Waves and turbulence in a tokamak fusion plasma.
Surko, C M; Slusher, R E
1983-08-26
The tokamak is a prototype fusion device in which a toroidal Magnetic field is used to confine a hot plasma. Coherent waves, excited near the plasma edge, can be used to transport energy into the plasma in order to heat it to the temperatures required for thermonuclear fusion. In addition, tokamak plasmas are known to exhibit high levels of turbulent density fluctuations, which can transport particles and energy out of the plasma. Recently, experiments have been conducted to elucidate the nature of both the coherent waves and the turbulence. The experiments provide insight into a broad range of interesting linear and nonlinear plasma phenomena and into many of the processes that determine such practical things as plasma heating and confinement. PMID:17753464
Critically Balanced Ion Temperature Gradient Turbulence in Fusion Plasmas
Barnes, M.
2011-09-09
Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional.
Steady State Turbulent Transport in Magnetic Fusion Plasmas
Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.
2007-12-20
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.
Horton, W.; Hu, G.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
A coarse-grained kinetic equation for neutral particles in turbulent fusion plasmas
Mekkaoui, A.; Marandet, Y.; Genesio, P.; Rosato, J.; Stamm, R.; Capes, H.; Koubiti, M.; Godbert-Mouret, L.; Catoire, F.
2012-06-15
A coarse-grained kinetic equation for neutral particles (atoms, molecules) in magnetized fusion plasmas, valid on time scales large compared to the turbulence correlation time, is presented. This equation includes the effects of plasma density fluctuations, described by gamma statistics, on the transport of neutral particles. These effects have so far been neglected in plasma edge modeling, in spite of the fact that the amplitude of fluctuations can be of order unity. Density fluctuations are shown to have a marked effect on the screening of neutrals and on the spatial localization of the ionization source, in particular at high density. The coarse-grained equations obtained in this work are readily implemented in edge code suites currently used for fusion plasma analysis and future divertor design (ITER, DEMO).
NASA Astrophysics Data System (ADS)
Tang, William
2013-04-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).
Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas
Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.
2004-10-01
A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-09-15
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
Turbulent Transport in Fusion Plasmas, Effects of Toroidicity and Fluid Closure
Weiland, Jan
2009-11-10
Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular Kadomtsev's mixing length estimate is found to work well for the Cyclone base case at the experimental gradient. Generalizations to include non-Markovian effects and off diagonal fluxes are given. The importance of toroidal effects is stressed These enter particularly strongly in convective or off diagonal fluxes. This feature applies also to momentum ttransport.
Farge, Marie; Schneider, Kai; Devynck, Pascal
2006-04-15
A new method to extract coherent bursts from turbulent signals is presented. It uses the wavelet representation which keeps track of both time and scale and thus preserves the temporal structure of the analyzed signal, in contrast to the Fourier representation which scrambles it among the phases of all Fourier coefficients. Using orthogonal wavelets, turbulent signals can be decomposed into coherent and incoherent components, which are orthogonal and whose properties can thus be studied independently. Diagnostics based on the wavelet representation are also introduced to compare the statistical properties of the original signals with their coherent and incoherent components. The wavelet-based extraction method is applied to the saturation current fluctuations measuring the plasma density fluctuations at the edge of the tokamak Tore Supra, Cadarache, France. This procedure disentangles the coherent bursts, which contain most of the density variance, are intermittent and correlated with non-Gaussian statistics, from the incoherent background fluctuations, which are much weaker, non-intermittent, noise-like and almost decorrelated with quasi-Gaussian statistics. We conjecture that the coherent bursts are responsible for turbulent transport, whereas the remaining incoherent fluctuations only contribute to turbulent diffusion.
R. Nazikian; K. Shinohara; G.J. Kramer; E. Valeo; K. Hill; T.S. Hahm; G. Rewoldt; S. Ide; Y. Koide; Y. Oyama; H. Shirai; W. Tang
2005-03-29
A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast to the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.
Energy Science and Technology Software Center (ESTSC)
2008-01-25
BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less
Scaling laws in magnetized plasma turbulence
Boldyrev, Stanislav
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
NASA Astrophysics Data System (ADS)
Sanchez, R.; Newman, D. E.
2015-12-01
The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional
Multiscale coherent structures in tokamak plasma turbulence
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-10-15
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state.
Coherent Structures and Intermittency in Plasma Turbulence
Das, Amita; Kaw, Predhiman; Sen, Abhijit
2008-10-15
The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.
Calderon, E.; Hidalgo, C.; Pedrosa, M.A.; Silva, C.
2004-10-01
Plasma fluctuations and fluctuation-induced particle fluxes have been investigated in the plasma edge of the TJ-II stellarator using Langmuir probes. Simultaneous measurements of plasma fluctuations carried out by probes located in and out of the probe body sheath show similar results in the normalized level of fluctuations in the ion saturation current. However, floating potential fluctuations measured in the co and counter direction of the magnetic field on the sheath probe body show slight but significant differences. The local radial electrostatic turbulent driven transport measured in and out of the probe body sheath shows consistent results, within the errors bars due to uncertainties in the determination of the effective probe collecting area; the normalized local radial transport to the average ion saturation current (the effective velocity which is not affected by uncertainties in the probe area) show consistent results. These results and previous findings call into question the recent interpretation of probe measurements on the basis of the influence of the probe's pre-sheath zone [B. Labombard, Phys. Plasmas. 9, 1300 (2002)].
Holland, Chris [UC San Diego, San Diego, California, United States
2010-01-08
The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.
NASA Astrophysics Data System (ADS)
Xu, G. S.; Wan, B. N.; Wang, H. Q.; Guo, H. Y.; Naulin, V.; Rasmussen, J. Juul; Nielsen, A. H.; Wu, X. Q.; Yan, N.; Chen, L.; Shao, L. M.; Chen, R.; Wang, L.; Zhang, W.
2016-03-01
A new model for the low-to-high (L -H ) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L -H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L -H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.
Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W
2016-03-01
A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment. PMID:26991181
Inertial range turbulence in kinetic plasmas
Howes, Gregory G.
2008-05-15
The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) The conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.
Visualization of plasma turbulence with laser-induced fluorescence (invited)
Levinton, Fred M.; Trintchouk, Fedor
2001-01-01
Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.
Multifractality in plasma edge electrostatic turbulence
Neto, C. Rodrigues; Guimaraes-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.
2008-08-15
Plasma edge turbulence in Tokamak Chauffage Alfven Bresilien (TCABR) [R. M. O. Galvao et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.
Final Report on The Theory of Fusion Plasmas
Steven C. Cowley
2008-06-17
Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.
Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.
Bovet, A; Fasoli, A; Ricci, P; Furno, I; Gustafson, K
2015-04-01
The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature. PMID:25974432
Validation metrics for turbulent plasma transport
NASA Astrophysics Data System (ADS)
Holland, C.
2016-06-01
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.
Fusion Plasma Theory project summaries
Not Available
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.
Simulation Science for Fusion Plasmas
NASA Astrophysics Data System (ADS)
Skoric, M. M.; Sudo, S.
2008-07-01
The world fusion effort has recently entered a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and future demo fusion reactors, an advanced ability for comprehensive computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to develop the capability to predict reliably the behavior of plasmas in toroidal magnetic confinement devices on all relevant time and space scales. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics and computer science is envisaged. In this talk we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. 2003). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor. Finally, a perspective role is given on the ITER Broad Approach program at Rokkasho Center, as an integrated part of ITER and Development of Fusion Energy Agreement.
Xu, X Q
2001-08-09
A boundary plasma turbulence code BOUT is presented. The preliminary encouraging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in CT-7 tokamak. The validation and benchmark of BOUT code and experimental diagnostic tools for fusion boundary plasma turbulence is proposed.
Turbulence in solar wind and laboratory plasmas
Carbone, V.
2010-06-16
Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.
Simulation science for fusion plasmas
NASA Astrophysics Data System (ADS)
Sudo, S.; Škorić, M. M.; Watanabe, T.-H.; Todo, Y.; Ishizawa, A.; Miura, H.; Ishizaki, R.; Ito, A.; Ohtani, H.; Usami, S.; Nakamura, H.; Ito, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; Sato, M.; Yamamoto, T.; Den, M.; Sakagami, H.; Horiuchi, R.; Okamura, S.; Nakajima, N.
2008-10-01
The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. [1]). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.
Strong turbulence of plasma waves
NASA Technical Reports Server (NTRS)
Goldman, M. V.
1984-01-01
This paper reviews recent work related to modulational instability and wave envelope self-focusing in dynamical and statistical systems. After introductory remarks pertinent to nonlinear optics realizations of these effects, the author summarizes the status of the subject in plasma physics, where it has come to be called 'strong Langmuir turbulence'. The paper treats the historical development of pertinent concepts, analytical theory, numerical simulations, laboratory experiments, and spacecraft observations. The role of self-similar self-focusing Langmuir envelope wave packets is emphasized, both in the Zakharov equation model for the wave dynamics and in a statistical theory based on this dynamical model.
EDITORIAL: Stochasticity in fusion plasmas
NASA Astrophysics Data System (ADS)
Finken, K. H.
2006-04-01
In recent years the importance of externally imposed resonant magnetic fields on plasma has become more and more recognized. These fields will cause ergodization at well defined plasma layers and can induce large size islands at rational q-surfaces. A hope for future large scale tokamak devices is the development of a reliable method for mitigating the large ELMs of type 1 ELMy-H-modes by modifying the edge transport. Other topics of interest for fusion reactors are the option of distributing the heat to a large area and optimizing methods for heat and particle exhaust, or the understanding of the transport around tearing mode instabilities. The cluster of papers in this issue of Nuclear Fusion is a successor to the 2004 special issue (Nuclear Fusion 44 S1-122 ) intended to raise interest in the subject. The contents of this present issue are based on presentations at the Second Workshop on Stochasticity in Fusion Plasmas (SFP) held in Juelich, Germany, 15-17 March 2005. The SFP workshops have been stimulated by the installation of the Dynamic Ergodic Divertor (DED) in the TEXTOR tokamak. It has attracted colleagues working on various plasma configurations such as tokamaks, stellarators or reversed field pinches. The workshop was originally devoted to phenomena on the plasma edge but it has been broadened to transport questions over the whole plasma cross-section. It is a meeting place for experimental and theoretical working groups. The next workshop is planned for February/March 2007 in Juelich, Germany. For details see http://www.fz-juelich.de/sfp/. The content of the workshop is summarized in the following conference summary (K.H. Finken 2006 Nuclear Fusion 46 S107-112). At the workshop experimental results on the plasma transport resulting from ergodization in various devices were presented. Highlights were the results from DIII-D on the mitigation of ELMs (see also T.E. Evans et al 2005 Nuclear Fusion 45 595 ). Theoretical work was focused around the topics
Plasma physics goes beyond fusion
NASA Astrophysics Data System (ADS)
Franklin, Raoul
2008-11-01
I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.
