, K. H.

    2006-04-01

    In recent years the importance of externally imposed resonant magnetic fields on plasma has become more and more recognized. These fields will cause ergodization at well defined plasma layers and can induce large size islands at rational q-surfaces. A hope for future large scale tokamak devices is the development of a reliable method for mitigating the large ELMs of type 1 ELMy-H-modes by modifying the edge transport. Other topics of interest for fusion reactors are the option of distributing the heat to a large area and optimizing methods for heat and particle exhaust, or the understanding of the transport around tearing mode instabilities. The cluster of papers in this issue of Nuclear Fusion is a successor to the 2004 special issue (Nuclear Fusion 44 S1-122 ) intended to raise interest in the subject. The contents of this present issue are based on presentations at the Second Workshop on Stochasticity in Fusion Plasmas (SFP) held in Juelich, Germany, 15-17 March 2005. The SFP workshops have been stimulated by the installation of the Dynamic Ergodic Divertor (DED) in the TEXTOR tokamak. It has attracted colleagues working on various plasma configurations such as tokamaks, stellarators or reversed field pinches. The workshop was originally devoted to phenomena on the plasma edge but it has been broadened to transport questions over the whole plasma cross-section. It is a meeting place for experimental and theoretical working groups. The next workshop is planned for February/March 2007 in Juelich, Germany. For details see http://www.fz-juelich.de/sfp/. The content of the workshop is summarized in the following conference summary (K.H. Finken 2006 Nuclear Fusion 46 S107-112). At the workshop experimental results on the plasma transport resulting from ergodization in various devices were presented. Highlights were the results from DIII-D on the mitigation of ELMs (see also T.E. Evans et al 2005 Nuclear Fusion 45 595 ). Theoretical work was focused around the topics

  12. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect

    Youchison, D. L.

    2012-03-01

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  13. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  14. Massachusetts Institute of Technology Plasma Fusion Center 1992-1993 report to the President

    NASA Astrophysics Data System (ADS)

    1993-07-01

    This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics, RF plasma heating, gyrotron research, treatment of solid waste by arc plasma, divertor experiments, tokamak studies, and plasma and fusion theory.

  15. Fuel ion ratio determination in NBI heated deuterium tritium fusion plasmas at JET using neutron emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Eriksson, J.; Binda, F.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M.; Weiszflog, M.; Contributors, JET-EFDA

    2015-02-01

    The fuel ion ratio (nt/nd) is of central importance for the performance and control of a future burning fusion plasma, and reliable measurements of this quantity are essential for ITER. This paper demonstrates a method to derive the core fuel ion ratio by comparing the thermonuclear and beam-thermal neutron emission intensities, using a neutron spectrometer. The method is applied to NBI heated deuterium tritium (DT) plasmas at JET, using data from the magnetic proton recoil spectrometer. The trend in the results is consistent with Penning trap measurements of the fuel ion ratio at the edge of the plasma, but there is a discrepancy in the absolute values, possibly owing to the fact that the two measurements are weighted towards different parts of the plasma. It is suggested to further validate this method by comparing it to the traditionally proposed method to estimate nt/nd from the ratio of the thermal DD and DT neutron emission components. The spectrometer requirements for measuring nt/nd at ITER are also briefly discussed.

  16. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  17. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  18. Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Chapman, T.; Brantov, A.; Winjum, B. J.; Berger, R. L.; Brunner, S.; Bychenkov, V. Yu.; Tableman, A.; Tzoufras, M.; Glenzer, S.

    2016-01-01

    In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. An experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.

  19. Transport of radial heat flux and second sound in fusion plasmas

    SciTech Connect

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L.; Diamond, P. H.; Garbet, X.; Dif-Pradalier, G.; Kosuga, Y.

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  20. Dust in fusion plasmas: theory and modeling

    SciTech Connect

    Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.

    2008-09-07

    Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.

  1. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system. PMID:24679302

  2. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  3. Vortex Stabilized Compressed Fusion Grade Plasma

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2015-03-01

    Inertial confinement fusion schemes comprise of highly compressed dense plasmas. Some involve short pulses of powerful beams (lasers, particles) applied to solid pellets, while others utilize plasma focus to obtain dense pinch plasmas. Although compression factor >1000 has been achieved for starting pressures in the Torr range, the latter is limited by instabilities for initial gas density above 10 Torr. One alternative approach could be shooting electron beams through very dense, atmospheric pressure, vortex stabilized plasma. Large azimuthal magnetic generated by an electron beam can compress and heat the plasma to fusion viable parameters. This configuration is stable against sausage, kink, or beam - plasma instabilities. Based on experimental evidence beam propagation through the plasma is not be an issue. A second possibility is to tangentially squeeze a quasi-neutral plasma focus flow by a surrounding gas vortex. Based on currently available electron beams, the first scheme viability as an electrical power generating reactor does not seem to be promising. But using a plasma cathode electron beam that was developed a while ago, for which DOE has a patent U.S. Patent 4,942,339, could result in net generation of electricity. Calculations will be presented. Work supported by Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy.

  4. Plasma physics goes beyond fusion

    NASA Astrophysics Data System (ADS)

    Franklin, Raoul

    2008-11-01

    I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.

  5. Wakes in Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian Norman

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC

  6. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    SciTech Connect

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  7. Role of impurities in fusion plasmas

    SciTech Connect

    Tokar, M. Z.

    2008-10-15

    The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.

  8. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  9. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    SciTech Connect

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  10. Stellarator approach to fusion plasma confinement

    SciTech Connect

    Harris, J.H.

    1985-01-01

    The stellarator is a toroidal fusion plasma confinement device with nested magnetic flux surfaces. The required twist of the field lines is produced by external helical coils rather than by plasma current, as in a tokamak. Stellarator devices are attractive fusion reactor candidates precisely because they offer the prospect of steady-state operation without plasma current. In the last few years the excellent results achieved with currentless stellarator plasmas of modest minor radius (10 to 20 cm) at Kyoto University (Japan) and the Max Planck Institute (West Germany) have made the stellarator second only to the tokamak in its progress toward fusion breakeven, with temperatures T/sub e/, T/sub i/ approx. 1 KeV, Lawson products n tau approx. 2 to 5 x 10/sup 12/ cm/sup -3/.s, and volume-averaged beta values approx. = 2%. The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge Natioal Laboratory (ORNL) and scheduled to operate in 1986, represents a significant advance in stellarator research, with a plasma major radius of 2.1 m, an average minor radius of 0.3 m, and a magnetic field of 2 T for 5 s or 1 T at steady state. ATF replaces the Impurity Study Experiment (ISX-B) tokamak at ORNL and will use the ISX-B heating and diagnostic system.

  11. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    SciTech Connect

    Not Available

    1993-07-01

    This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.

  12. Fusion neutronics-streaming, shielding, heating, activation

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.; Richter, D.; Seidel, K.; Unholzer, S.

    2001-07-01

    The International Thermonuclear Experimental Reactor (ITER) represents an important step towards a fusion power plant. Controlled fusion will be realized in a d-t-plasma magnetically confined by a Tokamak configuration. The first wall of the plasma chamber, blanket and vacuum vessel of ITER form a compact assembly for converting the kinetic energy of fusion neutrons into heat while simultaneously shielding the superconducting coils efficiently against neutron and accompanying photon radiation. This shielding system can be investigated with neutrons generated by low-energy accelerators. We report on experiments concerning shielding and streaming properties of a mock-up where energy spectra of both neutrons and protons were measured. They are compared with predictions of Monte Carlo calculations (code MCNP-4A) using various data libraries. The agreement justified the use of measured spectra as basis to calculate design parameters such as neutron and photon heating, radiation damage, gas production, and activation. Some of these parameters were also directly measured. The results validate the ITER design.

  13. Auxiliary Heating of Inertial Confinement Fusion Targets

    NASA Astrophysics Data System (ADS)

    Norreys, Peter

    2014-10-01

    The role of collisionless ion heating arising from the propagation of petawatt-laser driven relativistic electron beams in dense plasma will be discussed. The energy cascade mechanism begins first with the rapid growth of electrostatic waves near the electron plasma frequency. These waves reach high amplitudes and break, which then results in the generation of a strongly driven turbulent Langmuir spectrum. Parametric decay of these waves, particularly via the modulational instability, then gives rise to a coupled turbulent ion acoustic spectrum. These waves, in turn, experience significant Landau damping, resulting in the rapid heating of the background ion population. In this talk, I will review the evidence for this cascade process in laboratory plasmas and describe the theoretical background that underpins this process. I will then present the most recent analytic modelling, particle-in-cell and Vlasov-Poisson simulation results of my team within Oxford Physics and the Central Laser Facility that explores the optimum parameter space for this process, focusing in particular on the requirements for auxiliary heating of the central hot spot in inertial confinement fusion target experiments now underway on the National Ignition Facility. I will also describe new methods for hole-boring through the coronal plasma surrounding the fuel using strongly relativistic laser beams that demonstrates the strong suppression of the hosing instability under these conditions.

  14. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  15. Plasma physics and controlled thermonuclear fusion

    SciTech Connect

    Krikorian, R. )

    1989-01-01

    This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.

  16. Waves and turbulence in a tokamak fusion plasma.

    PubMed

    Surko, C M; Slusher, R E

    1983-08-26

    The tokamak is a prototype fusion device in which a toroidal Magnetic field is used to confine a hot plasma. Coherent waves, excited near the plasma edge, can be used to transport energy into the plasma in order to heat it to the temperatures required for thermonuclear fusion. In addition, tokamak plasmas are known to exhibit high levels of turbulent density fluctuations, which can transport particles and energy out of the plasma. Recently, experiments have been conducted to elucidate the nature of both the coherent waves and the turbulence. The experiments provide insight into a broad range of interesting linear and nonlinear plasma phenomena and into many of the processes that determine such practical things as plasma heating and confinement. PMID:17753464

  17. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  18. RF heating for fusion product studies

    NASA Astrophysics Data System (ADS)

    Hellsten, T.; Johnson, T.; Sharapov, S. E.; Kiptily, V.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Rimini, F.; Tsalas, M.

    2015-12-01

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with 3He concentrations up to 30% in order to boost the fusion reactivity by D-3He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of 3He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and 3He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  19. RF heating for fusion product studies

    SciTech Connect

    Hellsten, T. Johnson, T.; Sharapov, S. E.; Kiptily, V.; Rimini, F.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Tsalas, M.

    2015-12-10

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with {sup 3}He concentrations up to 30% in order to boost the fusion reactivity by D-{sup 3}He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of {sup 3}He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and {sup 3}He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  20. Controlled thermonuclear fusion, high temperature plasma physics

    NASA Astrophysics Data System (ADS)

    1985-05-01

    The primary source of nuclear energy comes from the fission process of heavy nuclei. To utilize the energy released by a thermonuclear fusion process, methods of controlling the fusion reaction were studied. This is controlled thermonuclear fusion technology. The fuel used in a thermonuclear fusion process are isotopes of hydrogen: deuterium and tritium. They can be extracted from the almost unlimited seawater. Nuclear fusion also produces very little radioactive waste. Thermonuclear fusion is a promising energy source with an almost unlimited supply; it is economical, safe, and relatively clean. Ways to raise plasma temperature to a very high level and to maintain it to allow fusion reactions to take place are studied. The physical laws of high temperature plasma was studied to reach this goal which resulted in the development of high temperature plasma physics.

