Waves and turbulence in a tokamak fusion plasma.
Surko, C M; Slusher, R E
1983-08-26
The tokamak is a prototype fusion device in which a toroidal Magnetic field is used to confine a hot plasma. Coherent waves, excited near the plasma edge, can be used to transport energy into the plasma in order to heat it to the temperatures required for thermonuclear fusion. In addition, tokamak plasmas are known to exhibit high levels of turbulent density fluctuations, which can transport particles and energy out of the plasma. Recently, experiments have been conducted to elucidate the nature of both the coherent waves and the turbulence. The experiments provide insight into a broad range of interesting linear and nonlinear plasma phenomena and into many of the processes that determine such practical things as plasma heating and confinement. PMID:17753464
Critically Balanced Ion Temperature Gradient Turbulence in Fusion Plasmas
Barnes, M.
2011-09-09
Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional.
Steady State Turbulent Transport in Magnetic Fusion Plasmas
Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.
2007-12-20
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.
Horton, W.; Hu, G.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
A coarse-grained kinetic equation for neutral particles in turbulent fusion plasmas
Mekkaoui, A.; Marandet, Y.; Genesio, P.; Rosato, J.; Stamm, R.; Capes, H.; Koubiti, M.; Godbert-Mouret, L.; Catoire, F.
2012-06-15
A coarse-grained kinetic equation for neutral particles (atoms, molecules) in magnetized fusion plasmas, valid on time scales large compared to the turbulence correlation time, is presented. This equation includes the effects of plasma density fluctuations, described by gamma statistics, on the transport of neutral particles. These effects have so far been neglected in plasma edge modeling, in spite of the fact that the amplitude of fluctuations can be of order unity. Density fluctuations are shown to have a marked effect on the screening of neutrals and on the spatial localization of the ionization source, in particular at high density. The coarse-grained equations obtained in this work are readily implemented in edge code suites currently used for fusion plasma analysis and future divertor design (ITER, DEMO).
NASA Astrophysics Data System (ADS)
Tang, William
2013-04-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).
Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas
Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.
2004-10-01
A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-09-15
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
Turbulent Transport in Fusion Plasmas, Effects of Toroidicity and Fluid Closure
Weiland, Jan
2009-11-10
Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular Kadomtsev's mixing length estimate is found to work well for the Cyclone base case at the experimental gradient. Generalizations to include non-Markovian effects and off diagonal fluxes are given. The importance of toroidal effects is stressed These enter particularly strongly in convective or off diagonal fluxes. This feature applies also to momentum ttransport.
Farge, Marie; Schneider, Kai; Devynck, Pascal
2006-04-15
A new method to extract coherent bursts from turbulent signals is presented. It uses the wavelet representation which keeps track of both time and scale and thus preserves the temporal structure of the analyzed signal, in contrast to the Fourier representation which scrambles it among the phases of all Fourier coefficients. Using orthogonal wavelets, turbulent signals can be decomposed into coherent and incoherent components, which are orthogonal and whose properties can thus be studied independently. Diagnostics based on the wavelet representation are also introduced to compare the statistical properties of the original signals with their coherent and incoherent components. The wavelet-based extraction method is applied to the saturation current fluctuations measuring the plasma density fluctuations at the edge of the tokamak Tore Supra, Cadarache, France. This procedure disentangles the coherent bursts, which contain most of the density variance, are intermittent and correlated with non-Gaussian statistics, from the incoherent background fluctuations, which are much weaker, non-intermittent, noise-like and almost decorrelated with quasi-Gaussian statistics. We conjecture that the coherent bursts are responsible for turbulent transport, whereas the remaining incoherent fluctuations only contribute to turbulent diffusion.
R. Nazikian; K. Shinohara; G.J. Kramer; E. Valeo; K. Hill; T.S. Hahm; G. Rewoldt; S. Ide; Y. Koide; Y. Oyama; H. Shirai; W. Tang
2005-03-29
A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast to the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.
Energy Science and Technology Software Center (ESTSC)
2008-01-25
BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less
Scaling laws in magnetized plasma turbulence
Boldyrev, Stanislav
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
NASA Astrophysics Data System (ADS)
Sanchez, R.; Newman, D. E.
2015-12-01
The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional
Multiscale coherent structures in tokamak plasma turbulence
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-10-15
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state.
Coherent Structures and Intermittency in Plasma Turbulence
Das, Amita; Kaw, Predhiman; Sen, Abhijit
2008-10-15
The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.
Calderon, E.; Hidalgo, C.; Pedrosa, M.A.; Silva, C.
2004-10-01
Plasma fluctuations and fluctuation-induced particle fluxes have been investigated in the plasma edge of the TJ-II stellarator using Langmuir probes. Simultaneous measurements of plasma fluctuations carried out by probes located in and out of the probe body sheath show similar results in the normalized level of fluctuations in the ion saturation current. However, floating potential fluctuations measured in the co and counter direction of the magnetic field on the sheath probe body show slight but significant differences. The local radial electrostatic turbulent driven transport measured in and out of the probe body sheath shows consistent results, within the errors bars due to uncertainties in the determination of the effective probe collecting area; the normalized local radial transport to the average ion saturation current (the effective velocity which is not affected by uncertainties in the probe area) show consistent results. These results and previous findings call into question the recent interpretation of probe measurements on the basis of the influence of the probe's pre-sheath zone [B. Labombard, Phys. Plasmas. 9, 1300 (2002)].
Holland, Chris [UC San Diego, San Diego, California, United States
2010-01-08
The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.
NASA Astrophysics Data System (ADS)
Xu, G. S.; Wan, B. N.; Wang, H. Q.; Guo, H. Y.; Naulin, V.; Rasmussen, J. Juul; Nielsen, A. H.; Wu, X. Q.; Yan, N.; Chen, L.; Shao, L. M.; Chen, R.; Wang, L.; Zhang, W.
2016-03-01
A new model for the low-to-high (L -H ) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L -H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L -H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.
Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W
2016-03-01
A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment. PMID:26991181
Inertial range turbulence in kinetic plasmas
Howes, Gregory G.
2008-05-15
The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) The conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.
Visualization of plasma turbulence with laser-induced fluorescence (invited)
Levinton, Fred M.; Trintchouk, Fedor
2001-01-01
Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.
Multifractality in plasma edge electrostatic turbulence
Neto, C. Rodrigues; Guimaraes-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.
2008-08-15
Plasma edge turbulence in Tokamak Chauffage Alfven Bresilien (TCABR) [R. M. O. Galvao et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.
Final Report on The Theory of Fusion Plasmas
Steven C. Cowley
2008-06-17
Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.
Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.
Bovet, A; Fasoli, A; Ricci, P; Furno, I; Gustafson, K
2015-04-01
The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature. PMID:25974432
Validation metrics for turbulent plasma transport
NASA Astrophysics Data System (ADS)
Holland, C.
2016-06-01
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.
Fusion Plasma Theory project summaries
Not Available
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.
Simulation Science for Fusion Plasmas
NASA Astrophysics Data System (ADS)
Skoric, M. M.; Sudo, S.
2008-07-01
The world fusion effort has recently entered a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and future demo fusion reactors, an advanced ability for comprehensive computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to develop the capability to predict reliably the behavior of plasmas in toroidal magnetic confinement devices on all relevant time and space scales. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics and computer science is envisaged. In this talk we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. 2003). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor. Finally, a perspective role is given on the ITER Broad Approach program at Rokkasho Center, as an integrated part of ITER and Development of Fusion Energy Agreement.
Xu, X Q
2001-08-09
A boundary plasma turbulence code BOUT is presented. The preliminary encouraging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in CT-7 tokamak. The validation and benchmark of BOUT code and experimental diagnostic tools for fusion boundary plasma turbulence is proposed.
Turbulence in solar wind and laboratory plasmas
Carbone, V.
2010-06-16
Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.
Simulation science for fusion plasmas
NASA Astrophysics Data System (ADS)
Sudo, S.; Škorić, M. M.; Watanabe, T.-H.; Todo, Y.; Ishizawa, A.; Miura, H.; Ishizaki, R.; Ito, A.; Ohtani, H.; Usami, S.; Nakamura, H.; Ito, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; Sato, M.; Yamamoto, T.; Den, M.; Sakagami, H.; Horiuchi, R.; Okamura, S.; Nakajima, N.
2008-10-01
The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. [1]). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.
Strong turbulence of plasma waves
NASA Technical Reports Server (NTRS)
Goldman, M. V.
1984-01-01
This paper reviews recent work related to modulational instability and wave envelope self-focusing in dynamical and statistical systems. After introductory remarks pertinent to nonlinear optics realizations of these effects, the author summarizes the status of the subject in plasma physics, where it has come to be called 'strong Langmuir turbulence'. The paper treats the historical development of pertinent concepts, analytical theory, numerical simulations, laboratory experiments, and spacecraft observations. The role of self-similar self-focusing Langmuir envelope wave packets is emphasized, both in the Zakharov equation model for the wave dynamics and in a statistical theory based on this dynamical model.
EDITORIAL: Stochasticity in fusion plasmas
NASA Astrophysics Data System (ADS)
Finken, K. H.
2006-04-01
In recent years the importance of externally imposed resonant magnetic fields on plasma has become more and more recognized. These fields will cause ergodization at well defined plasma layers and can induce large size islands at rational q-surfaces. A hope for future large scale tokamak devices is the development of a reliable method for mitigating the large ELMs of type 1 ELMy-H-modes by modifying the edge transport. Other topics of interest for fusion reactors are the option of distributing the heat to a large area and optimizing methods for heat and particle exhaust, or the understanding of the transport around tearing mode instabilities. The cluster of papers in this issue of Nuclear Fusion is a successor to the 2004 special issue (Nuclear Fusion 44 S1-122 ) intended to raise interest in the subject. The contents of this present issue are based on presentations at the Second Workshop on Stochasticity in Fusion Plasmas (SFP) held in Juelich, Germany, 15-17 March 2005. The SFP workshops have been stimulated by the installation of the Dynamic Ergodic Divertor (DED) in the TEXTOR tokamak. It has attracted colleagues working on various plasma configurations such as tokamaks, stellarators or reversed field pinches. The workshop was originally devoted to phenomena on the plasma edge but it has been broadened to transport questions over the whole plasma cross-section. It is a meeting place for experimental and theoretical working groups. The next workshop is planned for February/March 2007 in Juelich, Germany. For details see http://www.fz-juelich.de/sfp/. The content of the workshop is summarized in the following conference summary (K.H. Finken 2006 Nuclear Fusion 46 S107-112). At the workshop experimental results on the plasma transport resulting from ergodization in various devices were presented. Highlights were the results from DIII-D on the mitigation of ELMs (see also T.E. Evans et al 2005 Nuclear Fusion 45 595 ). Theoretical work was focused around the topics
Plasma physics goes beyond fusion
NASA Astrophysics Data System (ADS)
Franklin, Raoul
2008-11-01
I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.
Global Variation of Meteor Trail Plasma Turbulence
NASA Technical Reports Server (NTRS)
Dyrud, L. P.; Hinrichs, J.; Urbina, J.
2011-01-01
We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.
Two-Dimensional Turbulence in Magnetized Plasmas
ERIC Educational Resources Information Center
Kendl, A.
2008-01-01
In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…
NASA Astrophysics Data System (ADS)
Cho, Teruji
2007-11-01
The tandem mirror system has achieved improved energy confinement times (> 60-90 ms) with radial transport dominating the Pastukhov axial energy confinement time (> 100 ms). This high confinement regime establishes a proof of principle that the combination of electrostatic and magnetic mirror confinement can successfully insulate electrons from thermal ions. ECH controlled hot-layer formation facilitates plasma-rotation profile formation with a radially localized high-vorticity layer. In the vicinity of the layer, a radial transport barrier is formed [1], showing similar properties to ITB in toroidal plasmas. Coaxially nested intense E(r)xB sheared flow [2] in the GAMMA 10 core plasma realizes an upgraded stable regime having (i) > 0.75 keV bulk central electron temperature with (ii) an achievement of larger stored energy for axially potential-confined ions exceeding that (i.e., diamagnetism) for central magnetically confined ions ( 7 keV). The radially sheared flow having peak-on-axis high vorticity guards and improves whole core plasma confinement, and is controlled by (iii) improved 3 kV ion-confining potential due to simultaneous central and plug ECH. X-ray imaging of the suppression of turbulent structures [1-3] will be shown [1,2]. [1] T. Cho et al., Phys. Rev. Lett. 97, 055001 (2006). [2] T. Cho et al., Phys. Rev. Lett. 94, 085002 (2005). [3] J. Pratt and W. Horton, Phys. Plasmas 13, 042513 (2006). Collaborators; W. Horton^1, J. Pratt^1, M. Hirata, J. Kohagura, T. Numakura, H. Hojo, M. Ichimura, A. Itakura, T. Kariya, I. Katanuma, R. Minami, Y. Nakashima, M. Yoshikawa, Y. Miyata, Y. Yamaguchi, T. Imai, V. P. Pastukhov^2, S. Miyoshi, GAMMA 10 Group (^1IFS, Univ. Texas at Austin, ^2Kurchatov Institute, Russia)
Recent developments in plasma turbulence and turbulent transport
Terry, P.W.
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Observations of velocity shear driven plasma turbulence
NASA Technical Reports Server (NTRS)
Kintner, P. M., Jr.
1976-01-01
Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.
Plasma sheet turbulence observed by Cluster II
NASA Technical Reports Server (NTRS)
Weygand, James M.; Kivelson, M. G.; Khurana, K. K.; Schwarzl, H. K.; Thompson, S. M.; McPherron, R. L.; Balogh, A.; Kistler, L. M.; Goldstein, M. L.; Borovsky, J.
2005-01-01
Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.
Experimental Achievements on Plasma Confinement and Turbulence
Fujisawa, A.
2009-02-19
This article presents a brief review of the experimental studies on turbulence and resultant transport in toroidal plasmas. The article focuses on two topics, physics of transport barrier and the role of mesoscale structure on plasma confinement, i.e. zonal flows. The two topics show the important roles of the mutual interactions between sheared flows, zonal flows and drift waves for plasma turbulence and transport. The findings can lead us to further generalized concept of the disparate scale interactions which could give a fundamental understanding of the plasma confinement from the first principle.
Dissipation range turbulent cascades in plasmas
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-05-15
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
Plasma physics and controlled thermonuclear fusion
Krikorian, R. )
1989-01-01
This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.
Plasmas are Hot and Fusion is Cool
2011-01-01
Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.
On kinetic dissipation in collisionless turbulent plasmas
NASA Astrophysics Data System (ADS)
Parashar, Tulasi Nandan
Plasma turbulence is a phenomenon that is present in astrophysical as well as terrestrial plasmas. The earth is embedded in a turbulent plasma, emitting from the sun, called the solar wind. It is important to understand the nature of this plasma in order to understand space weather. A critical unsolved problem is that of the source of dissipation in turbulent plasmas. It is believed to play a central role in the heating of the solar corona which in turn drives the solar wind. The solar wind itself is observed to be highly turbulent and hotter than predicted through adiabatic expansion models. Turbulence and its associated dissipation have been studied extensively through the use of MHD models. However, the solar wind and large regions of the solar corona have very low collisionality, which calls into question the use of simple viscosity and resistivity in most MHD models. A kinetic treatment is needed for a better understanding of turbulent dissipation. This thesis studies the dissipation of collisionless turbulence using direct numerical hybrid simulations of turbulent plasmas. Hybrid simulations use kinetic ions and fluid electrons. Having full kinetic ion physics, the dissipation in these simulations at the ion scales is self consistent and requires no assumptions. We study decaying as well as quasi steady state systems (driven magnetically). Initial studies of the Orszag-Tang vortex [Orszag, JFM, 1979] (which is an initial condition that quickly generates decaying strong turbulence) showed preferential perpendicular heating of protons (with T_perp /T_|| > 1). An energy budget analysis showed that in the turbulent regime, almost all the dissipation occurs through magnetic interactions. We study the energy budget of waves using the k - o spectra (energy in the wavenumber-frequency space). The k - o spectra of this study and subsequent studies of driven turbulent plasmas do not show any significant power in the linear wave modes of the system. This suggests that
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.
2016-01-01
The transport of heat in laboratory and astrophysical plasmas is dominated by the complex nonlinear dynamics of plasma turbulence. In magnetically confined plasmas used for fusion energy research, turbulence is responsible for cross-field transport that limits the performance of tokamak reactors. We report a set of novel gyrokinetic simulations that capture ion and electron-scale turbulence simultaneously, revealing the dynamics of cross-scale energy transfer and zonal flow modification that give rise to heat losses. Multi-scale simulations are required to match experimental ion and electron heat fluxes and electron profile stiffness, establishing the applicability of the newly discovered physics to experiment. Importantly, these results provide a likely explanation for the loss of electron heat from tokamak plasmas, the ‘great unsolved problem’ (Bachelor et al (2007 Plasma Sci. Technol. 9 312-87)) in plasma turbulence and the projected dominant loss channel in ITER.
Whistler Wave Turbulence in Solar Wind Plasma
NASA Astrophysics Data System (ADS)
Shaikh, Dastgeer; Zank, G. P.
2010-03-01
Whistler waves are present in solar wind plasma. These waves possess characteristic turbulent fluctuations that are characterized typically by the frequency and length scales that are respectively bigger than ion gyro frequency and smaller than ion gyro radius. The electron inertial length is an intrinsic length scale in whistler wave turbulence that distinguishably divides the high frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. We present nonlinear three dimensional, time dependent, fluid simulations of whistler wave turbulence to investigate their role in solar wind plasma. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like k-7/3 spectrum. By contrast, the small scale turbulent fluctuations exhibit a Navier-Stokes like evolution where characteristic turbulent eddies exhibit a typical k-5/3 hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.
Turbulence in laboratory and natural plasmas: Connecting the dots
NASA Astrophysics Data System (ADS)
Jenko, Frank
2015-11-01
It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.
Turbulent magnetized plasmas from ionizing shock waves
NASA Astrophysics Data System (ADS)
Liang, Zuohua
Turbulent argon plasmas produced behind hypersonic shock waves (10 less than M less than 60) are studied in the presence of weak magnetic fields at various strengths between 0 and 600 gauss, parallel and antiparallel to the shock tube's axis. The experiment is performed in a cylindrical arc discharge shock tube of 5 cm diameter and 210 cm overall length. Laser induced fluorescence and an electric probe are used as diagnostics of the ion density. Turbulent fluctuations behind the shock front are observed which persist for a time in the order of 10 msec. Using standard turbulent and chaotic analytical procedures, the influence of the magnetic field on the characterizing parameters is determined under circumstances of changing Mach number and pressure. These parameters include spectral index, correlation time scales, turbulent intensity and chaotic dimensionality. The parameters of turbulence obtained from the two diagnostics are quite consistent. Fluctuation power spectra follow a P approx. f(sup -n) behavior with 1.3 less than n less than 2.8; this agrees with theoretical predictions as well as the results of other investigators. An increasing magnetic field increases the characterizing correlation time, the turbulent intensity, and the chaotic dimension but decreases the small correlation time. Therefore the magnetic field decreases the order (increases the dimensionality) in the turbulent plasma, independent of the direction of the field parallel or antiparallel to the direction of the shock wave. A turbulent velocity-field-coupling model is proposed. A dispersion relation shows that, in the presence of an external magnetic field, varieties of new modes in a turbulent plasma are generated. The model predicts an increasing complexity of the turbulent system with increasing strength of the field and is in very good qualitative agreement with our experiment results.
Turbulent magnetized plasmas from ionizing shock waves
Liang, Zuohua.
1992-01-01
Turbulent argon plasmas produced behind hypersonic shock waves (10 less than M less than 60) are studied in the presence of weak magnetic fields at various strengths between 0 and 600 gauss, parallel and antiparallel to the shock tube's axis. The experiment is performed in a cylindrical arc discharge shock tube of 5 cm diameter and 210 cm overall length. Laser induced fluorescence and an electric probe are used as diagnostics of the ion density. Turbulent fluctuations behind the shock front are observed which persist for a time in the order of 10 msec. Using standard turbulent and chaotic analytical procedures, the influence of the magnetic field on the characterizing parameters is determined under circumstances of changing Mach number and pressure. These parameters include spectral index, correlation time scales, turbulent intensity and chaotic dimensionality. The parameters of turbulence obtained from the two diagnostics are quite consistent. Fluctuation power spectra follow a P approx. f(sup -n) behavior with 1.3 less than n less than 2.8; this agrees with theoretical predictions as well as the results of other investigators. An increasing magnetic field increases the characterizing correlation time, the turbulent intensity, and the chaotic dimension but decreases the small correlation time. Therefore the magnetic field decreases the order (increases the dimensionality) in the turbulent plasma, independent of the direction of the field parallel or antiparallel to the direction of the shock wave. A turbulent velocity-field-coupling model is proposed. A dispersion relation shows that, in the presence of an external magnetic field, varieties of new modes in a turbulent plasma are generated. The model predicts an increasing complexity of the turbulent system with increasing strength of the field and is in very good qualitative agreement with our experiment results.
Turbulence evolution in MHD plasmas
NASA Astrophysics Data System (ADS)
Wisniewski, Martina; Kissmann, Ralf; Spanier, Felix; Spanier
2013-10-01
Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. However, while there are a number of simulations on the market, some questions have not been answered finally. In this paper, we examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving has an influence not only on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
NASA Astrophysics Data System (ADS)
Hnat, B.
2011-09-01
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Origin and turbulence spreading of plasma blobs
Manz, P.; Birkenmeier, G.; Stroth, U.; Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E.; Fuchert, G.
2015-02-15
The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.
Neutrino oscillations in a turbulent plasma
Mendonça, J. T.; Haas, F.
2013-07-15
A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.
Controlled thermonuclear fusion, high temperature plasma physics
NASA Astrophysics Data System (ADS)
1985-05-01
The primary source of nuclear energy comes from the fission process of heavy nuclei. To utilize the energy released by a thermonuclear fusion process, methods of controlling the fusion reaction were studied. This is controlled thermonuclear fusion technology. The fuel used in a thermonuclear fusion process are isotopes of hydrogen: deuterium and tritium. They can be extracted from the almost unlimited seawater. Nuclear fusion also produces very little radioactive waste. Thermonuclear fusion is a promising energy source with an almost unlimited supply; it is economical, safe, and relatively clean. Ways to raise plasma temperature to a very high level and to maintain it to allow fusion reactions to take place are studied. The physical laws of high temperature plasma was studied to reach this goal which resulted in the development of high temperature plasma physics.
Far infrared fusion plasma diagnostics
Luhmann, N.C. Jr.; Peebles, W.A.
1990-01-01
Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.
A fusion based plasma propulsion system
NASA Technical Reports Server (NTRS)
George, J. A.; Anderson, B.; Bryant, D.; Creese, C.; Djordjevic, V.; Peddicord, K. L.
1987-01-01
The Fusion Plasma Propulsion System scoping study was performed to investigate the possibilities of a fusion powered plasma propulsion system for space applications. Specifically, it was to be compared against existing electric propulsion concepts for a manned Mars mission. Design parameters consist of 1000 N thrust for 500 days, and the minimum mass possible. This investigation is briefly presented and conclusions drawn.
Plasma Physics and Controlled Nuclear Fusion
NASA Astrophysics Data System (ADS)
Fisch, N. J.
2010-01-01
Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.
Wakes in Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ellis, Ian Norman
Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC
Global simulations of plasma turbulence in laboratory plasmas
NASA Astrophysics Data System (ADS)
Ricci, P.; Fasoli, A.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Rogers, B. N.; Theiler, C.
2012-04-01
The Global Braginskii Solver (GBS) code has been developed in the last few years to simulate plasma turbulence in laboratory plasmas [1]. By solving the drift-reduced Braginkii equation in magnetic configurations of increasing complexity, from linear devices to the Simple Magnetized Toroidal (SMT) configuration, GBS performs non-linear self-consistent global three-dimensional simulations of the plasma dynamics, as the result of the interplay among the plasma source, the turbulent transport, and the plasma losses at the vessel. This gradual approach has allowed gaining a deep understanding of the turbulence dynamics, by identifying the instabilities responsible for driving plasma turbulence and to estimate the turbulence saturation amplitude. In particular, simulation results have pointed out the need of global simulations to correctly represent the dynamics of laboratory plasmas, as well as the importance of not separating fluctuations and equilibrium quantities. A code validation development project has been conducted side by side with the GBS development [2]. Such validation project has lead to the establishment of a rigorous methodology to carry out experiment-simulation comparison, and has allowed quantifying precisely the level of agreement between the GBS results and the experimental data from the TORPEX experiment at CRPP. [1] P. Ricci, B.N. Rogers, S. Brunner, Phys. Rev. Lett. 100, 225002 (2008); P. Ricci and B. N. Rogers, Phys. Rev. Lett. 104, 145001 (2010); B. N. Rogers and P. Ricci, Phys. Rev. Lett. 104, 225002 (2010); B. Li et al., Phys. Rev. E 83, 056406 (2011). [2] P. Ricci et al, Phys. Plasmas 16, 055703 (2009); P. Ricci et al., Phys. Plasmas 18, 032109 (2011).
Nazikian, R.; Kramer, G.J.; Valeo, E.
2001-02-16
Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices.
Explosive Particle Dispersion in Plasma Turbulence.
Servidio, S; Haynes, C T; Matthaeus, W H; Burgess, D; Carbone, V; Veltri, P
2016-08-26
Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In the steady state, the trajectories of single protons and proton pairs are studied, at different values of plasma β (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher β's being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing, and acceleration processes. PMID:27610862
Understanding of Edge Plasmas in Magnetic Fusion Energy Devices
Rognlien, T
2004-11-01
A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.
Complexity and Intermittent Turbulence in Space Plasmas
NASA Technical Reports Server (NTRS)
Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin
2004-01-01
Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.
Magnetic curvature effects on plasma interchange turbulence
NASA Astrophysics Data System (ADS)
Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-01
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Fusion programs in applied plasma physics
Not Available
1992-02-01
The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.
Basic plasma and fusion theory and computer simulations survey
Kawakami, I.; Nishikawa, K.
1983-12-01
The College of Science and Technology at Nihon University and the Institute for Fusion Theory at Hiroshima University discuss the history of the role of theory and simulation in fusion-oriented research. Recent activities include a one-dimensional tokamak transport code at Nagoya University and three-dimensional resistive MHD simulation studies of spheromaks. Other recent activities discussed include the tokamak computer code system TRITON, transport flux in currentless ECH-produced plasma in Heliotron-E, and thermal electron transport in the presence of a steep temperature gradient. The Japan-U.S. Joint Institute for Fusion Theory's present activities are discussed, including subject areas in three-dimensional simulation studies, nonequilibrium statistical physics, anaomalous transport and drift wave turbulence and hot-electron physics.
Influence of ExB shear flows on plasma edge turbulence
Manz, P.; Ramisch, M.; Mahdizadeh, N.; Stroth, U.; Greiner, F.
2008-03-19
Poloidal ExB shear flows are widely accepted as a trigger mechanism of transport barriers in the edge of fusion plasmas. Strong ExB flows can act on turbulence and turbulent transport through the shear decorrelation mechanism, which can reduce the radial size of turbulent structures or change the phase relation between density and potential fluctuations. In this contribution the influence of ExB shear flows on the microscopic structure of turbulence is investigated. The experiments have been carried out on the toroidally confined low-temperature plasma of the torsatron TJ-K. The plasma is dimensionally similar to fusion edge plasmas and accessible throughout for Langmuir probes. Multi-probe arrays are used to resolve the turbulent dynamics perpendicular to the confining magnetic field in high detail.Strong ExB flows are externally generated by core plasma biasing. It is shown that the fluctuations are dominated by large-scale coherent structures even though strong flow shear is present. These structures reveal increased correlation lengths. It is found that these structures can contribute to improved confinement through inwards transport due to cross-phase modifications. Furthermore, the response of the turbulent Reynolds stress, which is supposed to drive zonal flows as internally ExB shear flows, is investigated. The externally generated flow shear leads to a redistribution of the Reynolds stress with increased poloidal symmetry.
Spectral and Instability Analysis of Plasma Turbulence
NASA Astrophysics Data System (ADS)
Dum, C. T.
2003-12-01
Despite an abundance of data on plasma turbulence, obtained either by direct space observations or from computer simulation, most of the data are interpreted only in a qualitative way, rather than by a detailed analysis that would allow a quantitative comparison with theory. For such a comparison one needs to obtain, as a key ingredient, reliable wave spectra as a function of wave number and frequency. The free energy sources, linear instability mechanisms and nonlinear coupling mechanisms that generate these wave spectra should also be identified. In the case of micro turbulence these mechanisms depend on details of the particle distribution functions. Even the nature of wave modes, not only wave growth rates, may change as the plasma evolves. A particle simulation in which an electron beam excites a variety of wave modes is used as an example for such an analysis. The model corresponds to proposed mechanisms for ion conic generation on auroral field lines. The rather rapid evolution of plasma and turbulence requires that the spectral analysis is carried out over time intervals that are sufficiently short compared to time scales for spectral changes, whereas for statistical reasons and good frequency resolution long sampling intervals would be desirable. Straightforward periodograms are unsatisfactory under these conditions, even when applying windows (tapers) to the wave trains, in order to reduce spectral leakage. Modern spectral analysis methods which were mostly developed in the geophysics context, such as the maximum entropy method and the multiple taper method, can yield far better results. They are adopted for the analysis of plasma turbulence, in particular in connection with particle simulation codes, although, with other data limitations, the considerations mostly apply also to observations. Particular attention is paid to statistical tests for spectral lines which may correspond to eigenmodes (instabilities) of the plasma. For reliable results it is
Strong Turbulence in Alkali Halide Negative Ion Plasmas
NASA Astrophysics Data System (ADS)
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).