Global Variation of Meteor Trail Plasma Turbulence
NASA Technical Reports Server (NTRS)
Dyrud, L. P.; Hinrichs, J.; Urbina, J.
2011-01-01
We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.
Two-Dimensional Turbulence in Magnetized Plasmas
ERIC Educational Resources Information Center
Kendl, A.
2008-01-01
In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…
NASA Astrophysics Data System (ADS)
Cho, Teruji
2007-11-01
The tandem mirror system has achieved improved energy confinement times (> 60-90 ms) with radial transport dominating the Pastukhov axial energy confinement time (> 100 ms). This high confinement regime establishes a proof of principle that the combination of electrostatic and magnetic mirror confinement can successfully insulate electrons from thermal ions. ECH controlled hot-layer formation facilitates plasma-rotation profile formation with a radially localized high-vorticity layer. In the vicinity of the layer, a radial transport barrier is formed [1], showing similar properties to ITB in toroidal plasmas. Coaxially nested intense E(r)xB sheared flow [2] in the GAMMA 10 core plasma realizes an upgraded stable regime having (i) > 0.75 keV bulk central electron temperature with (ii) an achievement of larger stored energy for axially potential-confined ions exceeding that (i.e., diamagnetism) for central magnetically confined ions ( 7 keV). The radially sheared flow having peak-on-axis high vorticity guards and improves whole core plasma confinement, and is controlled by (iii) improved 3 kV ion-confining potential due to simultaneous central and plug ECH. X-ray imaging of the suppression of turbulent structures [1-3] will be shown [1,2]. [1] T. Cho et al., Phys. Rev. Lett. 97, 055001 (2006). [2] T. Cho et al., Phys. Rev. Lett. 94, 085002 (2005). [3] J. Pratt and W. Horton, Phys. Plasmas 13, 042513 (2006). Collaborators; W. Horton^1, J. Pratt^1, M. Hirata, J. Kohagura, T. Numakura, H. Hojo, M. Ichimura, A. Itakura, T. Kariya, I. Katanuma, R. Minami, Y. Nakashima, M. Yoshikawa, Y. Miyata, Y. Yamaguchi, T. Imai, V. P. Pastukhov^2, S. Miyoshi, GAMMA 10 Group (^1IFS, Univ. Texas at Austin, ^2Kurchatov Institute, Russia)
Recent developments in plasma turbulence and turbulent transport
Terry, P.W.
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Observations of velocity shear driven plasma turbulence
NASA Technical Reports Server (NTRS)
Kintner, P. M., Jr.
1976-01-01
Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.
Plasma sheet turbulence observed by Cluster II
NASA Technical Reports Server (NTRS)
Weygand, James M.; Kivelson, M. G.; Khurana, K. K.; Schwarzl, H. K.; Thompson, S. M.; McPherron, R. L.; Balogh, A.; Kistler, L. M.; Goldstein, M. L.; Borovsky, J.
2005-01-01
Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.
Experimental Achievements on Plasma Confinement and Turbulence
Fujisawa, A.
2009-02-19
This article presents a brief review of the experimental studies on turbulence and resultant transport in toroidal plasmas. The article focuses on two topics, physics of transport barrier and the role of mesoscale structure on plasma confinement, i.e. zonal flows. The two topics show the important roles of the mutual interactions between sheared flows, zonal flows and drift waves for plasma turbulence and transport. The findings can lead us to further generalized concept of the disparate scale interactions which could give a fundamental understanding of the plasma confinement from the first principle.
Dissipation range turbulent cascades in plasmas
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-05-15
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
Plasmas are Hot and Fusion is Cool
2011-01-01
Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.
Plasma physics and controlled thermonuclear fusion
Krikorian, R. )
1989-01-01
This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.
On kinetic dissipation in collisionless turbulent plasmas
NASA Astrophysics Data System (ADS)
Parashar, Tulasi Nandan
Plasma turbulence is a phenomenon that is present in astrophysical as well as terrestrial plasmas. The earth is embedded in a turbulent plasma, emitting from the sun, called the solar wind. It is important to understand the nature of this plasma in order to understand space weather. A critical unsolved problem is that of the source of dissipation in turbulent plasmas. It is believed to play a central role in the heating of the solar corona which in turn drives the solar wind. The solar wind itself is observed to be highly turbulent and hotter than predicted through adiabatic expansion models. Turbulence and its associated dissipation have been studied extensively through the use of MHD models. However, the solar wind and large regions of the solar corona have very low collisionality, which calls into question the use of simple viscosity and resistivity in most MHD models. A kinetic treatment is needed for a better understanding of turbulent dissipation. This thesis studies the dissipation of collisionless turbulence using direct numerical hybrid simulations of turbulent plasmas. Hybrid simulations use kinetic ions and fluid electrons. Having full kinetic ion physics, the dissipation in these simulations at the ion scales is self consistent and requires no assumptions. We study decaying as well as quasi steady state systems (driven magnetically). Initial studies of the Orszag-Tang vortex [Orszag, JFM, 1979] (which is an initial condition that quickly generates decaying strong turbulence) showed preferential perpendicular heating of protons (with T_perp /T_|| > 1). An energy budget analysis showed that in the turbulent regime, almost all the dissipation occurs through magnetic interactions. We study the energy budget of waves using the k - o spectra (energy in the wavenumber-frequency space). The k - o spectra of this study and subsequent studies of driven turbulent plasmas do not show any significant power in the linear wave modes of the system. This suggests that
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.
2016-01-01
The transport of heat in laboratory and astrophysical plasmas is dominated by the complex nonlinear dynamics of plasma turbulence. In magnetically confined plasmas used for fusion energy research, turbulence is responsible for cross-field transport that limits the performance of tokamak reactors. We report a set of novel gyrokinetic simulations that capture ion and electron-scale turbulence simultaneously, revealing the dynamics of cross-scale energy transfer and zonal flow modification that give rise to heat losses. Multi-scale simulations are required to match experimental ion and electron heat fluxes and electron profile stiffness, establishing the applicability of the newly discovered physics to experiment. Importantly, these results provide a likely explanation for the loss of electron heat from tokamak plasmas, the ‘great unsolved problem’ (Bachelor et al (2007 Plasma Sci. Technol. 9 312-87)) in plasma turbulence and the projected dominant loss channel in ITER.
Whistler Wave Turbulence in Solar Wind Plasma
NASA Astrophysics Data System (ADS)
Shaikh, Dastgeer; Zank, G. P.
2010-03-01
Whistler waves are present in solar wind plasma. These waves possess characteristic turbulent fluctuations that are characterized typically by the frequency and length scales that are respectively bigger than ion gyro frequency and smaller than ion gyro radius. The electron inertial length is an intrinsic length scale in whistler wave turbulence that distinguishably divides the high frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. We present nonlinear three dimensional, time dependent, fluid simulations of whistler wave turbulence to investigate their role in solar wind plasma. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like k-7/3 spectrum. By contrast, the small scale turbulent fluctuations exhibit a Navier-Stokes like evolution where characteristic turbulent eddies exhibit a typical k-5/3 hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.
Turbulence in laboratory and natural plasmas: Connecting the dots
NASA Astrophysics Data System (ADS)
Jenko, Frank
2015-11-01
It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.
Turbulent magnetized plasmas from ionizing shock waves
NASA Astrophysics Data System (ADS)
Liang, Zuohua
Turbulent argon plasmas produced behind hypersonic shock waves (10 less than M less than 60) are studied in the presence of weak magnetic fields at various strengths between 0 and 600 gauss, parallel and antiparallel to the shock tube's axis. The experiment is performed in a cylindrical arc discharge shock tube of 5 cm diameter and 210 cm overall length. Laser induced fluorescence and an electric probe are used as diagnostics of the ion density. Turbulent fluctuations behind the shock front are observed which persist for a time in the order of 10 msec. Using standard turbulent and chaotic analytical procedures, the influence of the magnetic field on the characterizing parameters is determined under circumstances of changing Mach number and pressure. These parameters include spectral index, correlation time scales, turbulent intensity and chaotic dimensionality. The parameters of turbulence obtained from the two diagnostics are quite consistent. Fluctuation power spectra follow a P approx. f(sup -n) behavior with 1.3 less than n less than 2.8; this agrees with theoretical predictions as well as the results of other investigators. An increasing magnetic field increases the characterizing correlation time, the turbulent intensity, and the chaotic dimension but decreases the small correlation time. Therefore the magnetic field decreases the order (increases the dimensionality) in the turbulent plasma, independent of the direction of the field parallel or antiparallel to the direction of the shock wave. A turbulent velocity-field-coupling model is proposed. A dispersion relation shows that, in the presence of an external magnetic field, varieties of new modes in a turbulent plasma are generated. The model predicts an increasing complexity of the turbulent system with increasing strength of the field and is in very good qualitative agreement with our experiment results.
Turbulent magnetized plasmas from ionizing shock waves
Liang, Zuohua.