  1. A fusion based plasma propulsion system

    NASA Technical Reports Server (NTRS)

    George, J. A.; Anderson, B.; Bryant, D.; Creese, C.; Djordjevic, V.; Peddicord, K. L.

    1987-01-01

    The Fusion Plasma Propulsion System scoping study was performed to investigate the possibilities of a fusion powered plasma propulsion system for space applications. Specifically, it was to be compared against existing electric propulsion concepts for a manned Mars mission. Design parameters consist of 1000 N thrust for 500 days, and the minimum mass possible. This investigation is briefly presented and conclusions drawn.

  2. Plasma Physics and Controlled Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  3. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  4. NCSX Plasma Heating Methods

    SciTech Connect

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  5. NCSX Plasma Heating Methods

    SciTech Connect

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  6. RF plasma heating improvement with EBG surfaces

    NASA Astrophysics Data System (ADS)

    Guadamuz, Saul; Milanesio, Daniele; Maggiora, Riccardo

    2008-11-01

    High impedance surfaces or electromagnetic band gap (EBG) surfaces have proved themselves to be useful in wireless communications applications due to their unique characteristics such as no propagating surface wave support, no conduction of RF current for a given bandwidth, in-phase electromagnetic reflection and non-inverted image of the electric charge in front of them [1]. These characteristics make possible to design compact antennas achieving better performance in terms of radiation and input impedance. ICRF plasma heating antennas in fusion experiments can take advantage of using EBG surfaces. One of the main issues in ICRF plasma heating is the low power coupling of the plasma facing antenna. The adoption of EBG surfaces in the antenna structure and the advantages offered by a predictive designing tool as TOPICA [2] offer the possibility to improve significantly the coupled power to plasma. [1] IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059--2074, Nov. 1999. [2] Nucl. Fusion, 46 (2006) S476.

  7. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  8. Fundamental studies of fusion plasmas. Final report

    SciTech Connect

    Aamodt, R.E.

    1998-01-30

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.

  9. Spherically symmetric simulation of plasma liner driven magnetoinertial fusion

    SciTech Connect

    Samulyak, Roman; Parks, Paul; Wu Lingling

    2010-09-15

    Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.

  10. Thomson scattering from inertial confinement fusion plasmas

    SciTech Connect

    Glenzer, S.H.; Back, C.A.; Suter, L.J.

    1997-07-08

    Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.

  11. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    SciTech Connect

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories.

  12. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    NASA Astrophysics Data System (ADS)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper

  13. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  14. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  15. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main

  16. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  17. Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas

    SciTech Connect

    Medley, S.S.; Hendel, H.

    1982-11-01

    Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.

  18. Fusion programs in Applied Plasma Physics

    SciTech Connect

    Not Available

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections.

  19. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGESBeta

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; et al

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  20. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  1. Confinement and heating of a deuterium-tritium plasma

    SciTech Connect

    Hawryluk, R. J.; Adler, H.; Alling, P.; Synakowski, E.

    1994-03-01

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ~20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles.

  2. Plasma heat pump and heat engine

    SciTech Connect

    Avinash, K.

    2010-08-15

    A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}<plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

  3. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so

  4. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  5. Dense Hypervelocity Plasma Jets for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Thio, Y. C. Francis

    2005-10-01

    High velocity dense plasma jets are being developed for a variety of fusion applications, including refueling, disruption mitigation, High Energy Density Plasmas, magnetized target/magneto-inertial fusion, injection of angular momentum into centrifugally confined mirrors, and others. The technical goal is to accelerate plasma blobs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section that prevents formation of the blow-by instability. AFRL MACH2 modeling identified 2 electrode configurations that produce the desired plasma jet parameters. The injected plasma is generated by up to 64 radially oriented capillary discharges arranged uniformly around the circumference of an angled annular injection section. Initial experimental results are presented in which 8 capillaries are fired in parallel with jitter of ˜100 ns. Current focus is on higher voltage operation to reduce jitter to a few 10's of ns, and development of a suite of optical and spectroscopic plasma diagnostics.

  6. Fusion Reaction Rate in an Inhomogeneous Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  7. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    SciTech Connect

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  8. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  9. Laser-heated emissive plasma probe.

    PubMed

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge. PMID:19044350

  10. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    SciTech Connect

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  11. Plasma treatment of heat-resistant materials

    NASA Astrophysics Data System (ADS)

    Vlasov, V. A.; Kosmachev, P. V.; Skripnikova, N. K.; Bezukhov, K. A.

    2015-11-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion.

  12. Plasma simulation and fusion calculation

    NASA Astrophysics Data System (ADS)

    Buzbee, B. L.

    Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research and in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation is vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. Parallel formulation of PIC models for master/slave architectures and ring architectures is discussed. Because interprocessor communication is a decisive factor in the overall efficiency of a parallel system, division of these models into large granules that can be executed in parallel with relatively little need for communication is shown. Measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP are also reported.

  13. Plasma simulation and fusion calculation

    SciTech Connect

    Buzbee, B.L.

    1983-01-01

    Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research. They are also used in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation can be vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. This paper discusses parallel formulation of PIC models for master/slave architectures and ring architectures. Because interprocessor communication can be a decisive factor in the overall efficiency of a parallel system, we show how to divide these models into large granules that can be executed in parallel with relatively little need for communication. We also report measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP.

  14. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  15. Inertial fusion features in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    León, Pablo T.; Eliezer, Shalom; Piera, Mireia; Martínez-Val, José M.

    2005-04-01

    Very high plasma densities can be obtained at the end of the implosion phase in inertial fusion targets, particularly in the so-called fast-ignition scheme (Tabak et al., 1994; Mulser & Bauer, 2004), where a central hot spark is not needed at all. By properly tailoring the fuel compression stage, degenerate states can be reached (Azechi et al., 1991; Nakai et al., 1991; McCory, 1998). In that case, most of the relevant energy transfer mechanisms involving electrons are affected (Honrubia & Tikhonchuk, 2004; Bibi & Matte, 2004; Bibi et al., 2004). For instance, bremsstrahlung emission is highly suppressed (Eliezer et al., 2003). In fact, a low ignition-temperature regime appears at very high plasma densities, due to radiation leakage reduction (León et al., 2001). Stopping power and ion-electron coulomb collisions are also changed in this case, which are important mechanisms to trigger ignition by the incoming fast jet, and to launch the fusion wave from the igniting region into the colder, degenerate plasma. All these points are reviewed in this paper. Although degenerate states would not be easy to obtain by target implosion, they present a very interesting upper limit that deserves more attention in order to complete the understanding on the different domains for inertial confinement fusion.

  16. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  17. Plasma heating with crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, Naren; Sircombe, Nathan; Ceurvorst, Luke; Kasim, Muhammad; Sadler, James; Bingham, Robert; Trines, Raoul; Norreys, Peter

    2015-11-01

    Plasma heating by relativistic electron beams is a powerful tool with applications including the heating of inertial confinement fusion targets and the study of matter in extreme conditions. We discuss the use of two relativistic electron beams to efficiently heat the plasma ions where the beams cross by using beam-plasma instabilities and non-linear wave coupling between Langmuir and ion-acoustic waves. Energy from the electron beams is coupled to the plasma ions as the beams become unstable and drive Langmuir waves which couple non-linearly to ion-acoustic waves which are then damped . Results of linear growth rate calculations are presented for the system of two crossing electron beams demonstrating a broad spectrum of unstable modes. Relativistic Vlasov-Maxwell simulations in two space and two momentum dimensions have been performed which demonstrate the non-linear coupling of the electron beam energy into ion-acoustic waves and the energy cascade to the background ions. Time-frequency analysis is applied to analyze the non-linear coupling between Langmuir and ion-acoustic waves in wave phase space. Structural properties of the strong turbulence produced at late times are analyzed.

  18. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  19. Probing spherical tokamak plasmas using charged fusion products

    NASA Astrophysics Data System (ADS)

    Boeglin, Werner U.; Perez, Ramona V.; Darrow, Douglass S.; Cecconello, Marco; Klimek, Iwona; Allan, Scott Y.; Akers, Rob J.; Jones, Owen M.; Keeling, David L.; McClements, Ken G.; Scannell, Rory

    2015-11-01

    The detection of charged fusion products, such as protons and tritons resulting from D(d,p)t reactions, can be used to determine the fusion reaction rate profile in large spherical tokamak plasmas with neutral beam heating. The time resolution of a diagnostic of this type makes it possible to study the slowly-varying beam density profile, as well as rapid changes resulting from MHD instabilities. A 4-channel prototype proton detector (PD) was installed and operated on the MAST spherical tokamak in August/September 2013, and a new 6-channel system for the NSTX-U spherical tokamak is under construction. PD and neutron camera measurements obtained on MAST will be compared with TRANSP calculations, and the design of the new NSTX-U system will be presented, together with the first results from this diagnostic, if available. Supported in part by DOE DE-SC0001157.

  20. Supplemental heating of conventional Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Hughes, S. J.; Garbett, W. J.; Sircombe, N. J.

    2016-03-01

    We report a new ICF scheme whereby a capsule is imploded to near ignition conditions and subsequently flooded with hot electrons generated from a short-pulse laser- plasma interaction so as to heat the whole assembly by a few hundred eV. The cold dense shell pressure is increased by a larger factor than that of the hot spot at the capsule core, so that further heating and compression of the hot spot occurs. We suggest it may be possible to drive the capsule to ignition by the pressure augmentation supplied by this extra deposition of energy.

  1. ICRF heating in reactor grade plasmas

    SciTech Connect

    Jacquinot, J.; Bhatnagar, V.P.; Bures, M.; Cottrell, G.A.; Eriksson, L.G.; Sack, C.H.; Start, D.F.H.; Taroni, A. ); Hellsten, T. ); Koch, R. ); Moreau, D. )

    1990-01-01

    Impurity influxes in JET discharges due to ICRH have been reduced to insignificant levels. This has allowed high quality H-modes to be produced with ICRH alone and has enhanced the density limit which is now the same as the NBI limit. Improvement in the deuterium fuel fraction has led to the generation of 100kW of non thermal {sup 3}He-D fusion power. Alpha-particle simulations using MeV ions created by ICRH show classical energy loss and suggest that {alpha}-heating in a reactor will be highly efficient. A clear demonstration of TTMP damping of the fast wave in high beta plasmas has been achieved. A broadband ICRH system is proposed for NET/ITER which will allow fast wave current drive and central ion heating for burn control and ignition. 10 refs., 6 figs.

  2. The fusion/plasma physics chart from CPEP

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    The Contemporary Physics Education Project has created charts and support for teachers for particle physics, cosmology, nuclear physics, and plasma physics. This poster shows and gives some background on our fusion / plasma physics chart.

  3. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  4. PLASMA HEATING AND CONFINING DEVICE

    DOEpatents

    Baker, W.R.; Bratenahl, Al.; Kunkel, W.B.