Nonlinear Dynamics and Complex Behaviors in Magnetized Plasmas of Fusion Interest
Zonca, F.; Chen, L.
2008-10-15
Complexity and self-organization in burning plasmas are consequence of the interaction of energetic ions with plasma instabilities and turbulence; of the strong nonlinear coupling that will take place between fusion reactivity profiles, pressure driven currents, MHD stability, transport and plasma boundary interactions, mediated by the energetic particle population; and finally of the long time scale nonlinear (complex) behaviors that may affect the overall fusion performance and eventually pose issues for the stability and control of the fusion burn. These issues are briefly discussed in this work, with a view on their potential applications to other research areas.
Turbulent dynamo in a collisionless plasma.
Rincon, François; Califano, Francesco; Schekochihin, Alexander A; Valentini, Francesco
2016-04-12
Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981
Turbulent dynamo in a collisionless plasma
NASA Astrophysics Data System (ADS)
Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco
2016-04-01
Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.
Applications of spectral methods to turbulent magnetofluids in space and fusion research
NASA Technical Reports Server (NTRS)
Montgomery, D.; Voigt, R. G. (Editor); Gottlieb, D. (Editor); Hussaini, M. Y. (Editor)
1984-01-01
Recent and potential applications of spectral method computation to incompressible, dissipative magnetohydrodynamics are surveyed. Linear stability problems for one dimensional, quasi-equilibria are approachable through a close analogue of the Orr-Sommerfeld equation. It is likely that for Reynolds-like numbers above certain as-yet-undetermined thresholds, all magnetofluids are turbulent. Four recent effects in MHD turbulence are remarked upon, as they have displayed themselves in spectral method computations: (1) inverse cascades; (2) small-scale intermittent dissipative structures; (3) selective decays of ideal global invariants relative to each other; and (4) anisotropy induced by a mean dc magnetic field. Two more conjectured applications are suggested. All the turbulent processes discussed are sometimes involved in current carrying confined fusion magnetoplasmas and in space plasmas.
Studies of Zonal Flows Driven by Drift Mode Turbulence in Laboratory and Space Plasmas
Bingham, R.; Trines, R.; Dunlop, M. W.; Davies, J. A.; Bamford, R. A.; Mendonca, J. T.; Silva, L. O.; Shukla, P. K.; Vaivads, A.; Mori, W. B.; Tynan, G.
2008-10-15
The interaction between broadband drift mode turbulence and zonal flows is an important topic associated with transport at plasma boundaries. The generation of zonal flows by the modulational instability of broad band drift waves has resulted in the observation of self organized solitary wave structures at the magnetopause. To understand these structures and their importance to future burning plasmas and space plasmas we have developed a unique numerical simulation code that describes drift wave--zonal flow turbulence. We show that observations by cluster spacecraft confirms the role of drift wave zonal flow turbulence at the Earth's magnetopause and further demonstrates that the magnetopause boundary acts in a s similar manner to transport barriers in tokamak fusion devices. Thus cementing the relationship between the plasma physics of laboratory devices and space plasmas.
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport
Itoh, Sanae-I.; Itoh, Kimitaka
2012-01-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481
New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport
NASA Astrophysics Data System (ADS)
Itoh, Sanae-I.; Itoh, Kimitaka
2012-11-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.
Calculation of fusion product angular correlation coefficients for fusion plasmas
Murphy, T.J.
1987-08-01
The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.
Ricci, P. Riva, F.; Theiler, C.; Fasoli, A.; Furno, I.; Halpern, F. D.; Loizu, J.
2015-05-15
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorous estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.
NASA Astrophysics Data System (ADS)
Ricci, P.; Riva, F.; Theiler, C.; Fasoli, A.; Furno, I.; Halpern, F. D.; Loizu, J.
2015-05-01
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorous estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.
Advective turbulent transport in the fluid plasma
NASA Astrophysics Data System (ADS)
Min, Byung-Hoon; An, Chan-Yong; Kim, Chang-Bae
2013-10-01
The Hasegawa-Wakatani model (HWM) has been employed in pedagogical analyses of the physics behind the behavior of the tokamak plasmas. In addition to the geometric simplicity HWM has an appealing feature of sustaining autonomous quasi-steady state, unstable modes providing the power that is being transported by the nonlinear interactions and is eventually dissipated by the collisional damping at small scales. Emergence of the zonal flow out of the turbulence is a main candidate to cause the transition from the low plasma confinement to the high mode. In the study of such LH transition with the HWM, the adiabaticity parameter has been shown to play an important role in forcing the zonal flow that results in the regulation of the drift-wave turbulence. Instead of concentrating on the physics of the feedback loop between the turbulence and the zonal flow the present study focuses on the presence of the advective transport of the energy. Numerical simulations of HWM are performed and the connections between the advective transport and the zonal flow will be presented. This work was supported by the Supercpmputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C1-009).
Dust in fusion plasmas: theory and modeling
Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.
2008-09-07
Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.
Advanced simulation of electron heat transport in fusion plasmas
Lin, Zhihong; Xiao, Y.; Klasky, Scott A; Lofstead, J.
2009-01-01
Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual
Advanced Simulation of Electron Heat Transport in Fusion Plasmas
Lin, Z.; Xiao, Y.; Holod, I.; Zhang, W. L.; Deng, Wenjun; Klasky, Scott A; Lofstead, J.; Kamath, Chandrika; Wichmann, Nathan
2009-01-01
Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual
Space plasma turbulent dissipation - Reality or myth?
NASA Technical Reports Server (NTRS)
Coroniti, F. V.
1985-01-01
A prevalent approach to understanding magnetospheric dynamics is to combine a hydromagnetic description of the large scale magnetic structure and convection flows with a locally determined anomalous dissipation which develops in boundary layers. Three problems (nose and tail reconnection, auroral field-aligned currents, and diffuse auroral precipitation) are critically examined to test the validity of this theoretical philosophy. Although the expected plasma wave turbulence is observed for each case, the concept of local anomalous dissipation fails to provide an adequate or complete description of the phenomenae.
Plasma flow, turbulence and magnetic islands in TJ-II
NASA Astrophysics Data System (ADS)
Estrada, T.; Ascasíbar, E.; Blanco, E.; Cappa, A.; Hidalgo, C.; Ida, K.; López-Fraguas, A.; van Milligen, B. Ph
2016-02-01
The effect of magnetic islands on plasma flow and turbulence has been experimentally investigated in ohmically induced magnetic configuration scans at the stellarator TJ-II. This operational mode allows sweeping the radial position of a low order rational surface from the plasma core towards the edge in a controlled way, what reveals effects that are difficult to notice in scans performed on a shot to shot basis. The main diagnostic used in the present work is a two-channel Doppler reflectometer that allows the measurement of the perpendicular rotation velocity of the turbulence and density fluctuations with good spatial and temporal resolution. A characteristic signature of the n/m = 3/2 magnetic island as it crosses the measurement position is clearly detected: the perpendicular flow reverses at the center of the magnetic island and a flow shear develops at the island boundaries. Fluctuations of the perpendicular flow and density have been also measured along the 3/2 magnetic island. An increase in the low frequency flow oscillations is measured at the magnetic island boundaries together with a reduction in the density fluctuation level; the later being more pronounced at the inner island boundary. These observations could explain the link between magnetic islands and transport barriers observed in a number of fusion devices.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Poyé, A.; Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N.; Garbet, X.; Sen, A.
2015-03-15
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Fusion programs in Applied Plasma Physics
Not Available
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections.
Weak turbulence theory for collisional plasmas
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.
2016-03-01
Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.
Transport equations for lower hybrid waves in a turbulent plasma
NASA Astrophysics Data System (ADS)
Mendonca, J. T.; Horton, W.; Galvao, R. M. O.; Elskens, Y.
2014-10-01
Injection and control of intense lower hybrid (LH) wave spectra is required to achieve steady state tokamak operation in the new WEST tokamak at CEA France. The tungsten [W] environment [E] steadytstate [S] tokamak [T] has two high-power [20 MW] lower hybrid antennas launching 3.7 GHz polarized waves for steady fusion-grade plasmas control. The wave propagation and scattering is described in by ray equations in the presence of the drift wave turbulence. Theory for the wave transport equations for propagation of the wave momentum and energy densities are derived from the Wigner function method of QM. The limits of the diffraction and scattering for ray transport theory are established. Comparisons are made between the wave propagation in WEST and ITER tokamaks. Supported by the University of Texas at Austin; PIIM/CNRS at Aix-Marseille University and University of Sao Paulo.
Vortex Stabilized Compressed Fusion Grade Plasma
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2015-03-01
Inertial confinement fusion schemes comprise of highly compressed dense plasmas. Some involve short pulses of powerful beams (lasers, particles) applied to solid pellets, while others utilize plasma focus to obtain dense pinch plasmas. Although compression factor >1000 has been achieved for starting pressures in the Torr range, the latter is limited by instabilities for initial gas density above 10 Torr. One alternative approach could be shooting electron beams through very dense, atmospheric pressure, vortex stabilized plasma. Large azimuthal magnetic generated by an electron beam can compress and heat the plasma to fusion viable parameters. This configuration is stable against sausage, kink, or beam - plasma instabilities. Based on experimental evidence beam propagation through the plasma is not be an issue. A second possibility is to tangentially squeeze a quasi-neutral plasma focus flow by a surrounding gas vortex. Based on currently available electron beams, the first scheme viability as an electrical power generating reactor does not seem to be promising. But using a plasma cathode electron beam that was developed a while ago, for which DOE has a patent U.S. Patent 4,942,339, could result in net generation of electricity. Calculations will be presented. Work supported by Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy.
Aleksey Kuritsyn; Fred M. Levinton
2004-04-27
A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.
Kuritsyn, Aleksey; Levinton, Fred M.
2004-10-01
A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.
Turbulent cascade in a two-ion plasma
Qiu, Xin; Liu, San-Qiu; Yu, Ming-Yang
2014-11-15
It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.
Measuring plasma turbulence using low coherence microwave radiation
Smith, D. R.
2012-02-20
Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.
Global scale-invariant dissipation in collisionless plasma turbulence.
Kiyani, K H; Chapman, S C; Khotyaintsev, Yu V; Dunlop, M W; Sahraoui, F
2009-08-14
A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas. PMID:19792654
Characterization of radial turbulent fluxes in the Santander linear plasma machine
Mier, J. A. Anabitarte, E.; Sentíes, J. M.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van
2014-05-15
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.
Stellarator approach to fusion plasma confinement
Harris, J.H.
1985-01-01
The stellarator is a toroidal fusion plasma confinement device with nested magnetic flux surfaces. The required twist of the field lines is produced by external helical coils rather than by plasma current, as in a tokamak. Stellarator devices are attractive fusion reactor candidates precisely because they offer the prospect of steady-state operation without plasma current. In the last few years the excellent results achieved with currentless stellarator plasmas of modest minor radius (10 to 20 cm) at Kyoto University (Japan) and the Max Planck Institute (West Germany) have made the stellarator second only to the tokamak in its progress toward fusion breakeven, with temperatures T/sub e/, T/sub i/ approx. 1 KeV, Lawson products n tau approx. 2 to 5 x 10/sup 12/ cm/sup -3/.s, and volume-averaged beta values approx. = 2%. The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge Natioal Laboratory (ORNL) and scheduled to operate in 1986, represents a significant advance in stellarator research, with a plasma major radius of 2.1 m, an average minor radius of 0.3 m, and a magnetic field of 2 T for 5 s or 1 T at steady state. ATF replaces the Impurity Study Experiment (ISX-B) tokamak at ORNL and will use the ISX-B heating and diagnostic system.
Dense Hypervelocity Plasma Jets for Fusion Applications
NASA Astrophysics Data System (ADS)
Witherspoon, F. Douglas; Thio, Y. C. Francis
2005-10-01
High velocity dense plasma jets are being developed for a variety of fusion applications, including refueling, disruption mitigation, High Energy Density Plasmas, magnetized target/magneto-inertial fusion, injection of angular momentum into centrifugally confined mirrors, and others. The technical goal is to accelerate plasma blobs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section that prevents formation of the blow-by instability. AFRL MACH2 modeling identified 2 electrode configurations that produce the desired plasma jet parameters. The injected plasma is generated by up to 64 radially oriented capillary discharges arranged uniformly around the circumference of an angled annular injection section. Initial experimental results are presented in which 8 capillaries are fired in parallel with jitter of ˜100 ns. Current focus is on higher voltage operation to reduce jitter to a few 10's of ns, and development of a suite of optical and spectroscopic plasma diagnostics.
Fusion Reaction Rate in an Inhomogeneous Plasma
S. Son; N.J. Fisch
2004-09-03
The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
E. A. Belli; Hammett, G. W.; Dorland, W.
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Plasma simulation and fusion calculation
NASA Astrophysics Data System (ADS)
Buzbee, B. L.
Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research and in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation is vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. Parallel formulation of PIC models for master/slave architectures and ring architectures is discussed. Because interprocessor communication is a decisive factor in the overall efficiency of a parallel system, division of these models into large granules that can be executed in parallel with relatively little need for communication is shown. Measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP are also reported.
Plasma simulation and fusion calculation
Buzbee, B.L.
1983-01-01
Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research. They are also used in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation can be vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. This paper discusses parallel formulation of PIC models for master/slave architectures and ring architectures. Because interprocessor communication can be a decisive factor in the overall efficiency of a parallel system, we show how to divide these models into large granules that can be executed in parallel with relatively little need for communication. We also report measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP.
A Concept of Cross-Ferroic Plasma Turbulence
Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
A Concept of Cross-Ferroic Plasma Turbulence.
Inagaki, S; Kobayashi, T; Kosuga, Y; Itoh, S-I; Mitsuzono, T; Nagashima, Y; Arakawa, H; Yamada, T; Miwa, Y; Kasuya, N; Sasaki, M; Lesur, M; Fujisawa, A; Itoh, K
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence
Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.
2009-06-15
The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.
Role of impurities in fusion plasmas
Tokar, M. Z.
2008-10-15
The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2016-05-01
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).
Inertial fusion features in degenerate plasmas
NASA Astrophysics Data System (ADS)
León, Pablo T.; Eliezer, Shalom; Piera, Mireia; Martínez-Val, José M.
2005-04-01
Very high plasma densities can be obtained at the end of the implosion phase in inertial fusion targets, particularly in the so-called fast-ignition scheme (Tabak et al., 1994; Mulser & Bauer, 2004), where a central hot spark is not needed at all. By properly tailoring the fuel compression stage, degenerate states can be reached (Azechi et al., 1991; Nakai et al., 1991; McCory, 1998). In that case, most of the relevant energy transfer mechanisms involving electrons are affected (Honrubia & Tikhonchuk, 2004; Bibi & Matte, 2004; Bibi et al., 2004). For instance, bremsstrahlung emission is highly suppressed (Eliezer et al., 2003). In fact, a low ignition-temperature regime appears at very high plasma densities, due to radiation leakage reduction (León et al., 2001). Stopping power and ion-electron coulomb collisions are also changed in this case, which are important mechanisms to trigger ignition by the incoming fast jet, and to launch the fusion wave from the igniting region into the colder, degenerate plasma. All these points are reviewed in this paper. Although degenerate states would not be easy to obtain by target implosion, they present a very interesting upper limit that deserves more attention in order to complete the understanding on the different domains for inertial confinement fusion.
Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs
Davidson, Ronald C.
1980-08-01
A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)
Atmospheric turbulence mitigation using complex wavelet-based fusion.
Anantrasirichai, Nantheera; Achim, Alin; Kingsbury, Nick G; Bull, David R
2013-06-01
Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full- and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios. PMID:23475359
Mass dependency of turbulent parameters in stationary glow discharge plasmas
Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III
2013-05-15
A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.
A dynamical model of plasma turbulence in the solar wind
Howes, G. G.
2015-01-01
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Exploring Plasma Turbulence in the Kronian Magnetosheath Using Cassini Data
NASA Astrophysics Data System (ADS)
Hadid, L.; Sahraoui, F.; Kiyani, K. H.; Modolo, R.; Retino, A.; Canu, P.; Masters, A.; Dougherty, M. K.
2014-12-01
The shocked solar wind plasma upstream of the bowshock forms the magnetosheath. Through this region energy, mass and momentum are transported from the solar wind into the planet's magnetosphere, playing a crucial role in the solar-planet interactions. Hence, the planets' magnetosheath present a high level of turbulence, with a rich variety of wave and stochastic phenomena. While the magnetic turbulence of the terrestrial magnetosheath has been extensively studied, not so much work has been done regarding the planets magnetosheaths. Therefore, and in order to expand our knowledge on plasma turbulence, we investigate here the main properties of the plasma turbulence in the magnetosheath of Saturn using the Cassini spacecraft data and compare it with the well-explored terrestrial solar wind turbulence. These properties include the magnetic field energy spectra, the magnetic compressibility and intermittency, at both MHD and kinetic scales. The analysis is based on in-situ data provided by the Fluxgate Magnetometer of the MAG instrument, which measures the magnetic field data with 32ms time resolution and the plasma data from the CAPS/IMS (Cassini Plasma Spectrometer) and the Electron Spectrometer (ELS), during 39 shock-crossings between 2004 and 2005. Similarities and differences were found between the different media, in particular about the nature of the turbulence and its scaling laws. These finding will be discussed along with theoretical implications on the modeling of space plasma.
Immediate Influence of External Sources on Turbulent Plasma Transport
NASA Astrophysics Data System (ADS)
Kosuga, Yusuke; Itoh, Sanae-I.; Itoh, Kimitaka
Immediate impact of external sources on pressure-gradient-driven turbulence and turbulent transport (without waiting the evolution of global parameters and those in mean velocity distribution function) is discussed. The case, where an external source directly couples with plasma fluctuations in particle source and momentum source, is investigated. Theoretical analysis is developed by use of Hasegawa-Wakatani model equations. It is shown that the momentum source can induce the immediate influence on the turbulence and turbulent transport. The effect of this coupling between source and fluctuations on the momentum theorem is also explained.
Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry
Xu, X.Q.
1998-10-14
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.
The energetic coupling of scales in gyrokinetic plasma turbulence
Teaca, Bogdan; Jenko, Frank
2014-07-15
In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.
Toward the Theory of Turbulence in Magnetized Plasmas
Boldyrev, Stanislav
2013-07-26
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.
A weakened cascade model for turbulence in astrophysical plasmas
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
RF plasma heating in toroidal fusion devices
Golant, V.E.; Fedorov, V.I. )
1989-01-01
The purpose of the present book is to provide, in seven chapters, a unified overview of the methods for rf heating of plasmas in toroidal fusion experiments. In Chapter 1 the problem of plasma heating in tokamaks and stellarators is formulated and the requirements for auxiliary heating techniques are described. This chapter also contains a brief review of the results of research on tokamaks and stellarators. Chapter 2 is devoted to a theoretical description of the principal physical effects involved in the rf heating of plasmas, especially the characteristics of wave propagation, of the mechanisms by which waves are absorbed and plasma heating takes place, and of the nonlinear effects that accompany heating. The primary emphasis is on a qualitative physical picture of these effects. Chapters 3-6, in turn, deal with the major rf heating techniques currently under investigation, electron cyclotron (ECH), ion cyclotron (ICH), lower hybrid (LHH), and Alfven wave heating. In each of these chapters the main schemes for heating are described, the results of theoretical analyses and numerical simulations are discussed, the technology of the heating systems is briefly described, and experimental work published through the end of 1984 is reviewed. Finally, in Chapter 7 the different rf heating techniques are compared; they are contrasted with neutral beam injection, and the feasibility of adiabatic compression as a means of heating plasmas is examined. Separate abstracts were prepared for each chapter of this book. 246 refs.
The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2016-08-01
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.
Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III
1998-01-01
For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found
The Conversion of Large-Scale Turbulent Energy to Plasma Heat In Astrophysical Plasmas
NASA Astrophysics Data System (ADS)
Howes, Gregory
2015-11-01
Turbulence in space and astrophysical plasmas plays a key role in the conversion of the energy of violent events and instabilities at large scales into plasma heat. The turbulent cascade transfers this energy from the large scales at which the motions are driven down to small scales, and this essentially fluid process can be understood in terms of nonlinear wave-wave interactions. At sufficiently small scales, for which the dynamics is often weakly collisional, collisionless mechanisms damp the turbulent electromagnetic fluctuations, and this essentially kinetic process can be understood in terms of linear wave-particle interactions. In this talk, I will summarize the possible channels of the turbulent dissipation in a weakly collisional plasma, and present recent results from kinetic numerical simulations of plasma turbulence. Finally, I will discuss strategies for the definitive identification of the dominant dissipation channels using spacecraft measurements of turbulence in the solar wind.
Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations
E. Mazzucato
1998-02-01
This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.
The fusion/plasma physics chart from CPEP
NASA Astrophysics Data System (ADS)
Aubrecht, Gordon
2009-04-01
The Contemporary Physics Education Project has created charts and support for teachers for particle physics, cosmology, nuclear physics, and plasma physics. This poster shows and gives some background on our fusion / plasma physics chart.
DISSIPATION WAVENUMBERS FOR TURBULENCE IN ELECTRON-POSITRON PLASMAS
Peter Gary, S.; Roytershteyn, Vadim S.; Karimabadi, Homa E-mail: roytersh@lanl.gov
2009-08-20
Many astrophysical systems involve turbulent electron-positron plasmas. Linear kinetic theory of electromagnetic fluctuations in homogeneous, magnetized, collisionless, non-relativistic electron-positron plasmas predicts that two lightly damped modes propagate at relatively long wavelengths: an Alfven-like mode with dispersion {omega}{sub r}=k{sub ||}v-tilde{sub A} and a magnetosonic-like mode with dispersion {omega}{sub r}{approx_equal}kv-tilde{sub A} if {beta} {sub e} << 1. Here, v-tilde{sub A} is the Alfven speed in an electron-positron plasma and || refers to the direction parallel to the background magnetic field B{sub o}. The dissipation wavenumber k{sub d} is defined as the value of k at which the damping rate equals the rate of energy transfer by the turbulent cascade. Using linear theory and a basic turbulent cascade model, k{sub d} is predicted for turbulence at propagation quasi parallel to B{sub o}, for quasi-perpendicular magnetosonic-like turbulence, and for quasi-perpendicular Alfven-like turbulence. In the latter case, the model predicts that an increase in the turbulent energy should correspond to an increase in k{sub d} . The assumptions and predictions of the model may be tested by particle-in-cell simulations.
Status and Verification of Edge Plasma Turbulence Code BOUT
Umansky, M V; Xu, X Q; Dudson, B; LoDestro, L L; Myra, J R
2009-01-08
The BOUT code is a detailed numerical model of tokamak edge turbulence based on collisional plasma uid equations. BOUT solves for time evolution of plasma uid variables: plasma density N{sub i}, parallel ion velocity V{sub {parallel}i}, electron temperature T{sub e}, ion temperature T{sub i}, electric potential {phi}, parallel current j{sub {parallel}}, and parallel vector potential A{sub {parallel}}, in realistic 3D divertor tokamak geometry. The current status of the code, physics model, algorithms, and implementation is described. Results of verification testing are presented along with illustrative applications to tokamak edge turbulence.
NSTX Diagnostics for Fusion Plasma Science Studies
R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team
2001-07-05
This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.
Massachusetts Institute of Technology Plasma Fusion Center 1992-1993 report to the President
NASA Astrophysics Data System (ADS)
1993-07-01
This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics, RF plasma heating, gyrotron research, treatment of solid waste by arc plasma, divertor experiments, tokamak studies, and plasma and fusion theory.
Gyrokinetic turbulence simulations at high plasma beta
Pueschel, M. J.; Kammerer, M.; Jenko, F.
2008-10-15
Electromagnetic gyrokinetic turbulence simulations employing Cyclone Base Case parameters are presented for {beta} values up to and beyond the kinetic ballooning threshold. The {beta} scaling of the turbulent transport is found to be linked to a complex interplay of linear and nonlinear effects. Linear investigation of the kinetic ballooning mode is performed in detail, while nonlinearly, it is found to dominate the turbulence only in a fairly narrow range of {beta} values just below the respective ideal limit. The magnetic transport scales like {beta}{sup 2} and is well described by a Rechester-Rosenbluth-type ansatz.
Magnetohydrodynamic turbulence and enhanced atomic processes in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Spangler, Steven R.
1998-08-01
This article discusses a way in which enhanced atomic physics processes, including radiative energy losses, may occur in an astrophysical plasma containing magnetohydrodynamic turbulence. Two-dimensional (2D) magnetohydrodynamics (MHD) is adopted as a model. A major characteristic feature of 2D MHD turbulence is the development of strong current sheets on a dynamical time scale L/V0 where L is the spatial scale of the turbulent fluid and V0 is the scale of the velocity fluctuations. The current contained in the sheets will be carried by an electron drift relative to the ions. The case of a plasma containing minority atoms or ions with an excited state accessible to collisions from the tail of the electron distribution is considered. In the current carrying sheets or filaments, the electron distribution function will be perturbed such that collisional excitations will be enhanced relative to the current-free plasma. Subsequent radiative de-excitation of the atoms or ions removes energy from the turbulence. Expressions are presented for the electron drift velocity arising in 2D turbulence, the enhancement of collisional excitations of a trace atom or ion, and the energy lost to the plasma turbulence by radiative de-excitation of these atoms or ions. The mechanism would be most pronounced in plasmas for which the magnitude of the magnetic field is large, the outer scale of the turbulence is small, and the electron density and temperature are low. A brief discussion of the relevance of this mechanism to some specific astrophysical plasmas is given.
Tomography as a promising diagnostic tool for plasma turbulence
NASA Astrophysics Data System (ADS)
Fujisawa, A.; Nagashima, Y.; Inagaki, S.; Onchi, T.; Ohshima, S.; Shimizu, A.
2016-02-01
A system for plasma turbulence tomography has been developed in a linear cylindrical plasma as a prototype with aiming at future application on toroidal plasma of higher temperature. This paper describes the diagnostic system in both aspects of the soft- and hardware, and reports the first results of tomographic reconstruction that can successfully produce local emission and its fluctuations. In the reconstruction process, two dimensional view of plasma is obtained for approximately 0.6 ms in every sampling time of 1 μs using parallel processing of 120 cores with 10 personal computers. The results include the steady state analysis of local fluctuation power spectra using fast Fourier transform, analysis of temporal behavior of fluctuation power spectra with wavelet transform, and analyses of the structural deformation or pattern of local plasma emission, demonstrating that the success of tomography as a promising diagnostic tool for plasma turbulence.
Turbulent Transport in Tokamak Plasmas with Rotational Shear
Barnes, M.; Highcock, E. G.; Cowley, S. C.; Roach, C. M.
2011-04-29
Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal ExB shear value for plasma confinement. Local maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the ExB shear. The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears; at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.
Turbulent transport of alpha particles in reactor plasmas
Estrada-Mila, C.; Candy, J.; Waltz, R. E.
2006-11-15
A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)
Thomson scattering from inertial confinement fusion plasmas
Glenzer, S.H.; Back, C.A.; Suter, L.J.
1997-07-08
Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.
Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.
Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H
2011-02-25
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. PMID:21405577
Kinetic signatures and intermittent turbulence in the solar wind plasma.
Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C
2012-06-29
A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures. PMID:23004954
NASA Astrophysics Data System (ADS)
Redd, Aaron J.; Kritz, Arnold H.; Bateman, Glenn; Horton, Wendell
1998-05-01
A drift wave transport model, recently developed by Ottaviani, Horton and Erba (OHE) [Ottaviani et al., Plasma Phys. Controlled Fusion 39, 1461 (1997)], has been implemented and tested in a time-dependent predictive transport code. This OHE model assumes that anomalous transport is due to turbulence driven by ion temperature gradients and that the fully developed turbulence will extend into linearly stable regions, as described in the reference cited above. A multiplicative elongation factor is introduced in the OHE model and simulations are carried out for 12 discharges from major tokamak experiments, including both L- and H-modes (low- and high-confinement modes) and both circular and elongated discharges. Good agreement is found between the OHE model predictions and experiment. This OHE model is also used to describe the performance of the International Thermonuclear Experimental Reactor (ITER) [Putvinski et al., in Proceedings of the 16th IAEA Fusion Energy Conference, Montréal, Canada, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, p. 737.] A second version of the OHE model, in which the turbulent transport is not allowed to penetrate into linearly stable regions, has also been implemented and tested. In simulations utilizing this version of the model, the linear stability of the plasma core eliminates the anomalous thermal transport near the magnetic axis, resulting in an increase in the core temperatures to well above the experimental values.