1992-01-01
Turbulent argon plasmas produced behind hypersonic shock waves (10 less than M less than 60) are studied in the presence of weak magnetic fields at various strengths between 0 and 600 gauss, parallel and antiparallel to the shock tube's axis. The experiment is performed in a cylindrical arc discharge shock tube of 5 cm diameter and 210 cm overall length. Laser induced fluorescence and an electric probe are used as diagnostics of the ion density. Turbulent fluctuations behind the shock front are observed which persist for a time in the order of 10 msec. Using standard turbulent and chaotic analytical procedures, the influence of the magnetic field on the characterizing parameters is determined under circumstances of changing Mach number and pressure. These parameters include spectral index, correlation time scales, turbulent intensity and chaotic dimensionality. The parameters of turbulence obtained from the two diagnostics are quite consistent. Fluctuation power spectra follow a P approx. f(sup -n) behavior with 1.3 less than n less than 2.8; this agrees with theoretical predictions as well as the results of other investigators. An increasing magnetic field increases the characterizing correlation time, the turbulent intensity, and the chaotic dimension but decreases the small correlation time. Therefore the magnetic field decreases the order (increases the dimensionality) in the turbulent plasma, independent of the direction of the field parallel or antiparallel to the direction of the shock wave. A turbulent velocity-field-coupling model is proposed. A dispersion relation shows that, in the presence of an external magnetic field, varieties of new modes in a turbulent plasma are generated. The model predicts an increasing complexity of the turbulent system with increasing strength of the field and is in very good qualitative agreement with our experiment results.
Turbulence evolution in MHD plasmas
NASA Astrophysics Data System (ADS)
Wisniewski, Martina; Kissmann, Ralf; Spanier, Felix; Spanier
2013-10-01
Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. However, while there are a number of simulations on the market, some questions have not been answered finally. In this paper, we examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving has an influence not only on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
NASA Astrophysics Data System (ADS)
Hnat, B.
2011-09-01
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Origin and turbulence spreading of plasma blobs
Manz, P.; Birkenmeier, G.; Stroth, U.; Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E.; Fuchert, G.
2015-02-15
The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.
Neutrino oscillations in a turbulent plasma
Mendonça, J. T.; Haas, F.
2013-07-15
A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.
Controlled thermonuclear fusion, high temperature plasma physics
NASA Astrophysics Data System (ADS)
1985-05-01
The primary source of nuclear energy comes from the fission process of heavy nuclei. To utilize the energy released by a thermonuclear fusion process, methods of controlling the fusion reaction were studied. This is controlled thermonuclear fusion technology. The fuel used in a thermonuclear fusion process are isotopes of hydrogen: deuterium and tritium. They can be extracted from the almost unlimited seawater. Nuclear fusion also produces very little radioactive waste. Thermonuclear fusion is a promising energy source with an almost unlimited supply; it is economical, safe, and relatively clean. Ways to raise plasma temperature to a very high level and to maintain it to allow fusion reactions to take place are studied. The physical laws of high temperature plasma was studied to reach this goal which resulted in the development of high temperature plasma physics.
Far infrared fusion plasma diagnostics
Luhmann, N.C. Jr.; Peebles, W.A.
1990-01-01
Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.
A fusion based plasma propulsion system
NASA Technical Reports Server (NTRS)
George, J. A.; Anderson, B.; Bryant, D.; Creese, C.; Djordjevic, V.; Peddicord, K. L.
1987-01-01
The Fusion Plasma Propulsion System scoping study was performed to investigate the possibilities of a fusion powered plasma propulsion system for space applications. Specifically, it was to be compared against existing electric propulsion concepts for a manned Mars mission. Design parameters consist of 1000 N thrust for 500 days, and the minimum mass possible. This investigation is briefly presented and conclusions drawn.
Plasma Physics and Controlled Nuclear Fusion
NASA Astrophysics Data System (ADS)
Fisch, N. J.
2010-01-01
Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.
Wakes in Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ellis, Ian Norman
Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC
Global simulations of plasma turbulence in laboratory plasmas
NASA Astrophysics Data System (ADS)
Ricci, P.; Fasoli, A.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Rogers, B. N.; Theiler, C.
2012-04-01
The Global Braginskii Solver (GBS) code has been developed in the last few years to simulate plasma turbulence in laboratory plasmas [1]. By solving the drift-reduced Braginkii equation in magnetic configurations of increasing complexity, from linear devices to the Simple Magnetized Toroidal (SMT) configuration, GBS performs non-linear self-consistent global three-dimensional simulations of the plasma dynamics, as the result of the interplay among the plasma source, the turbulent transport, and the plasma losses at the vessel. This gradual approach has allowed gaining a deep understanding of the turbulence dynamics, by identifying the instabilities responsible for driving plasma turbulence and to estimate the turbulence saturation amplitude. In particular, simulation results have pointed out the need of global simulations to correctly represent the dynamics of laboratory plasmas, as well as the importance of not separating fluctuations and equilibrium quantities. A code validation development project has been conducted side by side with the GBS development [2]. Such validation project has lead to the establishment of a rigorous methodology to carry out experiment-simulation comparison, and has allowed quantifying precisely the level of agreement between the GBS results and the experimental data from the TORPEX experiment at CRPP. [1] P. Ricci, B.N. Rogers, S. Brunner, Phys. Rev. Lett. 100, 225002 (2008); P. Ricci and B. N. Rogers, Phys. Rev. Lett. 104, 145001 (2010); B. N. Rogers and P. Ricci, Phys. Rev. Lett. 104, 225002 (2010); B. Li et al., Phys. Rev. E 83, 056406 (2011). [2] P. Ricci et al, Phys. Plasmas 16, 055703 (2009); P. Ricci et al., Phys. Plasmas 18, 032109 (2011).
Nazikian, R.; Kramer, G.J.; Valeo, E.
2001-02-16
Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices.
Explosive Particle Dispersion in Plasma Turbulence.
Servidio, S; Haynes, C T; Matthaeus, W H; Burgess, D; Carbone, V; Veltri, P
2016-08-26
Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In the steady state, the trajectories of single protons and proton pairs are studied, at different values of plasma β (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher β's being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing, and acceleration processes. PMID:27610862
Complexity and Intermittent Turbulence in Space Plasmas
NASA Technical Reports Server (NTRS)
Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin
2004-01-01
Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.
Understanding of Edge Plasmas in Magnetic Fusion Energy Devices
Rognlien, T
2004-11-01
A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.
Magnetic curvature effects on plasma interchange turbulence
NASA Astrophysics Data System (ADS)
Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-01
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Fusion programs in applied plasma physics
Not Available
1992-02-01
The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.
Basic plasma and fusion theory and computer simulations survey
Kawakami, I.; Nishikawa, K.
1983-12-01
The College of Science and Technology at Nihon University and the Institute for Fusion Theory at Hiroshima University discuss the history of the role of theory and simulation in fusion-oriented research. Recent activities include a one-dimensional tokamak transport code at Nagoya University and three-dimensional resistive MHD simulation studies of spheromaks. Other recent activities discussed include the tokamak computer code system TRITON, transport flux in currentless ECH-produced plasma in Heliotron-E, and thermal electron transport in the presence of a steep temperature gradient. The Japan-U.S. Joint Institute for Fusion Theory's present activities are discussed, including subject areas in three-dimensional simulation studies, nonequilibrium statistical physics, anaomalous transport and drift wave turbulence and hot-electron physics.
Influence of ExB shear flows on plasma edge turbulence
Manz, P.; Ramisch, M.; Mahdizadeh, N.; Stroth, U.; Greiner, F.
2008-03-19
Poloidal ExB shear flows are widely accepted as a trigger mechanism of transport barriers in the edge of fusion plasmas. Strong ExB flows can act on turbulence and turbulent transport through the shear decorrelation mechanism, which can reduce the radial size of turbulent structures or change the phase relation between density and potential fluctuations. In this contribution the influence of ExB shear flows on the microscopic structure of turbulence is investigated. The experiments have been carried out on the toroidally confined low-temperature plasma of the torsatron TJ-K. The plasma is dimensionally similar to fusion edge plasmas and accessible throughout for Langmuir probes. Multi-probe arrays are used to resolve the turbulent dynamics perpendicular to the confining magnetic field in high detail.Strong ExB flows are externally generated by core plasma biasing. It is shown that the fluctuations are dominated by large-scale coherent structures even though strong flow shear is present. These structures reveal increased correlation lengths. It is found that these structures can contribute to improved confinement through inwards transport due to cross-phase modifications. Furthermore, the response of the turbulent Reynolds stress, which is supposed to drive zonal flows as internally ExB shear flows, is investigated. The externally generated flow shear leads to a redistribution of the Reynolds stress with increased poloidal symmetry.
Spectral and Instability Analysis of Plasma Turbulence
NASA Astrophysics Data System (ADS)
Dum, C. T.
2003-12-01
Despite an abundance of data on plasma turbulence, obtained either by direct space observations or from computer simulation, most of the data are interpreted only in a qualitative way, rather than by a detailed analysis that would allow a quantitative comparison with theory. For such a comparison one needs to obtain, as a key ingredient, reliable wave spectra as a function of wave number and frequency. The free energy sources, linear instability mechanisms and nonlinear coupling mechanisms that generate these wave spectra should also be identified. In the case of micro turbulence these mechanisms depend on details of the particle distribution functions. Even the nature of wave modes, not only wave growth rates, may change as the plasma evolves. A particle simulation in which an electron beam excites a variety of wave modes is used as an example for such an analysis. The model corresponds to proposed mechanisms for ion conic generation on auroral field lines. The rather rapid evolution of plasma and turbulence requires that the spectral analysis is carried out over time intervals that are sufficiently short compared to time scales for spectral changes, whereas for statistical reasons and good frequency resolution long sampling intervals would be desirable. Straightforward periodograms are unsatisfactory under these conditions, even when applying windows (tapers) to the wave trains, in order to reduce spectral leakage. Modern spectral analysis methods which were mostly developed in the geophysics context, such as the maximum entropy method and the multiple taper method, can yield far better results. They are adopted for the analysis of plasma turbulence, in particular in connection with particle simulation codes, although, with other data limitations, the considerations mostly apply also to observations. Particular attention is paid to statistical tests for spectral lines which may correspond to eigenmodes (instabilities) of the plasma. For reliable results it is
Strong Turbulence in Alkali Halide Negative Ion Plasmas
NASA Astrophysics Data System (ADS)
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).