    1962-02-13

    ABS> A device is designed for generating, heating, and containing a very pure electrical plasma. Plasma purity is maintained by preventing the hot plasma from contacting insulators, which are a principal source of impurities in prior constructions. An insulator is disposed at each end of a pair of long coaxial cylinders forming an annular chamber therebetween. High voltage is applied between the cylinders and an axial magnetic field is created therethrough. At a middle position on the inner cylinder, a fastopening valve releases a quantity of gas into the chamber, and before the gas can diffuse to the distant insulators, a discharge occurs between the cylinders and plasma is formed in the central region of the chamber away from the insulators. (AEC)

  5. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  6. Direct heating of imploded plasma in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Johzaki, Tomoyuki; Nagatomo, Hideo; Mima, Kunioki; Shiraga, Hiroyuki; Azechi, Hiroshi; Mori, Yohitaga; Kitagawa, Yoneyoshi

    2016-03-01

    We propose the direct heating of an imploded plasma core by ultra-intense lasers in inertial confinement fusion, to increase the heating coupling efficiency. In this scheme, both fast-electrons and fast-ions heat the plasma core. Experiments using this direct heating scheme has been carried out at GXII and LFEX laser facility at Osaka Univeristy. To model this direct heating scheme, we developed the 1D simulation model and carried out simulations using the experimental conditions. Comparison between results of the simulation and the experimental observations validates the simulation model. We show that even in the unoptimized experimental conditions used in simulations, our calculations show that the maximum temperature, 1.6 keV, of the CD plasma.

  7. EBW Current Drive and Heating for Fusion/Fission Hybrids

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Preinhaelter, Josef; Vahala, George; Vahala, Linda; Decker, Joan; Ram, Abhay

    2011-10-01

    From the RF requirements for spherical tokamak and the need to reduce antenna exposure to neutron bombardment, EBW are an important source for both heating and current drive (CD). ICRF, LH, HHFW antennas are subject to significant neutron damage (as are NBI) because of their very large size and necessary proximity to the plasma. Recently Mahajan et. al. have studied other important uses of fusion neutrons - in particular their use in the efficient breeding of fission reactor fuel as well as in the ``rapid'' destruction of nuclear waste using their Compact High Power Density Fast Neutron Source (CFNS). For overdense plasmas the standard electromagnetic O- and X- mode experience cutoffs. EBW can propagate and be absorbed in such plasmas but its characteristics are strongly dependent on the plasma parameters with important variations in the parallel wave number. If the required temperatures in CFNS are around 35 KeV, then one will may need to revisit the electrostatic approximation and incorporate relativistic effects for EBW rays.

  8. Plasma heating and hot ion sustaining in mirror based hybrids

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  9. Plasma heating of Io's atmosphere

    NASA Technical Reports Server (NTRS)

    Pospieszalska, M. K.; Johnson, R. E.

    1992-01-01

    A Monte-Carlo, molecule-tracking program was constructed to describe the structure of Io's atmosphere in the region penetrated by ions from the plasma torus. This region is shown to exhibit high temperatures, consistent with corona observations, independent of whether significant UV heating also occurs. The atmospheric structure is determined near the exobase, which is the region responsible for the supply of the Io torus.

  10. Heat and Products Induced by Plasma Electrolysis

    SciTech Connect

    Tadahiko Mizuno; Tadayoshi Ohmori; Tadashi Akimoto; Akito Takahashi

    2000-11-12

    Plasma is formed on an electrode surface when a metal cathode is polarized in high-voltage electrolysis in a liquid electrolyte. When a liquid electrolyte is polarized at high voltage (70 to 500 V), it gives rise to an electric discharge and a plasma state. We measured the output heat and input electric power in real time by a method that combined open cell isoperibolic calorimetry and flow calorimetry. Takahashi et al. hypothesize a nuclear reaction induced by photon activation on the cathode element. We have attempted to explain the experimental results by a mechanism that produces no radioactive materials or weak radioactive emission. We applied the Takahashi theory developed for Pd and Au electrodes to the case of a W electrode. We have first reported that the distribution for their reaction product showed clearly one or two peaks that consisted of the mass number around 52 for the case of Pd and 64 and 120 for Au. This paper mainly pertains to the metal electrode. With a tungsten electrode, one peak in the anomalous elements is for the major elements from 40 to 65, and the other is from 100 to 120. The total mass of elements generated during excess heat evolution was on the order of 1 mg. Based on this mass, according to conventional laws of fission and fusion, 'commensurate' heat would have been on the order of 10{sup 6} to 10{sup 7} J. The actual excess heat was typically estimated at 10{sup 5}-several orders of magnitude less than the expected value. It is still difficult to calculate the actual weight loss of the reactive material before and after the reaction. However, we can say that the total energy generated was much less than the value calculated from the produced weight. We conclude that the photofission mechanism explains the amount of excess heat and the distribution of the element generation during the electrochemical treatment.

  11. Final Report on The Theory of Fusion Plasmas

    SciTech Connect

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  12. Ion cyclotron range of frequencies heating and flow generation in deuterium{endash}tritium plasmas

    SciTech Connect

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Hill, K.; Hosea, J.C.; LeBlanc, B.; Majeski, R.; Nazikian, R.; Ono, M.; Phillips, C.K.; Schilling, G.; von Goeler, S.; Bush, C.E.; Hanson, G.R.

    1998-05-01

    Recent radio-frequency heating experiments on the Tokamak Fusion Test Reactor (TFTR) [Hawryluk {ital et al.}, Plasma Phys. Controlled Fusion {bold 33}, 1509 (1991)] have focused on developing tools for both pressure and current profile control in deuterium{endash}tritium (DT) plasmas. A new antenna was added to investigate pressure profile control utilizing direct ion Bernstein wave (IBW) heating. This was the first time direct IBW heating was explored on TFTR. Plasma heating and driven poloidal flows are observed. Previously heating and current drive via mode-converted IBW waves had been demonstrated in non-DT plasmas but efforts in DT plasmas had been unsuccessful. This lack of success had been ascribed to the presence of a small {sup 7}Li minority ion population. In the most recent experiments {sup 6}Li was used exclusively for machine conditioning and mode-conversion heating consistent with theory is now observed in DT plasmas. {copyright} {ital 1998 American Institute of Physics.}

  13. Core fusion power gain and alpha heating in JET, TFTR, and ITER

    NASA Astrophysics Data System (ADS)

    Budny, R. V.; Cordey, J. G.; TFTR Team; Contributors, JET

    2016-05-01

    Profiles of the ratio of fusion power and the auxiliary heating power q DT are calculated for the TFTR and JET discharges with the highest neutron emission rates, and are predicted for ITER. Core values above 1.3 for JET and 0.8 for TFTR are obtained. Values above 20 are predicted for ITER baseline plasmas.

  14. Review of controlled fusion research using laser heating.

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1973-01-01

    Development of methods for generating high laser pulse energy has stimulated research leading to new ideas for practical controlled thermonuclear fusion machines. A review is presented of some important efforts in progress, and two different approaches have been selected as examples for discussion. One involves the concept of very short pulse lasers with power output tailored, in time, to obtain a nearly isentropic compression of a deuterium-tritium pellet to very high densities and temperatures. A second approach utilizing long wavelength, long pulse, efficient gas lasers to heat a column of plasma contained in a solenoidal field is also discussed. The working requirements of the laser and various magnetic field geometries of this approach are described.

  15. Tritium projectiles for fueling magnetic fusion plasmas

    SciTech Connect

    Fisher, P.W.; Gouge, M.J.

    1995-12-31

    As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet (cylindrical projectile of frozen hydrogenic gas at a temperature in the range 6--16 K) injection system to test the mechanical and thermal properties of extruded tritium, a radioactive isotope of hydrogen. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase 2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-2 program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter {approximately} 7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to 13 pellets have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. The pellets, typically 7.4 mm in diameter and up to 11 mm in length, are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process called isotopic fueling in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.

  16. On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas

    SciTech Connect

    Brown, B. T.; Smirnov, R. D. Krasheninnikov, S. I.

    2014-02-15

    The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.

  17. Implications of polarized DT plasmas for toroidal fusion reactors

    SciTech Connect

    Micklich, B.J.; Jassby, D.L.

    1983-05-01

    Spin polarization of the deuterons and tritons in a reacting plasma can result in an increase in the fusion reactivity and variation of the angular distribution of emission of the fusion neutrons. The increased fusion reactivity relaxes the confinement-temperature conditions for breakeven and ignition. We have determined the effect of varying the angular distribution of the fusion neutrons on the spatial distribution of fusion neturon current and flux at the first wall, on the global tritium breeding ratio, and on the first-wall radiation damage in low-aspect-ratio toroidal geometry.

  18. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  19. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  20. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  1. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco

    1998-04-01

    general part concludes with a few chapters on waves, again covering a broad spectrum of topics in a very condensed form: cold plasma waves, Landau and cyclotron absorption, quasi-linear theory, power flow and ray tracing in non-uniform plasmas, the main radiofrequency heating scenarios (ion cyclotron, lower hybrid and electron cyclotron) and the most common velocity space instabilities. The second part describes tokamaks, reversed field pinches, stellarators and open ended systems, and ends with a short chapter on inertial fusion. Although more descriptive in nature, this part offers a succinct introduction to relatively advanced topics, particularly for the tokamak: MHD stability and density limits, non-inductive current drive, bootstrap current, improved confinement regimes and scaling laws of the confinement. Reference to the first, general part, allows an introduction to and explanation of many of the formulas in current use for the interpretation of experimental results. A nice feature of this part is also the concise but very readable introduction to the history of fusion research. The level of the presentation corresponds well to what one would expect in a course for postgraduate students: most topics are discussed rather briefly, but always quantitatively, the mathematics being mostly worked out in full. As should be clear from the description of the content, there is a strong bias towards concrete applications, at the expense of general principles: this goes so far that the derivation of the energy principle for ideal MHD instabilities and of the dielectric tensor of the hot plasma are relegated to appendices, in spite of the fact that the mathematics involved is by no means more complex than that of the applications discussed in the main text. The equations of magnetohydrodynamics are derived in Chapter 5 not as a particular closure of the hierarchy of moments of the Vlasov equation, but using a phenomenological approach. The space devoted to comments and

  2. High-Gain High-Field Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Li, Ge

    2015-10-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  3. High-Gain High-Field Fusion Plasma.

    PubMed

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  4. Graphite as a plasma-facing material in fusion experiments

    SciTech Connect

    Langley, R.A. )

    1989-01-01

    Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab.

  5. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

    1984-01-10

    This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

  6. Fusion power production from TFTR plasmas fueled with deuterium and tritium*

    SciTech Connect

    Strachan, J. D.; Adler, H.; Alling, P.; Synakowski, E.

    1994-03-01

    Peak fusion power production of 6.2 ± 0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2 x 1017 m₋3 without the appearance of either disruptive MHD events or detectable changes in Alfvén wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits.

  7. Fusion programs in applied plasma physics

    SciTech Connect

    Not Available

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  8. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  9. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  10. Edge ambipolar potential in toroidal fusion plasmas

    SciTech Connect

    Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.

    2014-05-15

    A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.