Xu, G. S.; Wan, B. N.; Zhang, W.
2006-06-15
In fusion plasmas, intermittently occurring large-scale coherent structures in electrostatic turbulence sometimes contribute more than 50% of total transport, so the investigation on these coherent structures is important for understanding plasma confinement. New experimental techniques are required to extract these coherent structures from fluctuating signals. In this work a 12-tip poloidal rake probe was used on the HT-7 superconducting tokamak to measure plasma turbulence in the plasma edge region. Several signal analysis methods based on a biorthogonal wavelet were developed and applied to the probe data. Since the structure of the selected wavelet is every similar to that of the turbulence wave packet, information about large-scale coherent structures can be selectively extracted from the ambient turbulence. The spatiotemporal patterns of the large-scale coherent structures were reconstructed using the selected wavelets as well as those of small-scale details. These wavelet-based techniques can be applied to all kinds of plasma fluctuation diagnostics, so they possibly present a new opportunity for uncovering the mechanism underlying plasma turbulent transport.
Fundamental studies of fusion plasmas. Final report
Aamodt, R.E.
1998-01-30
Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.
Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas
Zagorodny, Anatoly; Weiland, Jan
2009-10-08
The derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is presented. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient for saturated turbulence.
NASA Astrophysics Data System (ADS)
Lee, Gyung Su.
This thesis is devoted to two studies of low-frequency turbulence in toroidally confined plasma. Low-frequency turbulence is believed to play an important role in anomalous transport in toroidal confinement devices. The first study pertains the the development of an analytic theory of ion-temperature-gradient-driven turbulence in tokamaks. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity is derived and is found to be consistent with experimentally-deduced ion thermal diffusivities. The associated electron thermal diffusivity, particle and heat-pinch velocities are also calculated. The effects of impurity gradients on saturated ion-temperature-gradient-driven turbulence are discussed and a related explanation of density profile steepening during Z-mode operation is proposed. The second study is devoted to the role of multiple helicity nonlinear interactions of tearing modes and dynamics of magnetic relaxation in a high-temperature current-carrying plasma. To extend the resistive MHD theory of magnetic fluctuations and dynamo activity observed in the reversed field pinch, the fluid equations for high-temperature regime are derived and basic nonlinear interaction mechanism and the effects of diamagnetic corrections to the MHD turbulence theory are studied for the case of fully developed, densely packed turbulence. Modifications to the MHD dynamo theory and anomalous thermal transport and confinement scaling predictions are examined.
Plasma turbulence in the downstream ionosheath of Venus
NASA Technical Reports Server (NTRS)
Intriligator, D. S.; Scarf, F. L.
1982-01-01
Observations made by the Pioneer Venus Orbiter plasma analyzer and the plasma wave instrument in the Venus ionosheath are compared. Large increases in plasma wave turbulence levels appear to be connected with changing plasma distributions and interpenetrating plasma beams. Some of these plasma waves are identified as Doppler - shifted ion acoustic waves due to beam/beam interactions, but it is noted that different forms of instabilities are probably also operative. The changes in the temperature, intensity and energy of the peak in the PVO plasma distributions are similar to those observed by Venera 10 closer to the planet and appear to be evidence for rarefaction and compression in the downstream ionosheath. Some of the changes in the PVO plasma distributions may be related to the presence of a second ion population or the acceleration of protons.
Turbulent and directed plasma motions in solar flares
NASA Technical Reports Server (NTRS)
Fludra, A.; Bentley, R. D.; Lemen, J. R.; Jakimiec, J.; Sylwester, J.
1989-01-01
An improved method for fitting asymmetric soft X-ray line profiles from solar flares is presented. A two-component model is used where one component represents the total emission from directed upflow plasma and the other the emission from the plasma at rest. Unlike previous methods, the width of the moving component is independent from that of the stationary component. Time variations of flare plasma characteristics (i.e., temperature, emission measure of moving and stationary plasma, upflow and turbulent velocities) are derived from the Ca XIX and Fe XXV spectra recorded by the Bent Crystal Spectrometer on the Solar Maximum Mission. The fitting technique provides a statistical estimation for the uncertainties in the fitting parameters. The relationship between the directed and turbulent motions has been studied, and a correlation of the random and directed motions has been found in some flares with intensive plasma upflows. Mean temperatures of the upflowing and stationary plasmas are compared for the first time from ratios of calcium to iron X-ray line intensities. Finally, evidence for turbulent motions and the possibility of plasma upflow late into the decay phase is presented and discussed.
Suppression of phase mixing in drift-kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Parker, J. T.; Highcock, E. G.; Schekochihin, A. A.; Dellar, P. J.
2016-07-01
Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to "anti-phase-mixing" modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
Tritium projectiles for fueling magnetic fusion plasmas
Fisher, P.W.; Gouge, M.J.
1995-12-31
As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet (cylindrical projectile of frozen hydrogenic gas at a temperature in the range 6--16 K) injection system to test the mechanical and thermal properties of extruded tritium, a radioactive isotope of hydrogen. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase 2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-2 program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter {approximately} 7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to 13 pellets have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. The pellets, typically 7.4 mm in diameter and up to 11 mm in length, are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process called isotopic fueling in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.
Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP
NASA Astrophysics Data System (ADS)
Watanabe, Naomi; Golkowski, Mark; Sheerin, James; University of Colorado Denver Team
2013-10-01
We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) located at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line (OPL) spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.
2003-01-01
An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.
RF wave propagation and scattering in turbulent tokamak plasmas
Horton, W. Michoski, C.; Peysson, Y.; Decker, J.
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Kinetic simulations of magnetized turbulence in astrophysical plasmas.
Howes, G G; Dorland, W; Cowley, S C; Hammett, G W; Quataert, E; Schekochihin, A A; Tatsuno, T
2008-02-15
This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfvén waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfvén waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale. PMID:18352484
RF wave propagation and scattering in turbulent tokamak plasmas
NASA Astrophysics Data System (ADS)
Horton, W.; Michoski, C.; Peysson, Y.; Decker, J.
2015-12-01
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Implications of polarized DT plasmas for toroidal fusion reactors
Micklich, B.J.; Jassby, D.L.
1983-05-01
Spin polarization of the deuterons and tritons in a reacting plasma can result in an increase in the fusion reactivity and variation of the angular distribution of emission of the fusion neutrons. The increased fusion reactivity relaxes the confinement-temperature conditions for breakeven and ignition. We have determined the effect of varying the angular distribution of the fusion neutrons on the spatial distribution of fusion neturon current and flux at the first wall, on the global tritium breeding ratio, and on the first-wall radiation damage in low-aspect-ratio toroidal geometry.
Turbulent and neoclassical impurity transport in tokamak plasmas
Fueloep, T.; Nordman, H.
2009-03-15
Impurity particle transport in tokamaks is studied using an electrostatic fluid model for main ion and impurity temperature gradient (ITG) mode and trapped electron (TE) mode turbulence in the collisionless limit and neoclassical theory. The impurity flux and impurity density peaking factor obtained from a self-consistent treatment of impurity transport are compared and contrasted with the results of the often used trace impurity approximation. Comparisons between trace and self-consistent turbulent impurity transport are performed for ITER-like profiles. It is shown that for small impurity concentrations the trace impurity limit is adequate if the plasma is dominated by ITG turbulence. However, in case of TE mode dominated plasmas the contribution from impurity modes may be significant, and therefore a self-consistent treatment may be needed.
Selective formation of turbulent structures in magnetized cylindrical plasmas
Kasuya, Naohiro; Itoh, Kimitaka; Yagi, Masatoshi; Itoh, Sanae-I
2008-05-15
The mechanism of nonlinear structural formation has been studied with a three-field reduced fluid model, which is extended to describe the resistive drift wave turbulence in magnetized cylindrical plasmas. In this model, ion-neutral collisions strongly stabilize the resistive drift wave, and the formed structure depends on the collision frequency. If the collision frequency is small, modulational coupling of unstable modes generates a zonal flow. On the other hand, if the collision frequency is large, a streamer, which is a localized vortex in the azimuthal direction, is formed. The structure is generated by nonlinear wave coupling and is sustained for a much longer duration than the drift wave oscillation period. This is a minimal model for analyzing the turbulent structural formation mechanism by mode coupling in cylindrical plasmas, and the competitive nature of structural formation is revealed. These turbulent structures affect particle transport.
Spontaneous emission of electromagnetic radiation in turbulent plasmas
Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.
2014-01-15
Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.
Vortex stabilized electron beam compressed fusion grade plasma
Hershcovitch, Ady
2014-03-19
Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.
Scattering of electromagnetic waves from a turbulent plasma slab.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1972-01-01
Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.
Global Turbulence Simulations of CYCLONE Base Case and MAST Plasmas
Saarelma, S.; Akers, R.; Reshko, M.; Roach, C. M.; Romanelli, M.; Thyagaraja, A.; Bottino, A.; Jolliet, S.
2008-11-01
The non-local effects of turbulence can affect the transport especially in devices when the ration of ion gyroradius to plasma size ({rho}{sub i}*) is large. We show how the local linear and nonlinear ITG flux-tube results are modified when the simulations are done with finite {rho}{sub i}* in a global code.
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-15
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around k_{θρs} ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma
NASA Astrophysics Data System (ADS)
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-01
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-15
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-01
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around k(theta)rho(s) similar to 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport
Two-dimensional Magnetohydrodynamics and Interstellar Plasma Turbulence
NASA Astrophysics Data System (ADS)
Spangler, Steven R.
1999-09-01
This paper is concerned with a physical understanding of the main features of interstellar plasma turbulence. Our observational knowledge of this turbulence is provided by radio-wave propagation observations, generically referred to as interstellar scintillations. Distinctive features of the observations are the nearly omnipresent anisotropy of scattering, revealed by elliptical rather than circular scattering disks, drastic differences in the magnitude of scattering between closely spaced lines of sight through the interstellar medium, evidence from Faraday rotation observations that the interstellar vector magnetic field changes markedly on small spatial scales, and the existence of a power-law spectrum of density irregularities over a wide range of spatial scales. This power-law density spectrum strongly suggests the existence of similar spatial power spectra for the other magnetohydrodynamic (MHD) variables such as flow velocity and magnetic field. In this paper, it is pointed out that the aforementioned features arise or may naturally be explained by an approximate theory of magnetohydrodynamic turbulence, two-dimensional magnetohydrodynamics. In this theory, the plasma turbulence is described by two scalar functions (a velocity stream function and one component of the magnetic vector potential) that are coupled by nonlinear partial differential equations. These equations are physically transparent, possess some relevant analytic results, and are easily solved numerically. Arguments for the relevance of this reduced plasma description are presented. Although obviously an incomplete description of the interstellar plasma, these equations provide plausible explanations for the observational features described above. Anisotropy of scattering arises as an obvious consequence of the conditions for validity of the two-dimensional MHD description, i.e., that spatial gradients along a large-scale magnetic field are much smaller than those perpendicular to the field
High-Gain High-Field Fusion Plasma
NASA Astrophysics Data System (ADS)
Li, Ge
2015-10-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.
High-Gain High-Field Fusion Plasma.
Li, Ge
2015-01-01
A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
Progress In Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
NASA Astrophysics Data System (ADS)
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
Granular fluctuations in plasma turbulence and their role in transport
Terry, P.W.
1993-04-01
Three general types of granular or discrete fluctuations in plasma turbulence are reviewed, with emphasis placed on their unique role in fluctuation-induced transport. These fluctuations are clumps, holes, and vortices, and represent structures that are not part of the normal mode response, the basis of conventional descriptions of plasma turbulence and transport. These fluctuations interact with the normal mode response to produce profound modifications of transport. The self-consistent linking of fields and particle distributions through quasineutrality and Ampere's law is shown to be crucial in calculating these modifications. In particular, it is pointed out that collisionless electron motion along perturbed magnetic fields produces almost no transport of field aligned current across equilibrium surfaces. It is also shown that clumps are granular structures which are turbulently mixed, whereas holes and vortices avoid mixing and relaxation through strong self-binding effects. The distinction between structures that are mixed and those that are persistent is probed in an analysis of the interaction of an intense vortex and ambient turbulent fluctuations. It is shown that, above a critical amplitude, the shearing of eddies due to the differential rotation of the vortex suppresses the fluctuations that mix its vorticity, allowing it to achieve a lifetime greatly in excess of the turbulent interaction time scale.
Granular fluctuations in plasma turbulence and their role in transport
Terry, P.W.
1993-04-01
Three general types of granular or discrete fluctuations in plasma turbulence are reviewed, with emphasis placed on their unique role in fluctuation-induced transport. These fluctuations are clumps, holes, and vortices, and represent structures that are not part of the normal mode response, the basis of conventional descriptions of plasma turbulence and transport. These fluctuations interact with the normal mode response to produce profound modifications of transport. The self-consistent linking of fields and particle distributions through quasineutrality and Ampere`s law is shown to be crucial in calculating these modifications. In particular, it is pointed out that collisionless electron motion along perturbed magnetic fields produces almost no transport of field aligned current across equilibrium surfaces. It is also shown that clumps are granular structures which are turbulently mixed, whereas holes and vortices avoid mixing and relaxation through strong self-binding effects. The distinction between structures that are mixed and those that are persistent is probed in an analysis of the interaction of an intense vortex and ambient turbulent fluctuations. It is shown that, above a critical amplitude, the shearing of eddies due to the differential rotation of the vortex suppresses the fluctuations that mix its vorticity, allowing it to achieve a lifetime greatly in excess of the turbulent interaction time scale.
Sudden Viscous Dissipation of Compressing Turbulence
NASA Astrophysics Data System (ADS)
Davidovits, Seth; Fisch, Nathaniel J.
2016-03-01
Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Sudden Viscous Dissipation of Compressing Turbulence.
Davidovits, Seth; Fisch, Nathaniel J
2016-03-11
Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion. PMID:27015488
Sudden Viscous Dissipation of Compressing Turbulence
Davidovits, Seth; Fisch, Nathaniel J.
2016-03-11
Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Casanova, S.; Schlickeiser, R.
2012-02-01
Recently, a new transport theory of cosmic rays in magnetized space plasmas extending the quasilinear approximation to the particle orbit has been developed for the case of an axisymmetric incompressible magnetic turbulence. Here, we generalize the approach to the important physical case of a compressible plasma. As previously obtained in the case of an incompressible plasma, we allow arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field. For the case of quasi-stationary and spatially homogeneous magnetic turbulence we derive, in the small Larmor radius approximation, gyrophase-averaged cosmic-ray Fokker-Planck coefficients. Upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients and for the perpendicular and parallel spatial diffusion coefficients are presented.
Strongly turbulent stabilization of electron beam-plasma interactions
NASA Technical Reports Server (NTRS)
Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.
1980-01-01
The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.
Vorticity scaling and intermittency in drift-interchange plasma turbulence
Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.
2012-09-15
The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.
Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.
Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M
2015-05-01
High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241
Vorticity scaling and intermittency in drift-interchange plasma turbulence
NASA Astrophysics Data System (ADS)
Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.
2012-09-01
The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C =-∂ ln B/∂x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.
GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS
Horton, Claude Wendell
2014-06-10
The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).
Intermittent dissipation at kinetic scales in collisionless plasma turbulence.
Wan, M; Matthaeus, W H; Karimabadi, H; Roytershteyn, V; Shay, M; Wu, P; Daughton, W; Loring, B; Chapman, S C
2012-11-01
High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy. PMID:23215389
Turbulence in strongly coupled dusty plasmas using generalized hydrodynamic description
Tiwari, Sanat Kumar; Dharodi, Vikram Singh; Das, Amita; Patel, Bhavesh G.; Kaw, Predhiman
2015-02-15
The properties of decaying turbulence have been studied with the help of a Generalized Hydrodynamic (GHD) fluid model in the context of strongly coupled dusty plasma medium in two dimensions. The GHD model treats the strongly coupled dusty plasma system as a visco-elastic medium. The incompressible limit of the GHD model is considered here. The studies carried out here are, however, applicable to a wider class of visco-elastic systems, and are not merely confined to the dusty plasma medium. Our simulations studies show that an initial spectrum that is confined in a limited domain of wave numbers becomes broad, even when the Reynold's number is much less than the critical value required for the onset of turbulence in Newtonian fluids. This is a signature of elastic turbulence, where Weissenberg's number also plays an important role on the onset of turbulence. This feature has been observed in several experiments. It is also shown that the existence of memory relaxation time parameter and the transverse shear wave inhibit the normal process (for 2-D systems) of inverse spectral cascade in this case. A detailed simulation study has been carried out for the understanding of this inhibition.
Intermittency, coherent structures and dissipation in plasma turbulence
NASA Astrophysics Data System (ADS)
Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T. N.; Wu, P.; Karimabadi, H.
2016-04-01
Collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been an intensively studied subject recently, with new insights often emerging from numerical simulation. Here we report results from high resolution, fully kinetic simulations of plasma turbulence in both two (2D) and three (3D) dimensions, studying the relationship between intermittency and dissipation. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. An approximate dissipation measure is employed, based on work done by the electromagnetic field in the local electron fluid frame. This surrogate dissipation measure is highly concentrated in small subvolumes in both 2D and 3D simulations. Fully kinetic simulations are also compared with magnetohydrodynamics (MHD) simulations in terms of coherent structures and dissipation. The interesting result emerges that the conditional averages of dissipation measure scale very similarly with normalized current density J in 2D and 3D particle-in-cell and in MHD. To the extent that the surrogate dissipation measure is accurate, this result implies that on average dissipation scales as ˜J2 in turbulent kinetic plasma. Multifractal intermittency is seen in the inertial range in both 2D and 3D, but at scales ˜ion inertial length, the scaling is closer to monofractal.
Particle energization and current sheets in Alfvenic plasma turbulence
NASA Astrophysics Data System (ADS)
Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto
2015-11-01
Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
Predebon, I.; Xanthopoulos, P.
2015-05-15
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
NASA Astrophysics Data System (ADS)
Predebon, I.; Xanthopoulos, P.
2015-05-01
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2015-11-01
A first-principles self-consistent model that couples plasma and neutral physics suitable for the simulation of turbulent plasma behavior in the tokamak SOL is presented. While the plasma is modeled by the drift-reduced two fluid Braginskii equations, a kinetic model for the neutrals is developed, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional processes. The solution of the neutral kinetic equation is implemented within the GBS plasma turbulence code (Ricci et al 2012 Plasma Phys. Control. Fusion 54 124047) and it is performed by using the method of characteristics. The details of the numerical implementation are discussed. Finally, we show initial results of the first self-consistent simulations of plasma turbulence and neutral dynamics.
Plasma transport induced by kinetic Alfven wave turbulence
Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.
2012-10-15
At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.
Dissipation of Astrophysical Plasma Turbulence by Radiative Cooling
NASA Astrophysics Data System (ADS)
Spangler, Steven
1997-11-01
One of the more plausible yet tractable models for turbulence in astrophysical plasmas such as the interstellar medium and solar wind is that of reduced MHD. In reduced MHD spatial gradients perpendicular to a large scale magnetic field are much more important than those along the field, and the plasma is approximated as being two dimensional. A salient characteristic of reduced MHD is the development of thin, intense current sheets on an eddy turnover time. The large current density in these sheets is most plausibly carried by electron drift relative to the ions at a drift speed v_d. This drift will enhance the high speed tail of the electron distribution relative to that of a current-free plasma. If the plasma contains a neutral atom or ion species, enhanced collisional excitation will occur in the current sheets. Radiative deexcitation of the atom or ion will then produce loss of energy from the plasma. The theory of reduced MHD may be used to obtain an expression for the electron drift speed, which depends on the characteristics of the host plasma as well as the amplitude, spatial scale, and initial conditions of the MHD turbulence. When vd ~ v_th, the thermal electron speed, enhanced electron collisional excitation may be an important process. I consider the importance of this process for various astrophysical plasmas. The mechanism may well be important in the interstellar molecular clouds in which stars form.
Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2003-01-01
To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.
Neoclassical diffusion in a turbulent plasma
Yushmanov, P. |
1991-11-01
This work describes a new approach to plasma transport where the toroidal drift motion is considered as a perturbation to the fluctuating velocity. Percolation theory is used to determine the scaling of the diffusion coefficient. Several neoclassical phenomena should persist even when diffusion is enhanced from neoclassical predictions. Numerical simulation results support the theoretical scaling arguments.
Fusion programs in applied plasma physics and development and technology at GA Technologies, Inc.
NASA Astrophysics Data System (ADS)
Overskei, D. O.
1988-01-01
Research carried out by GA for the Department of Energy Office of Fusion Energy provides key information and insight necessary for the development of fusion power systems. Highlights of the fusion theory effort described in this report include progress in numerical simulations of turbulent transport in tokamak plasmas, extension of novel theories of the H-mode, development and application of advanced codes for evaluating ECRF current drive efficiency, and new understanding and techniques for dealing with high beta tokamak equilibria. Experimental plasma research efforts are addresssing several important issues in fusion research. Neutron and alpha particle spectroscopy and triton confinement diagnostics are being developed to enable fusion researchers to understand alpha particle confinement and slowdown in burning plasmas. Development of Li beam diagnostic systems continued and has shown a capability for measuring both magnetic field pitch angle and relative current density profiles. Experiments on Ergodic Magnetic Divertor (EMD) phenomena on the Texas Experimental Tokamak (TEXT) continued to demonstrate low plasma edge temperatures and impurity reduction that make the concept attractive for reactor applications. GA led efforts continuing the Resonant Island Divertor (RID) experiments on TEXT using the EMD as a controlled magnetic perturbation. Research carried out in GA's Development and Technology programs included reactor systems design studies, and development of ferritic steels suitable for use as a structural material in fusion reactors. In the reactor systems design area, GA participated in the TITAN Reserved Field Pinch (RFP) Reactor Design Study. GA is responsible for project operation, safety design and analysis, and blanket shield neutronics calculations for this study.
First 3-D simulations of meteor plasma dynamics and turbulence
NASA Astrophysics Data System (ADS)
Oppenheim, Meers M.; Dimant, Yakov S.
2015-02-01
Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.
Edge ambipolar potential in toroidal fusion plasmas
Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.
2014-05-15
A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.
Free energy and entropy flows in magnetised plasma turbulence
NASA Astrophysics Data System (ADS)
Schekochihin, A.; Cowley, S.; Dorland, W.; Howes, G. G.; Quataert, E.; Tatsuno, T.; Plunk, G.; TenBarge, J.; Mallet, A.; Kanekar, A.
2011-12-01
Just as fluid turbulence can be conceptualised as a cascade of kinetic energy from large to small scales, kinetic plasma turbulence is a cascade of free energy in the 6D phase space (position and velocity). I will discuss this as a general principle and then specialise to the case of magnetised plasma turbulence at kinetic (sub-ion-Larmor) scales. At these scales, the free energy flux arriving from the inertial range splits into two channels: the kinetic Alfven wave cascade destined to be dissipated into electron heat and the ion entropy cascade, resulting in ion heating. The phase-space nature of the cascade is particularly manifest in this case as the ion entropy cascade involves simultaneous generation of small spatial scales and small scales in velocity space, the latter via a nonlinear phase-mixing process due to ion gyromotion. I will also discuss how the electron Landau damping and the associated process of parallel phase mixing fit into this cascade picture and whether they represent an effective dissipation mechanism in a strongly turbulent nonlinear system.
NASA Astrophysics Data System (ADS)
Basse, N. P.; Zoletnik, S.; Michelsen, P. K.; W7-As Team
2005-01-01
Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100μs, similar to the lifetime observed during edge localized modes.
Basse, N.P.; Zoletnik, S.; Michelsen, P.K.
2005-01-01
Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100 {mu}s, similar to the lifetime observed during edge localized modes.
Intermittent dissipation and heating in 3D kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Karimabadi, H.; Parashar, T.; Wu, P.; Shay, M. A.
2014-12-01
The nature of collisionless dissipation has been hotlydebated in recent years, with alternative ideas posed interms of various wave modes, such as kinetic Alfven waves,whistlers, linear Vlasov instabilities, cyclotron resonance,and Landau damping. Here we use large scale, fully kinetic3D simulations of collisionless plasma turbulence which showthe development of turbulence characterized by sheet-likecurrent density structures spanning a range of scales.We present evidence that these structures are sites for heatingand dissipation, and that stronger current structures signifyhigher dissipation rates. The analyses focus on quantities such as J.E, electron and proton temperatures, and PVI of the magnetic field. Evidently, kinetic scale plasma,like magnetohydrodynamics, becomes intermittent due tocurrent sheet formation, leading to the expectationthat heating and dissipation in astrophysical and space plasmasmay be highly nonuniform. Comparison with previousresults from 2D kinetic simulations, as well as high frequencysolar wind observational data will also be discussed.
Global spectral investigation of plasma turbulence in gyrokinetic simulations
Henriksson, S. V.; Janhunen, S. J.; Kiviniemi, T. P.; Heikkinen, J. A.
2006-07-15
Gyrokinetic global particle-in-cell simulations for a small torus with a large aspect ratio ({epsilon}{sup -1}>{approx}7) indicate a k{sub perpendicular}{sup -{alpha}} spectrum for electrostatic turbulence. When electrons are treated kinetically, the simulation results fit {alpha} that grows from about 1 at the plasma core to about 3 at the plasma edge for the flux surface component of the wave vector perpendicular to the magnetic field, while for adiabatic electrons {alpha}=4 is found for all radii, in agreement with the Hasegawa-Mima model. The relation between spectra and transport is investigated through the formation of an internal transport barrier. The role of flow shear in suppressing turbulence is illustrated by spectral diagnostics. A strong dependence between the presence of small wavenumbers and transport is explicitly observed. The simulated spectra are compared to recent experimental results.
Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas
NASA Technical Reports Server (NTRS)
Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin
2004-01-01
The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.
Anisotropy in solar wind plasma turbulence
Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.
2015-01-01
A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082
Anisotropy in solar wind plasma turbulence.
Oughton, S; Matthaeus, W H; Wan, M; Osman, K T
2015-05-13
A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082
PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)
NASA Astrophysics Data System (ADS)
Garbet, Xavier; Sauter, Olivier
2012-12-01
The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012
Numerical simulations of tokamak plasma turbulence and internal transport barriers
NASA Astrophysics Data System (ADS)
Thyagaraja, A.
2000-12-01
A wide variety of magnetically confined plasmas, including many tokamaks such as the JET, TFTR, JT-60U, DIII-D, RTP, show clear evidence for the existence of the so-called `internal transport barriers' (ITBs) which are regions of relatively good confinement, associated with substantial gradients in temperature and/or density. A computational approach to investigating the properties of tokamak plasma turbulence and transport is developed. This approach is based on the evolution of global, two-fluid, nonlinear, electromagnetic plasma equations of motion with specified sources. In this paper, the computational model is applied to the problem of determining the nature and physical characteristics of barrier phenomena, with particular reference to RTP (electron-cyclotron resonance heated) and JET (neutral beam heated) observations of ITBs. The simulations capture features associated with the formation of these ITBs, and qualitatively reproduce some of the observations made on RTP and JET. The picture of plasma turbulence suggested involves variations of temperature and density profiles induced by the electromagnetic fluctuations, on length scales intermediate between the system size and the ion Larmor radius, and time scales intermediate between the confinement time and the Alfvén time (collectively termed `mesoscales'). The back-reaction of such profile `corrugations' (features exhibiting relatively high local spatial gradients and rapid time variations) on the development and saturation of the turbulence itself plays a key role in the nonlinear dynamics of the system. The corrugations are found to modify the dynamical evolution of radial electric field shear and the bootstrap current density, which in turn influence the turbulence. The interaction is mediated by relatively long wavelength, electromagnetic modes excited by an inverse cascade and involving nonlinear instabilities and relaxation phenomena such as intermittency and internal mode locking.
Electrostatic and magnetic transport of energetic ions in turbulent plasmas
Hauff, T.; Pueschel, M. J.; Jenko, F.; Dannert, T.
2009-02-20
Analytical and numerical work is used in tandem to address the problem of turbulent transport of energetic ions in magnetized plasmas. It is shown that orbit averaging is not valid under rather generic conditions, and that perpendicular decorrelation effects lead to a slow 1/E decay of the electrostatic particle diffusivity of beam ions, while the respective magnetic quantity is even independent of the particle energy E.
Aspect ratio effects on limited scrape-off layer plasma turbulence
NASA Astrophysics Data System (ADS)
Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-01
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Aspect ratio effects on limited scrape-off layer plasma turbulence
Jolliet, Sébastien Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-15
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Fission and activation of uranium by fusion-plasma neutrons
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.; Mcfarland, D. R.
1978-01-01
Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.
A laser driven fusion plasma for space propulsion
Kammash, T.; Galbraith, D.L. )
1992-07-01
The present inertial-confinement fusion concept employs a magnetized target pellet that is driven by a laser beam in conjunction with a tungsten shell whose inner surface is coated with a deuterium-tritium fusion fuel mixture. A laser beam that enters the pellet through a hole simultaneously creates a fusion-grade plasma and gives rise to a powerful, instantaneous magnetic field which thermally insulates the plasma from the material wall. The plasma lifetime of this self-generated magnetic field scheme is dictated by the shock speed in the tungsten shell rather than by the speed of sound in the plasma: it consequently burns much longer and efficiently than plausible alternatives. A manned mission could by these means be completed in a few months rather than a few years, in virtue of the great specific impulse achieved. 8 refs.
Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas
Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.
2011-02-07
Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________
Langmuir wave decay in turbulent inhomogeneous solar wind plasmas
NASA Astrophysics Data System (ADS)
Krafft, C.; Volokitin, A.
2016-03-01
Langmuir wave decay in solar wind plasmas typical of type III bursts' source regions near 1 AU have been reported by several spacecraft observations. In such plasmas, due to the presence of random density fluctuations, wave decay occurs usually simultaneously and compete with other coupling effects between the fields and the density irregularities, as reflection, scattering and/or refraction processes. Numerical simulations show that resonant three-wave coupling processes including several cascades of Langmuir wave decay can occur in such plasmas, leading to wave energy transfer to smaller wavenumbers k, as shown in the frame of weak turbulence theory. However, in such conditions, and contrary to what occurs in homogeneous plasmas, the decay process is localized in space at a given time. Moreover, wave-wave coupling plays a significant role in the modulation of the Langmuir waveforms, in agreement with recent space observations.
Spherically symmetric simulation of plasma liner driven magnetoinertial fusion
Samulyak, Roman; Parks, Paul; Wu Lingling
2010-09-15
Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.
Kulsrud, R.M.; Sudan, R.N.
1981-04-01
The nonlinear damping in a strongly turbulent convecting plasma computed by Kraichnan's modified direct inteaction approximation and the power spectrum are rederived in a physically transparent form using Kolmogoroff's theory of turbulence.
Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas.
Ciraolo, Guido; Briolle, Françoise; Chandre, Cristel; Floriani, Elena; Lima, Ricardo; Vittot, Michel; Pettini, Marco; Figarella, Charles; Ghendrih, Philippe
2004-05-01
It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations whose form can be explicitly computed. In particular, it is possible to control (reduce) the chaotic diffusion in the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged test particles in a turbulent electric field across the confining magnetic field in controlled thermonuclear fusion devices. Though still far from practical applications, this result suggests that some strategy to control turbulent transport in magnetized plasmas, in particular, tokamaks, is conceivable. The robustness of the control is investigated in terms of a departure from the optimum magnitude, of a varying cutoff at large wave vectors, and of random errors on the phases of the modes. In all three cases, there is a significant region of maximum efficiency in the vicinity of the optimum control term. PMID:15244910
Probing plasma turbulence by modulating the electron temperature gradient
DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.
2010-05-15
The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.
Coherent structure and Intermittent Turbulence in the Solar Wind Plasma
NASA Astrophysics Data System (ADS)
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar
2016-07-01
We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.
2015-06-01
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
Heavy particle collisions in astrophysical, fusion, and other plasmas
NASA Astrophysics Data System (ADS)
Schultz, David
2013-09-01
Contemporary computational methods to treat few-body, atomic-scale interactions have opened opportunities to study them at a new level of detail to both uncover unexpected phenomena and to create data of unprecedented accuracy and scope for applications. Such interactions within gaseous, plasma, and even material environments are fundamental to such diverse phenomena as low temperature plasma processing of semiconductors, collapsing giant molecular clouds forming stars, fluorescent lighting, radiation treatment of disease, and the chemistry of earth's atmosphere. I will illustrate progress using examples from recent work treating heavy particle collision systems, for which our knowledge has been both subtly refined and significantly changed. Examples will include elastic and transport-related processes in fusion and solar-system plasmas, charge transfer leading to diagnostic light emission in planetary atmospheres and fusion plasmas, and excitation and ionization processes needed for plasma modeling and diagnostics.
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.
Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J
2015-06-26
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131
Alpha heating and burning plasmas in inertial confinement fusion
Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.
2015-06-01
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
Low-frequency instabilities and plasma turbulence
NASA Technical Reports Server (NTRS)
Ilic, D. B.
1973-01-01
A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.
User facility for research on fusion systems with dense plasmas
Ryutov, D. D.
1999-01-07
There are a number of fusion systems whose dimensions can be scaled down to a few centimeters, if the plasma density and confining magnetic field are raised to sufficiently high values. This prompts a "user-facility" approach to the studies of this class of fusion systems. The concept of such a user facility was first briefly mentioned in Ref. 1. Here we present a more detailed description.
Plasma Physics, Fusion Science, and California High School Science
NASA Astrophysics Data System (ADS)
Correll, Donald
2004-11-01
In order to further engage California HIgh School science teachers in plasma physics and fusion science, a collaboration was formed between LLNL's Fusion Energy Program and the University of California's Edward Teller Education Center (etec.ucdavis.edu). California's Science Content Standards for high school physics (www.cde.ca.gov/be/st/ss/scphysics.asp) were used to create a public lecture (education.llnl.gov/sos/) that covered "students are expected to achieve" physics topics relevant to astrophysical and fusion plasma research. In addition to the lecture, a two day workshop for the Edward Teller Education Symposium, September 24 - 25, 2004 (education.llnl.gov/symposium2004) was designed around plasma spectroscopy (education.llnl.gov/symposium2004/agenda_astro.html). Plasma spectroscopy was chosen as the "anchor" to the workshop given the breadth and depth of the field to both astrophysical and fusion plasma research. Workshop participation includes lectures, tours, spectroscopic measurements, and building a 'spectroscope' for use in the teachers' respective high school classrooms. Accomplishments will be reported and future plans will be presented that include development of a one to two week expanded workshop that includes plasma research methods and advanced science skills essential to guiding students to conduct research projects.
Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.
2015-11-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
The Rayleigh Taylor instability in inertial fusion, astrophysical plasma and flames
NASA Astrophysics Data System (ADS)
Bychkov, V.; Modestov, M.; Akkerman, V.; Eriksson, L.-E.
2007-12-01
Previous results are reviewed and new results are presented on the Rayleigh Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer).
Response of nickel surface to pulsed fusion plasma radiations
Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.
2014-04-24
Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.
A fusion power plant without plasma-material interactions
Cohen, S.A.
1997-04-01
A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.
Solar system plasma Turbulence: Observations, inteRmittency and Multifractals
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2016-04-01
The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a
NASA Astrophysics Data System (ADS)
Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT team
2016-07-01
The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.
Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas
Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.
2007-07-18
Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.
Modification of Edge Plasma Turbulence by External Magnetic Pertubations
Boedo, J; McKee, G; Rudakov, D; Reiser, D; Evans, T; Moyer, R; Schaffer, M; Watkins, J; Allen, S; Fenstermacher, M; Groth, M; Holland, C; Hollmann, E; Lasnier, C; Leonard, A; Mahdavi, M; McLean, A; Tynan, G; Wang, G; West, W; Zeng, L
2006-06-19
Magnetostatic perturbations applied to the DIII-D plasma using a n=3 coil set have significant impact on the plasma edge, such as edge localized mode (ELM) suppression [1], but also affect the background turbulence levels. Discharges with parameters R=1.75 m, a=0.56 m, B{sub T} {approx} 1.6 T, I{sub p} {approx} 1 MA and n{sub e} {approx} 3 x 10{sup 13} cm{sup -3}-n{sub e} {approx} 7 x 10{sup 13} cm{sup -3} (low, v*{sub e} {approx} 0.1 and moderate, v*{sub e} {approx} 1 electron pedestal collisionality) were used as a target for the perturbation, [applied at 3 s Fig. 1(a) and 2 s Fig. 1(b)]. The global density and energy content, among many other parameters, are unaffected, raising the issue of what mechanism replaces the particle and heat exhaust otherwise mediated by ELMs. Mixed ELMs (high frequency, low amplitude Type II ELMs interspersed with Type I) in the moderate collisionality regime and Type I ELMs in the low collisionality regime, are replaced by intermittency and broadband turbulence or semiperiodic events. It is important to notice that the coils can be energized in high poloidal mode spectra (upper and lower coils produce fields in the same direction) or odd configuration (upper and lower coils produce fields in the opposite direction) and also rotated 60 deg toroidally. Although we will focus on scanning probe [2] data obtained in the scrape-off layer (SOL), other diagnostics, beam emission spectroscopy (BES), reflectometry [3], were used to study the changes in the plasma turbulence when the ELMs are suppressed and the underlying turbulence and transport change. Thomson scattering n{sub e} and T{sub e} profiles (Fig. 2) accumulated over 200 ms before (red) and during (blue) I-coil perturbation are fitted with y = a + b* tanh[(r-c)/d] resulting in a,b staying constant while d varies from -0.009 to -0.011 and c from -0.013 to -0.009, i.e. the profiles mostly broaden and shift outward, changes which may be connected to an increase in radial turbulent
Dynamics of Turbulence Suppression in a Helicon Plasma
NASA Astrophysics Data System (ADS)
Hayes, Tiffany; Gilmore, Mark
2012-10-01
Experiments are currently being conducted in the the Helicon-Cathode Device (HelCat) at the University of New Mexico. The goal is to the study in detail the transition from a turbulent to a non-turbulent state in the presence of flow shear. HelCat has intrinsic fluctuations that have been identified as drift-waves. Using simple electrode biasing, it has been found that these fluctuations can be completely suppressed. In some extreme cases, a different instability, possibly the Kelvin-Helmholtz instability, can be excited. Detailed studies are underway in order to understand the characteristics of each mode, and to elucidate the underlying physics that cause the change between an unstable plasma, and an instability-free plasma. Dynamics being observed include changes in flow profiles, both azimuthal and parallel, as well as changes in potential and temperature gradients. Further understanding is being sought using several computer codes developed at EPFL: a linear stability solver (LSS,footnotetextP. Ricci and B.N. Rogers (2009). Phys Plasmas 16, 062303. a one-dimensional PIC code/sheath solver, ODISEE,footnotetextJ. Loizu, P. Ricci, and C. Theiler (2011). Phys Rev E 83, 016406 and a global, 3D Braginski code, GBS.footnotetextRicci, Rogers (2009) A basic overview of results will be presented.
TEST FOR WAVEVECTOR ANISOTROPIES IN PLASMA TURBULENCE CASCADES
Gary, S. Peter
2013-05-20
The frequency and wavevector matching conditions in nonlinear three-wave coupling are used to test whether the forward cascade of plasma turbulence may lead to wavevector anisotropies in a homogeneous, collisionless, magnetized plasma. Linear kinetic theory at {beta}{sub p} = 0.01, 0.10, and 1.0 is used to determine the frequency-wavenumber dispersion of three normal modes: long-wavelength Alfven-cyclotron waves, long-wavelength magnetosonic waves, and intermediate-wavelength magnetosonic-whistler waves. Using linear dispersion in the nonlinear matching conditions, the test predicts with one exception that forward cascades are favored by fluctuations propagating nearly perpendicular to the background magnetic field B{sub o}. This is consistent with the typical development of wavevector anisotropies with k >> k{sub Parallel-To} (subscripts refer to directions perpendicular and parallel to B{sub o}, respectively) in computer simulations of the forward cascade of various types of plasma turbulence. The exception is that, at {beta}{sub p} = 1.0, the test predicts that the cascade of long-wavelength magnetosonic waves should be favored by modes at k {approx} k{sub Parallel-To }.
Experimental Investigation of Complex Dynamics of Plasma Turbulence and Transport
NASA Astrophysics Data System (ADS)
Gilmore, M.; Peebles, W. A.; Rhodes, T. L.; Newman, D. E.; Sanchez, R.
2000-10-01
Theoretical predictions of complex dynamics, such as self-organized criticality (SOC), have led to new insights into the behavior of a wide range of complex systems, such as sandpiles, evolution/extinction models and earthquake fault zones. Recently, complex dynamics have been invoked as a paradigm for understanding turbulent transport in plasmas. In particular, complex dynamical models of turbulent transport make specific predictions regarding power spectra and long range spatial and temporal correlations. In order to test the models experimentally, detailed studies utilizing probe arrays at many axial and azimuthal positions are under way in the linear Large Plasma Device at UCLA. Preliminary edge fluctuation data show frequency spectra with three distinct regions, scaling approximately as f^0, f-1, and f-4, in low, intermediate, and high frequency intervals respectively. The f-1 frequency interval decreases - eventually to zero - as the plasma is scanned from the edge to the core. These observations are consistent with a recently developed complex dynamics model that includes classical diffusion. *Supported by the National Science Foundation
Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets
Max, C.E.
1981-12-01
This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.
Laser-plasma interactions relevant to Inertial Confinement Fusion
Wharton, K.B.
1998-11-02
Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a
Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.
2007-07-15
The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD.
Lithium As Plasma Facing Component for Magnetic Fusion Research
Masayuki Ono
2012-09-10
The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
NASA Astrophysics Data System (ADS)
Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.
Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment
C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson
2003-10-13
The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.
Length of magnetic field lines in turbulent plasmas.
Nunez, Manuel
2002-06-01
An estimation of the length of any magnetic field line in a two-dimensional periodic magnetohydrodynamic problem is provided. This is done by using some classical function theory results on the analytic extension of the vector potential. The essential parameter, the maximum of this extension, may be analyzed in the case of turbulent plasmas by admitting the Iroshnikov-Kraichnan statistics, establishing in this way a relation between the length of any magnetic field line and the energy dissipation scale. (c) 2002 American Institute of Physics. PMID:12779559
Turbulent equipartition and homogenization of plasma angular momentum.
Gürcan, O D; Diamond, P H; Hahm, T S
2008-04-01
A physical model of turbulent equipartition (TEP) of plasma angular momentum is developed. We show that using a simple, model insensitive ansatz of conservation of total angular momentum, a TEP pinch of angular momentum can be obtained. We note that this term corresponds to a part of the pinch velocity previously calculated using quasilinear gyrokinetic theory. We observe that the nondiffusive TEP flux is inward, and therefore may explain the peakedness of the rotation profiles observed in certain experiments. Similar expressions for linear toroidal momentum and flow are computed and it is noted that there is an additional effect due the radial profile of moment of inertia density. PMID:18517961
Turbulence and Proton–Electron Heating in Kinetic Plasma
NASA Astrophysics Data System (ADS)
Matthaeus, William H.; Parashar, Tulasi N.; Wan, Minping; Wu, P.
2016-08-01
Analysis of particle-in-cell simulations of kinetic plasma turbulence reveals a connection between the strength of cascade, the total heating rate, and the partitioning of dissipated energy into proton heating and electron heating. A von Karman scaling of the cascade rate explains the total heating across several families of simulations. The proton to electron heating ratio increases in proportion to total heating. We argue that the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales controls the ratio of proton and electron heating. The proposed scaling is consistent with simulations.
NASA Astrophysics Data System (ADS)
Retinò, Alessandro
2016-04-01
The Universe is permeated by hot, turbulent magnetized plasmas. They are found in active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, as well as in the solar corona, the solar wind and the Earth's magnetosphere. Turbulent plasmas are also found in laboratory devices such as e.g. tokamaks. Our comprehension of the plasma Universe is largely based on measurements of electromagnetic radiation such as light or X-rays which originate from particles that are heated and accelerated as a result of energy dissipation in turbulent environments. Therefore it is of key importance to study and understand how plasma is energized by turbulence. Most of the energy dissipation occurs at kinetic scales, where plasma no longer behaves as a fluid and the properties of individual plasma species (electrons, protons and other ions) become important. THOR (Turbulent Heating ObserveR - http://thor.irfu.se/) is a space mission currently in Study Phase as candidate for M-class mission within the Cosmic Vision program of the European Space Agency. The scientific theme of the THOR mission is turbulent energy dissipation and particle energization in space plasmas, which ties in with ESA's Cosmic Vision science. The main focus is on turbulence and shock processes, however areas where the different fundamental processes interact, such as reconnection in turbulence or shock generated turbulence, are also of high importance. The THOR mission aims to address fundamental questions such as how plasma is heated and particles are accelerated by turbulent fluctuations at kinetic scales, how energy is partitioned among different plasma components and how dissipation operates in different regimes of turbulence. To reach the goal, a careful design of the THOR spacecraft and its payload is ongoing, together with a strong interaction with numerical simulations. Here we present the science of THOR mission and we discuss implications of THOR observations for space
High-Gain High-Field Fusion Plasma
Li, Ge
2015-01-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President
Not Available
1993-07-01
This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Federrath, Christoph; Schober, Jennifer; Bovino, Stefano; Schleicher, Dominik R. G.
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.
2016-05-01
Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface
Allain, Jean Paul; Taylor, Chase N.
2012-05-15
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
Web Interface Connecting Gyrokinetic Turbulence Simulations with Tokamak Fusion Data
NASA Astrophysics Data System (ADS)
Suarez, A.; Ernst, D. R.
2005-10-01
We are developing a comprehensive interface to connect plasma microturbulence simulation codes with experimental data in the U.S. and abroad. This website automates the preparation and launch of gyrokinetic simulations utilizing plasma profile and magnetic equilibrium data. The functionality of existing standalone interfaces, such as GS2/PREP [D. R. Ernst et al., Phys. Plasmas 11(5) 2637 (2004)], in use for several years for the GS2 code [W. Dorland et al., Phys. Rev. Lett. 85(26) 5579 (2000)], will be extended to other codes, including GYRO [J. Candy / R.E. Waltz, J. Comput. Phys.186, (2003) 545]. Data is read from mdsplus and TRANSP [\\underline {http://w3.pppl.gov/transp}] and can be viewed using a java plotter, Webgraph, developed for this project by previous students Geoffrey Catto and Bo Feng. User sessions are tracked and saved to allow users to access their previous simulations, which can be used as templates for future work.
Unified models of E-layer plasma turbulence from density gradients and Hall currents
NASA Astrophysics Data System (ADS)
Hassan, Ehab; Litt, Sandeep; Horton, Wendell; Smolyakov, Andrei; Skiff, Fred
2013-10-01
The Earth's ionosphere is rich with plasma irregularities of scale-lengths extend from few centimeters to hundreds of kilometers. The combination of small-scale turbulence with large coherent structures is at the forefront of basic plasma turbulence theory. A new unified model for the small-scale plasma turbulence called Type-I and Type-II in the E-region ionosphere is presented. Simulations and a proposed laboratory experiment for these plasma waves in a weakly ionized plasma are reported. The ions [Argon in the lab and NO+ in the ionosphere] are collisional and the electrons ExB drifts produce Hall currents. The dispersion relations are analyzed for both density gradient and electron current driven instabilities. A basic understanding of the turbulence is important for forecasting disruptions in GNSS communication signals from RF signal scattering produced by the E-layer plasma turbulence on the 10cm to 10m scales lengths. NSF:AGS-0964692.
Scale-free transport in fusion plasmas: theory and applications
Sanchez, R.; Mier, J. A.; Garcia, L.; Newman, D. E.; Carreras, B. A.; Leboeuf, J. N.; Decyk, V.
2008-11-01
A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.
Scale-free transport in fusion plasmas: theory and applications
Sanchez, Raul; Mier, Jose Angel; Newman, David E; Carreras, Benjamin A; Garcia, Luis; Leboeuf, Jean-Noel; Decyk, Viktor
2008-01-01
A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.
Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.
2015-06-15
The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.
Zonal flows and turbulence in fluids and plasmas
NASA Astrophysics Data System (ADS)
Parker, Jeffrey Bok-Cheung
In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear
Turbulent convective flows in the solar photospheric plasma
NASA Astrophysics Data System (ADS)
Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F.
2015-10-01
> The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index . We found for times up to and for times up to . An alternative way to investigate the advective-diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion-advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.
Enhanced current flow through a plasma cloud by induction of plasma turbulence
NASA Technical Reports Server (NTRS)
Hastings, D. E.
1987-01-01
Electrodynamic tethers have been proposed as a means of generating power in low earth orbit. One of the limitations on the power generated is the relatively low electron current that can be collected. It is proposed that the electron current can be significantly enhanced by means of current-induced plasma turbulence in a plasma cloud around the collecting anode. This is examined for the specific case of ion acoustic turbulence. An important conclusion is that the use of plasma clouds in the ionosphere will entail a high-impedance (no instability) and a low-impedance (ion acoustic instability) mode of operation. The low-impedance mode of operation will have two submodes, one steady state and one pulsed.
NASA Astrophysics Data System (ADS)
Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.
2013-07-01
Mixing and turbulent mixing are non-equilibrium processes that occur in a broad variety of processes in fluids, plasmas and materials. The processes can be natural or artificial, their characteristic scales can be astrophysical or atomistic, and energy densities can be low or high. Understanding the fundamental aspects of turbulent mixing is necessary to comprehend the dynamics of supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, mantle-lithosphere tectonics and volcanic eruptions, atmospheric and oceanographic flows in geophysics, and premixed and non-premixed combustion. It is crucial for the development of the methods of control in technological applications, including mixing mitigation in inertial confinement and magnetic fusion, and mixing enhancement in reactive flows, as well as material transformation under the action of high strain rates. It can improve our knowledge of realistic turbulent processes at low energy density involving walls, unsteady transport, interfaces and vortices, as well as high energy density hydrodynamics including strong shocks, explosions, blast waves and supersonic flows. A deep understanding of mixing and turbulent mixing requires one to go above and beyond canonical approaches and demands further enhancements in the quality and information capacity of experimental and numerical data sets, and in the methods of theoretical analysis of continuous dynamics and kinetics. This has the added potential then of bringing the experiment, numerical modelling, theoretical analysis and data processing to a new level of standards. At the same time, mixing and turbulent mixing being one of the most formidable and multi-faceted problems of modern physics and mathematics, is well open for a curious mind. In this article we briefly review various aspects of turbulent mixing, and present a summary of over 70 papers that were discussed at the third International Conference on 'Turbulent Mixing and Beyond', TMB-2011, that
LiWall Fusion - The New Concept of Magnetic Fusion
L.E. Zakharov
2011-01-12
Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; et al
2016-03-04
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
Nonlinear laser-plasma interaction in magnetized liner inertial fusion
NASA Astrophysics Data System (ADS)
Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.
2016-03-01
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.
Fluctuations and transport in fusion plasmas. Final report
Gould, R.W.; Liewer, P.C.
1995-02-01
The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code.
Fusion for Space Propulsion and Plasma Liner Driven MTF
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.
A region of intense plasma wave turbulence on auroral field lines
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Frank, L. A.
1976-01-01
This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.
Ion-cyclotron turbulence and diagonal double layers in a magnetospheric plasma
NASA Technical Reports Server (NTRS)
Liperovskiy, V. A.; Pudovkin, M. I.; Skuridin, G. A.; Shalimov, S. L.
1981-01-01
A survey of current concepts regarding electrostatic ion-cyclotron turbulence (theory and experiment), and regarding inclined double potential layers in the magnetospheric plasma is presented. Anomalous resistance governed by electrostatic ion-cyclotron turbulence, and one-dimensional and two-dimensional models of double electrostatic layers in the magnetospheric plasma are examined.
Modeling Nuclear Fusion with an Ultracold Nonneutral Plasma
NASA Astrophysics Data System (ADS)
Dubin, Daniel H. E.
2007-08-01
In the hot dense interiors of stars and giant planets, nuclear fusion reactions are predicted to occur at rates that are greatly enhanced compared to those at low densities. The enhancement is caused by plasma screening of the repulsive Coulomb potential between nuclei, which increases the probability of the rare close collisions that are responsible for fusion. This screening enhancement is a small effect in the Sun, but is predicted to be much larger in dense objects such as white dwarf stars and giant planet interiors where the plasma is strongly correlated (i.e. where the Debye screening length is smaller than a mean interparticle spacing). However, strongly enhanced fusion reaction rates caused by plasma screening have never been definitively observed in the laboratory. This talk discusses a method for observing the enhancement using an analogy between nuclear energy and cyclotron energy in a cold nonneutral plasma in a strong magnetic field. In such a plasma, the cyclotron frequency is higher than other dynamical frequencies, so the kinetic energy of cyclotron motion is an adiabatic invariant. This energy is not shared with other degrees of freedom except through rare close collisions that break this invariant and couple the cyclotron motion to the other degrees of freedom. Thus, the cyclotron energy of an ion, like nuclear energy, can be considered to be an internal degree of freedom that is released only via rare close collisions. Furthermore, it has recently been shown that the rate of release of cyclotron energy is enhanced through plasma screening by precisely the same factor as that for the release of nuclear energy, because both processes rely on close collisions that are enhanced by plasma screening in the same way. Simulations and experiments measuring large plasma screening enhancements for the first time will be discussed, and the possibility of exciting and studying cyclotron burn fronts will also be considered.
TOWARD A THEORY OF ASTROPHYSICAL PLASMA TURBULENCE AT SUBPROTON SCALES
Boldyrev, Stanislav; Horaites, Konstantinos; Xia, Qian; Perez, Jean Carlos
2013-11-01
We present an analytical study of subproton electromagnetic fluctuations in a collisionless plasma with a plasma beta of the order of unity. In the linear limit, a rigorous derivation from the kinetic equation is conducted focusing on the role and physical properties of kinetic-Alfvén and whistler waves. Then, nonlinear fluid-like equations for kinetic-Alfvén waves and whistler modes are derived, with special emphasis on the similarities and differences in the corresponding plasma dynamics. The kinetic-Alfvén modes exist in the lower-frequency region of phase space, ω << k v{sub Ti} , where they are described by the kinetic-Alfvén system. These modes exist both below and above the ion-cyclotron frequency. The whistler modes, which are qualitatively different from the kinetic-Alfvén modes, occupy a different region of phase space, k v{sub Ti} << ω << k{sub z}v{sub Te} , and they are described by the electron magnetohydrodynamics (MHD) system or the reduced electron MHD system if the propagation is oblique. Here, k{sub z} and k are the wavenumbers along and transverse to the background magnetic field, respectively, and v{sub Ti} and v{sub Te} are the ion and electron thermal velocities, respectively. The models of subproton plasma turbulence are discussed and the results of numerical simulations are presented. We also point out possible implications for solar-wind observations.
Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source
Takahashi, Hiroshi
1989-01-01
dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.
The plasma-wall interaction region: a key low temperature plasma for controlled fusion
NASA Astrophysics Data System (ADS)
Counsell, G. F.
2002-08-01
The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV
Energetic particle instabilities in fusion plasmas
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA
2013-10-01
Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.
Modeling Nuclear Fusion with an Ultracold Nonneutral Plasma
NASA Astrophysics Data System (ADS)
Dubin, Daniel H. E.
2007-11-01
In the hot dense interiors of stars and giant planets, nuclear fusion reactions are predicted to occur at rates that are greatly enhanced compared to rates at low densities. The enhancement is caused by plasma screening of the repulsive Coulomb potential between nuclei, which increases the probability of the close collisions that are responsible for fusion. This screening enhancement is a small but measurable effect in the Sun; and is predicted to be much larger in dense objects such as white dwarf stars and giant planet interiors where the plasma is strongly coupled (i.e., where the Debye screening length is smaller than the mean interparticle spacing). However, these strongly enhanced fusion reaction rates have never been definitively observed in the laboratory. This talk discusses a method for observing the enhancement using an analogy between nuclear energy and cyclotron energy in a cold nonneutral plasma in a strong magnetic field. In such a plasma, the cyclotron frequency is higher than other dynamical frequencies, so the kinetic energy of cyclotron motion is an adiabatic invariant. This energy is not shared with other degrees of freedom except through close collisions that break the invariant and couple the cyclotron motion to the other degrees of freedom. Thus, the cyclotron energy of an ion, like nuclear energy, can be considered to be an internal degree of freedom that is accessible only via close collisions. Furthermore, the rate of release of cyclotron energy is enhanced through plasma screening by precisely the same factor as that for the release of nuclear energy, because both processes rely on the same plasma screening of close collisions. Simulations and experiments measuring large screening enhancements in strongly-coupled plasmas will be discussed, along with the possibility of exciting and studying ``burn fronts.''
Laser plasma interaction physics in the context of fusion
NASA Astrophysics Data System (ADS)
Labaune, C.; Fuchs, J.; Depierreux, S.; Baldis, H. A.; Pesme, D.; Myatt, J.; Hüller, S.; Tikhonchuk, V. T.; Laval, G.
2000-08-01
Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using the LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurence of the Langmuir decay instability. This secondary instability may play an imporant role in the saturation of stimulated Raman scattering. Another mechanism for reducing the growth of the scattering instabilities is the so-called `plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities.
Turbulence and bias-induced flows in simple magnetized toroidal plasmas
Li, B.; Rogers, B. N.; Ricci, P.; Gentle, K. W.; Bhattacharjee, A.
2011-05-15
Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three-dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows.These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures,and thereby lower the radial plasma transport on the low field side.
Thomas, Dan M.
2012-05-15
The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.
Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma
Xu, M.; Tynan, G. R.; Holland, C.; Muller, S. H.; Yan, Z.; Yu, J. H.
2010-03-15
Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{sub S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-01
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
NASA Astrophysics Data System (ADS)
Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.