Nonlinear Dynamics and Complex Behaviors in Magnetized Plasmas of Fusion Interest
Zonca, F.; Chen, L.
2008-10-15
Complexity and self-organization in burning plasmas are consequence of the interaction of energetic ions with plasma instabilities and turbulence; of the strong nonlinear coupling that will take place between fusion reactivity profiles, pressure driven currents, MHD stability, transport and plasma boundary interactions, mediated by the energetic particle population; and finally of the long time scale nonlinear (complex) behaviors that may affect the overall fusion performance and eventually pose issues for the stability and control of the fusion burn. These issues are briefly discussed in this work, with a view on their potential applications to other research areas.
Turbulent dynamo in a collisionless plasma
NASA Astrophysics Data System (ADS)
Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco
2016-04-01
Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.
Turbulent dynamo in a collisionless plasma.
Rincon, François; Califano, Francesco; Schekochihin, Alexander A; Valentini, Francesco
2016-04-12
Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981
Applications of spectral methods to turbulent magnetofluids in space and fusion research
NASA Technical Reports Server (NTRS)
Montgomery, D.; Voigt, R. G. (Editor); Gottlieb, D. (Editor); Hussaini, M. Y. (Editor)
1984-01-01
Recent and potential applications of spectral method computation to incompressible, dissipative magnetohydrodynamics are surveyed. Linear stability problems for one dimensional, quasi-equilibria are approachable through a close analogue of the Orr-Sommerfeld equation. It is likely that for Reynolds-like numbers above certain as-yet-undetermined thresholds, all magnetofluids are turbulent. Four recent effects in MHD turbulence are remarked upon, as they have displayed themselves in spectral method computations: (1) inverse cascades; (2) small-scale intermittent dissipative structures; (3) selective decays of ideal global invariants relative to each other; and (4) anisotropy induced by a mean dc magnetic field. Two more conjectured applications are suggested. All the turbulent processes discussed are sometimes involved in current carrying confined fusion magnetoplasmas and in space plasmas.
Studies of Zonal Flows Driven by Drift Mode Turbulence in Laboratory and Space Plasmas
Bingham, R.; Trines, R.; Dunlop, M. W.; Davies, J. A.; Bamford, R. A.; Mendonca, J. T.; Silva, L. O.; Shukla, P. K.; Vaivads, A.; Mori, W. B.; Tynan, G.
2008-10-15
The interaction between broadband drift mode turbulence and zonal flows is an important topic associated with transport at plasma boundaries. The generation of zonal flows by the modulational instability of broad band drift waves has resulted in the observation of self organized solitary wave structures at the magnetopause. To understand these structures and their importance to future burning plasmas and space plasmas we have developed a unique numerical simulation code that describes drift wave--zonal flow turbulence. We show that observations by cluster spacecraft confirms the role of drift wave zonal flow turbulence at the Earth's magnetopause and further demonstrates that the magnetopause boundary acts in a s similar manner to transport barriers in tokamak fusion devices. Thus cementing the relationship between the plasma physics of laboratory devices and space plasmas.
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport
NASA Astrophysics Data System (ADS)
Itoh, Sanae-I.; Itoh, Kimitaka
2012-11-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.
New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport
Itoh, Sanae-I.; Itoh, Kimitaka
2012-01-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481
Calculation of fusion product angular correlation coefficients for fusion plasmas
Murphy, T.J.
1987-08-01
The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Ricci, P.; Riva, F.; Theiler, C.; Fasoli, A.; Furno, I.; Halpern, F. D.; Loizu, J.
2015-05-01
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorous estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.
Ricci, P. Riva, F.; Theiler, C.; Fasoli, A.; Furno, I.; Halpern, F. D.; Loizu, J.
2015-05-15
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorous estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.
Advective turbulent transport in the fluid plasma
NASA Astrophysics Data System (ADS)
Min, Byung-Hoon; An, Chan-Yong; Kim, Chang-Bae
2013-10-01
The Hasegawa-Wakatani model (HWM) has been employed in pedagogical analyses of the physics behind the behavior of the tokamak plasmas. In addition to the geometric simplicity HWM has an appealing feature of sustaining autonomous quasi-steady state, unstable modes providing the power that is being transported by the nonlinear interactions and is eventually dissipated by the collisional damping at small scales. Emergence of the zonal flow out of the turbulence is a main candidate to cause the transition from the low plasma confinement to the high mode. In the study of such LH transition with the HWM, the adiabaticity parameter has been shown to play an important role in forcing the zonal flow that results in the regulation of the drift-wave turbulence. Instead of concentrating on the physics of the feedback loop between the turbulence and the zonal flow the present study focuses on the presence of the advective transport of the energy. Numerical simulations of HWM are performed and the connections between the advective transport and the zonal flow will be presented. This work was supported by the Supercpmputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C1-009).
Dust in fusion plasmas: theory and modeling
Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.
2008-09-07
Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.
Advanced simulation of electron heat transport in fusion plasmas
Lin, Zhihong; Xiao, Y.; Klasky, Scott A; Lofstead, J.
2009-01-01
Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual
Advanced Simulation of Electron Heat Transport in Fusion Plasmas
Lin, Z.; Xiao, Y.; Holod, I.; Zhang, W. L.; Deng, Wenjun; Klasky, Scott A; Lofstead, J.; Kamath, Chandrika; Wichmann, Nathan
2009-01-01
Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.
Space plasma turbulent dissipation - Reality or myth?
NASA Technical Reports Server (NTRS)
Coroniti, F. V.
1985-01-01
A prevalent approach to understanding magnetospheric dynamics is to combine a hydromagnetic description of the large scale magnetic structure and convection flows with a locally determined anomalous dissipation which develops in boundary layers. Three problems (nose and tail reconnection, auroral field-aligned currents, and diffuse auroral precipitation) are critically examined to test the validity of this theoretical philosophy. Although the expected plasma wave turbulence is observed for each case, the concept of local anomalous dissipation fails to provide an adequate or complete description of the phenomenae.
Plasma flow, turbulence and magnetic islands in TJ-II
NASA Astrophysics Data System (ADS)
Estrada, T.; Ascasíbar, E.; Blanco, E.; Cappa, A.; Hidalgo, C.; Ida, K.; López-Fraguas, A.; van Milligen, B. Ph
2016-02-01
The effect of magnetic islands on plasma flow and turbulence has been experimentally investigated in ohmically induced magnetic configuration scans at the stellarator TJ-II. This operational mode allows sweeping the radial position of a low order rational surface from the plasma core towards the edge in a controlled way, what reveals effects that are difficult to notice in scans performed on a shot to shot basis. The main diagnostic used in the present work is a two-channel Doppler reflectometer that allows the measurement of the perpendicular rotation velocity of the turbulence and density fluctuations with good spatial and temporal resolution. A characteristic signature of the n/m = 3/2 magnetic island as it crosses the measurement position is clearly detected: the perpendicular flow reverses at the center of the magnetic island and a flow shear develops at the island boundaries. Fluctuations of the perpendicular flow and density have been also measured along the 3/2 magnetic island. An increase in the low frequency flow oscillations is measured at the magnetic island boundaries together with a reduction in the density fluctuation level; the later being more pronounced at the inner island boundary. These observations could explain the link between magnetic islands and transport barriers observed in a number of fusion devices.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Poyé, A.; Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N.; Garbet, X.; Sen, A.
2015-03-15
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Fusion programs in Applied Plasma Physics
Not Available
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections.
Weak turbulence theory for collisional plasmas
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.
2016-03-01
Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.
Transport equations for lower hybrid waves in a turbulent plasma
NASA Astrophysics Data System (ADS)
Mendonca, J. T.; Horton, W.; Galvao, R. M. O.; Elskens, Y.
2014-10-01
Injection and control of intense lower hybrid (LH) wave spectra is required to achieve steady state tokamak operation in the new WEST tokamak at CEA France. The tungsten [W] environment [E] steadytstate [S] tokamak [T] has two high-power [20 MW] lower hybrid antennas launching 3.7 GHz polarized waves for steady fusion-grade plasmas control. The wave propagation and scattering is described in by ray equations in the presence of the drift wave turbulence. Theory for the wave transport equations for propagation of the wave momentum and energy densities are derived from the Wigner function method of QM. The limits of the diffraction and scattering for ray transport theory are established. Comparisons are made between the wave propagation in WEST and ITER tokamaks. Supported by the University of Texas at Austin; PIIM/CNRS at Aix-Marseille University and University of Sao Paulo.
Aleksey Kuritsyn; Fred M. Levinton
2004-04-27
A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.
Kuritsyn, Aleksey; Levinton, Fred M.
2004-10-01
A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.
Vortex Stabilized Compressed Fusion Grade Plasma
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2015-03-01
Inertial confinement fusion schemes comprise of highly compressed dense plasmas. Some involve short pulses of powerful beams (lasers, particles) applied to solid pellets, while others utilize plasma focus to obtain dense pinch plasmas. Although compression factor >1000 has been achieved for starting pressures in the Torr range, the latter is limited by instabilities for initial gas density above 10 Torr. One alternative approach could be shooting electron beams through very dense, atmospheric pressure, vortex stabilized plasma. Large azimuthal magnetic generated by an electron beam can compress and heat the plasma to fusion viable parameters. This configuration is stable against sausage, kink, or beam - plasma instabilities. Based on experimental evidence beam propagation through the plasma is not be an issue. A second possibility is to tangentially squeeze a quasi-neutral plasma focus flow by a surrounding gas vortex. Based on currently available electron beams, the first scheme viability as an electrical power generating reactor does not seem to be promising. But using a plasma cathode electron beam that was developed a while ago, for which DOE has a patent U.S. Patent 4,942,339, could result in net generation of electricity. Calculations will be presented. Work supported by Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy.
Measuring plasma turbulence using low coherence microwave radiation
Smith, D. R.
2012-02-20
Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.
Turbulent cascade in a two-ion plasma
Qiu, Xin; Liu, San-Qiu; Yu, Ming-Yang
2014-11-15
It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.
Global scale-invariant dissipation in collisionless plasma turbulence.