  11. Evidences for and the Models of Fast Nonlocal Transport of Heat in Magnetic Fusion Devices

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2009-07-01

    The paper gives a short survey of (i) recent evidences for fast nonlocal transport of the heat in magnetically confined plasmas (above all, the "cold/heat pulse" experiments), (ii) interpretations of such phenomena in terms of nonlocal transport formalisms, based on the dominance of long mean-free-path energy carriers, including the interpretations of "cold pulse" experiments, and gives (iii) quantitative evidence for the domination of nonlocality in the spatial profile of electron cyclotron net radiated power in fusion reactor-grade tokamak (strong toroidal magnetic field, BT>5 T, highly reflecting walls, Rwall>0.5, and hot electron plasma, >10 keV).

  12. Heating mechanisms and mode changes in helicon plasmas

    NASA Astrophysics Data System (ADS)

    Ellingboe, Albert R.

    1996-10-01

    Measurements of plasma wave fields and time-dependent (within the rf cycle) warm electron density give insight into near-resonant transit time heating of electrons in a helicon plasma source. Experimentally, rf power and magnetic field are found to determine the mode of coupling (E, H, or Wave (A. R. Ellingboe and R. W. Boswell, Physics of Plasmas, July (1996).)) with significant warm electron density only in W mode. A second Wave mode which yields an order of magnitude increase in warm electron current is identified as the second axial eigenmode of the antenna. The turn-on of the second axial eigenmode prior to the second radial eigenmode is predicted by the ANTENA computer code(B. McVey, Plasma Fusion Center, Massachesetts Institute of Technology, Report No. PFC/RR-84-12). Orbit code modeling of the wave-particle interaction finds that increased plasma and/or neutral density significantly degrades interaction because of collisions.

  13. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  14. A laser driven fusion plasma for space propulsion

    SciTech Connect

    Kammash, T.; Galbraith, D.L. )

    1992-07-01

    The present inertial-confinement fusion concept employs a magnetized target pellet that is driven by a laser beam in conjunction with a tungsten shell whose inner surface is coated with a deuterium-tritium fusion fuel mixture. A laser beam that enters the pellet through a hole simultaneously creates a fusion-grade plasma and gives rise to a powerful, instantaneous magnetic field which thermally insulates the plasma from the material wall. The plasma lifetime of this self-generated magnetic field scheme is dictated by the shock speed in the tungsten shell rather than by the speed of sound in the plasma: it consequently burns much longer and efficiently than plausible alternatives. A manned mission could by these means be completed in a few months rather than a few years, in virtue of the great specific impulse achieved. 8 refs.

  15. Heat sink effects in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  16. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Beer, M.; Batha, S.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  17. Plasma heating power dissipation in low temperature hydrogen plasmas

    SciTech Connect

    Komppula, J. Tarvainen, O.

    2015-10-15

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  18. Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2016-01-01

    The transport of heat in laboratory and astrophysical plasmas is dominated by the complex nonlinear dynamics of plasma turbulence. In magnetically confined plasmas used for fusion energy research, turbulence is responsible for cross-field transport that limits the performance of tokamak reactors. We report a set of novel gyrokinetic simulations that capture ion and electron-scale turbulence simultaneously, revealing the dynamics of cross-scale energy transfer and zonal flow modification that give rise to heat losses. Multi-scale simulations are required to match experimental ion and electron heat fluxes and electron profile stiffness, establishing the applicability of the newly discovered physics to experiment. Importantly, these results provide a likely explanation for the loss of electron heat from tokamak plasmas, the ‘great unsolved problem’ (Bachelor et al (2007 Plasma Sci. Technol. 9 312-87)) in plasma turbulence and the projected dominant loss channel in ITER.

  19. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  20. Heavy particle collisions in astrophysical, fusion, and other plasmas

    NASA Astrophysics Data System (ADS)

    Schultz, David

    2013-09-01

    Contemporary computational methods to treat few-body, atomic-scale interactions have opened opportunities to study them at a new level of detail to both uncover unexpected phenomena and to create data of unprecedented accuracy and scope for applications. Such interactions within gaseous, plasma, and even material environments are fundamental to such diverse phenomena as low temperature plasma processing of semiconductors, collapsing giant molecular clouds forming stars, fluorescent lighting, radiation treatment of disease, and the chemistry of earth's atmosphere. I will illustrate progress using examples from recent work treating heavy particle collision systems, for which our knowledge has been both subtly refined and significantly changed. Examples will include elastic and transport-related processes in fusion and solar-system plasmas, charge transfer leading to diagnostic light emission in planetary atmospheres and fusion plasmas, and excitation and ionization processes needed for plasma modeling and diagnostics.

  1. Vortex formation during rf heating of plasma

    SciTech Connect

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

  2. User facility for research on fusion systems with dense plasmas

    SciTech Connect

    Ryutov, D. D.

    1999-01-07

    There are a number of fusion systems whose dimensions can be scaled down to a few centimeters, if the plasma density and confining magnetic field are raised to sufficiently high values. This prompts a "user-facility" approach to the studies of this class of fusion systems. The concept of such a user facility was first briefly mentioned in Ref. 1. Here we present a more detailed description.

  3. Plasma Physics, Fusion Science, and California High School Science

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2004-11-01

    In order to further engage California HIgh School science teachers in plasma physics and fusion science, a collaboration was formed between LLNL's Fusion Energy Program and the University of California's Edward Teller Education Center (etec.ucdavis.edu). California's Science Content Standards for high school physics (www.cde.ca.gov/be/st/ss/scphysics.asp) were used to create a public lecture (education.llnl.gov/sos/) that covered "students are expected to achieve" physics topics relevant to astrophysical and fusion plasma research. In addition to the lecture, a two day workshop for the Edward Teller Education Symposium, September 24 - 25, 2004 (education.llnl.gov/symposium2004) was designed around plasma spectroscopy (education.llnl.gov/symposium2004/agenda_astro.html). Plasma spectroscopy was chosen as the "anchor" to the workshop given the breadth and depth of the field to both astrophysical and fusion plasma research. Workshop participation includes lectures, tours, spectroscopic measurements, and building a 'spectroscope' for use in the teachers' respective high school classrooms. Accomplishments will be reported and future plans will be presented that include development of a one to two week expanded workshop that includes plasma research methods and advanced science skills essential to guiding students to conduct research projects.

  4. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  5. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    SciTech Connect

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-06-15

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  6. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  7. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  8. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  9. Heat flux viscosity in collisional magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  10. ICRF heating of deuterium-tritium plasmas in TFTR

    SciTech Connect

    Taylor, G.; Murakami, M.; Adler, H.

    1995-03-01

    The first experiments to heat D-T plasmas in the ion cyclotron range of frequencies (ICRF) have been performed on the Tokamak Fusion Test Reactor (TFTR). These experiments have two major objectives: to study the RF physics of ICRF-heated D-T plasmas and to enhance the performance of D-T discharges. Experiments have been conducted at 43 MHz with out-of-phase current strap excitation to explore n{sub T}/n{sub e} concentrations up to approximately 40%. In these experiments n{sub T}/n{sub e} was limited by D recycling from the carbon walls. The location of the T resonance was varied by changing the toroidal magnetic field, and the RF power was modulated (f{sub mod}=5-10 Hz) to elucidate competing heating mechanisms. Up to 5.8 MW of ICRF heating has been coupled into D-T plasmas. The addition of 5.5 MW of ICRF heating to a D-T supershot resulted in an increase in central ion temperature from 26 to 36 keV and an increase in central electron temperature from 8 to 10.5 keV. Up to 80% of the absorbed ICRF power was coupled directly to ions, in good agreement with computer code predictions. These results extrapolate to efficient T heating in future devices such as ITER.

  11. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  12. A fusion power plant without plasma-material interactions

    SciTech Connect

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  13. Electron heating in capacitively coupled plasmas revisited

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Chabert, P.; Booth, J. P.

    2014-06-01

    We revisit the problem of electron heating in capacitively coupled plasmas (CCPs), and propose a method for quantifying the level of collisionless and collisional heating in plasma simulations. The proposed procedure, based on the electron mechanical energy conservation equation, is demonstrated with particle-in-cell simulations of a number of single and multi-frequency CCPs operated in regimes of research and industrial interest. In almost all cases tested, the total electron heating is comprised of collisional (ohmic) and pressure heating parts. This latter collisionless component is in qualitative agreement with the mechanism of electron heating predicted from the recent re-evaluation of theoretical models. Finally, in very electrically asymmetric plasmas produced in multi-frequency discharges, we observe an additional collisionless heating mechanism associated with electron inertia.

  14. Heat flow in variable polarity plasma arc welds

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1992-01-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  15. Heat flow in variable polarity plasma arc welds

    NASA Astrophysics Data System (ADS)

    Abdelmessih, Amanie N.

    1992-12-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  16. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  17. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K.B.

    1998-11-02

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  18. Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment

    SciTech Connect

    C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson

    2003-10-13

    The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.

  19. Nanoparticle heating in atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas; Aydil, Eray; Kortshagen, Uwe

    2015-09-01

    The plasma environment offers a number of attractive properties that allow for the generation of nanoparticle materials that are otherwise hard to produce by other means. Among these are the generally high temperatures that nanoparticles can attain within plasmas, enabling the generation of nanocrystals of high melting point materials. In low pressure discharges, these high temperatures are the result of energetic surface reactions that strongly heat the small nanoparticles combined with the relatively slow heat transfer to the neutral gas. At atmospheric pressure, the nanoparticle intrinsic temperature is much more closely coupled to the neutral gas temperature. We study the heating of nanoparticles in atmospheric pressure plasmas based on a Monte Carlo simulation that takes into account the most important plasma-surface reactions as well as the conductive cooling of nanoparticles through the neutral gas. We find that, compared to low pressure plasmas, significantly higher plasma densities and densities of reactive species are required in order to achieve nanoparticle temperatures comparable to those in low pressure plasmas. These findings have important implications for the application of atmospheric pressure plasmas for the synthesis of nanoparticle materials. This work was supported by the DOE Plasma Science Center for Predictive Control of Plasma Kinetics.

  20. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  1. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  2. Heat of fusion of primary alcohol confined in Nano pores

    NASA Astrophysics Data System (ADS)

    Griffin, Harrisonn; Amanue, Samuel

    Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thompson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thompson equation, however, the apparent heat of fusion decreases as the the pore size decreases. Previously, several models have been proposed where the interfacial layer/s of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, annealing the nano confined materials enables some of the interfacial layers to be incorporated into an existing crystal. This leads to an increase in the apparent heat of fusion and a systematic relationship exists between the annealing temperature and the increase in the apparent heat of fusion. This work was partially supported by NSF-DMR: 1229142.

  3. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  4. Numerical modeling of waveguide heated microwave plasmas

    SciTech Connect

    Venkateswaran, S.; Schwer, D.A.; Merkle, C.L.

    1993-12-01

    Waveguide-heated microwave plasmas for space propulsion applications are analyzed by a two-dimensional numerical solution of the combined Navier-Stokes and Maxwell equations. Two waveguide configurations -- one purely transmitting and the other with a reflecting end wall -- are considered. Plasma stability and absorption characteristics are studied and contrasted with the characteristic of resonant cavity heated plasmas. In addition, preliminary estimates of the overall efficiency and the thrust and specific impulse of the propulsion system are also made. The computational results are used to explain experimental trends and to better understand the working of these devices.