2013-07-01
Mixing and turbulent mixing are non-equilibrium processes that occur in a broad variety of processes in fluids, plasmas and materials. The processes can be natural or artificial, their characteristic scales can be astrophysical or atomistic, and energy densities can be low or high. Understanding the fundamental aspects of turbulent mixing is necessary to comprehend the dynamics of supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, mantle-lithosphere tectonics and volcanic eruptions, atmospheric and oceanographic flows in geophysics, and premixed and non-premixed combustion. It is crucial for the development of the methods of control in technological applications, including mixing mitigation in inertial confinement and magnetic fusion, and mixing enhancement in reactive flows, as well as material transformation under the action of high strain rates. It can improve our knowledge of realistic turbulent processes at low energy density involving walls, unsteady transport, interfaces and vortices, as well as high energy density hydrodynamics including strong shocks, explosions, blast waves and supersonic flows. A deep understanding of mixing and turbulent mixing requires one to go above and beyond canonical approaches and demands further enhancements in the quality and information capacity of experimental and numerical data sets, and in the methods of theoretical analysis of continuous dynamics and kinetics. This has the added potential then of bringing the experiment, numerical modelling, theoretical analysis and data processing to a new level of standards. At the same time, mixing and turbulent mixing being one of the most formidable and multi-faceted problems of modern physics and mathematics, is well open for a curious mind. In this article we briefly review various aspects of turbulent mixing, and present a summary of over 70 papers that were discussed at the third International Conference on 'Turbulent Mixing and Beyond', TMB-2011, that
Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.
2014-08-01
A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.
Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics
Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.
2014-08-21
A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.
Charged-particle cross section data for fusion plasma applications
Miley, G.H.
1980-01-01
Cross-section data for fusion plasma calculations are reviewed for three categories: fusion reactions, nuclear elastic and inelastic scattering. While the data base for the basic D-T fuel cycle seems adequate for present purposes, continued refinement appears warranted. Further, increasing emphasis on advanced-fuel fusion introduces requirements for new reaction rate and charged-particle scattering data over a wider range of reacting species (light elements through /sup 11/B) and over a larger energy range (to several MeV). These new needs are discussed along with suggestions for increased emphasis on providing the user with more convenient compilations. In particular, the extension of reactivities (< sigma V) to non-Maxwellian distributions, scattering matrix data, and development of computer based files are noted.
Recyclotron III, a recirculating plasma fusion system
Jarnagin, W.S.
1987-01-27
This patent describes a recyclotron nuclear fusion system comprising recyclotrons. Each recyclotron comprises cyclotron means for receiving and accelerating charged particles in spiral and work conservative pathways. An output means forms a beam from particles received from the cyclotron means; (i) the cyclotron means comprising (a) a channel shaped electromagnet having a pair of indented polefaces, oriented along an input axis and defining an input axis and defining an input magnetic well, (b) a pair of elongated linear electrodes centered along the input magnetic well arranged generally parallel to the input axis and having a gap therebetween, (c) tuned oscillator means connected to the electrodes for applying an oscillating electric potential thereto, (ii) the output means comprising (e) inverter means comprising an electromagnet having a polarity opposite that of the channel shaped electromagnet oriented contigously therealong for extracting fully accelerated particles from the cyclotron means, and (f) reinverter means comprising an electromagnet having a polarity the same as that of the channel shaped electromagnet for correcting the flightpath of the extracted particles.
Plasma beta control of scaling of solar wind turbulent structures
NASA Astrophysics Data System (ADS)
Safrankova, Jana; Nemecek, Zdenek; Nemec, Frantisek; Prech, Lubomir; Chen, Christopher H. K.; Zastenker, Georgy N.
2016-04-01
The high-time resolution of Spektr-R plasma measurements allows us to make direct observations of solar wind turbulence below ion kinetic length scales. The paper analyzes solar wind power spectra of bulk and thermal speeds that are computed with a time resolution of 32 ms in the frequency range of 0.001-2 Hz. The statistics based on more than 5000 of individual spectra shows that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectra fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the segment attributed to the MHD scale are ‑1.43 and ‑1.38, respectively for the bulk and thermal speeds, whereas those in the kinetic scale are ‑3.08 and ‑2.43, respectively; (4) the break between both MHD and kinetic scales is controlled the ion beta; and (5) the power index corresponding to kinetic turbulence depends on a level of the density variations in the high beta solar wind, whereas the ion gyromotion determines it for low beta intervals.
Plasma Heating and Current Drive for Fusion Reactors
NASA Astrophysics Data System (ADS)
Holtkamp, Norbert
2010-02-01
ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )
Magnetohydrodynamic waves in fusion and astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.
Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation
Yoon, Peter H.
2015-08-15
The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-01-01
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-07-01
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2016-02-01
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.
Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve
2015-11-01
Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.
Super-diffusion scalings - space versus fusion
NASA Astrophysics Data System (ADS)
Savin, Sergey; Budaev, Vyacheslav; Silin, Victor
2016-07-01
In the plasma kinetics, looking at the plasma waves interactions with the particles, most people use the Boltzman nonlinear approach for a variate of the waves, which could be interpreted as a "turbulence". We have now a theory for ion-sound turbulence [Silin e. a., 2011] that predicts fast heating of the ions: it can be either in fusion devices , magnetosphere or solar plasma. The ion heating could result into the power lowers for the turbulent spectra. We compare the theory predictions with the experimental data both from the fusion laboratory devices and from space plasma data, discussing their applicability to the solar plasma.
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-09-26
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes.
Kobayashi, T.; Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I.; Kosuga, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Itoh, K.
2015-11-15
Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.
Interactive Plasma Physics Education Using Data from Fusion Experiments
NASA Astrophysics Data System (ADS)
Calderon, Brisa; Davis, Bill; Zwicker, Andrew
2010-11-01
The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.
Plasma stability studies of the gasdynamic mirror fusion propulsion experiment
NASA Astrophysics Data System (ADS)
Emrich, William Julius, Jr.
The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. These differences are postulated to permit gasdynamic mirrors to confine plasmas in a stable manner without the additional complicated equipment required by low aspect ratio, low plasma density mirror machines. To verify that a gasdynamic mirror could indeed confine plasmas in a stable manner for long periods of time, a small scale experimental gasdynamic mirror was built and tested. The gasdynamic mirror which was constructed is 2.5 meters long and can accommodate plasmas up to 20 centimeters in diameter. The device is able to support mirror magnetic fields of up to two tesla and central cell magnetic fields of up to a third of a tesla. A reciprocating Langmuir probe was used to determine the radial plasma density and electron temperature profiles upon which the experimental results of this study are based. The objective of this experiment was to determine ranges of mirror ratios and plasma densities over which gasdynamic mirror could maintain stable plasmas. Theoretical analyses indicated that plasma magnetohydrodynamic instabilities were likely to occur during subsonic to supersonic flow transitions in the mirror throat region of the gasdynamic mirror. The experimental evidence based upon data derived from the Langmuir probe measurements seems to confirm this analysis. These instabilities result in a loss of plasma confinement and would almost certainly prevent the initiation of fusion reactions. The assumption that a gasdynamic mirror using a simple mirror geometry could be used as a propulsion system, therefore, appears questionable. Fairly simple modifications to the simple mirror concept are presented, however, which if incorporated into the simple mirror
Internet and web projects for fusion plasma science and education. Final technical report
Eastman, Timothy E.
1999-08-30
The plasma web site at http://www.plasmas.org provides comprehensive coverage of all plasma science and technology with site links worldwide. Prepared to serve the general public, students, educators, researchers, and decision-makers, the site covers basic plasma physics, fusion energy, magnetic confinement fusion, high energy density physics include ICF, space physics and astrophysics, pulsed-power, lighting, waste treatment, plasma technology, plasma theory, simulations and modeling.
Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T
2015-02-01
The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma. PMID:25768612
Thio, Francis Y.C.
2008-01-01
An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.
Tempest Neoclassical Simulation of Fusion Edge Plasmas
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.
2006-04-01
We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.
Whalley, Richard D; Walsh, James L
2016-01-01
Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246
Whalley, Richard D.; Walsh, James L.
2016-01-01
Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246
Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas
Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.
2012-11-15
One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.
ECE Imaging of Broadband Turbulence in DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Zemedkun, S. E.; Munsat, T.; Tobias, B. J.; Donier, C. W.; Luhmann, N. C., Jr.
2013-10-01
Observations of 2D turbulent structures have been performed with the ECEI instrument on DIII-D in plasmas heated by neutral beam injection (NBI) and electron cyclotron heating (ECH), at a fixed heating power (up to 5 MW). Correlation techniques similar to those used in correlation electron cyclotron emission (CECE) systems are employed, with the advantage that the ECEI system detects a full 2D array of plasma locations; vertical separation is provided by an optical system and horizontal separation is provided by frequency discrimination in the detection electronics. Among the results are 2D images of poloidally-propagating drift waves, and correlation properties of fluctuations (<200 kHz) in the poloidal direction. Observed dispersion relations for two different heating conditions (ECH and NBI) will be presented. Comparison of results with simulations using GEM code will be discussed. In addition to the physics results, the data demonstrates the viability of the ECEI system in the presence of ECH heating. Work supported by the US Department of Energy under DE-FC02-05ER54816, DE-SC0003913, DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-FG02-99ER54531.
Investigation of turbulence in reversed field pinch plasma by using microwave imaging reflectometry
Shi, Z. B.; Nagayama, Y.; Hamada, Y.; Yamaguchi, S.; Hirano, Y.; Kiyama, S.; Koguchi, H.; Sakakita, H.; Michael, C. A.; Yambe, K.
2011-10-15
Turbulence in the reversed field pinch (RFP) plasma has been investigated by using the microwave imaging reflectometry in the toroidal pinch experiment RX (TPE-RX). In conventional RFP plasma, the fluctuations are dominated by the intermittent blob-like structures. These structures are accompanied with the generation of magnetic field, the strong turbulence, and high nonlinear coupling among the high and low k modes. The pulsed poloidal current drive operation, which improves the plasma confinement significantly, suppresses the dynamo, the turbulence, and the blob-like structures.
Gaussianity versus intermittency in solar system plasma turbulence
NASA Astrophysics Data System (ADS)
Echim, M.
2014-12-01
Statistical properties of plasma and magnetic field fluctuations exhibit features linked with the dynamics of the targeted system and sometimes with the physical processes that are at the origin of these fluctuations. Intermittency is sometimes discussed in terms of non-Gaussianity of the Probability Distribution Functions (PDFs) of fluctuations for ranges of spatio/temporal scales. Some examples of self-similarity have been however shown for PDFs whose wings are not Gaussian. In this study we discuss intermittency in terms of non-Gaussianity as well as scale dependence of the higher order moments of PDFs, in particular the flatness. We use magnetic field and plasma data from several space missions, in the solar wind (Ulysses, Cluster, and Venus Express), and in the planetary magnetosheaths (Cluster and Venus Express). We analyze Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We investigate Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We study Cluster data in the solar wind (for time intervals not affected by planetary ions effects), and the magnetosheath. We organize our results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PDFs obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PDFs obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the statistical properties of fluctuations for the minimum and maximum of the solar cycle we also analyze the similarities and differences between fast and slow wind. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence and complexity, and the exploitation of data bases and as
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Christopherson, A. R.
2015-11-01
In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).
Dynamics of magnetic fields in high-energy-density plasmas for fusion and astrophysics
NASA Astrophysics Data System (ADS)
Gao, Lan; Ji, H.; Fox, W.; Hill, K.; Efthimion, P.; Nilson, P.; Igumenshchev, I.; Froula, D.; Betti, R.; Meyerhofer, D.; Fiksel, G.; Blackman, E.; Schneider, M.; Chen, H.; Smalyuk, V.; Li, H.; Casner, A.
2015-11-01
An overview of our recent experimental and theoretical work on the dynamics of magnetic fields in high-energy-density plasmas will be presented. This includes: (1) precision mapping of the self-generated magnetic fields in the coronal plasma and the Nernst effect on their evolution, (2) characterizing the strong magnetic field generated by a laser-driven capacitor-coil target using ultrafast proton radiography, and (3) creating MHD turbulence in Rayleigh-Taylor unstable plasmas. The experimental results are compared with resistive MHD simulations providing a stringent test for their predictions. Applications in relevance to ignition target designs in inertial confinement fusion, material strength studies in high-energy-density physics, and astrophysical systems such as plasma dynamos and magnetic reconnection will be discussed. Future experiments proposed on the National Ignition Facility will be described. This material is supported in part by the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, and the National Laser Users Facility under Grant No. DE-NA0002205.
Dust remobilization in fusion plasmas under steady state conditions
NASA Astrophysics Data System (ADS)
Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-02-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.
Trends in laser-plasma-instability experiments for laser fusion
Drake, R.P. Lawrence Livermore National Lab., CA )
1991-06-06
Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.
Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100. PMID:25353903
Simulations of drift resistive ballooning L-mode turbulence in the edge plasma of the DIII-D tokamak
Cohen, B. I.; Umansky, M. V.; Nevins, W. M.; Makowski, M. A.; Boedo, J. A.; Rudakov, D. L.; McKee, G. R.; Yan, Z.; Groebner, R. J.
2013-05-15
Results from simulations of electromagnetic drift-resistive ballooning turbulence for tokamak edge turbulence in realistic single-null geometry are reported. The calculations are undertaken with the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations [X. Q. Xu and R. H. Cohen, Contrib. Plasma Phys. 36, 158 (1998)]. The simulation setup models L-mode edge plasma parameters in the actual magnetic geometry of the DIII-D tokamak [J. L. Luxon et al., Fusion Sci. Technol. 48, 807 (2002)]. The computations track the development of drift-resistive ballooning turbulence in the edge region to saturation. Fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes are compared to experimental data near the outer midplane from Langmuir probe and beam-emission-spectroscopy for a few well-characterized L-mode discharges in DIII-D. The simulations are comprised of a suite of runs in which the physics model is varied to include more fluid fields and physics terms. The simulations yield results for fluctuation amplitudes, correlation lengths, particle and energy fluxes, and diffusivities that agree with measurements within an order of magnitude and within factors of 2 or better for some of the data. The agreement of the simulations with the experimental measurements varies with respect to including more physics in the model equations within the suite of models investigated. The simulations show stabilizing effects of sheared E × B poloidal rotation (imposed zonal flow) and of lower edge electron temperature and density.
NASA Astrophysics Data System (ADS)
Shimpei, F.; Del-Castillo-Negrete, D.; Garbet, X.; Benkadda, S.; Dubuit, N.
2012-10-01
Self-consistent turbulent transport of high-concentration impurities in magnetically confined fusion plasmas is studied using a three-dimensional nonlinear fluid global turbulence model which includes ion-temperature gradient (ITG) and trapped electron mode (TEM) instabilities. It is shown that the impurity concentration can have a dramatic feedback in the turbulence and, as a result, it can significantly change the transport properties of the plasma. High concentration impurities can trigger strong intermittency, that manifests in non-Gaussian heavy tails of the probability density functions (PDFs) of the E xB fluctuations and of the ion-temperature flux fluctuations. At the heart of this self-consistent coupling is the existence of inward propagating ion-temperature fronts with a sharp gradient at the leading edge that give rise to instabilities and avalanche-like bursty transport. Numerical evidence of time non-locality (i.e., history dependence) in the response of the flux to the gradient is presented. Related to this, the temporal, cross-correlation function between the impurity flux and the impurity density gradient exhibits a delay in the response depending on the concentration of the impurity.
NASA Astrophysics Data System (ADS)
Gabet, Xavier; Sauter, Olivier
2013-07-01
The 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas was very fruitful. A broad variety of topics was addressed, covering turbulence, magnetohydrodynamics (MHD), edge physics, and radio frequency (RF) wave heating. Moreover, the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, some of them triggered by the construction of ITER and JT-60SA. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may refer to, for instance, the choice of plasma facing components or the design of control systems. Another characteristic of these workshops is the interplay between various domains of plasma physics. For instance, MHD modes are currently investigated with gyrokinetic codes, kinetic effects are included in MHD stability analysis more and more, and turbulence is now accounted for in wave propagation problems. This is proof of cross-fertilization and is certainly a healthy sign for our community. Finally, introducing some novelty in the programme does not prevent from us respecting old traditions. As usual, many presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne Workshop, which was respected again this year. The quality and size of the scientific output from this workshop is shown in this special issue of Plasma Physics and Controlled Fusion; a further 26 papers have already appeared in Journal of Physics: Conference Series in December 2012. We hope the readers will enjoy this special issue, and find therein knowledge and inspiration.
Modeling hydrogen isotope behavior in fusion plasma-facing components
NASA Astrophysics Data System (ADS)
Hu, Alice; Hassanein, Ahmed
2014-03-01
In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.
Probing spherical tokamak plasmas using charged fusion products
NASA Astrophysics Data System (ADS)
Boeglin, Werner U.; Perez, Ramona V.; Darrow, Douglass S.; Cecconello, Marco; Klimek, Iwona; Allan, Scott Y.; Akers, Rob J.; Jones, Owen M.; Keeling, David L.; McClements, Ken G.; Scannell, Rory
2015-11-01
The detection of charged fusion products, such as protons and tritons resulting from D(d,p)t reactions, can be used to determine the fusion reaction rate profile in large spherical tokamak plasmas with neutral beam heating. The time resolution of a diagnostic of this type makes it possible to study the slowly-varying beam density profile, as well as rapid changes resulting from MHD instabilities. A 4-channel prototype proton detector (PD) was installed and operated on the MAST spherical tokamak in August/September 2013, and a new 6-channel system for the NSTX-U spherical tokamak is under construction. PD and neutron camera measurements obtained on MAST will be compared with TRANSP calculations, and the design of the new NSTX-U system will be presented, together with the first results from this diagnostic, if available. Supported in part by DOE DE-SC0001157.
Ultrasmooth plasma polymerized coatings for laser-fusion targets
Letts, S.A.; Myers, D.W.; Witt, L.A.
1980-08-26
Coatings for laser fusion targets were deposited up to 135 ..mu..m thick by plasma polymerization onto 140 ..mu..m diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 ..mu..m) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets.
Drake, D. J.; Schroeder, J. W. R.; Howes, G. G.; Kletzing, C. A.; Skiff, F.; Carter, T. A.; Auerbach, D. W.
2013-07-15
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfvén waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfvén waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfvén wave generated nonlinearly by a collision between counterpropagating Alfvén waves.
Soft X-ray measurements in magnetic fusion plasma physics
NASA Astrophysics Data System (ADS)
Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.
2010-11-01
Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.
Models for the probability densities of the turbulent plasma flux in magnetized plasmas
NASA Astrophysics Data System (ADS)
Bergsaker, A. S.; Fredriksen, Å; Pécseli, H. L.; Trulsen, J. K.
2015-10-01
Observations of turbulent transport in magnetized plasmas indicate that plasma losses can be due to coherent structures or bursts of plasma rather than a classical random walk or diffusion process. A model for synthetic data based on coherent plasma flux events is proposed, where all basic properties can be obtained analytically in terms of a few control parameters. One basic parameter in the present case is the density of burst events in a long time-record, together with parameters in a model of the individual pulse shapes and the statistical distribution of these parameters. The model and its extensions give the probability density of the plasma flux. An interesting property of the model is a prediction of a near-parabolic relation between skewness and kurtosis of the statistical flux distribution for a wide range of parameters. The model is generalized by allowing for an additive random noise component. When this noise dominates the signal we can find a transition to standard results for Gaussian random noise. Applications of the model are illustrated by data from the toroidal Blaamann plasma.
Laser plasma interaction experiments in the context of inertial fusion
NASA Astrophysics Data System (ADS)
Labaune, C.; Bandulet, H.; Depierreux, S.; Lewis, K.; Michel, P.; Michard, A.; Baldis, H. A.; Hulin, S.; Pesme, D.; Hüller, S.; Tikhonchuk, V.; Riconda, C.; Weber, S.
2004-12-01
In laser fusion, the coupling and the propagation of the laser beams in the plasma surrounding the pellet must be well controlled for to succeed in producing a high energy level. To achieve thermonuclear ignition and high gain, the coupling efficiency must be as high as possible, the uniformity of the energy deposition must be very good and the fast electron generation must be minimized. This implies a deep understanding of the laser plasma interaction mechanisms to keep the nonlinear processes at a low level. Important advances in laser plasma interaction physics have been achieved thanks to the converging efforts of the experimental and theoretical approaches. Among the different studies of the last few years, we will report results on three themes which are important for future fusion experiments. The first concerns the ability of plasmas to induce temporal and spatial incoherence to the laser beams during their propagation. Beam smoothing, beam spraying and increased incoherence may in turn reduce the level of backscattering instabilities. In laser fusion, multiple beams are used to irradiate the target. The effect of the overlap of the laser beams on parametric instabilities may complicate the problem. Not only is there the interplay between instabilities driven by one beam, but also the interplay between instabilities driven by different beams. In the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) experiment, although the overall stimulated Brillouin scattering (SBS) reflectivity was reduced, a well-defined resonance of the amplitude of ion acoustic waves (IAWs) associated with SBS has been observed for waves propagating along the bisecting direction between two laser beams. Energy transfer between two identical laser beams has been observed and correlated with plasma induced incoherence. The nonlinear saturation of stimulated scattering instabilities is a fundamental ingredient of the understanding of the observed and future reflectivity levels
BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion
NASA Astrophysics Data System (ADS)
Brambilla, Marco
1998-04-01
Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The
Influence of Dupree diffusivity on the occurrence scattering time advance in turbulent plasmas
Lee, Myoung-Jae; Jung, Young-Dae
2015-12-15
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. The occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.
Application of rf-thruster technique for fusion plasma heating
NASA Astrophysics Data System (ADS)
Freisinger, J.; Loeb, H. W.
On the basis of RF ion thruster devices, a family of RF injector generators (RIGs) for the heating of fusion plasmas up to the temperature of thermonuclear burn has been developed. Hydrogen ion beams of 10-40 amps can be accelerated by means of the RIGs to 30 kV, so that ion beam densities of more than 250 mA/sq cm are achievable at uniform profiles within only 1 deg of divergence angle. The use of electrodeless quartz ionizers yields a very high atomic ion fraction, low admixture of impurities, long lifetime, high reliability, simple mechanical elements, and easy control.
A Vlasov equation with Dirac potential used in fusion plasmas
Bardos, Claude; Nouri, Anne
2012-11-15
Well-posedness of the Cauchy problem is analyzed for a singular Vlasov equation governing the evolution of the ionic distribution function of a quasineutral fusion plasma. The Penrose criterium is adapted to the linearized problem around a time and space homogeneous distribution function showing (due to the singularity) more drastic differences between stable and unstable situations. This pathology appears on the full nonlinear problem, well-posed locally in time with analytic initial data, but generally ill-posed in the Hadamard sense. Eventually with a very different class of solutions, mono-kinetic, which constrains the structure of the density distribution, the problem becomes locally in time well-posed.
Education Outreach at MIT Plasma Science and Fusion Center
NASA Astrophysics Data System (ADS)
Censabella, V.; Rivenberg, P.
1999-11-01
Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. The PSFC maintains a Home Page on the World Widee Web, which can be reached at http://psfc.mit.edu.
Simulation of transition dynamics to high confinement in fusion plasmas
NASA Astrophysics Data System (ADS)
Nielsen, A. H.; Xu, G. S.; Madsen, J.; Naulin, V.; Juul Rasmussen, J.; Wan, B. N.
2015-12-01
The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced at proper parameters. The model recovers the power threshold for the L-H transition as well as the decrease in power threshold switching from single to double null configuration observed experimentally. The results are highly relevant for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors.
Recombination of H atoms on the dust in fusion plasmas
Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.
2015-07-15
We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.
Educational Outreach at the MIT Plasma Science and Fusion Center
NASA Astrophysics Data System (ADS)
Rivenberg, Paul; Thomas, Paul
2006-10-01
At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. The Mr. Magnet Program, headed by Mr. Paul Thomas, has been bringing lively demonstrations on magnetism into local elementary and middle schools for 15 years. This year Mr. Magnet presented the program to nearly 30,000 students at over 67 schools and other events, reaching kindergartners through college freshmen. In addition to his program on magnetism, he is offering an interactive lecture about plasma to high schools. The "Traveling Plasma Lab" encourages students to learn more about plasma science while having fun investigating plasma properties using actual laboratory techniques and equipment. Beyond the classroom, Paul Thomas has provided technical training for Boston Museum of Science staff in preparation for the opening of a Star Wars exhibit. His hands-on demos have also been filmed by the History Channel for a one-hour program about Magnetism, which aired in June 2006.
Electromagnetic gyrokinetic turbulence in finite-beta helical plasmas
Ishizawa, A.; Watanabe, T.-H.; Sugama, H.; Nakajima, N.; Maeyama, S.
2014-05-15
A saturation mechanism for microturbulence in a regime of weak zonal flow generation is investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line.
Zuo, Yang Wang, Shaojie
2014-09-15
The physics of the residual parallel Reynolds stress in a rotating plasma with electrostatic turbulence is explicitly identified by using the transport formulation of the gyrokinetic turbulence. It is clarified that the residual stress consists of four terms, among which are the cross terms due to the pressure gradient and the temperature gradient and the terms related to the turbulent acceleration impulse and the turbulent heating rate. The last two terms are identified for the first time, and are shown to cause analogous residual term in the heat flux. Meanwhile, the transport matrix reveals diffusion in the phase space. The transport matrix is demonstrated to satisfy the Onsager's symmetry relation.
Experimental and theoretical research in applied plasma physics
Porkolab, M.
1992-01-01
This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.
Spectroscopic investigations of tungsten EUV spectra for fusion plasma diagnostics
NASA Astrophysics Data System (ADS)
Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter; Safronova, Ulyana; Brage, Tomas; Grumer, Jon
2011-10-01
The Livermore WOLFRAM spectroscopy project consists of experimental and theoretical investigations of tungsten ions of relevance to the diagnostics of magnetically confined fusion plasmas. A recent effort has focused on the complex extreme ultraviolet spectra of few-times ionized tungsten atoms that are expected to be abundant in ITER divertor plasmas. The tungsten ions were produced and excited in the Livermore EBIT-I electron beam ion trap by scanning the electron-beam energy between 30 and 300 eV. The emission was studied using a broad-band grazing-incidence spectrometer covering 150 - 300 Å and a high-resolution spectrometer covering the 180 - 220 Å region. Experimental spectra are presented together with analysis based on calculations using the FAC, GRASP, Cowan, HULLAC, and RMBPT codes. Part of this work was performed under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA-27344.
Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence
NASA Technical Reports Server (NTRS)
Tham, Philip Kin-Wah
1994-01-01
. A plasma instability is usually observed in its saturated state and appears as a single feature in the frequency spectrum with a single azimuthal and parallel wavenumbers. The physics of the non-zero spectral width was investigated in detail because the finite spectral width can cause "turbulent" transport. One aspect of the "turbulence" was investigated by obtaining the scaling of the linear growth rate of the instabilities with the fluctuation levels. The linear growth rates were measured with the established gated feedback technique. The research showed that the ExB instability evolves into a quasi-coherent state when the fluctuation level is high. The coherent aspects were studied with a bispectral analysis. Moreover, the single spectral feature was discovered to be actually composed of a few radial harmonics. The radial harmonics play a role in the nonlinear saturation of the instability via three-wave coupling.