Kiyani, K H; Chapman, S C; Khotyaintsev, Yu V; Dunlop, M W; Sahraoui, F
2009-08-14
A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas. PMID:19792654
Characterization of radial turbulent fluxes in the Santander linear plasma machine
Mier, J. A. Anabitarte, E.; Sentíes, J. M.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van
2014-05-15
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.
Stellarator approach to fusion plasma confinement
Harris, J.H.
1985-01-01
The stellarator is a toroidal fusion plasma confinement device with nested magnetic flux surfaces. The required twist of the field lines is produced by external helical coils rather than by plasma current, as in a tokamak. Stellarator devices are attractive fusion reactor candidates precisely because they offer the prospect of steady-state operation without plasma current. In the last few years the excellent results achieved with currentless stellarator plasmas of modest minor radius (10 to 20 cm) at Kyoto University (Japan) and the Max Planck Institute (West Germany) have made the stellarator second only to the tokamak in its progress toward fusion breakeven, with temperatures T/sub e/, T/sub i/ approx. 1 KeV, Lawson products n tau approx. 2 to 5 x 10/sup 12/ cm/sup -3/.s, and volume-averaged beta values approx. = 2%. The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge Natioal Laboratory (ORNL) and scheduled to operate in 1986, represents a significant advance in stellarator research, with a plasma major radius of 2.1 m, an average minor radius of 0.3 m, and a magnetic field of 2 T for 5 s or 1 T at steady state. ATF replaces the Impurity Study Experiment (ISX-B) tokamak at ORNL and will use the ISX-B heating and diagnostic system.
Dense Hypervelocity Plasma Jets for Fusion Applications
NASA Astrophysics Data System (ADS)
Witherspoon, F. Douglas; Thio, Y. C. Francis
2005-10-01
High velocity dense plasma jets are being developed for a variety of fusion applications, including refueling, disruption mitigation, High Energy Density Plasmas, magnetized target/magneto-inertial fusion, injection of angular momentum into centrifugally confined mirrors, and others. The technical goal is to accelerate plasma blobs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section that prevents formation of the blow-by instability. AFRL MACH2 modeling identified 2 electrode configurations that produce the desired plasma jet parameters. The injected plasma is generated by up to 64 radially oriented capillary discharges arranged uniformly around the circumference of an angled annular injection section. Initial experimental results are presented in which 8 capillaries are fired in parallel with jitter of ˜100 ns. Current focus is on higher voltage operation to reduce jitter to a few 10's of ns, and development of a suite of optical and spectroscopic plasma diagnostics.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
E. A. Belli; Hammett, G. W.; Dorland, W.
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Fusion Reaction Rate in an Inhomogeneous Plasma
S. Son; N.J. Fisch
2004-09-03
The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.
Plasma simulation and fusion calculation
NASA Astrophysics Data System (ADS)
Buzbee, B. L.
Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research and in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation is vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. Parallel formulation of PIC models for master/slave architectures and ring architectures is discussed. Because interprocessor communication is a decisive factor in the overall efficiency of a parallel system, division of these models into large granules that can be executed in parallel with relatively little need for communication is shown. Measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP are also reported.
Plasma simulation and fusion calculation
Buzbee, B.L.
1983-01-01
Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research. They are also used in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation can be vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. This paper discusses parallel formulation of PIC models for master/slave architectures and ring architectures. Because interprocessor communication can be a decisive factor in the overall efficiency of a parallel system, we show how to divide these models into large granules that can be executed in parallel with relatively little need for communication. We also report measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP.
A Concept of Cross-Ferroic Plasma Turbulence.
Inagaki, S; Kobayashi, T; Kosuga, Y; Itoh, S-I; Mitsuzono, T; Nagashima, Y; Arakawa, H; Yamada, T; Miwa, Y; Kasuya, N; Sasaki, M; Lesur, M; Fujisawa, A; Itoh, K
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
A Concept of Cross-Ferroic Plasma Turbulence
Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence
Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.
2009-06-15
The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2016-05-01
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).
Role of impurities in fusion plasmas
Tokar, M. Z.
2008-10-15
The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.
Inertial fusion features in degenerate plasmas
NASA Astrophysics Data System (ADS)
León, Pablo T.; Eliezer, Shalom; Piera, Mireia; Martínez-Val, José M.
2005-04-01
Very high plasma densities can be obtained at the end of the implosion phase in inertial fusion targets, particularly in the so-called fast-ignition scheme (Tabak et al., 1994; Mulser & Bauer, 2004), where a central hot spark is not needed at all. By properly tailoring the fuel compression stage, degenerate states can be reached (Azechi et al., 1991; Nakai et al., 1991; McCory, 1998). In that case, most of the relevant energy transfer mechanisms involving electrons are affected (Honrubia & Tikhonchuk, 2004; Bibi & Matte, 2004; Bibi et al., 2004). For instance, bremsstrahlung emission is highly suppressed (Eliezer et al., 2003). In fact, a low ignition-temperature regime appears at very high plasma densities, due to radiation leakage reduction (León et al., 2001). Stopping power and ion-electron coulomb collisions are also changed in this case, which are important mechanisms to trigger ignition by the incoming fast jet, and to launch the fusion wave from the igniting region into the colder, degenerate plasma. All these points are reviewed in this paper. Although degenerate states would not be easy to obtain by target implosion, they present a very interesting upper limit that deserves more attention in order to complete the understanding on the different domains for inertial confinement fusion.
Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs
Davidson, Ronald C.
1980-08-01
A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)
Atmospheric turbulence mitigation using complex wavelet-based fusion.
Anantrasirichai, Nantheera; Achim, Alin; Kingsbury, Nick G; Bull, David R
2013-06-01
Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full- and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios. PMID:23475359
Mass dependency of turbulent parameters in stationary glow discharge plasmas
Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III
2013-05-15
A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.
A dynamical model of plasma turbulence in the solar wind
Howes, G. G.
2015-01-01
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Exploring Plasma Turbulence in the Kronian Magnetosheath Using Cassini Data
NASA Astrophysics Data System (ADS)
Hadid, L.; Sahraoui, F.; Kiyani, K. H.; Modolo, R.; Retino, A.; Canu, P.; Masters, A.; Dougherty, M. K.
2014-12-01
The shocked solar wind plasma upstream of the bowshock forms the magnetosheath. Through this region energy, mass and momentum are transported from the solar wind into the planet's magnetosphere, playing a crucial role in the solar-planet interactions. Hence, the planets' magnetosheath present a high level of turbulence, with a rich variety of wave and stochastic phenomena. While the magnetic turbulence of the terrestrial magnetosheath has been extensively studied, not so much work has been done regarding the planets magnetosheaths. Therefore, and in order to expand our knowledge on plasma turbulence, we investigate here the main properties of the plasma turbulence in the magnetosheath of Saturn using the Cassini spacecraft data and compare it with the well-explored terrestrial solar wind turbulence. These properties include the magnetic field energy spectra, the magnetic compressibility and intermittency, at both MHD and kinetic scales. The analysis is based on in-situ data provided by the Fluxgate Magnetometer of the MAG instrument, which measures the magnetic field data with 32ms time resolution and the plasma data from the CAPS/IMS (Cassini Plasma Spectrometer) and the Electron Spectrometer (ELS), during 39 shock-crossings between 2004 and 2005. Similarities and differences were found between the different media, in particular about the nature of the turbulence and its scaling laws. These finding will be discussed along with theoretical implications on the modeling of space plasma.
Immediate Influence of External Sources on Turbulent Plasma Transport
NASA Astrophysics Data System (ADS)
Kosuga, Yusuke; Itoh, Sanae-I.; Itoh, Kimitaka
Immediate impact of external sources on pressure-gradient-driven turbulence and turbulent transport (without waiting the evolution of global parameters and those in mean velocity distribution function) is discussed. The case, where an external source directly couples with plasma fluctuations in particle source and momentum source, is investigated. Theoretical analysis is developed by use of Hasegawa-Wakatani model equations. It is shown that the momentum source can induce the immediate influence on the turbulence and turbulent transport. The effect of this coupling between source and fluctuations on the momentum theorem is also explained.
Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry
Xu, X.Q.
1998-10-14
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.
The energetic coupling of scales in gyrokinetic plasma turbulence
Teaca, Bogdan; Jenko, Frank
2014-07-15
In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.
Toward the Theory of Turbulence in Magnetized Plasmas
Boldyrev, Stanislav
2013-07-26
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.
A weakened cascade model for turbulence in astrophysical plasmas
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2016-08-01
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.
RF plasma heating in toroidal fusion devices
Golant, V.E.; Fedorov, V.I. )
1989-01-01
The purpose of the present book is to provide, in seven chapters, a unified overview of the methods for rf heating of plasmas in toroidal fusion experiments. In Chapter 1 the problem of plasma heating in tokamaks and stellarators is formulated and the requirements for auxiliary heating techniques are described. This chapter also contains a brief review of the results of research on tokamaks and stellarators. Chapter 2 is devoted to a theoretical description of the principal physical effects involved in the rf heating of plasmas, especially the characteristics of wave propagation, of the mechanisms by which waves are absorbed and plasma heating takes place, and of the nonlinear effects that accompany heating. The primary emphasis is on a qualitative physical picture of these effects. Chapters 3-6, in turn, deal with the major rf heating techniques currently under investigation, electron cyclotron (ECH), ion cyclotron (ICH), lower hybrid (LHH), and Alfven wave heating. In each of these chapters the main schemes for heating are described, the results of theoretical analyses and numerical simulations are discussed, the technology of the heating systems is briefly described, and experimental work published through the end of 1984 is reviewed. Finally, in Chapter 7 the different rf heating techniques are compared; they are contrasted with neutral beam injection, and the feasibility of adiabatic compression as a means of heating plasmas is examined. Separate abstracts were prepared for each chapter of this book. 246 refs.
Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III
1998-01-01
For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found
The Conversion of Large-Scale Turbulent Energy to Plasma Heat In Astrophysical Plasmas
NASA Astrophysics Data System (ADS)
Howes, Gregory
2015-11-01
Turbulence in space and astrophysical plasmas plays a key role in the conversion of the energy of violent events and instabilities at large scales into plasma heat. The turbulent cascade transfers this energy from the large scales at which the motions are driven down to small scales, and this essentially fluid process can be understood in terms of nonlinear wave-wave interactions. At sufficiently small scales, for which the dynamics is often weakly collisional, collisionless mechanisms damp the turbulent electromagnetic fluctuations, and this essentially kinetic process can be understood in terms of linear wave-particle interactions. In this talk, I will summarize the possible channels of the turbulent dissipation in a weakly collisional plasma, and present recent results from kinetic numerical simulations of plasma turbulence. Finally, I will discuss strategies for the definitive identification of the dominant dissipation channels using spacecraft measurements of turbulence in the solar wind.
Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations
E. Mazzucato
1998-02-01
This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.
The fusion/plasma physics chart from CPEP
NASA Astrophysics Data System (ADS)
Aubrecht, Gordon
2009-04-01
The Contemporary Physics Education Project has created charts and support for teachers for particle physics, cosmology, nuclear physics, and plasma physics. This poster shows and gives some background on our fusion / plasma physics chart.
DISSIPATION WAVENUMBERS FOR TURBULENCE IN ELECTRON-POSITRON PLASMAS
Peter Gary, S.; Roytershteyn, Vadim S.; Karimabadi, Homa E-mail: roytersh@lanl.gov
2009-08-20
Many astrophysical systems involve turbulent electron-positron plasmas. Linear kinetic theory of electromagnetic fluctuations in homogeneous, magnetized, collisionless, non-relativistic electron-positron plasmas predicts that two lightly damped modes propagate at relatively long wavelengths: an Alfven-like mode with dispersion {omega}{sub r}=k{sub ||}v-tilde{sub A} and a magnetosonic-like mode with dispersion {omega}{sub r}{approx_equal}kv-tilde{sub A} if {beta} {sub e} << 1. Here, v-tilde{sub A} is the Alfven speed in an electron-positron plasma and || refers to the direction parallel to the background magnetic field B{sub o}. The dissipation wavenumber k{sub d} is defined as the value of k at which the damping rate equals the rate of energy transfer by the turbulent cascade. Using linear theory and a basic turbulent cascade model, k{sub d} is predicted for turbulence at propagation quasi parallel to B{sub o}, for quasi-perpendicular magnetosonic-like turbulence, and for quasi-perpendicular Alfven-like turbulence. In the latter case, the model predicts that an increase in the turbulent energy should correspond to an increase in k{sub d} . The assumptions and predictions of the model may be tested by particle-in-cell simulations.
Status and Verification of Edge Plasma Turbulence Code BOUT
Umansky, M V; Xu, X Q; Dudson, B; LoDestro, L L; Myra, J R
2009-01-08
The BOUT code is a detailed numerical model of tokamak edge turbulence based on collisional plasma uid equations. BOUT solves for time evolution of plasma uid variables: plasma density N{sub i}, parallel ion velocity V{sub {parallel}i}, electron temperature T{sub e}, ion temperature T{sub i}, electric potential {phi}, parallel current j{sub {parallel}}, and parallel vector potential A{sub {parallel}}, in realistic 3D divertor tokamak geometry. The current status of the code, physics model, algorithms, and implementation is described. Results of verification testing are presented along with illustrative applications to tokamak edge turbulence.
NSTX Diagnostics for Fusion Plasma Science Studies
R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team
2001-07-05
This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.
Massachusetts Institute of Technology Plasma Fusion Center 1992-1993 report to the President
NASA Astrophysics Data System (ADS)
1993-07-01
This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics, RF plasma heating, gyrotron research, treatment of solid waste by arc plasma, divertor experiments, tokamak studies, and plasma and fusion theory.
Gyrokinetic turbulence simulations at high plasma beta
Pueschel, M. J.; Kammerer, M.; Jenko, F.
2008-10-15
Electromagnetic gyrokinetic turbulence simulations employing Cyclone Base Case parameters are presented for {beta} values up to and beyond the kinetic ballooning threshold. The {beta} scaling of the turbulent transport is found to be linked to a complex interplay of linear and nonlinear effects. Linear investigation of the kinetic ballooning mode is performed in detail, while nonlinearly, it is found to dominate the turbulence only in a fairly narrow range of {beta} values just below the respective ideal limit. The magnetic transport scales like {beta}{sup 2} and is well described by a Rechester-Rosenbluth-type ansatz.
Magnetohydrodynamic turbulence and enhanced atomic processes in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Spangler, Steven R.
1998-08-01
This article discusses a way in which enhanced atomic physics processes, including radiative energy losses, may occur in an astrophysical plasma containing magnetohydrodynamic turbulence. Two-dimensional (2D) magnetohydrodynamics (MHD) is adopted as a model. A major characteristic feature of 2D MHD turbulence is the development of strong current sheets on a dynamical time scale L/V0 where L is the spatial scale of the turbulent fluid and V0 is the scale of the velocity fluctuations. The current contained in the sheets will be carried by an electron drift relative to the ions. The case of a plasma containing minority atoms or ions with an excited state accessible to collisions from the tail of the electron distribution is considered. In the current carrying sheets or filaments, the electron distribution function will be perturbed such that collisional excitations will be enhanced relative to the current-free plasma. Subsequent radiative de-excitation of the atoms or ions removes energy from the turbulence. Expressions are presented for the electron drift velocity arising in 2D turbulence, the enhancement of collisional excitations of a trace atom or ion, and the energy lost to the plasma turbulence by radiative de-excitation of these atoms or ions. The mechanism would be most pronounced in plasmas for which the magnitude of the magnetic field is large, the outer scale of the turbulence is small, and the electron density and temperature are low. A brief discussion of the relevance of this mechanism to some specific astrophysical plasmas is given.
Tomography as a promising diagnostic tool for plasma turbulence
NASA Astrophysics Data System (ADS)
Fujisawa, A.; Nagashima, Y.; Inagaki, S.; Onchi, T.; Ohshima, S.; Shimizu, A.
2016-02-01
A system for plasma turbulence tomography has been developed in a linear cylindrical plasma as a prototype with aiming at future application on toroidal plasma of higher temperature. This paper describes the diagnostic system in both aspects of the soft- and hardware, and reports the first results of tomographic reconstruction that can successfully produce local emission and its fluctuations. In the reconstruction process, two dimensional view of plasma is obtained for approximately 0.6 ms in every sampling time of 1 μs using parallel processing of 120 cores with 10 personal computers. The results include the steady state analysis of local fluctuation power spectra using fast Fourier transform, analysis of temporal behavior of fluctuation power spectra with wavelet transform, and analyses of the structural deformation or pattern of local plasma emission, demonstrating that the success of tomography as a promising diagnostic tool for plasma turbulence.
Turbulent Transport in Tokamak Plasmas with Rotational Shear
Barnes, M.; Highcock, E. G.; Cowley, S. C.; Roach, C. M.
2011-04-29
Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal ExB shear value for plasma confinement. Local maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the ExB shear. The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears; at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.
Turbulent transport of alpha particles in reactor plasmas
Estrada-Mila, C.; Candy, J.; Waltz, R. E.
2006-11-15
A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)
Thomson scattering from inertial confinement fusion plasmas
Glenzer, S.H.; Back, C.A.; Suter, L.J.
1997-07-08
Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.
Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.
Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H
2011-02-25
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. PMID:21405577
Kinetic signatures and intermittent turbulence in the solar wind plasma.
Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C
2012-06-29
A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures. PMID:23004954
NASA Astrophysics Data System (ADS)
Redd, Aaron J.; Kritz, Arnold H.; Bateman, Glenn; Horton, Wendell
1998-05-01
A drift wave transport model, recently developed by Ottaviani, Horton and Erba (OHE) [Ottaviani et al., Plasma Phys. Controlled Fusion 39, 1461 (1997)], has been implemented and tested in a time-dependent predictive transport code. This OHE model assumes that anomalous transport is due to turbulence driven by ion temperature gradients and that the fully developed turbulence will extend into linearly stable regions, as described in the reference cited above. A multiplicative elongation factor is introduced in the OHE model and simulations are carried out for 12 discharges from major tokamak experiments, including both L- and H-modes (low- and high-confinement modes) and both circular and elongated discharges. Good agreement is found between the OHE model predictions and experiment. This OHE model is also used to describe the performance of the International Thermonuclear Experimental Reactor (ITER) [Putvinski et al., in Proceedings of the 16th IAEA Fusion Energy Conference, Montréal, Canada, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, p. 737.] A second version of the OHE model, in which the turbulent transport is not allowed to penetrate into linearly stable regions, has also been implemented and tested. In simulations utilizing this version of the model, the linear stability of the plasma core eliminates the anomalous thermal transport near the magnetic axis, resulting in an increase in the core temperatures to well above the experimental values.
Xu, G. S.; Wan, B. N.; Zhang, W.
2006-06-15
In fusion plasmas, intermittently occurring large-scale coherent structures in electrostatic turbulence sometimes contribute more than 50% of total transport, so the investigation on these coherent structures is important for understanding plasma confinement. New experimental techniques are required to extract these coherent structures from fluctuating signals. In this work a 12-tip poloidal rake probe was used on the HT-7 superconducting tokamak to measure plasma turbulence in the plasma edge region. Several signal analysis methods based on a biorthogonal wavelet were developed and applied to the probe data. Since the structure of the selected wavelet is every similar to that of the turbulence wave packet, information about large-scale coherent structures can be selectively extracted from the ambient turbulence. The spatiotemporal patterns of the large-scale coherent structures were reconstructed using the selected wavelets as well as those of small-scale details. These wavelet-based techniques can be applied to all kinds of plasma fluctuation diagnostics, so they possibly present a new opportunity for uncovering the mechanism underlying plasma turbulent transport.
Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas
Zagorodny, Anatoly; Weiland, Jan
2009-10-08
The derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is presented. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient for saturated turbulence.
Fundamental studies of fusion plasmas. Final report
Aamodt, R.E.
1998-01-30
Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.