  5. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    Berk, Herb; Betti, Riccardo; Dahlburg, Jill; Freidberg, Jeff; Hopper, Bick; Meade, Dale; Navritil, Jerry; Nevins, Bill; Ono, Masa; Perkins, Rip; Prager, Stewart; Schoenburg, Kurt; Taylor, Tony; Uckan, Nermin

    2001-09-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called “burning plasma” regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It “sets the stage” for the remainder of the report.

  6. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    SciTech Connect

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  7. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGESBeta

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  8. Characterization of the Inductively Heated Plasma Source IPG6-B

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2014-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6). The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160 m3/h in combination with a butterfly valve allows pressure control over a wide range. Intended fields of research include basic investigation into thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. those found in fusion devices or during atmospheric re-entry of spacecraft. After moving the IPG6-B facility to the Baylor Research and Innovation Collaborative (BRIC) it was placed back into operation during the summer of 2014. Initial characterization in the new lab, using a heat flux probe, Pitot probe and cavity calorimeter, has been conducted for Air, Argon and Helium. The results of this characterization are presented.

  9. APPARATUS FOR HEATING A PLASMA

    DOEpatents

    Stix, T.H.

    1962-01-01

    The system contemplates the use of ion cyclotron motions for transferring energy to a plasma immersed in a confining magnetic field such as is found in thermonuclear reactors of the stellarator class. Oppositely directed windings are provided for producing ion-accelerating fields having a time and spatial periodicity and these have the advantage of producing ion cyclotron motions without the development of space charges which preclude the efficient energy transfer to the plasma. (AEC)

  10. Modeling Nuclear Fusion with an Ultracold Nonneutral Plasma

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel H. E.

    2007-08-01

    In the hot dense interiors of stars and giant planets, nuclear fusion reactions are predicted to occur at rates that are greatly enhanced compared to those at low densities. The enhancement is caused by plasma screening of the repulsive Coulomb potential between nuclei, which increases the probability of the rare close collisions that are responsible for fusion. This screening enhancement is a small effect in the Sun, but is predicted to be much larger in dense objects such as white dwarf stars and giant planet interiors where the plasma is strongly correlated (i.e. where the Debye screening length is smaller than a mean interparticle spacing). However, strongly enhanced fusion reaction rates caused by plasma screening have never been definitively observed in the laboratory. This talk discusses a method for observing the enhancement using an analogy between nuclear energy and cyclotron energy in a cold nonneutral plasma in a strong magnetic field. In such a plasma, the cyclotron frequency is higher than other dynamical frequencies, so the kinetic energy of cyclotron motion is an adiabatic invariant. This energy is not shared with other degrees of freedom except through rare close collisions that break this invariant and couple the cyclotron motion to the other degrees of freedom. Thus, the cyclotron energy of an ion, like nuclear energy, can be considered to be an internal degree of freedom that is released only via rare close collisions. Furthermore, it has recently been shown that the rate of release of cyclotron energy is enhanced through plasma screening by precisely the same factor as that for the release of nuclear energy, because both processes rely on close collisions that are enhanced by plasma screening in the same way. Simulations and experiments measuring large plasma screening enhancements for the first time will be discussed, and the possibility of exciting and studying cyclotron burn fronts will also be considered.

  11. Hybrid Modeling of Plasmas and Applications to Fusion and Space Physics.

    NASA Astrophysics Data System (ADS)

    Kazeminejad, Farzad

    Since the early days of controlled fusion research, plasma physicists have encountered great challenges in obtaining solutions to the highly nonlinear equations which govern the behavior of fusion plasmas; with the growth of other applications of plasma physics (space plasmas, plasma accelerators, ... etc.) these problems have grown in importance. Obtaining reasonable solutions to the nonlinear equations is crucial to our understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amounts of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid; i.e., its resistivity, viscosity, heat transport, etc. One can attempt to put these effects in as phenomenological coefficients, but such approaches are always somewhat ad hoc. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial

  12. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  13. A new ion cyclotron range of frequency scenario for bulk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Ongena, J.; Van Eester, D.; Bilato, R.; Dumont, R.; Lerche, E.; Mantsinen, M.; Messiaen, A.

    2015-08-01

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radio frequency (RF) heating of 3He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra 3He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  14. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    NASA Astrophysics Data System (ADS)

    Counsell, G. F.

    2002-08-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV1019 m-3) but weakly ionized (n0>1020 m-3, ne/n0<0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues.

  15. Energetic particle instabilities in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA

    2013-10-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  16. Modeling Nuclear Fusion with an Ultracold Nonneutral Plasma

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel H. E.

    2007-11-01

    In the hot dense interiors of stars and giant planets, nuclear fusion reactions are predicted to occur at rates that are greatly enhanced compared to rates at low densities. The enhancement is caused by plasma screening of the repulsive Coulomb potential between nuclei, which increases the probability of the close collisions that are responsible for fusion. This screening enhancement is a small but measurable effect in the Sun; and is predicted to be much larger in dense objects such as white dwarf stars and giant planet interiors where the plasma is strongly coupled (i.e., where the Debye screening length is smaller than the mean interparticle spacing). However, these strongly enhanced fusion reaction rates have never been definitively observed in the laboratory. This talk discusses a method for observing the enhancement using an analogy between nuclear energy and cyclotron energy in a cold nonneutral plasma in a strong magnetic field. In such a plasma, the cyclotron frequency is higher than other dynamical frequencies, so the kinetic energy of cyclotron motion is an adiabatic invariant. This energy is not shared with other degrees of freedom except through close collisions that break the invariant and couple the cyclotron motion to the other degrees of freedom. Thus, the cyclotron energy of an ion, like nuclear energy, can be considered to be an internal degree of freedom that is accessible only via close collisions. Furthermore, the rate of release of cyclotron energy is enhanced through plasma screening by precisely the same factor as that for the release of nuclear energy, because both processes rely on the same plasma screening of close collisions. Simulations and experiments measuring large screening enhancements in strongly-coupled plasmas will be discussed, along with the possibility of exciting and studying ``burn fronts.''

  17. Laser plasma interaction physics in the context of fusion

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Fuchs, J.; Depierreux, S.; Baldis, H. A.; Pesme, D.; Myatt, J.; Hüller, S.; Tikhonchuk, V. T.; Laval, G.

    2000-08-01

    Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using the LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurence of the Langmuir decay instability. This secondary instability may play an imporant role in the saturation of stimulated Raman scattering. Another mechanism for reducing the growth of the scattering instabilities is the so-called `plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities.

  18. Charged-particle cross section data for fusion plasma applications

    SciTech Connect

    Miley, G.H.

    1980-01-01

    Cross-section data for fusion plasma calculations are reviewed for three categories: fusion reactions, nuclear elastic and inelastic scattering. While the data base for the basic D-T fuel cycle seems adequate for present purposes, continued refinement appears warranted. Further, increasing emphasis on advanced-fuel fusion introduces requirements for new reaction rate and charged-particle scattering data over a wider range of reacting species (light elements through /sup 11/B) and over a larger energy range (to several MeV). These new needs are discussed along with suggestions for increased emphasis on providing the user with more convenient compilations. In particular, the extension of reactivities (< sigma V) to non-Maxwellian distributions, scattering matrix data, and development of computer based files are noted.

  19. Basic plasma and fusion theory and computer simulations survey

    SciTech Connect

    Kawakami, I.; Nishikawa, K.

    1983-12-01

    The College of Science and Technology at Nihon University and the Institute for Fusion Theory at Hiroshima University discuss the history of the role of theory and simulation in fusion-oriented research. Recent activities include a one-dimensional tokamak transport code at Nagoya University and three-dimensional resistive MHD simulation studies of spheromaks. Other recent activities discussed include the tokamak computer code system TRITON, transport flux in currentless ECH-produced plasma in Heliotron-E, and thermal electron transport in the presence of a steep temperature gradient. The Japan-U.S. Joint Institute for Fusion Theory's present activities are discussed, including subject areas in three-dimensional simulation studies, nonequilibrium statistical physics, anaomalous transport and drift wave turbulence and hot-electron physics.

  20. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  1. Recyclotron III, a recirculating plasma fusion system

    SciTech Connect

    Jarnagin, W.S.

    1987-01-27

    This patent describes a recyclotron nuclear fusion system comprising recyclotrons. Each recyclotron comprises cyclotron means for receiving and accelerating charged particles in spiral and work conservative pathways. An output means forms a beam from particles received from the cyclotron means; (i) the cyclotron means comprising (a) a channel shaped electromagnet having a pair of indented polefaces, oriented along an input axis and defining an input axis and defining an input magnetic well, (b) a pair of elongated linear electrodes centered along the input magnetic well arranged generally parallel to the input axis and having a gap therebetween, (c) tuned oscillator means connected to the electrodes for applying an oscillating electric potential thereto, (ii) the output means comprising (e) inverter means comprising an electromagnet having a polarity opposite that of the channel shaped electromagnet oriented contigously therealong for extracting fully accelerated particles from the cyclotron means, and (f) reinverter means comprising an electromagnet having a polarity the same as that of the channel shaped electromagnet for correcting the flightpath of the extracted particles.

  2. On the efficacy of imploding plasma liners for magnetized fusion target compression

    SciTech Connect

    Parks, P. B.

    2008-06-15

    A new theoretical model is formulated to study the idea of merging a spherical array of converging plasma jets to form a 'plasma liner' that further converges to compress a magnetized plasma target to fusion conditions [Y. C. F. Thio et al., 'Magnetized target fusion in a spheroidal geometry with standoff drivers', Current Trends in International Fusion Research II, edited by E. Panarella (National Research Council Canada, Ottawa, Canada, 1999)]. For a spherically imploding plasma liner shell with high initial Mach number (M=liner speed/sound speed) the rise in liner density with decreasing radius r goes as {rho}{approx}1/r{sup 2}, for any constant adiabatic index {gamma}=d ln p/d ln {rho}. Accordingly, spherical convergence amplifies the ram pressure of the liner on target by the factor A{approx}C{sup 2}, indicating strong coupling to its radial convergence C=r{sub m}/R, where r{sub m}(R)=jet merging radius (compressed target radius), and A=compressed target pressure/initial liner ram pressure. Deuterium-tritium (DT) plasma liners with initial velocity {approx}100 km/s and {gamma}=5/3, need to be hypersonic M{approx}60 and thus cold in order to realize values of A{approx}10{sup 4} necessary for target ignition. For optically thick DT liners, T<2 eV, n>10{sup 19}-10{sup 20} cm{sup -3}, blackbody radiative cooling is appreciable and may counteract compressional heating during the later stages of the implosion. The fluid then behaves as if the adiabatic index were depressed below 5/3, which in turn means that the same amplification A=1.6x10{sup 4} can be accomplished with a reduced initial Mach number M{approx_equal}12.7({gamma}-0.3){sup 4.86}, valid in the range (10plasma liners assembled by current and anticipated plasma jets is <4%. A new similarity model for fusion {alpha}-particle heating of the collapsed liner indicates that 'spark' ignition of the DT liner fuel does not appear to be

  3. The Development of RF Heating of Magnetically Confined Deuterium-Tritium Plasmas

    SciTech Connect

    B.P. LeBlanc; C.K. Phillips; J.C. Hosea; R. Majeski; S. Bernabei

    1999-06-01

    The experimental and theoretical development of ion cyclotron radiofrequency heating (ICRF) in toroidal magnetically-confined plasmas recently culminated with the demonstration of ICRF heating of D-T plasmas, first in the Tokamak Fusion Test Reactor (TFTR) and then in the Joint European Torus (JET). Various heating schemes based on the cyclotron resonances between the plasma ions and the applied ICRF waves have been used, including second harmonic tritium, minority deuterium, minority helium-3, mode conversion at the D-T ion-ion hybrid layer, and ion Bernstein wave heating. Second harmonic tritium heating was first shown to be effective in a reactor-grade plasma in TFTR. D-minority heating on JET has led to the achievement of Q = 0.22, the ratio of fusion power produced to RF power input, sustained over a few energy confinement times. In this paper, some of the key building blocks in the development of rf heating of plasmas are reviewed and prospects for the development of advanced methods of plasma control based on the application of rf waves are discussed.