CPEP Fusion/Plasma Physics Education Materials/Activities
NASA Astrophysics Data System (ADS)
Lightner, G. Samuel; Zaleskiewicz, T. P.; Reiland, Robert
2001-10-01
The Contemporary Physics Education Project (CPEP) is a not-for-profit organization of teachers, educators, and physicists (see http://cpepweb.org). The goals in its charter include the development and implementation of teaching materials about contemporary physics topics for use in the introductory courses. To this end, the CPEP Fusion/plasma group has produced the teaching chart, ``FUSION-Physics of a Fundamental Energy Source''. Ancillary materials including an Instructors Guide and a packet of classroom activities are under development. In order to promote effective classroom use of its educational materials, CPEP presents workshops for high school and college teachers. These workshops have been sponsored by or held in conjunction with a variety of organizations including; the APS/DPP, the AAPT, the Space Science Institute, the American Nuclear Science Teachers Association, The Allegheny Intermediate Unit, and the University of Pittsburgh at Greensburg. The chart is available in wall-size, poster-size and student notebook-size, and has been translated into six languages. Laminated versions of the poster and notebook size charts are also available as well as an overhead transparency of the chart. For more information, visit the CPEP/Fusion website (http://FusEdWeb.llnl.gov/CPEP/Chart.html)
CPEP Fusion/Plasma Physics Education Materials/Activities
NASA Astrophysics Data System (ADS)
Lightner, G. Samuel; Zaleskiewicz, Ted; Reiland, Robert
1999-11-01
The Contemporary Physics Education Project (CPEP) is a not-for-profit organization of teachers, educators, and physicists. The goals in its charter include the development and implementation of teaching materials about contemporary physics topics for use in the introductory courses. To this end, the CPEP Fusion/plasma group has produced the teaching chart, "FUSION-Physics of a Fundamental Energy Source". This chart is available in wall-size, poster-size and student notebook-size, and has been translated into six languages. Ancillary materials, including an Instructors Guide and a packet of classroom activities, are under development. In order to promote effective classroom use of its educational materials, CPEP presents workshops for high school and college teachers. These workshops have been sponsored by or held in conjuction with a variety of organizations including; the APS/DPP, the AAPT, the Space Science Institute, the American Nuclear Science Teachers Association, and the University of Pittsburgh at Greensburg. For more information, visit the CPEP/Fusion website (http://FusEdWeb.pppl.gov/CPEP/Chart.html)
CPEP Fusion/Plasma Physics Education Materials/Activities
NASA Astrophysics Data System (ADS)
Lightner, G. Samuel; Zaleskiewicz, P. T.; Reiland, Robert
2000-10-01
The Contemporary Physics Education Project (CPEP) is a not-for-profit organization of teachers, educators, and physicists (see http://cpepweb.org). The goals in its charter include the development and implementation of teaching materials about contemporary physics topics for use in the introductory courses. To this end, the CPEP Fusion/plasma group has produced the teaching chart, "FUSION-Physics of a Fundamental Energy Source". Ancillary materials including an Instructors Guide and a packet of classroom activities are under development. In order to promote effective classroom use of its educational materials, CPEP presents workshops for high school and college teachers. These workshops have been sponsored by or held in conjunction with a variety of organizations including; the APS/DPP, the AAPT, the Space Science Institute, the American Nuclear Science Teachers Association, and the University of Pittsburgh at Greensburg. The chart is available in wall-size, poster-size and student notebook-size, and has been translated into six languages. Laminated versions of the poster and notebook size charts are also available as well as an overhead transparency of the chart. For more information, visit the CPEP/Fusion website (http://FusEdWeb.pppl.gov/CPEP/Chart.html)
Ionospheric plasma Turbulence detection in the VLF data observed by DEMETER Satellite
NASA Astrophysics Data System (ADS)
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kumar, Sushil
2016-07-01
The electromagnetic wave data in the Very Low Frequency (VLF) range detected by DEMETER satellite has been analyzed, with special attention to the variation in spectral characteristics and non-linear effects, using the statistical and wavelet based techniques.The enhancement in statistical parameters shows the coherent structure and intermittent phenomenon which is the signature of turbulence. The characteristics features of VLF disturbances have further been studied using the wavelet and bispectral analysis tools which provide useful information on the plasma turbulence.A more interesting result emerges when the low-frequency turbulence emissions produce turbulence in VLF range. Finally, the relevance of the various turbulence mechanisms and their importance in ionospheric turbulence is discussed. Keywords:DEMETER, Earthquake, Phenomena of Intermittence, Coherent Structure.
Robustness of predator-prey models for confinement regime transitions in fusion plasmas
Zhu, H.; Chapman, S. C.; Dendy, R. O.
2013-04-15
Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.
Compressible turbulence with slow-mode waves observed in the bursty bulk flow of plasma sheet
NASA Astrophysics Data System (ADS)
Wang, Tieyan; Cao, Jinbin; Fu, Huishan; Meng, Xuejie; Dunlop, M.
2016-03-01
In this paper, we report the evidence of compressible turbulence with slow-mode waves in a bursty bulk flow of plasma sheet. This compressible turbulence is characterized by a multiscale (1-60 s) anticorrelation between plasma density and magnetic field strength. Besides, the magnetic compressibility spectrum stays nearly constant at all the measured frequencies. Furthermore, the turbulence energy distributions are anisotropic with k⊥ > k//, and the dispersion relation is consistent with slow-mode prediction. The fluctuations of density and magnetic field have similar double slope spectrum and kurtosis. These results suggest that the slow waves are involved in the intermittent turbulence cascade from MHD to ion kinetic scales, which may have significant implications for the energy transfer in the plasma sheet.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
High density turbulent plasma processes from a shock tube. Final performance report
Johnson, J.A. III
1997-01-01
A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A. P.; Banerjee, S.
2011-03-15
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.
Isliker, H.; Pisokas, Th.; Vlahos, L.; Strintzi, D.
2010-08-15
A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L{sub T} is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.
Upper-hybrid wave-driven Alfvénic turbulence in magnetized dusty plasmas.
Misra, A P; Banerjee, S
2011-03-01
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfvén waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvénic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft. PMID:21517632
None, None
2002-09-01
Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn
2008-01-01
Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.
NASA Astrophysics Data System (ADS)
Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.
2015-11-01
An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.
Probabilistic analysis of turbulent structures from two-dimensional plasma imaging
Mueller, S. H.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Plyushchev, G.; Podesta, M.; Poli, F. M.
2006-10-15
A method is presented to construct object-related structure observables, such as size, mass, shape, and trajectories from two-dimensional plasma imaging data. The probability distributions of these observables, deduced from measurements of many realizations, provide a robust framework in which the fluctuations, the turbulence, and the related transport are characterized. The results for imaging data recorded in the presence of drift-interchange instabilities and turbulence on the TORPEX toroidal plasma experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)] are discussed.
Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain
Comişel, H.; Verscharen, D.; Narita, Y.; Motschmann, U.
2013-09-15
We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfvén/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.
1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings
Ichimaru, S.; Tajima, T.
1991-10-01
The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.
1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas
Ichimaru, S. . Dept. of Physics); Tajima, T. . Inst. for Fusion Studies)
1991-10-01
The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.
Interfacial Stability of Converging Plasma Jets for Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Cassibry, J. T.; Thio, Y. C. F.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
The merging of a spherical distribution of plasma jets to dynamically form a gaseous liner has been proposed for use in magnetized target fusion propulsion. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The analysis lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that during the merging of the jets to form a liner and before contact with the target plasma the growth of the perturbed flow at the jet interface is not likely to destabilize the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of liner can withstand velocity variation up to 50% between the neighboring jets over the density and temperature ranges investigated.
Fusion-reactor plasmas with polarized nuclei. II
Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Budny, R.V.; Jassby, D.L.; Micklich, B.J.; Post, D.E.; Goldhaber, M.; Happer, W.
1982-11-01
New techniques of bulk polarization could be used to fuel a reactor with polarized hydrogenic atoms, so as to form a plasma of polarized nuclei. Theoretical calculations indicate that, once the nuclei of the plasma are polarized in some preferred state, they can maintain this state with a probability near 100% during their lifetime in the reactor, including possible recycling. There are a number of practical advantages to be gained from the use of polarized plasma in a fusion reactor. The nuclear reaction rates can be increased or decreased, and/or the direction of emission of the reaction products can be controlled. The D-T reaction rate can be enhanced by as much as 50%, with the reaction products emitted perpendicular to the magnetic field. Alternatively, it is possible to direct the reaction products primarily along the field, with no enhancement. In this case of the D-D reaction, the theoretical predictions are somewhat less certain. Enhancement of the reaction rate by a factor of 1.5-2.5 is to be expected. In a different polarization state, suppression of D-D reactions may be feasible - a possibility that would be of interest for a neutron-free D-He/sup 3/ reactor. A quantitative discussion of the relevant nuclear physics as well as of the various mechanisms producing depolarization is given.
Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma
Gilmore, Mark Allen
2013-07-07
A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.
Observation of multi-scale turbulence and non-local transport in LHD plasmas
Tokuzawa, T.; Inagaki, S.; Ida, K.; Itoh, K.; Ido, T.; Shimizu, A.; Takahashi, H.; Tamura, N.; Yoshinuma, M.; Tsuchiya, H.; Yamada, I.; Tanaka, K.; Akiyama, T.; Nagayama, Y.; Kawahata, K.; Watanabe, K. Y.; Yamada, H.; Kitajima, S.
2014-05-15
We have studied two types of spatio-temporal turbulence dynamics in plasmas in the Large Helical Device, based on turbulence measurements with high spatial and temporal resolution. Applying conditional ensemble-averaging to a plasma with Edge-Localized Modes (ELMs), fast radial inward propagation of a micro-scale turbulence front is observed just after ELM event, and the propagation speed is evaluated as ∼100 m/s. A self-organized radial electric field structure is observed in an electrode biasing experiment, and it is found to realize a multi-valued state. The curvature of the radial electric field is found to play an important role for turbulence reduction.
Ion kinetic instabilities and turbulence of a parallel shearing flow of a plasma with hot ions
NASA Astrophysics Data System (ADS)
Mykhaylenko, Volodymyr St.; Mykhaylenko, Volodymyr; Lee, Hae June
2015-11-01
The results of the analytical and numerical investigations of the shear flow driven ion kinetic instabilities, excited due to the inverse ion Landau damping in the parallel shearing flow of plasmas with comparable ion and electron temperatures, that is the case relevant to a tokamak and space plasma, are presented. The levels of turbulence and the turbulent heating rates of ions and ion turbulent viscosity, resulted from the development of the electrostatic ion-temperature gradient and electromagnetic drift-Alfven turbulence, are determined and their consequences are discussed. This work was funded by National R&D Program through the National Research Foundation of Korea.Grants NRF-2014M1A7A1A03029878, NRF-2013R1A1A2005758.
Nonlinear Phase Mixing and Phase-Space Cascade of Entropy in Gyrokinetic Plasma Turbulence
Tatsuno, T.; Dorland, W.; Plunk, G. G.; Schekochihin, A. A.; Barnes, M.
2009-07-03
Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Knapp, Patrick
2014-10-01
The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Interaction of turbulent plasma flow with a hypersonic shock wave
Belay, K.; Valentine, J.M.; Williams, R.L.; Johnson, J.A. III
1997-02-01
A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. {copyright} {ital 1997 American Institute of Physics.}
Turbulent transport across shear layers in magnetically confined plasmas
Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Müller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.
2014-10-15
Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.
On a novel approach to anomalous transport in turbulent fluid and plasma
NASA Astrophysics Data System (ADS)
Datta, Dhurjati Prasad
2013-11-01
New nonclassical self similar intermediate asymptotics considered recently in the context of linear differential equations are shown to have interesting applications in offering a novel explanation of the origin of anomalous transport phenomena in turbulent flows in fluids and plasma devices. The intermediate asymptotics, in the late time or in the inviscid limit, conspire to produce smooth multifractal measures on a turbulent fluid medium leading naturally to generation of stretched Gaussian distributions for passive scalar tracer concentration from the turbulent, integral order, advection-diffusion equation. Such heavy tailed stretched Gaussian distributions can explain the observed anomalous scaling of the average and mean square displacements of tracer particles in a turbulent medium.We also point out that the present novel mechanism for generation of multifractal measure can actually be interpreted as a new class of instabilities leading to turbulence.
Reverse trend in turbulent transport coefficient for H mode edge plasmas
NASA Astrophysics Data System (ADS)
Xiao, Yong; Xie, Huasheng; Lin, Zhihong
2015-11-01
It is generally accepted that the micro-scale turbulence leads to anomalous transport observed in tokamaks. We carry out gyrokinetic simulation using the GTC code to study the relationship between the turbulent transport and its pressure gradient drive. It is found in the weak gradient regime, the turbulent transport coefficient increases with the gradient drive, which is consistent with Dimits 2000 result. However, in strong gradient regime which corresponds to the edge profile for the H mode plasma, the turbulent transport shows a clear reverse trend, i.e., the turbulent transport coefficient decreases with the gradient drive increasing. This feature is found to be closely related to the reduction of radial correlation length in the strong gradient regime, which could be explained by the unconventional ballooning mode structures observed in the gyrokinetic simulations with strong gradients.
High quality actively cooled plasma facing components for fusion
Nygren, R.
1993-12-31
This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.
Tritium retention in fusion reactor plasma facing components
Langley, R.A.
1995-03-01
The IAEA has proposed a coordinated research program to address tritium retention and release in fusion reactor plasma facing components. This program will address materials which are mainly of interest to the design and construction of ITER, namely beryllium, carbon based materials and medium and high-Z metals, e.g. tungsten, vanadium and molybdenum, but will not be limited to these materials. Experimental data are needed for: recycling models, tritium inventory estimates, tritium permeation calculations and hydrogen embrittlement characterization. The ultimate use of the data would be to influence the formation of models for use by fusion reactor designers. Judicious material choices must be made by the designers and accurate predictive codes are required in order to make these choices. The proposed coordinated research program will provide a forum for discussions between experimentalists, theoreticians, modelers and reactor designers, provide financial support for relevant research projects and collect and evaluate experimental and theoretical data. This paper briefly reviews existing data, addresses the data gaps and points out experiments designed to obtain the needed data. 18 refs., 3 figs., 1 tab.
Stabilization effect of Weibel modes in relativistic laser fusion plasma
NASA Astrophysics Data System (ADS)
Belghit, Slimen; Sid, Abdelaziz
2016-06-01
In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.
Observation of neutronless fusion reactions in picosecond laser plasmas.
Belyaev, V S; Matafonov, A P; Vinogradov, V I; Krainov, V P; Lisitsa, V S; Roussetski, A S; Ignatyev, G N; Andrianov, V P
2005-08-01
The yield of alpha particles in neutronless fusion reactions 11B +p in plasmas produced by picosecond laser pulses with the peak intensity of 2 x 10(18) W/cm2 has been observed. Experiments were carried out on the "Neodymium" laser facility at the pulse energy of 10-12 J and pulse duration of 1.5 ps. The composite targets 11B + (CH2)n were used. The yield of 10(3) alpha particles per pulse has been observed. The energy spectrum of alpha particles contains two maxima: at 3-4 MeV and at 6-10 MeV . The first of these peaks corresponds to the secondary alpha12 particles at the decay of the intermediate first excited state of 8Be, whereas the second peak demonstrates generation of alpha1 particles in the reaction 11B +p with the production of this excited state. Simultaneous measurements of neutrons result in zero yield, which proves the observation of neutronless fusion reactions in our experiments. PMID:16196717
Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion
2011-01-01
Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments. PMID:22145853
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse
Bang, W.
2015-07-02
Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse
Bang, W.
2015-07-02
Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.
Bang, W
2015-07-01
Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns. PMID:26274289
Route to Drift Wave Chaos and Turbulence in a Bounded Low-{beta} Plasma Experiment
Klinger, T.; Latten, A.; Piel, A.; Bonhomme, G.; Pierre, T.; Dudok de Wit, T.
1997-11-01
The transition scenario from stability to drift wave turbulence is experimentally investigated in a magnetized low-{beta} plasma with cylindrical geometry. It is demonstrated that the temporal dynamics is determined by the interaction and destabilization of spatiotemporal patterns, in particular, traveling waves. The analysis of the temporal and the spatiotemporal data shows that the bifurcations sequence towards weakly developed turbulence follows the Ruelle-Takens scenario. {copyright} {ital 1997} {ital The American Physical Society}
Wake turbulence observed behind an upstream “extra” particle in a complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Zhdanov, S.; Du, C.-R.; Schwabe, M.; Nosenko, V.; Thomas, H. M.; Morfill, G. E.
2016-06-01
An interaction of upstream extra particles with a monolayer highly ordered complex plasma is studied. A principally new abnormal turbulent wake formed behind the supersonic upstream particle is discovered. An anomalous type of the turbulence wake clearly manifests in anomalously low thermal diffusivity and two orders of magnitude larger particle kinetic temperature compared to that of the “normal” wake (Mach cone) observed by Du et al. (EPL, 99 (2012) 55001).
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2016-07-01
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.
Comparison of Tokamak Plasma Turbulence Measurements to Self Organized Criticality Modeling
NASA Astrophysics Data System (ADS)
Rhodes, T. L.; Doyle, E. J.; Peebles, W. A.; Rettig, C. L.; Moyer, R. A.; Lehmer, R.; Groebner, R. J.; Thomas, D. M.
1998-11-01
Measurements of plasma turbulence spectra and particle flux from the DIII-D tokamak exhibit significant agreement with predictions of self organized criticality (SOC) modeling [e.g., B. Carreras et al., Phys. Plasmas 3, 2903 (1996)]. To make this comparison an improved method of obtaining turbulent fluctuation spectra in the plasma frame of reference (i.e., where V_E× B≈ E_r/B=0) was used. Utilizing this method, power spectra of density tilde n (both edge and core), potential tildeφ, and particle flux Γ are observed to have three regions of frequency dependence: f^0, f-1, and f-4. In addition, the particle flux probability distribution displays a Γ-1 scaling over two decades in Γ. These results provide the first evidence that the plasma is in a state consistent with SOC models and place a constraint on plasma transport models.
Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.
2011-03-20
Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.
Graphite as a plasma-facing material in fusion experiments
Langley, R.A. )
1989-01-01
Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab.
X-ray diodes for laser fusion plasma diagnostics
Day, R.H.; Lee, P.; Saloman, E.B.; Nagel, D.J.
1981-02-01
Photodiodes with x-ray sensitive photocathodes are commonly used as broadband x-ray detectors in fusion plasma diagnostics. We have measured the risetime of the detector system and have measured the quantum efficiency between 1 to 500 A of numerous photocathode materials of practical interest. The materials studied include aluminum, copper, nickel, gold, three forms of carbon, chromium, and cesium iodide. The results of the measurements are compared with Henke's semiempirical model of photoyield. We have studied the effects of long-term cathode aging and use as a plasma diagnostic on cathode quantum efficiency. In addition, we have measured the x-ray mass-absorption coefficient of several ultrasoft x-ray windows in energy regions where data were unavailable. Windows studied were made of aluminum, Formvar, polypropylene, and Kimfoil. Measurements between 1 to 50 A were performed with the Los Alamos Scientific Laboratory's low-energy x-ray calibration facility, and the measurements between 50 to 550 A were performed at the National Bureau of Standard's synchrotron ultraviolet radiation facility.
Not Available
1993-12-01
The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.
Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas
Medley, S.S.; Hendel, H.
1982-11-01
Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.
Kinetic simulation of edge instability in fusion plasmas
NASA Astrophysics Data System (ADS)
Fulton, Daniel Patrick
In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Neubauer, F. M.; Schwenn, R.
1979-01-01
The present paper deals with interplanetary shocks, detected and analyzed to date, from the Helios 1 and 2 spacecraft in eccentric solar orbits. The plasma wave turbulence associated with the shock observed on March 30, 1976 is studied in detail. This event is of particular interest because it represents a clearly defined burst of turbulence against a quiet solar wind background both upstream and downstream of the shock. The shock itself is an oblique shock with upstream parameters characterized by a low Mach number, a low beta, and an abnormally large electron to ion temperature ratio. The types of plasma wave detected are discussed.
Tritium plasma experiment: Parameters and potentials for fusion plasma-wall interaction studies
Shimada, Masashi; Sharpe, J. Phillip; Kolasinski, Robert D.; Causey, Rion A.
2011-08-15
The tritium plasma experiment (TPE) is a unique facility devoted to experiments on the behavior of deuterium/tritium in toxic (e.g., beryllium) and radioactive materials for fusion plasma-wall interaction studies. A Langmuir probe was added to the system to characterize the plasma conditions in TPE. With this new diagnostic, we found the achievable electron temperature ranged from 5.0 to 10.0 eV, the electron density varied from 5.0 x 10{sup 16} to 2.5 x 10{sup 18} m{sup -3}, and the ion flux density varied between 5.0 x 10{sup 20} to 2.5 x 10{sup 22} m{sup -2} s{sup -1} along the centerline of the plasma. A comparison of these plasma parameters with the conditions expected for the plasma facing components (PFCs) in ITER shows that TPE is capable of achieving most ({approx}800 m{sup 2} of 850 m{sup 2} total PFCs area) of the expected ion flux density and electron density conditions.
Masashi Shimada; Robert D. Kolasinski; J. Phillip Sharpe; Rion A. Causey
2011-08-01
The Tritium plasma experiment (TPE) is a unique facility devoted to experiments on the behavior of deuterium/tritium in toxic (e.g. beryllium) and radioactive materials for fusion plasma-wall interaction (PWI) studies. A Langmuir probe was added to the system to characterize the plasma conditions in TPE. With this new diagnostic, we found the achievable electron temperature ranged from 5.0 to 10.0 eV, the electron density varied from 5.0 x 10{sup 16} to 2.5 x 10{sup 18} m{sup -3}, and the ion flux density varied between 5.0 x 10{sup 20} to 2.5 x 10{sup 22} m{sup -2}s{sup -1} along the centerline of the plasma. A comparison of these plasma parameters with the conditions expected for the plasma facing components (PFCs) in ITER shows that TPE is capable of achieving most (approximately 800 m{sup 2} of 850 m{sup 2} total PFCs area) of the expected ion flux density and electron density conditions.
NASA Astrophysics Data System (ADS)
Stawarz, Julia E.
Turbulence is a ubiquitous phenomenon that occurs throughout the universe, in both neutral fluids and plasmas. For collisionless plasmas, kinetic effects, which alter the nonlinear dynamics and result in small-scale dissipation, are still not well understood in the context of turbulence. This work uses direct numerical simulations (DNS) and observations of Earth's magnetosphere to study plasma turbulence. Long-time relaxation in magnetohydrodynamic (MHD) turbulence is examined using DNS with particular focus on the role of magnetic and cross helicity and symmetries of the initial configurations. When strong symmetries are absent or broken through perturbations, flows evolve towards states predicted by statistical mechanics with an energy minimization principle, which features two main regimes; one magnetic helicity dominated and one with quasi-equipartition of kinetic and magnetic energy. The role of the Hall effect, which contributes to the dynamics of collisionless plasmas, is also explored numerically. At scales below the ion inertial length, a transition to a magnetically dominated state, associated with advection becoming subdominant to dissipation, occurs. Real-space current, vorticity, and electric fields are examined. Strong current structures are associated with alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. Turbulence within bursty bulk flow braking events, thought to be associated with near-Earth magnetotail reconnection, are then studied using the THEMIS spacecraft. It is proposed that strong field-aligned currents associated with turbulent intermittency destabilize into double layers, providing a collisionless dissipation mechanism for the turbulence. Plasma waves may also radiate from the region, removing energy from the turbulence and potentially depositing it in the aurora. Finally, evidence for turbulence in the Kelvin-Helmholtz instability (KHI) on the
Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas
Stenzel, R. L.
2004-08-31
Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas.
STORM: a new FP7 project devoted to solar system plasma turbulence, intermittency and multifractals
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2013-04-01
In this project we investigate space plasma turbulence from in-situ data gathered over more than 15 years by spacecraft launched by the European Space Agency (ESA). By using large sets of data instead of focusing on particular events, we advance the understanding on the energy transfer, intermittent turbulence and multifractals in space plasmas. Moreover, since the data cover different phases of the solar cycle, we investigate how the features of space plasma turbulence vary with the solar activity and discriminate between effects specific to solar maximum and minimum. We use electromagnetic field and plasma data provided by three core ESA spacecraft: Ulysses, Venus Express and Cluster, as well as other solar system missions (e.g. Giotto, Cassini, Rosetta, Mars Global Surveyor). We also study the fluctuations of ground based geomagnetic time-series as a measure of the global magnetospheric state whose statistical properties may reveal trends linked to the turbulence properties observed in-situ at higher altitudes. A powerful package of nonlinear analysis methods are applied to all data sets: (i) Power Spectral Densities (PSD) and Probability Distribution Functions (PDF), (ii) higher-order methods of analysis for intermittent data, like the partition function multifractal analysis, the Rank Ordered Multifractal analysis; (iii) the wave telescope, (iv) the multi-spacecraft methods adapted to investigate anisotropic turbulence, (v) discriminating statistics for nonlinearity and nonstationarity. The expertise of the Consortium members is complementary and therefore the synergy within them provides a large spectrum of techniques and models, never applied in a coherent approach over the same datasets. STORM is expected to make advancements in understanding and modeling space plasma turbulence in the solar system and to add value to existing data bases collected from decades by space missions of the major national and international space agencies, in particular by the
Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets
NASA Astrophysics Data System (ADS)
Pei, X.; Ghasemi, M.; Xu, H.; Hasnain, Q.; Wu, S.; Tu, Y.; Lu, X.
2016-06-01
In this paper, dynamic characterizations of the turbulent flow field in atmospheric pressure plasma jets (APPJs) are investigated by focusing on the effect of different APPJ parameters, such as gas flow rate, applied voltage, pulse repetition frequency, and time duration of the pulse. We utilize Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate or the applied voltage amplitude. However, the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation shows that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream. It seems that the dominating mechanisms responsible for the formation of turbulent fronts in plasma jets might not be ion momentum transfer.
Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Matteini, Lorenzo; Landi, Simone; Verdini, Andrea; Franci, Luca; Trávníček, Pavel M.
2015-10-01
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.
The Self-Consistent Generation of Current Sheets in Astrophysical Plasma Turbulence
NASA Astrophysics Data System (ADS)
Howes, Gregory
2014-10-01
In space and astrophysical plasma turbulence, it has long been recognized that dissipation occurs predominantly in intermittent current sheets, with vigorous activity in the past few years focused on obtaining observational evidence for such localized dissipation in the near-Earth solar wind. The nature of these magnetic discontinuities and their associated current sheets measured in the solar wind remains unclear--are these discontinuities due to filamentary magnetic structure in the solar wind, or do they arise dynamically from turbulent interactions? Recent analytical solution, numerical validation, and experimental verification of the nonlinear energy transfer in Alfven wave collisions, the nonlinear interactions between counterpropagating Alfven waves, has established this interaction as the fundamental building block of astrophysical plasma turbulence. Here I will present first-principles analytical calculations and supporting numerical simulations that Alfven wave collisions in the strong turbulence limit naturally produce current sheets, providing the first theoretical unification of models of plasma turbulence mediated by Alfven waves with ideas on localized dissipation in current sheets. Supported by NSF CAREER Award AGS-1054061, NSF Grant PHY-10033446, and NASA Grant NNX10AC91G.
Disparate-scale coupling of turbulence in QH-mode plasmas on DIII-D
NASA Astrophysics Data System (ADS)
Muscatello, C. M.; Burrell, K. H.; Chen, Xi; Luhmann, N. C., Jr.; Grierson, B. A.; Kramer, G. J.; Tobias, B. J.
2015-11-01
Analysis of incoherent fluctuations in quiescent H-mode (QH-mode) plasmas suggests nonlinear coupling between high- and low-frequency turbulence. In QH-mode plasmas with edge harmonic oscillations (EHO), transport levels are enhanced when incoherent fluctuations are present compared to QH-mode plasmas with only EHO. Furthermore, in some cases without EHO, the incoherent fluctuations alone can sustain QH-mode. Bispectral analysis of microwave imaging reflectometer (MIR) data indicates nonlinear 3-wave coupling among disparate spatial scales of the turbulence. The bicoherence is above noise levels for high-frequency (300 < f < 500 kHz), intermediate-scale (kθ ~ 0.2 - 0.6 cm -1) and low-frequency (f < 50 kHz), large-scale (kθ < 0.2 cm -1) turbulence. Cross-phase analysis reveals that the high-frequency turbulence rotates in the electron diamagnetic drift direction, while the low-frequency turbulence rotates in the ion diamagnetic drift direction, suggesting coupling between different instabilities. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-99ER54531 and DE-AC02-09CH11466.
Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.
Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K
2012-06-22
We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius. PMID:23004612
NASA Astrophysics Data System (ADS)
Krommes, John A.
2015-12-01
> In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical
Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence
Li, B.; Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G.; Ernst, D. R.
2015-11-15
Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.
Theory of resistivity-gradient-driven turbulence in a differentially rotating plasma
Kim, Y.B.; Diamond, P.H.; Biglari, H. ); Terry, P.W. )
1990-09-01
The effects of a radially sheared poloidal flow on the structure of resistivity-gradient-driven turbulence in tokamak edge plasmas are self-consistently investigated. Sheared flow induces a coupling between turbulent radial diffusion and poloidal shearing, which results in enhanced decorrelation and a concomitant reduction in the size of the turbulent convection cells. These effects result in the suppression of resistivity-gradient-driven turbulence in the presence of strongly sheared poloidal flows. While the effects of sheared rotation are ultimately more pronounced at high {ital k}{sub {theta}}, the onset of enhanced decorrelation occurs first for low {ital k}{sub {theta}} modes. In addition to the trivial rotation-induced Doppler shift, sheared poloidal flows also induce a mode frequency that is comparable in size to the enhanced turbulent decorrelation rate, and whose sign varies with the sign of the flow shear. The mode frequency and flow shear can effectively render the turbulent diffusion nonresonant. The implications of these results for this and other models of edge turbulence are discussed.
Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991
Not Available
1992-02-01
The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.
Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations
NASA Astrophysics Data System (ADS)
Krafft, C.; Volokitin, A.
2016-03-01
The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts' conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Green, I. M.
1972-01-01
Simultaneous observations of plasma waves from the electric field instruments on Pioneer 9 and OGO 5 are used to illustrate the difference between near-earth and deep space conditions. It is shown that the experimental study of true interplanetary wave-particle interactions is difficult to carry out from an earth orbiter because the earth provides significant fluxes of nonthermal particles that generate intense plasma turbulence in the upstream region.
Multi-scale self-organisation of edge plasma turbulent transport in 3D global simulations
NASA Astrophysics Data System (ADS)
Tamain, P.; Ghendrih, Ph; Bufferand, H.; Ciraolo, G.; Colin, C.; Fedorczak, N.; Nace, N.; Schwander, F.; Serre, E.