NASA Astrophysics Data System (ADS)
Lee, Gyung Su.
This thesis is devoted to two studies of low-frequency turbulence in toroidally confined plasma. Low-frequency turbulence is believed to play an important role in anomalous transport in toroidal confinement devices. The first study pertains the the development of an analytic theory of ion-temperature-gradient-driven turbulence in tokamaks. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity is derived and is found to be consistent with experimentally-deduced ion thermal diffusivities. The associated electron thermal diffusivity, particle and heat-pinch velocities are also calculated. The effects of impurity gradients on saturated ion-temperature-gradient-driven turbulence are discussed and a related explanation of density profile steepening during Z-mode operation is proposed. The second study is devoted to the role of multiple helicity nonlinear interactions of tearing modes and dynamics of magnetic relaxation in a high-temperature current-carrying plasma. To extend the resistive MHD theory of magnetic fluctuations and dynamo activity observed in the reversed field pinch, the fluid equations for high-temperature regime are derived and basic nonlinear interaction mechanism and the effects of diamagnetic corrections to the MHD turbulence theory are studied for the case of fully developed, densely packed turbulence. Modifications to the MHD dynamo theory and anomalous thermal transport and confinement scaling predictions are examined.
Plasma turbulence in the downstream ionosheath of Venus
NASA Technical Reports Server (NTRS)
Intriligator, D. S.; Scarf, F. L.
1982-01-01
Observations made by the Pioneer Venus Orbiter plasma analyzer and the plasma wave instrument in the Venus ionosheath are compared. Large increases in plasma wave turbulence levels appear to be connected with changing plasma distributions and interpenetrating plasma beams. Some of these plasma waves are identified as Doppler - shifted ion acoustic waves due to beam/beam interactions, but it is noted that different forms of instabilities are probably also operative. The changes in the temperature, intensity and energy of the peak in the PVO plasma distributions are similar to those observed by Venera 10 closer to the planet and appear to be evidence for rarefaction and compression in the downstream ionosheath. Some of the changes in the PVO plasma distributions may be related to the presence of a second ion population or the acceleration of protons.
Turbulent and directed plasma motions in solar flares
NASA Technical Reports Server (NTRS)
Fludra, A.; Bentley, R. D.; Lemen, J. R.; Jakimiec, J.; Sylwester, J.
1989-01-01
An improved method for fitting asymmetric soft X-ray line profiles from solar flares is presented. A two-component model is used where one component represents the total emission from directed upflow plasma and the other the emission from the plasma at rest. Unlike previous methods, the width of the moving component is independent from that of the stationary component. Time variations of flare plasma characteristics (i.e., temperature, emission measure of moving and stationary plasma, upflow and turbulent velocities) are derived from the Ca XIX and Fe XXV spectra recorded by the Bent Crystal Spectrometer on the Solar Maximum Mission. The fitting technique provides a statistical estimation for the uncertainties in the fitting parameters. The relationship between the directed and turbulent motions has been studied, and a correlation of the random and directed motions has been found in some flares with intensive plasma upflows. Mean temperatures of the upflowing and stationary plasmas are compared for the first time from ratios of calcium to iron X-ray line intensities. Finally, evidence for turbulent motions and the possibility of plasma upflow late into the decay phase is presented and discussed.
Suppression of phase mixing in drift-kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Parker, J. T.; Highcock, E. G.; Schekochihin, A. A.; Dellar, P. J.
2016-07-01
Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to "anti-phase-mixing" modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
Tritium projectiles for fueling magnetic fusion plasmas
Fisher, P.W.; Gouge, M.J.
1995-12-31
As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet (cylindrical projectile of frozen hydrogenic gas at a temperature in the range 6--16 K) injection system to test the mechanical and thermal properties of extruded tritium, a radioactive isotope of hydrogen. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase 2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-2 program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter {approximately} 7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to 13 pellets have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. The pellets, typically 7.4 mm in diameter and up to 11 mm in length, are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process called isotopic fueling in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.
Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP
NASA Astrophysics Data System (ADS)
Watanabe, Naomi; Golkowski, Mark; Sheerin, James; University of Colorado Denver Team
2013-10-01
We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) located at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line (OPL) spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.
2003-01-01
An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.
RF wave propagation and scattering in turbulent tokamak plasmas
NASA Astrophysics Data System (ADS)
Horton, W.; Michoski, C.; Peysson, Y.; Decker, J.
2015-12-01
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
RF wave propagation and scattering in turbulent tokamak plasmas
Horton, W. Michoski, C.; Peysson, Y.; Decker, J.
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Kinetic simulations of magnetized turbulence in astrophysical plasmas.
Howes, G G; Dorland, W; Cowley, S C; Hammett, G W; Quataert, E; Schekochihin, A A; Tatsuno, T
2008-02-15
This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfvén waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfvén waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale. PMID:18352484
Implications of polarized DT plasmas for toroidal fusion reactors
Micklich, B.J.; Jassby, D.L.
1983-05-01
Spin polarization of the deuterons and tritons in a reacting plasma can result in an increase in the fusion reactivity and variation of the angular distribution of emission of the fusion neutrons. The increased fusion reactivity relaxes the confinement-temperature conditions for breakeven and ignition. We have determined the effect of varying the angular distribution of the fusion neutrons on the spatial distribution of fusion neturon current and flux at the first wall, on the global tritium breeding ratio, and on the first-wall radiation damage in low-aspect-ratio toroidal geometry.
Turbulent and neoclassical impurity transport in tokamak plasmas
Fueloep, T.; Nordman, H.
2009-03-15
Impurity particle transport in tokamaks is studied using an electrostatic fluid model for main ion and impurity temperature gradient (ITG) mode and trapped electron (TE) mode turbulence in the collisionless limit and neoclassical theory. The impurity flux and impurity density peaking factor obtained from a self-consistent treatment of impurity transport are compared and contrasted with the results of the often used trace impurity approximation. Comparisons between trace and self-consistent turbulent impurity transport are performed for ITER-like profiles. It is shown that for small impurity concentrations the trace impurity limit is adequate if the plasma is dominated by ITG turbulence. However, in case of TE mode dominated plasmas the contribution from impurity modes may be significant, and therefore a self-consistent treatment may be needed.
Selective formation of turbulent structures in magnetized cylindrical plasmas
Kasuya, Naohiro; Itoh, Kimitaka; Yagi, Masatoshi; Itoh, Sanae-I
2008-05-15
The mechanism of nonlinear structural formation has been studied with a three-field reduced fluid model, which is extended to describe the resistive drift wave turbulence in magnetized cylindrical plasmas. In this model, ion-neutral collisions strongly stabilize the resistive drift wave, and the formed structure depends on the collision frequency. If the collision frequency is small, modulational coupling of unstable modes generates a zonal flow. On the other hand, if the collision frequency is large, a streamer, which is a localized vortex in the azimuthal direction, is formed. The structure is generated by nonlinear wave coupling and is sustained for a much longer duration than the drift wave oscillation period. This is a minimal model for analyzing the turbulent structural formation mechanism by mode coupling in cylindrical plasmas, and the competitive nature of structural formation is revealed. These turbulent structures affect particle transport.
Spontaneous emission of electromagnetic radiation in turbulent plasmas
Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.
2014-01-15
Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.
Vortex stabilized electron beam compressed fusion grade plasma
Hershcovitch, Ady
2014-03-19
Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.
Global Turbulence Simulations of CYCLONE Base Case and MAST Plasmas
Saarelma, S.; Akers, R.; Reshko, M.; Roach, C. M.; Romanelli, M.; Thyagaraja, A.; Bottino, A.; Jolliet, S.
2008-11-01
The non-local effects of turbulence can affect the transport especially in devices when the ration of ion gyroradius to plasma size ({rho}{sub i}*) is large. We show how the local linear and nonlinear ITG flux-tube results are modified when the simulations are done with finite {rho}{sub i}* in a global code.
Scattering of electromagnetic waves from a turbulent plasma slab.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1972-01-01
Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-01
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around k(theta)rho(s) similar to 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport
NASA Astrophysics Data System (ADS)
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-01
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-15
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-15
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around k_{θρs} ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma
Two-dimensional Magnetohydrodynamics and Interstellar Plasma Turbulence
NASA Astrophysics Data System (ADS)
Spangler, Steven R.
1999-09-01
This paper is concerned with a physical understanding of the main features of interstellar plasma turbulence. Our observational knowledge of this turbulence is provided by radio-wave propagation observations, generically referred to as interstellar scintillations. Distinctive features of the observations are the nearly omnipresent anisotropy of scattering, revealed by elliptical rather than circular scattering disks, drastic differences in the magnitude of scattering between closely spaced lines of sight through the interstellar medium, evidence from Faraday rotation observations that the interstellar vector magnetic field changes markedly on small spatial scales, and the existence of a power-law spectrum of density irregularities over a wide range of spatial scales. This power-law density spectrum strongly suggests the existence of similar spatial power spectra for the other magnetohydrodynamic (MHD) variables such as flow velocity and magnetic field. In this paper, it is pointed out that the aforementioned features arise or may naturally be explained by an approximate theory of magnetohydrodynamic turbulence, two-dimensional magnetohydrodynamics. In this theory, the plasma turbulence is described by two scalar functions (a velocity stream function and one component of the magnetic vector potential) that are coupled by nonlinear partial differential equations. These equations are physically transparent, possess some relevant analytic results, and are easily solved numerically. Arguments for the relevance of this reduced plasma description are presented. Although obviously an incomplete description of the interstellar plasma, these equations provide plausible explanations for the observational features described above. Anisotropy of scattering arises as an obvious consequence of the conditions for validity of the two-dimensional MHD description, i.e., that spatial gradients along a large-scale magnetic field are much smaller than those perpendicular to the field
Progress In Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).
High-Gain High-Field Fusion Plasma
NASA Astrophysics Data System (ADS)
Li, Ge
2015-10-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.
High-Gain High-Field Fusion Plasma.
Li, Ge
2015-01-01
A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
NASA Astrophysics Data System (ADS)
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
Granular fluctuations in plasma turbulence and their role in transport
Terry, P.W.