  4. The development of RF heating of magnetically confined deuterium-tritium plasmas

    SciTech Connect

    Hosea, J. C.; Bemabei, S.; LeBlanc, B. P.; Majeski, R.; Phillips, C. K.; Schilling, G.; Wilson the TFTR Team, J. R.

    1999-09-20

    The experimental and theoretical development of ion cyclotron radiofrequency heating (ICRF) in toroidal magnetically-confined plasmas recently culminated with the demonstration of ICRF heating of D-T plasmas, first in the Tokamak Fusion Test Reactor (TFTR) and then in the Joint European Torus (JET). Various heating schemes based on the cyclotron resonances between the plasma ions and the applied ICRF waves have been used, including second harmonic tritium, minority deuterium, minority helium-3, mode conversion at the D-T ion-ion hybrid layer, and ion Bernstein wave heating. Second harmonic tritium heating was first shown to be effective in a reactor-grade plasma in TFTR. D-minority heating on JET has led to the achievement of Q=0.22, the ratio of fusion power produced to RF power input, sustained over a few energy confinement times. In this paper, some of the key building blocks in the development of rf heating of plasmas are reviewed and prospects for the development of advanced methods of plasma control based on the application of rf waves are discussed. (c) 1999 American Institute of Physics.

  5. Magnetohydrodynamic waves in fusion and astrophysical plasmas.

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.

  6. Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve

    2015-11-01

    Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.

  7. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Hnat, B.

    2011-09-01

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  8. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    SciTech Connect

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  9. Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

    SciTech Connect

    Rognlien, T

    2004-11-01

    A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

  10. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    NASA Astrophysics Data System (ADS)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  11. Interactive Plasma Physics Education Using Data from Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Calderon, Brisa; Davis, Bill; Zwicker, Andrew

    2010-11-01

    The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.

  12. Plasma stability studies of the gasdynamic mirror fusion propulsion experiment

    NASA Astrophysics Data System (ADS)

    Emrich, William Julius, Jr.

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. These differences are postulated to permit gasdynamic mirrors to confine plasmas in a stable manner without the additional complicated equipment required by low aspect ratio, low plasma density mirror machines. To verify that a gasdynamic mirror could indeed confine plasmas in a stable manner for long periods of time, a small scale experimental gasdynamic mirror was built and tested. The gasdynamic mirror which was constructed is 2.5 meters long and can accommodate plasmas up to 20 centimeters in diameter. The device is able to support mirror magnetic fields of up to two tesla and central cell magnetic fields of up to a third of a tesla. A reciprocating Langmuir probe was used to determine the radial plasma density and electron temperature profiles upon which the experimental results of this study are based. The objective of this experiment was to determine ranges of mirror ratios and plasma densities over which gasdynamic mirror could maintain stable plasmas. Theoretical analyses indicated that plasma magnetohydrodynamic instabilities were likely to occur during subsonic to supersonic flow transitions in the mirror throat region of the gasdynamic mirror. The experimental evidence based upon data derived from the Langmuir probe measurements seems to confirm this analysis. These instabilities result in a loss of plasma confinement and would almost certainly prevent the initiation of fusion reactions. The assumption that a gasdynamic mirror using a simple mirror geometry could be used as a propulsion system, therefore, appears questionable. Fairly simple modifications to the simple mirror concept are presented, however, which if incorporated into the simple mirror

  13. Internet and web projects for fusion plasma science and education. Final technical report

    SciTech Connect

    Eastman, Timothy E.

    1999-08-30

    The plasma web site at http://www.plasmas.org provides comprehensive coverage of all plasma science and technology with site links worldwide. Prepared to serve the general public, students, educators, researchers, and decision-makers, the site covers basic plasma physics, fusion energy, magnetic confinement fusion, high energy density physics include ICF, space physics and astrophysics, pulsed-power, lighting, waste treatment, plasma technology, plasma theory, simulations and modeling.

  14. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  15. Nonlinear kinetic simulations of ion cyclotron emission from fusion products in large tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Dendy, Richard; Cook, James; Chapman, Sandra

    2012-10-01

    Ion cyclotron emission (ICE) was the only collective radiative instability, driven by fusion-born ions, observed from deuterium-tritium plasmas in both JET and TFTR (R O Dendy et al., Nucl. Fusion 35, 1733 (1995)). Suprathermal emission, peaked at sequential ion cyclotron harmonics at the outer mid-plane edge, was detected using heating antennas as receivers on JET and using probes in TFTR. The intensity of ICE spectral peaks scaled linearly with fusion reactivity. The underlying emission mechanism appears to be the magnetoacoustic cyclotron instability (MCI), which involves resonance between: the fast Alfv'en wave; cyclotron harmonic waves supported by the energetic ions and by the background thermal plasma; and a set of centrally born fusion products, lying on barely trapped orbits, which undergo large drift excursions. Analytical studies show that the linear growth rate of the MCI corresponds well with certain observational features of ICE, including ones where a nonlinear treatment might be thought essential. To help explain this, we have carried out direct numerical simulations using a particle-in-cell (PIC) code. We focus on the results of extending MCI theory from the linear into the nonlinear regime for large tokamak parameters.

  16. Tempest Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.

    2006-04-01

    We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.

  17. EDITORIAL: The interaction of radio-frequency fields with fusion plasmas: the JET experience The interaction of radio-frequency fields with fusion plasmas: the JET experience

    NASA Astrophysics Data System (ADS)

    Ongena, Jef

    2012-07-01

    The JET Task Force Heating is proud to present this special issue. It is the result of hard and dedicated work by everybody participating in the Task Force over the last four years and gives an overview of the experimental and theoretical results obtained in the period 2008-2010 with radio frequency heating of JET fusion plasmas. Topics studied and reported in this issue are: investigations into the operation of lower hybrid heating accompanied by new modeling results; new experimental results and insights into the physics of various ion cyclotron range of frequencies (ICRF) heating scenarios; progress in studies of intrinsic and ion cyclotron wave-induced plasma rotation and flows; a summary of the developments over the last years in designing an ion cyclotron radiofrequency heating (ICRH) system that can cope with the presence of fast load variations in the edge, as e.g. caused by pellets or edge localized modes (ELMs) during H-Mode operation; an overview of the results obtained with the ITER-like antenna operating in H-Mode with a packed array of straps and power densities close to those of the projected ITER ICRH antenna; and, finally, a summary of the results obtained in applying ion cyclotron waves for wall conditioning of the tokamak. This issue would not have been possible without the strong motivation and efforts (sometimes truly heroic) of all colleagues of the JET Task Force Heating. A sincere word of thanks, therefore, to all authors and co-authors involved in the experiments, analysis and compilation of the papers. It was a special privilege to work with all of them during the past very intense years. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the operations team of JET and the colleagues of the Close Support Unit in Culham. Thanks also to the editors, Editorial Board and referees of Plasma Physics and Controlled Fusion, together with the publishing staff of IOPP, who have not only

  18. The interaction of the near-field plasma with antennas used in magnetic fusion research

    NASA Astrophysics Data System (ADS)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  19. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  20. Dust remobilization in fusion plasmas under steady state conditions

    NASA Astrophysics Data System (ADS)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  1. Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research

    SciTech Connect

    B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen

    2012-09-27

    Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

  2. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    SciTech Connect

    Eck, H. J. N. van; Lof, A.; Meiden, H. J. van der; Rooij, G. J. van; Scholten, J.; Zeijlmans van Emmichoven, P. A.; Kleyn, A. W.

    2012-11-26

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 Multiplication-Sign 10{sup 20} m{sup -3} and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m{sup -2} and 10{sup 24} m{sup -2} s{sup -1}, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency.

  3. Alpha-Heating and a Burning Plasma State

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Barrios Garcia, M. A.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A.; Milovich, J.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J.; Springer, P. T.; Tommasini, R.

    2014-10-01

    L. R. BENEDETTI, D. BRADLEY, D. FITTINGHOFF, N. IZUMI, S. KHAN, R. TOWN (LLNL) G. GRIM, N. GULER, G. KYRALA, F. MERRILL, C. WILDE, P. VOLEGOV (LANL) High-foot implosions show net fuel gains and significant alpha-heating [Hurricane et al., Nature 506, 343 (2014)] using a per shot analysis of NIF data with a static reconstruction of the implosion energetics [e.g. Cerjan et al., PoP 20 (2013)]. Inference of the alpha-heating contribution to the yield is made using a simulation database of DT implosions and the one-to-one correspondence of yield amplification and normalized Lawson criteria [Patel et al., APS-DPP, (2013); Patel et al. this conf.]. A dynamic semi-analytic model for the DT self-heating rate can be constructed that can more directly be used, with data, to determine the degree of bootstrapping occuring in implosions. Here we propose that the suite of high-foot data demonstrate a scaling of fusion yield performance versus energy absorbed that provides an alternate proof of significant alpha-particle self-heating. This analysis shows that recent high-foot implosions are alpha-heating dominated and thus have achieved a `burning-plasma' state. Work performed under the auspices of U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344.

  4. Ion cyclotron range of frequencies heating and current drive in deuterium-tritium plasmas

    NASA Astrophysics Data System (ADS)

    Phillips, C. K.; Bell, M. G.; Bell, R.; Bretz, N.; Budny, R. V.; Darrow, D. S.; Grek, B.; Hammett, G.; Hosea, J. C.; Hsuan, H.; Ignat, D.; Majeski, R.; Mazzucato, E.; Nazikian, R.; Park, H.; Rogers, J. H.; Schilling, G.; Stevens, J. E.; Synakowski, E.; Taylor, G.; Wilson, J. R.; Zarnstorff, M. C.; Zweben, S. J.; Bush, C. E.; Goldfinger, R.; Jaeger, E. F.; Murakami, M.; Rasmussen, D.; Bettenhausen, M.; Lam, N. T.; Scharer, J.; Sund, R.; Sauter, O.

    1995-06-01

    The first experiments utilizing high-power radio waves in the ion cyclotron range of frequencies to heat deuterium-tritium (D-T) plasmas have been completed on the Tokamak Fusion Test Reactor [Fusion Technol. 21, 13 (1992)]. Results from the initial series of experiments have demonstrated efficient core second harmonic tritium (2ΩT) heating in parameter regimes approaching those anticipated for the International Thermonuclear Experimental Reactor [D. E. Post, Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 13th International Conference, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239]. Observations are consistent with modeling predictions for these plasmas. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves has been observed in D-T, deuterium-deuterium (D-D), and deuterium-helium-4 (D-4He) plasmas with high concentrations of minority helium-3 (3He) (n3He/ne≳10%). Mode conversion current drive in D-T plasmas was simulated with experiments conducted in D-3He-4He plasmas. Results show a directed propagation of the mode converted ion Bernstein waves, in correlation with the antenna phasing.