2015-05-01
The 3D global edge turbulence code TOKAM3X is used to study the properties of edge particle turbulent transport in circular limited plasmas, including both closed and open flux surfaces. Turbulence is driven by an incoming particle flux from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed. Simulations show the existence of a complex self-organization of turbulence transport coupling scales ranging from a few Larmor radii up to the machine scale. Particle transport is largely dominated by small scale turbulence with fluctuations forming quasi field-aligned filaments. Radial particle transport is intermittent and associated with the propagation of coherent structures on long distances via avalanches. Long range correlations are also found in the poloidal and toroidal direction. The statistical properties of fluctuations vary with the radial and poloidal directions, with larger fluctuation levels and intermittency found in the outboard scrape-off layer (SOL). Radial turbulent transport is strongly ballooned, with 90% of the flux at the separatrix flowing through the low-field side. One of the main consequences is the existence of quasi-sonic asymmetric parallel flows driving a net rotation of the plasma. Simulations also show the spontaneous onset of an intermittent E × B rotation characterized by a larger shear at the separatrix. Strong correlation is found between the turbulent particle flux and the E × B flow shear in a phenomenology reminiscent of H-mode physics. The poloidal position of the limiter is a key player in the observed dynamics.
Wave launching as a diagnostic tool to investigate plasma turbulence (abstract)
NASA Astrophysics Data System (ADS)
Tsui, H. Y. W.; Bengtson, R. D.; Li, G. X.; Richards, B.; Uckan, T.; Uglum, J.; Wootton, A. J.
1995-01-01
An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamical balance of the turbulence is perturbed via the injection of waves at selected spectral regions. New analysis techniques based on conditional sampling and high order correlation are developed for studying the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks.
Distinct turbulence sources and confinement features in the spherical tokamak plasma regime
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.
2015-10-30
New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong ExB shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offering one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. This predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.
Turbulent transport and heating in the auroral plasma of the topside ionosphere
NASA Technical Reports Server (NTRS)
Ionson, J. A.; Ong, R. S. B.; Fontheim, E. G.
1979-01-01
Using plasma parameters from a typical stormtime ionospheric energy balance model, we have investigated the effects of plasma turbulence on the auroral magnetoplasma. The turbulence is assumed to be comprised of electrostatic ion cyclotron waves. These waves have been driven to a nonthermal level by a geomagnetic field-aligned, current-driven instability. The evolution of this instability is shown to proceed in two stages and indicates an anomalous increase in field-aligned electrical resistivity and cross-field ion thermal conductivity as well as a decrease in electron thermal conductivity along the geomagnetic field. In addition, this turbulence heats ions perpendicular to the geomagnetic field and hence leads to a significant ion temperature anisotropy.
Computational modeling of magentically driven liner-on-plasma fusion experiments
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.; Lindemuth, I.R.
1996-12-31
Magnetized Target Fusion (MTF) is an approach to controlled fusion which potentially avoids the difficulties of the traditional magnetic and inertial confinement approaches. It appears possible to investigate the critical issues for MTF at low cost, relative to traditional fusion programs, utilizing pulsed power drivers much less expensive than ICF drivers, and plasma configurations much less expensive than those needed for full magnetic confinement. Computational and experimental research into MTF is proceeding at Los Alamos, VNIIEF, and other laboratories.
Turbulence and wave particle interactions in solar-terrestrial plasmas
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Goldman, M. V.; Toomre, J.
1985-01-01
Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.
Interstellar Turbulence: What Radio Astronomers Can Tell Plasma Theorists
NASA Astrophysics Data System (ADS)
Spangler, Steven R.
1999-12-01
A discussion is given of the results of radio wave propagation observations within the context of the multiphase structure of the interstellar medium. The observed phenomenon discussed is Interstellar Scintillations, or ISS. Results from similar radio studies of the solar wind help us interpret the data from the interstellar medium. Radio propagation observations can measure both the spectral form and the intensity of turbulence in the interstellar medium on spatial scales from tens of kilometers to 100 astronomical units. A number of major observational results from ISS are listed. Perhaps the primary is the evidence for a roughly power law spectrum of irregularities which extends over many decades of spatial scale. Outstanding goals for the future, as well as present paradoxes and inconsistencies are enumerated and discussed. The primary goal for work in the near term will be to improve on the presently inchoate understanding of the processes which generate the interstellar turbulence.
Theory of coherent electron-scale magnetic structures in space plasma turbulence
NASA Astrophysics Data System (ADS)
Jovanović, Dušan; Alexandrova, Olga; Maksimović, Milan
2015-08-01
Recent spacecraft observations in the solar wind and in the Earth’s magnetosheath indicate that the dissipation range of magnetic turbulence probably takes place at electron scales. Here, we derive nonlinear electron magnetohydrodynamic (EMHD) equations for warm plasma, i.e. with the ratio of thermodynamic and magnetic pressures, β ∼ 1. This model describes plasma turbulence under the solar wind and magnetosheath conditions on the electron spatial scales and with the characteristic frequency that does not exceed the electron gyrofrequency. We show that at electron scales and in the presence of a sufficiently large temperature anisotropy {T}{e\\perp }/{T}{e\\parallel }\\gt 1, there exist self-organized, coherent, nonlinear dipole vortex structures associated with obliquely propagating whistler waves. These can be visualized as pairs of counterstreaming helicoidal currents that produce both the compressional and torsional perturbations of the magnetic field. In contrast to the previously known long-range EMHD dipolar vortices in a cold plasma, this novel solution is an evanescent mode, strongly localized in space (with wave numbers {k}\\perp \\gg {k}\\parallel ). It can constitute a building block for the plasma turbulence at short scales and provide a possible scenario of turbulence dissipation at electron scales.
Porkolab, M.
1992-06-01
This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.
Guszejnov, Dávid; Lazányi, Nóra; Bencze, Attila; Zoletnik, Sándor
2013-11-15
This paper is aimed to contribute to the scientific discussions that have been triggered by the experimental observation of a quadratic relation between the kurtosis and skewness of turbulent fluctuations present in fusion plasmas and other nonlinear physical systems. In this paper, we offer a general statistical model which attributes the observed K=aS{sup 2}+b relation to the varying intermittency of the experimental signals. The model is a two random variable model constructed to catch the essential intermittent feature of the real signal. One of the variables is the amplitude of the underlying intermittent event (e.g., turbulent structure) while the other is connected to the intermittency level of the system. This simple model can attribute physical meaning to the a and b coefficients, as they characterize the spatio-temporal statistics of intermittent events. By constructing a particle-conserving Gaussian model for the underlying coherent structures, the experimentally measured a and b coefficients could be adequately reproduced.
Education Outreach at MIT Plasma Science Fusion Center
NASA Astrophysics Data System (ADS)
Censabella, V.; Nachtrieb, R.; Rivenberg, P.
1998-11-01
Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a live demo of a compressed-air bottle rocket (really a one-liter plastic soda bottle) for use in high school science classrooms that researchers at the Cambridge Physics Outlet (a PSFC spin-off company) have developed. To prepare the rocket for launch, the bottle is filled with compressed air at pressures up to 80 psi and the end is plugged. The rocket is released when the plug is pulled. The gas escapes at supersonic velocities and accelerates the bottle at over 1000 m/s^2. The velocity of the bottle is measured at many locations along its ``trajectory". A simple thermodynamic model predicts performance in excellent agreement with observation. The PSFC maintains a Home Page on the World Wide Web, which can be reached at http://pfc.mit.edu.
Seo, Janghoon; Choe, W.; Chang, C. S.; Ku, S.; Kwon, J. M.; Müller, Stefan H.
2014-09-15
Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Glassmeier, K.-H.; Neubauer, F. M.
1995-01-01
We examine and intercompare the LF plasma wave turbulence at three comets: Grigg-Skjellerup (GS), Giacobini-Zinner (GZ), and Halley (H). All three have power spectral peaks at the local ion cyclotron frequency (the pump wave) at approx. 10(exp -2) Hz, and a power-law fall-off at higher frequencies that suggest the development of turbulent cascades. The power laws for the three comets are approximately f(exp -1.9), f(exp -1.9) and f(exp -2.1), respectively. However, other than the similarities in the power spectra, we find the magnetic field turbulence is considerably different at the three comets. Phase steepening is demonstrated to occur at the trailing edges of the GS waves. This is probably due to nonlinear steepening plus dispersion of the left-hand mode components. A coherency analysis of GZ turbulence indicates that it is primarily composed of righthanded mode components, i.e., the turbulence is 'whistlermode.' This too can be explained by nonlinear steepening plus dispersion of the magnetosonic waves. At the level of GS and GZ turbulence development when the spacecraft measurements were made, classical three-wave processes, such as the decay or modulation instabilities do not appear to play important roles. It is most likely that the nonlinear steepening and dispersive time scales are more rapid than three-wave processes, and the latter had not had time to develop for the relatively 'new' turbulence. The wave turbulence at Halley is linearly polarized. The exact nature of this turbulence is still not well understood at this time. Several possibilities are suggested, based on our preliminary analyses.
Turbulence and selective decay in the SSX plasma wind tunnel
NASA Astrophysics Data System (ADS)
Gray, Tim; Brown, Michael; Dandurand, Dan; Fisher, Mike; Flanagan, Ken; Weinhold, Darren; Lukin, V.
2011-10-01
A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0 . 08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >= 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti = 25 eV, ne >=1015 cm-3, and B = 0 . 25 T. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇ × B --> = λ B --> . While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β = 0 . 5) and does not have a flat λ profile. Merging with plasma plumes injected from both ends of the cylinder will be compared to the non-merging plasmas. Supported by US DOE and NSF.
Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen
2007-11-01
Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.
Fluctuations and turbulence in an electric field Bumpy Torus plasma
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, J. Y.
1981-01-01
Fluctuation characteristics of plasma number density and electrostatic potential below the ion plasma and ion cyclotron frequencies in an electric field Bumpy Torus plasma were investigated experimentally, using digitally implemented spectral analysis techniques. The toroidal plasma was biased to high potentials by applying positive or negative voltage to electrodes located in the midplanes of two sectors of the toroidal array. The plasma was observed to be biased to 80 or 90% of the potential on the midplane electrodes, regardless of polarity. The radial electric field exceeded 1 kV/cm at the plasma boundary and penetrated inward to at least one-half of the plasma radius. When the imposed radial electric fields reached values characteristic of the experiment, the E/B drift velocities were comparable to the particle thermal velocities. The amplitude statistics of both the density and the potential fluctuations were found to be Gaussian for the most part, with near-zero skewness and a kurtosis of about 3.0. The spectral index of the density and potential fluctuations ranged from 2 to 6. The higher frequency components were found to propagate faster than the E/B drift velocity, which is the characteristic speed of the lower-frequency components.
The dynamics of charged particles in turbulent astrophysical plasmas
NASA Technical Reports Server (NTRS)
Dung, Rudiger; Petrosian, Vahe
1994-01-01
We consider the resonant interaction of energetic charged particles and transverse plasma wave propagating parallel and/or antiparallel to the uniform magnetic field B(sub 0) in an underlying background plasma of density n. The coupling of the plasma waves and the energetic particles will be controlled by the ratio n/(the absolute value of B(sub 0)(exp 2). A variation of this ratio leads to a strong variation of the dynamics of the energetic particles. By taking into account the whole transverse plasma branch for the resonant interaction we discuss the influence of the background plasma density, the background magnetic field, the cross helicity, and the magnetic helicities on the dynamics of charged particles in astrophysical plasmas. It is shown that low-energy electrons can be accelerated efficiently by the higher electromagnetic waves and short-wavelength whistlers for low values of the ratio n/(the absolute value of B(sub 0)(exp 2), which means for low values of the ratio of plasma frequency to gyrofrequency.
Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines
Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.
2013-06-18
Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.
Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy
Schaffner, D. A.; Brown, M. R.; Lukin, V. S.
2014-08-01
The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.
Dissipation and turbulent heating of plasma in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1981-01-01
Voyager 1 observations of plasma waves in the dayside Jovian magnetosphere which show a correlation with measurements of localized concentrations of cool thermal plasma are presented. This moderately intense broadband electrostatic noise is shown to be of sufficient intensity to accelerate superthermal ions to energies approximately 1 keV and higher. This process can account for the extensive heating of plasma in the magnetosphere and can energize a fraction of heavy ions to injection threshold for a high-energy second stage acceleration mechanism. A brief discussion of the relation of this noise to Jovian magnetospheric dynamics is included.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.
2011-09-21
The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.
Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak
NASA Astrophysics Data System (ADS)
Zhao, N.; Yan, N.; Xu, G. S.; Wang, Z. X.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.
2016-06-01
Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.
Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W. H.; Wu, P.; Shay, M.; Daughton, W.; Nakamura, T. K. M.; Loring, B.; Borovsky, J.; Leonardis, E.; Chapman, S. C.
2013-01-15
An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas
Lin, Zhihong
2014-03-13
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
The effects of plasma diffusion and viscosity on turbulent instability growth
Haines, Brian M. Vold, Erik L.; Molvig, Kim; Aldrich, Charles; Rauenzahn, Rick
2014-09-15
We perform two-dimensional simulations of strongly–driven compressible Rayleigh–Taylor and Kelvin–Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabilities. Simulations are performed in hydrodynamically similar boxes of varying sizes, ranging from 1 μm to 1 cm in order to determine the scale at which plasma effects become important. Our results suggest that these plasma effects become noticeable when the box size is approximately 100 μm, they become significant in the 10 μm box, and dominate when the box size is 1 μm. Results suggest that plasma transport may be important at scales and conditions relevant to inertial confinement fusion, and that a plasma fluid model is capable of representing some of the kinetic transport effects.
Gary, S. Peter
2015-04-06
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less
Gary, S. Peter
2015-04-06
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.
Gary, S. Peter
2015-01-01
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. Temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena. PMID:25848081
Magnetic configuration effects on the TJ-IU torsatron plasma edge turbulence
NASA Astrophysics Data System (ADS)
Pedrosa, M. A.; Ochando, M. A.; Jiménez, J. A.; Balbín, R.; Qin, J.; Hidalgo, C.
1996-03-01
A study of plasma edge turbulence carried out in the ECRH heated TJ-IU torsatron is presented. Radial profiles of ion saturation current and floating potential, together with the fluctuation levels of these have been evaluated in the plasma edge by means of Langmuir probe arrays. The existence of two different propagation modes in the proximity of the velocity shear layer has been observed. In the plasma bulk side of the limiter radius, high-frequency fluctuations are negligible and only one propagation mode stands. A detailed examination of the data shows the existence of a quasi-coherent mode probably related to the local magnetic configuration. A radial probe scan reveals an increase in the turbulent particle flux for the location of a rational surface as calculated by the VMEC free-boundary 3D equilibrium code.
Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma.
Maeyama, S; Idomura, Y; Watanabe, T-H; Nakata, M; Yagi, M; Miyato, N; Ishizawa, A; Nunami, M
2015-06-26
Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and β value are realized for the first time, where the β value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-β effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport. PMID:26197130
Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations
Reynolds-Barredo, J.; Newman, David E; Sanchez, R.; Samaddar, D.; Berry, Lee A; Elwasif, Wael R
2012-01-01
Parareal is a recent algorithm able to parallelize the time dimension in spite of its sequential nature. It has been applied to several linear and nonlinear problems and, very recently, to a simulation of fully-developed, two-dimensional drift wave turbulence. The mere fact that parareal works in such a turbulent regime is in itself somewhat unexpected, due to the characteristic sensitivity of turbulence to any change in initial conditions. This fundamental property of any turbulent system should render the iterative correction procedure characteristic of the parareal method inoperative, but this seems not to be the case. In addition, the choices that must be made to implement parareal (division of the temporal domain, election of the coarse solver and so on) are currently made using trial-and-error approaches. Here, we identify the mechanisms responsible for the convergence of parareal of these simulations of drift wave turbulence. We also investigate which conditions these mechanisms impose on any successful parareal implementation. The results reported here should be useful to guide future implementations of parareal within the much wider context of fully-developed fluid and plasma turbulent simulations.
Plasma size and power scaling of ion temperature gradient driven turbulence
Idomura, Yasuhiro; Nakata, Motoki
2014-02-15
The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient δf simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.
Experimental evidence for self-organized criticality in tokamak plasma turbulence
NASA Astrophysics Data System (ADS)
Rhodes, T. L.; Moyer, R. A.; Groebner, R.; Doyle, E. J.; Lehmer, R.; Peebles, W. A.; Rettig, C. L.
1999-03-01
Measurements of plasma turbulence spectra and particle flux from the DIII-D tokamak exhibit significant agreement with predictions of self-organized criticality (SOC) modeling. Power spectra of density ñ, potential g˜f, and particle flux Γ, are observed to have three regions of frequency dependence: f0, f-1 and f-4. In addition, the particle flux probability distribution displays a Γ-1 scaling over two decades in Γ. These results provide the first evidence that the plasma is in a state consistent with SOC models and place a constraint on plasma transport models.
NASA Astrophysics Data System (ADS)
Sasaki, M.; Kasuya, N.; Itoh, K.; Yagi, M.; Itoh, S.-I.
2014-11-01
Nonlinear competition of turbulent structures and their roles in transport are investigated by using three-dimensional simulation code of resistive drift wave turbulence in magnetized cylindrical plasmas. Selective formation of zonal flows and streamers has been obtained by controlling the strength of damping of the zonal flow. In addition, there is an energy path from the drift waves to a flute type structure, which is linearly stable, and it becomes effective just below the stability boundary of the zonal flow. The flute structure directly induces transport effectively, and affects the drift waves and the zonal flow. A large amplitude zonal flow is formed selectively even with existence of the flute structure. The property of the particle confinement is investigated by changing the particle source intensity, which controls the strength of driving of the drift waves. The characteristic of the particle confinement changes according to turbulent states, and an improved confinement regime is obtained in the zonal flow dominant state. Study on cylindrical plasmas reveals the fundamental mechanism of improved confinement in the magnetized plasma with influence of turbulent structural formation.
Observations of Plasma Turbulence and Heating from the Solar Wind and Simulations
NASA Astrophysics Data System (ADS)
Wicks, R. T.
2015-12-01
The cascade of energy by plasma turbulence has been shown to occur in, and heat, the solar wind. Recent work in the study of solar wind turbulence has focussed, in the most part, on advanced data analysis techniques, such as third moment structure functions, wavelets, conditional data sampling, multi-spacecraft observations and reconstruction of 2D k-spectra with tomography, and statistical studies from long time series of spacecraft observations. These techniques are complex and contain different assumptions about the qualities of the data underpinning the measurements. Here, we will review recent advances and discoveries in the study of plasma turbulence from solar wind data analysis and discuss how benchmarking of techniques against one another could be pursued and how simulations can be used to aid in the understanding of the results of solar wind data analysis, in particular in the framework of the "Turbulence Dissipation Challenge" (Parashar et al., Journal of Plasma Physics, Volume 81, Issue 05, 905810513, 2015). We will pay particular attention to observing two different heating mechanisms: stochastic heating and resonant wave-particle interactions. The magnetic helicity of the solar wind is shown to separate into two distinct components, one originating from pseudo-Alfvenic (k may have a component parallel to the magnetic field) and one from the Alfvenic fluctuations (k is strictly perpendicular). The solar wind results are compared with "pseudo-spacecraft" data from large 3D PIC simulations.
Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation
NASA Astrophysics Data System (ADS)
Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Shi, Lei; Liu, Donglin
2016-06-01
The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves. This paper developed algorithms to estimate the influences. With the algorithms and typical reentry data, influences of GPS frequency and Ka frequency are studied respectively. Results show that, in terms of wave scattering, the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density, ensemble average collision frequency, electron density fluctuation and turbulence integral scale respectively. Also the scattering loss is much smaller than the dielectric loss. The scattering loss of Ka frequency is much less than that of the GPS frequency. In terms of wave propagation, the randomness arouses the fluctuations of amplitude and phase of waves. The fluctuations change with altitudes that when the altitude is below 30 km, fluctuations increase with altitude increasing, and when the altitude is above 30 km, fluctuations decrease with altitude increasing. The fluctuations of GPS frequency are strong enough to affect the tracking, telemetry, and command at appropriate conditions, while the fluctuations of Ka frequency are much more feeble. This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (Nos. 61301173 and 61473228)
Cluster observation of magnetohydrodynamic turbulence in the plasma sheet boundary layer
NASA Astrophysics Data System (ADS)
Narita, Y.
2016-04-01
Measurement of turbulent magnetic field is presented from the Earth magnetotail crossing of the Cluster spacecraft on August 25, 2006, as an ideal case study of magnetohydrodynamic turbulence in the plasma sheet boundary layer on a spatial scale of about 10,000 km. The fluctuation energy of the magnetic field is evaluated in both the frequency and wavevector domains. The observed plasma sheet turbulence event shows anisotropy in the wavevector domain with a spectral extension perpendicular to the mean magnetic field. The analyses of the dispersion relation and phase speed diagrams indicate that the coherent wave components should be regarded as a set of the linear-mode waves and the other fluctuation components in magnetohydrodynamics. Although the magnetic field fluctuation amplitudes are sufficiently small compared to the large-scale field strength, there is no clear indication of the linear-mode dominance in the plasma sheet. As a lesson, magnetohydrodynamic turbulence must be modeled by including both linear-mode waves and nonlinear wave components such as sideband waves.
Brochard, F.; Gravier, E.; Bonhomme, G.
2006-03-15
The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the low-{beta} plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability.
Flux tube train model for local turbulence simulation of toroidal plasmas
Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.
2015-02-15
A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.
On the validity of the local diffusive paradigm in turbulent plasma transport
Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, Ph.; Strugarek, A.; Ku, S.; Chang, C. S.
2010-08-15
A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full-f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Levy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the 'ExB staircase' after its planetary analog.
Role of nonlinear localized structures and turbulence in magnetized plasma
NASA Astrophysics Data System (ADS)
Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.
2016-09-01
In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.
Intermittency of solar system plasma turbulence near Venus and Earth
NASA Astrophysics Data System (ADS)
Teodorescu, Eliza; Echim, Marius; Chang, Tom
2016-04-01
We analyze magnetic field data from Venus Express (VEX) and CLUSTER to investigate the turbulent properties of the solar wind and the Earth's and Venus' magnetosheaths. A systematic study of the PDFs (Probability Distribution Functions) of the measured magnetic fluctuations and their fourth order moments (kurtosis) reveals numerous intermittent time series. The presence of intermittency is marked by non-Gaussian PDFs with heavy wings and a scale dependent kurtosis. Higher order analyses on the scale dependence of several moment orders of the PDFs, the structure functions, along with the scaling of the kurtosis allow for a selection of scales that pertain to different scaling regimes, governed by different physics. On such sub-ranges of scales we investigate the fractal structure of fluctuations through the Rank Ordered Multifractal Analysis - ROMA (Chang and Wu, 2008). ROMA is applied to a selection of intermittent magnetic field time series in the solar wind and planetary magnetosheaths and helps to quantify the turbulence properties through the estimation of a spectrum of local Hurst exponents. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
SOLAR WIND TURBULENT SPECTRUM AT PLASMA KINETIC SCALES
Alexandrova, O.; Lacombe, C.; Mangeney, A.; Maksimovic, M.; Grappin, R.
2012-12-01
The description of the turbulent spectrum of magnetic fluctuations in the solar wind in the kinetic range of scales is not yet completely established. Here, we perform a statistical study of 100 spectra measured by the STAFF instrument on the Cluster mission, which allows us to resolve turbulent fluctuations from ion scales down to a fraction of electron scales, i.e., from {approx}10{sup 2} km to {approx}300 m. We show that for k {rho} {sub e} in [0.03, 3] (which corresponds approximately to the frequency in the spacecraft frame f in [3, 300] Hz), all the observed spectra can be described by a general law E(k ){proportional_to}k {sup -8/3} exp (- k {rho} {sub e}), where k is the wavevector component normal to the background magnetic field and {rho} {sub e} the electron Larmor radius. This exponential tail found in the solar wind seems compatible with the Landau damping of magnetic fluctuations onto electrons.
Turbulent electromagnetic filaments in actively modulated toroidal plasma edge
NASA Astrophysics Data System (ADS)
Spolaore, M.; Agostini, M.; Momo, B.; Rea, C.; Vianello, N.; Zuin, M.; Cavazzana, R.; De Masi, G.; Innocente, P.; Marrelli, L.; Martines, E.; Mazzi, A.; Puiatti, M. E.; Spagnolo, S.; Spizzo, G.; Scarin, P.; Terranova, D.; Zanca, P.
2015-06-01
Filament or blob structures have been observed in all magnetic configurations with very similar features despite the difference in the magnetic geometry, and are believed to play an important role in convecting particles and energy towards the wall. Despite their different generation mechanism, turbulent structures and edge-localized mode (ELM) filaments share some common physical features. The electromagnetic effects on filament structures deserve particular interest, among others reasons for the implication they could have for ELM, related for instance to their dynamics in the transition region between closed and open field lines or to the possibility, at high beta regimes, of causing line bending which could enhance the interaction of blobs with the first wall. A direct characterization of the effects of active modification of the edge topology on EM turbulent filament structures is presented, comparing reversed field pinch and tokamak configurations. Measurements are obtained in the RFX-mod device, which allows operation in both configurations and with different equilibria. The RFX-mod experiment versatility is exploited also from the point of view of the active control of the edge magnetic topology, equipped with an advanced system for edge boundary feedback control. Three different case studies of actively controlled magnetic perturbations are shown, focusing on the filament interaction with local magnetic islands. High-frequency fluctuations, characterizing electrostatic and magnetic filament features, and the associated transport coefficients have been observed to be strongly affected by the island proximity and topology.
Ion distribution in the hot spot of an inertial confinement fusion plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; Guo, Zehua; Berk, Herb
2012-10-01
Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
Hybrid modeling of plasmas and applications to fusion and space physics
NASA Astrophysics Data System (ADS)
Kazeminejad, Farzad
Since the early days of controlled fusion research, plasma physicists have encountered great challenges in obtaining solutions to the highly nonlinear equations which govern the behavior of fusion plasmas; with the growth of other applications of plasma physics these problems have grown in importance. Obtaining reasonable solutions to the nonlinear equations is crucial to understanding the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models in general require larger memory for the computer due to the massive amounts of data associated with the particles' kinematical variables. Fluid models are better fit to handle large scales and long times. The drawback of fluid models however, is that they miss the physical phenomena taking place at the microscale and these phenomena can influence the properties of the fluids. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models: two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases, the models demonstrate qualitative agreement with the experimental observations.
The electron density in clouds of turbulent interstellar plasma
NASA Astrophysics Data System (ADS)
Pynzar', A. V.
2016-03-01
The dependence of the emission measure on the dispersion measure due to the Galactic background has been derived for 120 directions in the Galaxy. This analysis has yielded the mean electron density, effective thickness of the electron layer, and the volume filling factor of the clouds of ionized gas along the line of sight. The pulsar J1745-2900, which lies in a direction close to the direction toward the center of the Galaxy, is located at least 100 pc closer to the observer than the source Sgr A* along the line of sight. The scatter-broadened angular size of J1745-2900 is determined by the turbulent medium in the Sagittarius Arm.
Orszag Tang vortex - Kinetic study of a turbulent plasma
Parashar, T. N.; Servidio, S.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.
2010-03-25
Kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations based on particle in cell ions and fluid electrons. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. An earlier study estimated the dissipation in the system. A comparison of MHD and hybrid simulations showed similar behavior at large scales but substantial differences at small scales. The hybrid magnetic energy spectrum shows a break at the scale where Hall term in the Ohm's law becomes important. The protons heat perpendicularly and most of the energy is dissipated through magnetic interactions. Here, the space time structure of the system is studied using frequency-wavenumber (k-omega) decomposition. No clear resonances appear, ruling out the cyclotron resonances as a likely candidate for the perpendicular heating. The only distinguishable wave modes present, which constitute a small percentage of total energy, are magnetosonic modes.
Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma
Parashar, T. N.; Shay, M. A.; Cassak, P. A.; Matthaeus, W. H.
2009-03-15
The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. At large length scales, the evolution of the hybrid simulations is very similar to MHD, with magnetic power spectra displaying scaling similar to a Kolmogorov scaling of -5/3. At small scales, differences from MHD arise, as energy dissipates into heat almost exclusively through the magnetic field. The magnetic energy spectrum of the hybrid simulation shows a break where linear theory predicts that the Hall term in Ohm's law becomes significant, leading to dispersive kinetic Alfven waves. A key result is that protons are heated preferentially in the plane perpendicular to the mean magnetic field, creating a proton temperature anisotropy of the type observed in the corona and solar wind.
NASA Astrophysics Data System (ADS)
Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C.
2012-12-01
Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
Intermittency and scaling of vorticity in drift-interchange plasma turbulence
NASA Astrophysics Data System (ADS)
Hnat, Bogdan; Dura, Paula; Robinson, James; Dendy, Richard
2012-10-01
Vorticity plays a central role in particle and energy transport driven by fluid and drift turbulence in plasmas with magnetic fields. Characterising the largest spatiotemporal concentrations of vorticity, and quantifying the scaling of vorticity with plasma parameters and system size, is therefore important for tokamak transport studies. We address this using a modified Hasegawa-Wakatani model, extended (J M Dewhurst et al, Phys. Plasmas 16, 072306 (2009)) to include a background magnetic field gradient. Although vorticity is defined in terms of gradients in the underlying fluid velocity, we find that the statistical properties of fluctuations in vorticity can differ significantly from those of fluctuations in velocity and density. We relate this to changes in the morphology of coherent structures within the turbulence, and to the nature of turbulent interactions -- cascade, or few-wave coupling. Some of the key properties depend on the direction of the magnetic field gradient. This may give rise to differences between inboard and outboard edge plasma transport in tokamaks.
Q, Break-even and the n{tau{sub E}} Diagram for Transient Fusion Plasmas
Dale M. Meade
1998-04-01
Q, break-even and the Lawson diagram are well defined and understood for steady-state fusion plasma conditions. Since many fusion experiments are transient, it is necessary to clarify the definitions for instantaneous Q values and break-even so that the Lawson diagram can be interpreted for transient plasma conditions. This discussion shows that there are two mathematically correct methods to describe the Lawson diagram for a transient plasma: the Lawson/TFTR method and the JET/JT-60 method. These methods are discussed in detail in this paper.
NASA Astrophysics Data System (ADS)
Zhong, W. L.; Shen, Y.; Zou, X. L.; Gao, J. M.; Shi, Z. B.; Dong, J. Q.; Duan, X. R.; Xu, M.; Cui, Z. Y.; Li, Y. G.; Ji, X. Q.; Yu, D. L.; Cheng, J.; Xiao, G. L.; Jiang, M.; Yang, Z. C.; Zhang, B. Y.; Shi, P. W.; Liu, Z. T.; Song, X. M.; Ding, X. T.; Liu, Yong; HL-2A Team
2016-07-01
The impact of impurity ions on a pedestal has been investigated in the HL-2A Tokamak, at the Southwestern Institute of Physics, Chengdu, China. Experimental results have clearly shown that during the H -mode phase, an electromagnetic turbulence was excited in the edge plasma region, where the impurity ions exhibited a peaked profile. It has been found that double impurity critical gradients are responsible for triggering the turbulence. Strong stiffness of the impurity profile has been observed during cyclic transitions between the I -phase and H -mode regime. The results suggest that the underlying physics of the self-regulated edge impurity profile offers the possibility for an active control of the pedestal dynamics via pedestal turbulence.
Zhong, W L; Shen, Y; Zou, X L; Gao, J M; Shi, Z B; Dong, J Q; Duan, X R; Xu, M; Cui, Z Y; Li, Y G; Ji, X Q; Yu, D L; Cheng, J; Xiao, G L; Jiang, M; Yang, Z C; Zhang, B Y; Shi, P W; Liu, Z T; Song, X M; Ding, X T; Liu, Yong
2016-07-22
The impact of impurity ions on a pedestal has been investigated in the HL-2A Tokamak, at the Southwestern Institute of Physics, Chengdu, China. Experimental results have clearly shown that during the H-mode phase, an electromagnetic turbulence was excited in the edge plasma region, where the impurity ions exhibited a peaked profile. It has been found that double impurity critical gradients are responsible for triggering the turbulence. Strong stiffness of the impurity profile has been observed during cyclic transitions between the I-phase and H-mode regime. The results suggest that the underlying physics of the self-regulated edge impurity profile offers the possibility for an active control of the pedestal dynamics via pedestal turbulence. PMID:27494476
Scale-selective turbulence reduction in H-mode plasmas in the TJ-II stellarator
Happel, T.; Conway, G. D.; Stroth, U.; Estrada, T.; Blanco, E.; Hidalgo, C.; Collaboration: TJ-II Team
2011-10-15
Wavenumber spectra of density turbulence in L- and H-mode plasmas have been measured in the TJ-II stellarator by means of Doppler reflectometry. A pronounced suppression of the density fluctuation level is observed in H-mode close to the radial position of maximum radial electric field (E{sub r}) shear. Furthermore, intermediate scale density turbulence is reduced preferentially. This effect can be interpreted within the framework of vortex stretching feeding energy through Reynolds stress into zonal flows, while shear decorrelation of turbulent structures might not play a central role in TJ-II. Moreover, it is shown that in both L- and H-mode, the phase velocity of density fluctuations does not depend on the structure scale.
Resonance line radiation originating from a region with well-developed plasma turbulence
NASA Astrophysics Data System (ADS)
Kleiman, E. B.; Koulinich, V. V.
1994-10-01
This study considers the influence of the effects of scattering due to Langmuir turbulent pulsations in the transfer of radiation in the spectral lines. The transfer equation of radiation in spectral lines, by taking into account scattering due to Langmuir turbulent pulsations, is written in a form convenient for application by numerical methods. The profile's intensity for a plane-parallel finite isothermal slab of a turbulent plasma in the case of complete redistribution of scattering by an atom are obtained. Numerical studies show that in this case with the broadening of spectral lines and the decreasing of self-reversal, the Langmuir frequency nupe is of the same order as the electronic Doppler width delta nuDe. Creation of the line satellites when nupe is larger than the line width delta nu is shown with the aid of numerical methods.
Kolesnikov, R.A.; Krommes, J.A.
2005-09-22
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.
Numerical simulations of turbulent trapping in the weak beam-plasma instability
NASA Technical Reports Server (NTRS)
Theilhaber, K.; Laval, G.; Pesme, D.
1987-01-01
Numerical simulations of the weak beam-plasma instability were done in the turbulent regime where small-scale trapping is a dominant feature of the instability, a regime with behavior not predicted by quasi-linear theory. The results of the simulations were compared with those of a specific model of the turbulence, the so-called 'turbulent trapping' model, which gives precise formulas for the particle correlation functions, and predicts a growth rate well enhanced over the quasi-linear value. It was found that the model gives accurate predictions for the correlation functions. On the other hand, while growth rates were enhanced over the quasi-linear values, the enhancements observed are smaller than expected from the quantitative predictions of the model.
Solar system plasma turbulence and intermittency at the maximum and minimum of the solar cycle
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2015-04-01
We report on the analysis of turbulence properties of the solar wind and the planetary magnetosheaths of Venus and Earth at solar maximum (2000-2001) and minimum (1997-1998, 2007-2008) as revealed by Ulysses, Cluster and Venus Express. We provide an overview of the spectral and scaling properties of turbulence during the targeted time periods. A selection of Ulysses data reveals the spectral properties of the "pure" slow and "pure" fast solar wind turbulence, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. Venus Express and Cluster data contribute to the description of the solar wind turbulence at 0.72 AU and respectively 1 AU. The spectral analysis of magnetosheath data from Venus Express and Cluster reveals the properties of turbulence to be compared to solar wind turbulence. The statistical properties of plasma and magnetic field fluctuations exhibit features linked with intermittency revealed as non-Gaussian Probability Distribution Functions (PDFs) and scale dependent kurtosis. PDFs are computed for the solar wind data from Ulysses, Venus Express and Cluster, and complement the analysis based on second order corrrelation function. The same strategy is applied to study the intermittency of the magnetosheath turbulence of Venus and the Earth. The results of our thorough survey of data bases are organized in catalogues available on line: PSD and PDFs results are stored in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSDs and PDFs obtained in the terrestrial magnetosheath, and one for the solar minimum, 2007-2008, that includes PSDs and PDFs obtained in the terrestrial and Venus magnetosheaths). As an example of higher order analysis resulting from these results we discuss the similarities and differences between fast and slow wind turbulence and intermittency. We also
Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments
Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.
2012-06-15
The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.
On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas
Brown, B. T.; Smirnov, R. D. Krasheninnikov, S. I.
2014-02-15
The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.
Synergistic cross-scale coupling of turbulence in a tokamak plasma
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.
2014-11-01
For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((mD/me)1/2 = 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (kθρs˜O (1.0 ) ) and electron-scale (kθρe˜O (1.0 ) ) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (kr ≪ kθ) "streamers" are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρi scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.
Synergistic cross-scale coupling of turbulence in a tokamak plasma
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.
2014-11-15
For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m{sub D}∕m{sub e}){sup 1∕2 }= 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron-scale (k{sub θ}ρ{sub e}∼O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k{sub r} ≪ k{sub θ}) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ{sub i} scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.
Experiments on Turbulence and Transport in the Edge Plasma of the Text Tokamak
NASA Astrophysics Data System (ADS)
Rhodes, Terry Lee
We studied the turbulence and fluctuation driven transport in the edge plasma of the TEXT tokamak using a Langmuir probe array. In this dissertation we present three separate experiments, each of which examines a particular aspect of the edge turbulence and transport. In the first experiment we compare the observed fluctuation levels to the scaling predictions of several turbulence theories. We found that the fluctuations and transport were not proportional to the density and temperature gradients. Thus, drift wave turbulence theories, which predict strong scalings with density gradients, do not describe the edge plasma turbulence. In the second experiment we identify low frequency modulations (<=q1KHz) in the edge density, potential and temperature to be associated with heat and density pulses (sawtooth oscillations) which originate from the central region of the tokamak. Concurrent with the edge sawtooth oscillations are significant increases in the density and potential fluctuation levels. As a result of these increases, the fluctuation driven particle flux and associated heat flux are increased as much as 60 and 100% respectively during the sawtooth. This result has direct implications on the current methods of determining the electron thermal diffusivity chi_ {e}. The effect of electron cyclotron heating (ECH) on the edge plasma was investigated in the third experiment. Increases in edge temperature, density and potential with simultaneous increases in the density and potential fluctuations were observed during ECH. These increased fluctuation levels resulted in a significant increase (20-50%) in the fluctuation driven particle flux. Comparison of these results to an equal input power, ohmic only discharge showed similar increases in the average density, temperature and potential. However, the density fluctuations did not increase as much with the additional ohmic heating (compared to ECH) resulting in a generally smaller comparative level of fluctuation
Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas
NASA Astrophysics Data System (ADS)
Romé, M.; Chen, S.; Maero, G.
2016-06-01
A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).
Measurements of turbulent mixing due to Kelvin-Helmholtz instability in high-energy-density plasmas
NASA Astrophysics Data System (ADS)
Smalyuk, V. A.; Hurricane, O. A.; Hansen, J. F.; Langstaff, G.; Martinez, D.; Park, H.-S.; Raman, K.; Remington, B. A.; Robey, H. F.; Schilling, O.; Wallace, R.; Elbaz, Y.; Shimony, A.; Shvarts, D.; Di Stefano, C.; Drake, R. P.; Marion, D.; Krauland, C. M.; Kuranz, C. C.
2013-03-01
Kelvin-Helmholtz (KH) turbulent mixing measurements were performed in experiments on the OMEGA Laser Facility [T.R. Boehly et al., Opt. Commun. 133 (1997) 495]. In these experiments, laser-driven shock waves propagated through low-density plastic foam placed on top of a higher-density plastic foil. Behind the shock front, lower-density foam plasma flowed over the higher-density plastic plasma. The interface between the foam and plastic was KH unstable. The experiments were performed with pre-imposed, sinusoidal 2D perturbations, and broadband 3D perturbations due to surface roughness at the interface between the plastic and foam. KH instability growth was measured using X-ray, point-projection radiography. The mixing layer caused by the KH instability with layer width up to ˜100 μm was observed at a location ˜1 mm behind the shock front. The measured mixing layer width was in good agreement with simulations using a K-L turbulent mixing model in the two-dimensional ARES hydrodynamics code. In the definition of the K-L model K stands for the specific turbulent kinetic (K) energy, and L for the scale length (L) of the turbulence.
Gyrotropic guiding-center fluid theory for turbulent inhomogeneous magnetized plasma
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Bouhram, Mehdi
2006-07-15
In this paper, a new fluid theory is given in the guiding-center and gyrotropic approximation which is derivable from the Vlasov-Maxwell equations. The theory includes the effect of wave-particle interactions for the weakly turbulent, weakly inhomogeneous, nonuniformly magnetized plasma, and it is applicable to a variety of space and laboratory plasmas. It is assumed that the turbulence is random and electrostatic, and that the velocity-space Fokker-Planck operator can be used to calculate the correlation functions that describe the wave-particle interactions. Conservation laws are derived that relate the low-order velocity moments of the particle distributions to the turbulence. The theory is based on the work of Hubbard [Proc. R. Soc. London, Ser. A 260, 114 (1961)] and Ichimaru and Rosenbluth [Phys. Fluids 13, 2778 (1970)]. In the work presented here, the idea is proposed that the fluid equations can be solved (1) by using measurements of the turbulence to specify the electric-field fluctuations; and (2) by using measurements of the low-order velocity moments to specify the initial and boundary conditions.
Propagation in a shearing plasma. II - Turbulence and the frequency range of pulsar microstructure
NASA Technical Reports Server (NTRS)
Harding, A. K.; Tademaru, E.
1980-01-01
Numerical calculations are presented which explore the propagation of radio waves and pulses through a turbulent shearing plasma. A stochastic model is used to describe the turbulent velocity field, in which random fluctuations are superposed on a mean profile. Both Gaussian wave packets and shot-noise pulses polarized in the plane of shearing acquire quasi-periodic intensity modulations above the rest-frame plasma frequency. The frequency range over which these modulations appear is shown to depend on the spatial correlation length of the turbulent fluctuations and on their standard deviation from the mean velocity. The period of the modulations is variable from one realization of the random process to the next, and the average period is frequency dependent. The results of these calculations lend further support to a model for pulsar microstructure in which periodic micropulses are pure temporal modulations of the emitted radiation due to propagation effects in magnetospheric shearing regions. It is shown that turbulence on a scale of approximately 10 cm can produce these quasi-periodic modulations over a frequency range comparable to that of observed microstructure.
Understanding Turbulence in the Plasma Sheet and Its Role in Transport
NASA Astrophysics Data System (ADS)
El-Alaoui, M.; Ashour-Abdalla, M.; Lapenta, G.; Richard, R. L.
2014-12-01
In this study the nature and implications of turbulence in the plasma sheet is explored with emphasis on large scale and meso-scale processes. The relationship between turbulence and reconnection, and its contribution to magnetospheric transport and dynamics will be evaluated. Observational studies to date have shown that the magnetotail rarely exhibits simple steady convection; instead, flows in the magnetotail have a high level of fluctuations. Flows driven on the scale of the entire system are well described by MHD and break up into structures that cascade to smaller scales. MHD simulation studies have shown the presence of realistic fluctuation spectra both in case studies where direct comparisons to observations have been made and in idealized test cases which have been compared to the statistical studies of observed events. The simulations do a good job of representing the effects of dissipation and yield dissipative scale lengths that are comparable to those inferred from observations. At intermediate, meso-scales, which receive energy from both large and small scales, turbulent processes are important in the plasma sheet, in particular around dipolarization fronts. We will explore the interaction between large-scale and smaller-scale fluctuations and their contributions to the magnetotail current sheet structure. We will use a global MHD simulation and a two dimensional version of the iPIC3Dimplicit particle in cell simulation separately to examine how turbulence is related to global and local processes involved in the current sheet.
Longitudinal and local time asymmetries of magnetospheric turbulence in Saturn's plasma sheet
NASA Astrophysics Data System (ADS)
Papen, Michael; Saur, Joachim
2016-05-01
Based on earlier studies that have shown Saturn's middle magnetosphere to contain turbulent magnetic field fluctuations, we analyze the spatial and temporal variations of the magnetic fluctuations and turbulent heating rate as a function of local time and magnetic phase. The region of study is Saturn's plasma sheet at a distance of 6-20 Rs, where Rs is Saturn's equatorial radius. The data set consists of magnetic field data measured during 92 orbits (revolutions) from the equatorial phases of Cassini covering 9 years from 2004 to 2012. We find asymmetries in the magnetosphere with enhanced fluctuations around noon. With respect to longitude we find increased fluctuations at 65° southern and 250° northern magnetic phase. This leads to an increased turbulent heating rate in these regions and is consistent with regions of increased plasma density and maximum downward field-aligned currents according to the quasi-dipolar perturbation fields. Analysis of single orbits reveals that the heating rate of 79% of all analyzed inbound and outbound legs is significantly (statistical error less than 1%) sinusoidally modulated. The modulation of the turbulent heating rate is predominantly observed during times when Cassini is located between dusk and midnight and additionally at dawn.
Turbulence and transport suppression scaling with flow shear on the Large Plasma Device
Schaffner, D. A.; Carter, T. A.; Rossi, G. D.; Guice, D. S.; Maggs, J. E.; Vincena, S.; Friedman, B.
2013-05-15
Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocity fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate (γ{sub s}=∂V{sub θ}/∂r) is comparable to the turbulent decorrelation rate (1/τ{sub ac}). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak (γ{sub s}τ{sub ac}<1) or strong (γ{sub s}τ{sub ac}>1) shear limits.
Self-Consistent Simulation of Turbulence and Transport in Tokamak Edge Plasmas
Rognlien, T D; Umansky, M V; Xu, X Q; Cohen, R H
2003-09-03
The status of coupling the fluid 3D turbulence code BOUT and the fluid plasma/neutral 2D transport code UEDGE is reported, where both codes simulate the edge region of diverted tokamaks from several cm inside the magnetic separatrix to the far scrape-off layer (SOL), thereby including the magnetic X-point. Because the characteristic time scale of the turbulence is short ({approx} 10{sup -5}-10{sup -4}s) and the profile evolution time scale can be long ({approx} 10{sup -2}-10{sup -1} s owing to recycling), an iterative scheme is used that relaxes the turbulent fluxes passed from BOUT to UEDGE and the profiles from UEDGE to BOUT over many coupling steps. Each code is run on its own characteristic time scale, yielding a statistically averaged steady state. For this initial study, the ion and neutral densities and parallel velocities are evolved, while the temperature profiles are stationary. Here the turbulence code is run in the electrostatic approximation. For this example of self-consistent coupling with strong L-mode-like turbulence, the ion flux to the main-chamber exceeds that to the divertor plates.
Shear flow and drift wave turbulence dynamics in a cylindrical plasma device
Yan, Z.; Tynan, G. R.; Holland, C.; Xu, M.; Mueller, S. H.; Yu, J. H.
2010-03-15
The experimental observations of the dynamics of the coupled drift wave turbulence (DWT)/sheared zonal flow (ZF) system in a cylindrical plasma device using a combination of Langmuir probe and fast-framing imaging measurements are reported. The results show the presence of an azimuthal ZF that exhibits low frequency (approx250 Hz) fluctuations. The envelope of the higher frequency (above 5 kHz) floating potential fluctuations associated with the DWT, the density gradient, and the turbulent radial particle flux are all modulated out of phase with the strength of the ZF. The divergence of the turbulent Reynolds stress is also modulated at the same slow time scale in a phase-coherent manner consistent with a turbulent-driven shear flow sustained against the collisional and viscous damping. The radial turbulence correlation length and cross-field particle transport are reduced during periods of strong flow shear. The results are qualitatively consistent with theoretical expectations for coupled DWT-ZF dynamics.
Evidence of low-dimensional chaos in magnetized plasma turbulence
NASA Astrophysics Data System (ADS)
Živković, T.; Rypdal, K.
2008-10-01
We analyze probe data obtained from a toroidal magnetized plasma configuration suitable for studies of low-frequency gradient-driven instabilities. These instabilities give rise to field-aligned convection rolls analogous to Rayleigh-Benard cells in neutral fluids, and may theoretically develop similar routes to chaos. When using mean-field dimension analysis, we observe low dimensionality, but this could originate from either low-dimensional chaos, periodicity or quasi-periodicity. Therefore, we apply recurrence plot analysis as well as estimation of the largest Lyapunov exponent. These analyses provide evidence of low-dimensional chaos, in agreement with theoretical predictions. Our results can be applied to other magnetized plasma configurations, where gradient-driven instabilities dominate the dynamics of the system.
Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2015-11-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.
Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas
NASA Astrophysics Data System (ADS)
Hamada, Y.; Watari, T.; Nishizawa, A.; Yamagishi, O.; Narihara, K.; Ida, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.; the JIPPT-IIU Group
2015-04-01
Magnetic, density and potential fluctuations up to 500 kHz at several spatial points have been observed in the core region of JIPPT-IIU tokamak plasmas using a heavy ion beam probe. The frequency spectra of the density and magnetic oscillations are found to be similar, whereas there are large differences in the phase, coherence and frequency dependences deduced from signals at adjacent sample volumes. These differences allow us to ascribe the detected magnetic fluctuations to the microtearing mode (MTM) by simple dispersion relations of the MTM in collisionless and intermediate regimes. The frequency-integrated level of magnetic fluctuations around 150 kHz (100-200 kHz) is \\tilde{{B}}r /Bt ≈ 1× 10-4 , a level high enough for the ergodization of the magnetic surface and enhanced electron heat loss as derived by Rechester and Rosenbluth (1978 Phys. Rev. Lett. 40 38). This level is consistent with the measurements performed using cross-polarization scattering of microwaves in the Tore Supra tokamak. Our results are the first direct experimental verification of the MTM in the core region of tokamak plasmas, which has been recently observed in gyrokinetic simulations using a very fine mesh in tokamak and ST plasmas.
Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma
NASA Astrophysics Data System (ADS)
Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.
2015-05-01
Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.
REDUCTION OF COMPRESSIBILITY AND PARALLEL TRANSFER BY LANDAU DAMPING IN TURBULENT MAGNETIZED PLASMAS
Hunana, P.; Laveder, D.; Passot, T.; Sulem, P. L.; Borgogno, D.
2011-12-20
Three-dimensional numerical simulations of decaying turbulence in a magnetized plasma are performed using a so-called finite Larmor radius (FLR)-Landau fluid model which incorporates linear Landau damping and FLR corrections. It is shown that compared to simulations of compressible Hall-MHD, linear Landau damping is responsible for significant damping of magnetosonic waves, which is consistent with the linear kinetic theory. Compressibility of the fluid and parallel energy cascade along the ambient magnetic field are also significantly inhibited when the beta parameter is not too small. In contrast with Hall-MHD, the FLR-Landau fluid model can therefore correctly describe turbulence in collisionless plasmas such as solar wind, providing an interpretation for its nearly incompressible behavior.
Comparative study of turbulence models on highly constricted plasma cutting arc
NASA Astrophysics Data System (ADS)
Zhou, Qianhong; Li, Hui; Xu, Xu; Liu, Feng; Guo, Shaofeng; Chang, Xijiang; Guo, Wenkang; Xu, Ping
2009-01-01
Plasma cutting arc characteristics are investigated for different turbulence models, i.e. the Reynolds stress model (RSM), the k-epsilon model and its variants, the renormalization group (RNG) k-epsilon model, the RNG k-epsilon model taking into account the low Reynolds number effect and the realizable k-epsilon model. The results of the RSM and the RNG k-epsilon model taking into account the low Reynolds number effect are in reasonable agreement with experiment. They both predict very close voltage, shock wave location and temperature variation along the axis to experiment. On the other hand, the other three models overestimate the turbulence effects and predict much lower velocity and temperature, especially the standard k-epsilon model, which predicts that the temperature is about 10 000 K lower than the experiment in certain plasma jet regions.
Lagrangian Mapping Approach to Generate Intermittency and its Application in Plasma Turbulence
NASA Astrophysics Data System (ADS)
Subedi, P.; Matthaeus, W. H.; Tessein, J.; Chhiber, R.; Wan, M.
2014-12-01
The Minimal Lagrangian Mapping procedure developed in the context of neutral fluid turbulence(Rosales and Meneveau 2006) is a simple method to generate synthetic vector fields. Using a sequenceof low pass filtered fields, fluid particles are displaced at their rms-speed for some scale-dependenttime interval, and then interpolated back to a regular grid. Fields produced in this way are seen topossess certain properties of real turbulence. We extend the technique to plasmas by takinginto account the coupling between the velocity and magnetic fields. We examine several possibleapplications to plasma systems. One use is as initial conditions for simulations, wherein these syntheticfields may efficiently produce a strongly intermittent cascade. The intermittency properties of thesynthetic fields are also compared with those of the solar wind. Finally, studies of cosmic ray transportand modulation in the test particle approximation may benefit from improved realism in syntheticfields produced in this way.
Plasma turbulence calculations on the Intel iPSC/860 (rx) hypercube
Lynch, V.E. . Computing and Telecommunications Div.); Carreras, B.A.; Drake, J.B.; Leboeuf, J.N. ); Ruiter, J.R. )
1990-01-01
One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A serial algorithm used for plasma turbulence calculations was modified to allocate a radial region in each node. In this way, convolutions at a fixed radius are performed in parallel, and communication is limited to boundary values for each radial region. For a semi-implicity numerical scheme (tridiagonal matrix solver), there is a factor of 3 improvement in efficiency with the Intel iPSC/860 machine using 64 processors over a single-processor Cray-II. For block-tridiagonal matrix cases (fully implicit code), a second parallelization takes place. The Fourier components are distributed in nodes. In each node, the block-tridiagonal matrix is inverted for each of allocated Fourier components. The algorithm for this second case has not yet been optimized. 10 refs., 4 figs.
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets
Prada, Ilaria; Meldolesi, Jacopo
2016-01-01
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.
Prada, Ilaria; Meldolesi, Jacopo
2016-01-01
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914
NASA Astrophysics Data System (ADS)
Oks, Eugene
2015-05-01
Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and below by "hydrogen atoms" and "hydrogen spectral lines" we mean atoms and spectral lines of hydrogen, deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field B experience a Lorentz electric field EL=v×B/c in addition to other electric fields. Since the velocity v has a distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. Compared to previous studies of this contribution, we cover the following new aspects. First, we consider the Lorentz-Doppler broadening of highly-excited hydrogen lines and produce new analytical results for arbitrary strength of the magnetic field B. We show for the first time that in the high-B case, the π-components of hydrogen lines are significantly suppressed compared to the σ-components. Second, we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions differ very significantly from the corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature. Third, we consider magnetized plasmas containing a low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen lines. We demonstrate that our findings lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the observational data in solar physics.
Hybrid Vlasov-Maxwell simulations of two-dimensional turbulence in plasmas
Valentini, F.; Servidio, S.; Veltri, P.; Perrone, D.; Califano, F.; Matthaeus, W. H.
2014-08-15
Turbulence in plasmas is a very challenging problem since it involves wave-particle interactions, which are responsible for phenomena such as plasma dissipation, acceleration mechanisms, heating, temperature anisotropy, and so on. In this work, a hybrid Vlasov-Maxwell numerical code is employed to study local kinetic processes in a two-dimensional turbulent regime. In the present model, ions are treated as a kinetic species, while electrons are considered as a fluid. As recently reported in [S. Servidio, Phys. Rev. Lett. 108, 045001 (2012)], nearby regions of strong magnetic activity, kinetic effects manifest through a deformation of the ion velocity distribution function that consequently departs from the equilibrium Maxwellian configuration. Here, the structure of turbulence is investigated in detail in phase space, by evaluating the high-order moments of the particle velocity distribution, i.e., temperature, skewness, and kurtosis. This analysis provides quantitative information about the non-Maxwellian character of the system dynamics. This departure from local thermodynamic equilibrium triggers several processes commonly observed in many astrophysical and laboratory plasmas.
NASA Astrophysics Data System (ADS)
Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.
2016-03-01
Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
NASA Astrophysics Data System (ADS)
Pottelette, R.; Treumann, R.; Bauer, O. H.; Lebreton, J. P.
1985-01-01
Experimental results, obtained during the PORCUPINE experiment and dealing with the interaction of an artificial ion conic with the background auroral plasma, are presented. In addition, these results are compared to the measurements performed by the S3-3 satellite when natural ion conics are present. This comparison shows that the physical processes associated with the neutralization of conical ion distributions and with their interaction with the background plasma induce the same kind of electrostatic shocks and turbulence as those recorded by S3-3.
Theory of "clumps" in drift-wave turbulence in tokamak plasma
NASA Astrophysics Data System (ADS)
Wang, Xiaogang; Qiu, Xiaoming; X, M. Qhiu
1986-08-01
Basing on the new method of trajectory stochastic treatment advanced by one of the authors of this paper, the theory of "clumps" in driftwave turbulence in tokamak plasmas has been developed. It is shown that, as a longer time behaviour, plasmas in tokamaks will have the same "clumps" effects as those in uniform magnetic fields, although the diffusion crossing magnetic field lines in tokamaks will be enhanced. The influence of the non-uniformity of the magnetic field, such as curvature, shear, etc., on the transverse diffusion and the "clump" life-time is discussed.
The runaway of fast electrons into turbulent plasma of solar flares
NASA Astrophysics Data System (ADS)
Charikov, Yu. E.; Kudryavtsev, I. V.
1992-08-01
Attention is given to the problem in which a beam of fast particles falls into a layer of plasma with induced ion-sound waves and propagates inside the layer scattering by plasmons. A solution is obtained for a turbulent plasma, and, as an application, two model cases are considered: the nonthermal distribution of fast particles and the quasi-thermal one, which are discussed in interpretations of the emissions from solar flares. The scattering on the front with ion-sound waves considerably changes the distribution both quantitatively and qualitatively.
Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma
NASA Astrophysics Data System (ADS)
Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Loisel, G.; Yahia, V.; Rafelski, J.
2013-10-01
The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.
Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J
2013-01-01
The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. PMID:24104859