  5. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-08-26

    Coatings for laser fusion targets were deposited up to 135 ..mu..m thick by plasma polymerization onto 140 ..mu..m diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 ..mu..m) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets.

  6. Modeling hydrogen isotope behavior in fusion plasma-facing components

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2014-03-01

    In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.

  7. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    NASA Astrophysics Data System (ADS)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium–deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5–10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  8. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  9. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding.

    PubMed

    van Eden, G G; Morgan, T W; Aussems, D U B; van den Berg, M A; Bystrov, K; van de Sanden, M C M

    2016-04-01

    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants. PMID:27081983

  10. Self-Regulated Plasma Heat Flux Mitigation Due to Liquid Sn Vapor Shielding

    NASA Astrophysics Data System (ADS)

    van Eden, G. G.; Morgan, T. W.; Aussems, D. U. B.; van den Berg, M. A.; Bystrov, K.; van de Sanden, M. C. M.

    2016-04-01

    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants.

  11. Heating power feedback control for CO2 laser fusion splicers

    NASA Astrophysics Data System (ADS)

    Zheng, Wenxin; Sugawara, Hiroshi; Mizushima, Toshirou; Klimowych, William

    2013-02-01

    A novel feedback control method has been developed for an automated splicer using a CO2 laser as the heating element. The feedback method employs a sensor for laser beam power and CMOS cameras as sensors for fiber luminescence which is directly related to glass temperature. The CO2 laser splicer with this type of feedback system provides a consistent platform for the fiber laser and bio-medical industry for fabrication of fused glass components such as tapers, couplers, combiners, mode-field adaptors, and fusion splices. With such a closed loop feedback system, both splice loss and peak-to-peak taper ripple are greatly reduced.

  12. PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Sauter, Olivier

    2012-12-01

    The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012

  13. Laser plasma interaction experiments in the context of inertial fusion

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Bandulet, H.; Depierreux, S.; Lewis, K.; Michel, P.; Michard, A.; Baldis, H. A.; Hulin, S.; Pesme, D.; Hüller, S.; Tikhonchuk, V.; Riconda, C.; Weber, S.

    2004-12-01

    In laser fusion, the coupling and the propagation of the laser beams in the plasma surrounding the pellet must be well controlled for to succeed in producing a high energy level. To achieve thermonuclear ignition and high gain, the coupling efficiency must be as high as possible, the uniformity of the energy deposition must be very good and the fast electron generation must be minimized. This implies a deep understanding of the laser plasma interaction mechanisms to keep the nonlinear processes at a low level. Important advances in laser plasma interaction physics have been achieved thanks to the converging efforts of the experimental and theoretical approaches. Among the different studies of the last few years, we will report results on three themes which are important for future fusion experiments. The first concerns the ability of plasmas to induce temporal and spatial incoherence to the laser beams during their propagation. Beam smoothing, beam spraying and increased incoherence may in turn reduce the level of backscattering instabilities. In laser fusion, multiple beams are used to irradiate the target. The effect of the overlap of the laser beams on parametric instabilities may complicate the problem. Not only is there the interplay between instabilities driven by one beam, but also the interplay between instabilities driven by different beams. In the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) experiment, although the overall stimulated Brillouin scattering (SBS) reflectivity was reduced, a well-defined resonance of the amplitude of ion acoustic waves (IAWs) associated with SBS has been observed for waves propagating along the bisecting direction between two laser beams. Energy transfer between two identical laser beams has been observed and correlated with plasma induced incoherence. The nonlinear saturation of stimulated scattering instabilities is a fundamental ingredient of the understanding of the observed and future reflectivity levels

  14. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  15. Simulation of transition dynamics to high confinement in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Nielsen, A. H.; Xu, G. S.; Madsen, J.; Naulin, V.; Juul Rasmussen, J.; Wan, B. N.

    2015-12-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced at proper parameters. The model recovers the power threshold for the L-H transition as well as the decrease in power threshold switching from single to double null configuration observed experimentally. The results are highly relevant for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors.

  16. A Vlasov equation with Dirac potential used in fusion plasmas

    SciTech Connect

    Bardos, Claude; Nouri, Anne

    2012-11-15

    Well-posedness of the Cauchy problem is analyzed for a singular Vlasov equation governing the evolution of the ionic distribution function of a quasineutral fusion plasma. The Penrose criterium is adapted to the linearized problem around a time and space homogeneous distribution function showing (due to the singularity) more drastic differences between stable and unstable situations. This pathology appears on the full nonlinear problem, well-posed locally in time with analytic initial data, but generally ill-posed in the Hadamard sense. Eventually with a very different class of solutions, mono-kinetic, which constrains the structure of the density distribution, the problem becomes locally in time well-posed.

  17. Recombination of H atoms on the dust in fusion plasmas

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-07-15

    We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.

  18. Education Outreach at MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Rivenberg, P.

    1999-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. The PSFC maintains a Home Page on the World Widee Web, which can be reached at http://psfc.mit.edu.

  19. Educational Outreach at the MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Rivenberg, Paul; Thomas, Paul

    2006-10-01

    At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. The Mr. Magnet Program, headed by Mr. Paul Thomas, has been bringing lively demonstrations on magnetism into local elementary and middle schools for 15 years. This year Mr. Magnet presented the program to nearly 30,000 students at over 67 schools and other events, reaching kindergartners through college freshmen. In addition to his program on magnetism, he is offering an interactive lecture about plasma to high schools. The "Traveling Plasma Lab" encourages students to learn more about plasma science while having fun investigating plasma properties using actual laboratory techniques and equipment. Beyond the classroom, Paul Thomas has provided technical training for Boston Museum of Science staff in preparation for the opening of a Star Wars exhibit. His hands-on demos have also been filmed by the History Channel for a one-hour program about Magnetism, which aired in June 2006.

  20. FREQUENCY CONTROL OF RF HEATING OF GASEOUS PLASMA

    DOEpatents

    Herold, E.W.

    1962-09-01

    This invention relates to the heating of gaseous plasma by radiofrequency ion-cyclotron resonance heating. The cyclotron resonance frequencies are varied and this invention provides means for automatically controlling the frequency of the radiofrequency to maximize the rate of heating. To this end, a servo-loop is provided to sense the direction of plasma heating with frequency and a control signal is derived to set the center frequency of the radiofrequency energy employed to heat the plasma. (AEC)

  1. The heating of plasma focus electrodes

    NASA Astrophysics Data System (ADS)

    Angeli, E.; Frignani, M.; Mannucci, S.; Rocchi, F.; Sumini, M.; Tartari, A.

    2006-02-01

    Plasma focus (PF) technology development today is strictly related to the possibility of a high frequency repetitive working regime. One of the more relevant obstacles to this goal is the heating of structural components due to direct interaction with plasma. In this paper, temperature decay measurements of the inner electrode of a 7 kJ Mather type PF are presented. Data from several series of shots at different bank energies are analysed and compared with theoretical and numerical models. Two possible scale laws are derived from the experimental data to correlate thermal deposition with bank energy. It is found that a fraction of about 10% of total energy is released to the inner electrode. Finally, after some considerations about the cooling and heating mechanisms, an analysis on maximum temperature sustained by materials is presented.

  2. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials. PMID:27587118

  3. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  4. Radiative heat transport instability in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Bychenkov, V. Yu.

    2015-11-01

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.

  5. Spectroscopic investigations of tungsten EUV spectra for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter; Safronova, Ulyana; Brage, Tomas; Grumer, Jon

    2011-10-01

    The Livermore WOLFRAM spectroscopy project consists of experimental and theoretical investigations of tungsten ions of relevance to the diagnostics of magnetically confined fusion plasmas. A recent effort has focused on the complex extreme ultraviolet spectra of few-times ionized tungsten atoms that are expected to be abundant in ITER divertor plasmas. The tungsten ions were produced and excited in the Livermore EBIT-I electron beam ion trap by scanning the electron-beam energy between 30 and 300 eV. The emission was studied using a broad-band grazing-incidence spectrometer covering 150 - 300 Å and a high-resolution spectrometer covering the 180 - 220 Å region. Experimental spectra are presented together with analysis based on calculations using the FAC, GRASP, Cowan, HULLAC, and RMBPT codes. Part of this work was performed under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA-27344.

  6. Materials for the plasma-facing components of fusion reactors

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Barabash, V.; Krauss, W.; Linke, J.; Neu, R.; Suzuki, S.; Yoshida, N.; ASD. E. X. Upgrade Team

    2004-08-01

    During reactor operation the plasma-facing materials have to fulfil very complex and sometimes contradicting requirements. At present, tungsten shows the highest promise as plasma-facing material. Experiments in the ASDEX Upgrade tokamak indicate that plasma operation is feasible with walls and divertor surfaces mostly covered with tungsten. Thick tungsten coatings have been deposited by plasma spraying on EUROFER first wall mock-ups and show good adhesion and stability. The performance of tungsten surfaces under intense transient thermal loads is another critical issue, since the formation of a melt layer may favour the generation of highly activated dust particles. Work on `nanocrystalline' tungsten shall improve the mechanical properties under neutron irradiation which is especially important for designs, where tungsten has also to fulfil structural functions. Alternative divertor heat sink materials with very high thermal conductivity like SiC-fibre reinforced copper composites are presently being developed and should allow operation at reactor relevant coolant temperatures.

  7. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently. PMID:26172803

  8. Advanced Real-Time Feedback Control in JT-60U High Performance Discharges for Application to Fusion Reactor Plasmas

    SciTech Connect

    Fukuda, T.; Oikawa, T.; Takeji, S.; Isayama, A.; Kawano, Y.; Neyatani, Y.; Nagashima, A.; Nishitani, T.; Konoshima, S.; Tamai, H.; Fujita, T.; Sakamoto, Y.; Kamada, Y.; Ide, S.; Koide, Y.; Takenaga, H.; Kurihara, K.; Sakata, S.; Ozeki, T.; Kawamata, Y.; Miura, Y. M.

    2002-09-15

    The significance of real-time feedback control is emphasized in this paper as an indispensable method to improve and sustain the improved plasma characteristics in JT-60U high fusion performance discharges as well as to operate the fusion reactor under the optimal divertor conditions with respect to the heat load and exhaust pumping. In accordance, substantial improvement in the equivalent fusion amplification gain of over unity has been reproducibly achieved at the JT-60U tokamak in the reversed shear mode of operation with the robust feedback controls, where the value of target density was deliberately optimized for the reliable internal transport barrier formation, and the magneto-hydrodynamic stability control was performed with the stored energy feedback. The feedback control techniques also demonstrated the effectiveness to produce quasi-steady-state high-performance plasmas. In addition, three major parameters associated with the fusion reactor instrumentations, namely the neutron production rate, operating density, and divertor radiation power, were simultaneously feedback controlled in the ELMy H-mode plasmas. Here, the matrix response function was evaluated to identify the limitations involved with the linear combination of independent controls. Other advanced feedback schemes, such as the feedback suppression of the neoclassical tearing mode required to sustain high plasma pressure in a steady-state, are also described. Finally, the controversial issues for the future intelligent plasma control necessary for the advanced steady-stated tokamak reactor are addressed.

  9. CPEP Fusion/Plasma Physics Education Materials/Activities

    NASA Astrophysics Data System (ADS)

    Lightner, G. Samuel; Zaleskiewicz, T. P.; Reiland, Robert

    2001-10-01

    The Contemporary Physics Education Project (CPEP) is a not-for-profit organization of teachers, educators, and physicists (see http://cpepweb.org). The goals in its charter include the development and implementation of teaching materials about contemporary physics topics for use in the introductory courses. To this end, the CPEP Fusion/plasma group has produced the teaching chart, ``FUSION-Physics of a Fundamental Energy Source''. Ancillary materials including an Instructors Guide and a packet of classroom activities are under development. In order to promote effective classroom use of its educational materials, CPEP presents workshops for high school and college teachers. These workshops have been sponsored by or held in conjunction with a variety of organizations including; the APS/DPP, the AAPT, the Space Science Institute, the American Nuclear Science Teachers Association, The Allegheny Intermediate Unit, and the University of Pittsburgh at Greensburg. The chart is available in wall-size, poster-size and student notebook-size, and has been translated into six languages. Laminated versions of the poster and notebook size charts are also available as well as an overhead transparency of the chart. For more information, visit the CPEP/Fusion website (http://FusEdWeb.llnl.gov/CPEP/Chart.html)

  10. CPEP Fusion/Plasma Physics Education Materials/Activities

    NASA Astrophysics Data System (ADS)

    Lightner, G. Samuel; Zaleskiewicz, Ted; Reiland, Robert

    1999-11-01

    The Contemporary Physics Education Project (CPEP) is a not-for-profit organization of teachers, educators, and physicists. The goals in its charter include the development and implementation of teaching materials about contemporary physics topics for use in the introductory courses. To this end, the CPEP Fusion/plasma group has produced the teaching chart, "FUSION-Physics of a Fundamental Energy Source". This chart is available in wall-size, poster-size and student notebook-size, and has been translated into six languages. Ancillary materials, including an Instructors Guide and a packet of classroom activities, are under development. In order to promote effective classroom use of its educational materials, CPEP presents workshops for high school and college teachers. These workshops have been sponsored by or held in conjuction with a variety of organizations including; the APS/DPP, the AAPT, the Space Science Institute, the American Nuclear Science Teachers Association, and the University of Pittsburgh at Greensburg. For more information, visit the CPEP/Fusion website (http://FusEdWeb.pppl.gov/CPEP/Chart.html)

  11. CPEP Fusion/Plasma Physics Education Materials/Activities

    NASA Astrophysics Data System (ADS)

    Lightner, G. Samuel; Zaleskiewicz, P. T.; Reiland, Robert

    2000-10-01

    The Contemporary Physics Education Project (CPEP) is a not-for-profit organization of teachers, educators, and physicists (see http://cpepweb.org). The goals in its charter include the development and implementation of teaching materials about contemporary physics topics for use in the introductory courses. To this end, the CPEP Fusion/plasma group has produced the teaching chart, "FUSION-Physics of a Fundamental Energy Source". Ancillary materials including an Instructors Guide and a packet of classroom activities are under development. In order to promote effective classroom use of its educational materials, CPEP presents workshops for high school and college teachers. These workshops have been sponsored by or held in conjunction with a variety of organizations including; the APS/DPP, the AAPT, the Space Science Institute, the American Nuclear Science Teachers Association, and the University of Pittsburgh at Greensburg. The chart is available in wall-size, poster-size and student notebook-size, and has been translated into six languages. Laminated versions of the poster and notebook size charts are also available as well as an overhead transparency of the chart. For more information, visit the CPEP/Fusion website (http://FusEdWeb.pppl.gov/CPEP/Chart.html)

  12. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  13. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  14. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  15. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-11-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  16. Critically Balanced Ion Temperature Gradient Turbulence in Fusion Plasmas

    SciTech Connect

    Barnes, M.

    2011-09-09

    Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional.

  17. Beams, brightness, and background: Using active spectroscopy techniques for precision measurements in fusion plasma research

    SciTech Connect

    Thomas, Dan M.

    2012-05-15

    The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.

  18. High-speed surface temperature measurements on plasma facing materials for fusion applications

    SciTech Connect

    Araki, M.; Kobayashi, M.

    1996-01-01

    For the lifetime evaluation of plasma facing materials in fusion experimental machines, it is essential to investigate their surface behavior and their temperature responses during an off-normal event such as the plasma disruptions. An infrared thermometer with a sampling speed as fast as 1{times}10{sup {minus}6} s/data, namely, the high-speed infrared thermometer (HSIR), has been developed by the National Research Laboratory of Metrology in Japan. To evaluate an applicability of the newly developed HSIR on the surface temperature measurement of plasma facing materials, high heat flux beam irradiation experiments have been performed with three different materials under the surface heat fluxes up to 170 MW/m{sup 2} for 0.04 s in a hydrogen ion beam test facility at the Japan Atomic Energy Research Institute. As for the results, HSIR can be applicable for measuring the surface temperature responses of the armor tile materials with a little modification. It is also confirmed that surface temperatures measured with the HSIR thermometer show good agreement with the analytical results for stainless steel and carbon based materials at a temperature range of up to 2500{degree}C. However, for aluminum the HSIR could measure the temperature of the high dense vapor cloud which was produced during the heating due to lower melting temperature. Based on the result, a multichannel arrayed HSIR thermometer has been designed and fabricated. {copyright} {ital 1996 American Institute of Physics.}

  19. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  20. Verification of particle simulation of radio frequency waves in fusion plasmas

    SciTech Connect

    Kuley, Animesh; Lin, Z.; Wang, Z. X.; Wessel, F.

    2013-10-15

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions.

  1. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    SciTech Connect

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, Mingsheng; Campbell, Edward Michael; Fiksel, Gennady; Chang, Po -Yu; Davies, Jonathan R.; Barnak, Daniel H.; Glebov, Vladimir Y.; Fitzsimmons, Paul; Fooks, Julie; Blue, Brent E.

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

  2. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    DOE PAGESBeta

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, Mingsheng; Campbell, Edward Michael; Fiksel, Gennady; Chang, Po -Yu; Davies, Jonathan R.; Barnak, Daniel H.; Glebov, Vladimir Y.; et al

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheatmore » stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.« less

  3. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.

    2015-11-01

    An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  4. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    SciTech Connect

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  5. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    SciTech Connect

    Ichimaru, S. . Dept. of Physics); Tajima, T. . Inst. for Fusion Studies)

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  6. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    SciTech Connect

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  7. Upgrade of a Theta Pinch Plasma Source for Energetic Plasma Flow Generation and Fusion-Related Material Interaction Study

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Surla, Vijay; Ruzic, David

    2010-11-01

    In order to investigate material erosion by exposure to a burst of high density plasma in a laboratory setting, a theta pinch device called the Divertor Erosion and Vapor Shielding eXperiment facility was built at UIUC. It consists of a theta-pinch coil driven by pulse discharge from 32 μF capacitor bank to produce high density plasma. Recent measurements have shown that plasma sustains approximately for 100 μs at each pulse, with 1.0 ± 0.2(10)21 /m^3 plasma density and 12.5 ± 2.5 eV electron temperature. To simulate the extreme condition in magnetic fusion device a higher electron temperature is desired. For this reason, several upgrades have been implemented: (1) the main capacitor bank, for compression and heating was operated in conjunction with RF antenna and a preionization bank. (2) a guide magnetic field was installed to transport the flow minimizing losses in the radial direction and (3) a crow-bar circuit was added to prevent the pinch from ringing and therefore working against the imposed static magnetic field. The results from the upgrades will be presented.

  8. Interfacial Stability of Converging Plasma Jets for Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Cassibry, J. T.; Thio, Y. C. F.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The merging of a spherical distribution of plasma jets to dynamically form a gaseous liner has been proposed for use in magnetized target fusion propulsion. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The analysis lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that during the merging of the jets to form a liner and before contact with the target plasma the growth of the perturbed flow at the jet interface is not likely to destabilize the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of liner can withstand velocity variation up to 50% between the neighboring jets over the density and temperature ranges investigated.

  9. Fusion-reactor plasmas with polarized nuclei. II

    SciTech Connect

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Budny, R.V.; Jassby, D.L.; Micklich, B.J.; Post, D.E.; Goldhaber, M.; Happer, W.

    1982-11-01

    New techniques of bulk polarization could be used to fuel a reactor with polarized hydrogenic atoms, so as to form a plasma of polarized nuclei. Theoretical calculations indicate that, once the nuclei of the plasma are polarized in some preferred state, they can maintain this state with a probability near 100% during their lifetime in the reactor, including possible recycling. There are a number of practical advantages to be gained from the use of polarized plasma in a fusion reactor. The nuclear reaction rates can be increased or decreased, and/or the direction of emission of the reaction products can be controlled. The D-T reaction rate can be enhanced by as much as 50%, with the reaction products emitted perpendicular to the magnetic field. Alternatively, it is possible to direct the reaction products primarily along the field, with no enhancement. In this case of the D-D reaction, the theoretical predictions are somewhat less certain. Enhancement of the reaction rate by a factor of 1.5-2.5 is to be expected. In a different polarization state, suppression of D-D reactions may be feasible - a possibility that would be of interest for a neutron-free D-He/sup 3/ reactor. A quantitative discussion of the relevant nuclear physics as well as of the various mechanisms producing depolarization is given.

  10. Atomic data of tungsten for current and future uses in fusion and plasma science

    NASA Astrophysics Data System (ADS)

    Clementson, J.; Beiersdorfer, P.; Lennartsson, T.

    2013-04-01

    Atomic physics has played an important role throughout the history of experimental plasma physics. For example, accurate knowledge of atomic properties has been crucial for understanding the plasma energy balance and for diagnostic development. With the shift in magnetic fusion research toward high-temperature burning plasmas like those expected to be produced in the ITER tokamak, the atomic physics of tungsten has become important. Tungsten will be a constituent of ITER plasmas because of its use as a plasma-facing material able to withstand high heat loads with lower tritium retention than other possible materials. Already, ITER diagnostics are being developed based on using tungsten radiation. In particular, the ITER Core Imaging X-ray Spectrometer (CIXS), which is designed to measure the core ion temperature and bulk plasma motion, is being based on the x-ray emission of neonlike tungsten ions (W64+). In addition, tungsten emission will at ITER be measured by extreme ultraviolet (EUV) and optical spectrometers to determine its concentration in the plasma and to assess power loss and tungsten sputtering rates. On present-day tokamaks tungsten measurements are therefore being performed in preparation of ITER. Tungsten has very complex spectra and most are still unknown. The WOLFRAM project at Livermore aims to produce data for tungsten in various spectral bands: Lshell x-ray emission for CIXS development, soft x-ray and EUV M- and N-shell tungsten emission for understanding the edge radiation from ITER plasmas as well as from contemporary tokamaks, and O-shell emission for developing spectral diagnostics of the ITER divertor.