1993-04-01
Three general types of granular or discrete fluctuations in plasma turbulence are reviewed, with emphasis placed on their unique role in fluctuation-induced transport. These fluctuations are clumps, holes, and vortices, and represent structures that are not part of the normal mode response, the basis of conventional descriptions of plasma turbulence and transport. These fluctuations interact with the normal mode response to produce profound modifications of transport. The self-consistent linking of fields and particle distributions through quasineutrality and Ampere's law is shown to be crucial in calculating these modifications. In particular, it is pointed out that collisionless electron motion along perturbed magnetic fields produces almost no transport of field aligned current across equilibrium surfaces. It is also shown that clumps are granular structures which are turbulently mixed, whereas holes and vortices avoid mixing and relaxation through strong self-binding effects. The distinction between structures that are mixed and those that are persistent is probed in an analysis of the interaction of an intense vortex and ambient turbulent fluctuations. It is shown that, above a critical amplitude, the shearing of eddies due to the differential rotation of the vortex suppresses the fluctuations that mix its vorticity, allowing it to achieve a lifetime greatly in excess of the turbulent interaction time scale.
Granular fluctuations in plasma turbulence and their role in transport
Terry, P.W.
1993-04-01
Three general types of granular or discrete fluctuations in plasma turbulence are reviewed, with emphasis placed on their unique role in fluctuation-induced transport. These fluctuations are clumps, holes, and vortices, and represent structures that are not part of the normal mode response, the basis of conventional descriptions of plasma turbulence and transport. These fluctuations interact with the normal mode response to produce profound modifications of transport. The self-consistent linking of fields and particle distributions through quasineutrality and Ampere`s law is shown to be crucial in calculating these modifications. In particular, it is pointed out that collisionless electron motion along perturbed magnetic fields produces almost no transport of field aligned current across equilibrium surfaces. It is also shown that clumps are granular structures which are turbulently mixed, whereas holes and vortices avoid mixing and relaxation through strong self-binding effects. The distinction between structures that are mixed and those that are persistent is probed in an analysis of the interaction of an intense vortex and ambient turbulent fluctuations. It is shown that, above a critical amplitude, the shearing of eddies due to the differential rotation of the vortex suppresses the fluctuations that mix its vorticity, allowing it to achieve a lifetime greatly in excess of the turbulent interaction time scale.
Sudden Viscous Dissipation of Compressing Turbulence
NASA Astrophysics Data System (ADS)
Davidovits, Seth; Fisch, Nathaniel J.
2016-03-01
Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Sudden Viscous Dissipation of Compressing Turbulence.
Davidovits, Seth; Fisch, Nathaniel J
2016-03-11
Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion. PMID:27015488
Sudden Viscous Dissipation of Compressing Turbulence
Davidovits, Seth; Fisch, Nathaniel J.
2016-03-11
Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Casanova, S.; Schlickeiser, R.
2012-02-01
Recently, a new transport theory of cosmic rays in magnetized space plasmas extending the quasilinear approximation to the particle orbit has been developed for the case of an axisymmetric incompressible magnetic turbulence. Here, we generalize the approach to the important physical case of a compressible plasma. As previously obtained in the case of an incompressible plasma, we allow arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field. For the case of quasi-stationary and spatially homogeneous magnetic turbulence we derive, in the small Larmor radius approximation, gyrophase-averaged cosmic-ray Fokker-Planck coefficients. Upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients and for the perpendicular and parallel spatial diffusion coefficients are presented.
Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.
Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M
2015-05-01
High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241
Strongly turbulent stabilization of electron beam-plasma interactions
NASA Technical Reports Server (NTRS)
Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.
1980-01-01
The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.
Vorticity scaling and intermittency in drift-interchange plasma turbulence
Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.
2012-09-15
The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.
Vorticity scaling and intermittency in drift-interchange plasma turbulence
NASA Astrophysics Data System (ADS)
Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.
2012-09-01
The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C =-∂ ln B/∂x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.
GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS
Horton, Claude Wendell
2014-06-10
The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).
Intermittent dissipation at kinetic scales in collisionless plasma turbulence.
Wan, M; Matthaeus, W H; Karimabadi, H; Roytershteyn, V; Shay, M; Wu, P; Daughton, W; Loring, B; Chapman, S C
2012-11-01
High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy. PMID:23215389
Particle energization and current sheets in Alfvenic plasma turbulence
NASA Astrophysics Data System (ADS)
Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto
2015-11-01
Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.
Intermittency, coherent structures and dissipation in plasma turbulence
NASA Astrophysics Data System (ADS)
Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T. N.; Wu, P.; Karimabadi, H.
2016-04-01
Collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been an intensively studied subject recently, with new insights often emerging from numerical simulation. Here we report results from high resolution, fully kinetic simulations of plasma turbulence in both two (2D) and three (3D) dimensions, studying the relationship between intermittency and dissipation. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. An approximate dissipation measure is employed, based on work done by the electromagnetic field in the local electron fluid frame. This surrogate dissipation measure is highly concentrated in small subvolumes in both 2D and 3D simulations. Fully kinetic simulations are also compared with magnetohydrodynamics (MHD) simulations in terms of coherent structures and dissipation. The interesting result emerges that the conditional averages of dissipation measure scale very similarly with normalized current density J in 2D and 3D particle-in-cell and in MHD. To the extent that the surrogate dissipation measure is accurate, this result implies that on average dissipation scales as ˜J2 in turbulent kinetic plasma. Multifractal intermittency is seen in the inertial range in both 2D and 3D, but at scales ˜ion inertial length, the scaling is closer to monofractal.
Turbulence in strongly coupled dusty plasmas using generalized hydrodynamic description
Tiwari, Sanat Kumar; Dharodi, Vikram Singh; Das, Amita; Patel, Bhavesh G.; Kaw, Predhiman
2015-02-15
The properties of decaying turbulence have been studied with the help of a Generalized Hydrodynamic (GHD) fluid model in the context of strongly coupled dusty plasma medium in two dimensions. The GHD model treats the strongly coupled dusty plasma system as a visco-elastic medium. The incompressible limit of the GHD model is considered here. The studies carried out here are, however, applicable to a wider class of visco-elastic systems, and are not merely confined to the dusty plasma medium. Our simulations studies show that an initial spectrum that is confined in a limited domain of wave numbers becomes broad, even when the Reynold's number is much less than the critical value required for the onset of turbulence in Newtonian fluids. This is a signature of elastic turbulence, where Weissenberg's number also plays an important role on the onset of turbulence. This feature has been observed in several experiments. It is also shown that the existence of memory relaxation time parameter and the transverse shear wave inhibit the normal process (for 2-D systems) of inverse spectral cascade in this case. A detailed simulation study has been carried out for the understanding of this inhibition.
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
Predebon, I.; Xanthopoulos, P.
2015-05-15
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
NASA Astrophysics Data System (ADS)
Predebon, I.; Xanthopoulos, P.
2015-05-01
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2015-11-01
A first-principles self-consistent model that couples plasma and neutral physics suitable for the simulation of turbulent plasma behavior in the tokamak SOL is presented. While the plasma is modeled by the drift-reduced two fluid Braginskii equations, a kinetic model for the neutrals is developed, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional processes. The solution of the neutral kinetic equation is implemented within the GBS plasma turbulence code (Ricci et al 2012 Plasma Phys. Control. Fusion 54 124047) and it is performed by using the method of characteristics. The details of the numerical implementation are discussed. Finally, we show initial results of the first self-consistent simulations of plasma turbulence and neutral dynamics.
Dissipation of Astrophysical Plasma Turbulence by Radiative Cooling
NASA Astrophysics Data System (ADS)
Spangler, Steven
1997-11-01
One of the more plausible yet tractable models for turbulence in astrophysical plasmas such as the interstellar medium and solar wind is that of reduced MHD. In reduced MHD spatial gradients perpendicular to a large scale magnetic field are much more important than those along the field, and the plasma is approximated as being two dimensional. A salient characteristic of reduced MHD is the development of thin, intense current sheets on an eddy turnover time. The large current density in these sheets is most plausibly carried by electron drift relative to the ions at a drift speed v_d. This drift will enhance the high speed tail of the electron distribution relative to that of a current-free plasma. If the plasma contains a neutral atom or ion species, enhanced collisional excitation will occur in the current sheets. Radiative deexcitation of the atom or ion will then produce loss of energy from the plasma. The theory of reduced MHD may be used to obtain an expression for the electron drift speed, which depends on the characteristics of the host plasma as well as the amplitude, spatial scale, and initial conditions of the MHD turbulence. When vd ~ v_th, the thermal electron speed, enhanced electron collisional excitation may be an important process. I consider the importance of this process for various astrophysical plasmas. The mechanism may well be important in the interstellar molecular clouds in which stars form.
Plasma transport induced by kinetic Alfven wave turbulence
Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.
2012-10-15
At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.
Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2003-01-01
To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.
Neoclassical diffusion in a turbulent plasma
Yushmanov, P. |
1991-11-01
This work describes a new approach to plasma transport where the toroidal drift motion is considered as a perturbation to the fluctuating velocity. Percolation theory is used to determine the scaling of the diffusion coefficient. Several neoclassical phenomena should persist even when diffusion is enhanced from neoclassical predictions. Numerical simulation results support the theoretical scaling arguments.
Fusion programs in applied plasma physics and development and technology at GA Technologies, Inc.
NASA Astrophysics Data System (ADS)
Overskei, D. O.
1988-01-01
Research carried out by GA for the Department of Energy Office of Fusion Energy provides key information and insight necessary for the development of fusion power systems. Highlights of the fusion theory effort described in this report include progress in numerical simulations of turbulent transport in tokamak plasmas, extension of novel theories of the H-mode, development and application of advanced codes for evaluating ECRF current drive efficiency, and new understanding and techniques for dealing with high beta tokamak equilibria. Experimental plasma research efforts are addresssing several important issues in fusion research. Neutron and alpha particle spectroscopy and triton confinement diagnostics are being developed to enable fusion researchers to understand alpha particle confinement and slowdown in burning plasmas. Development of Li beam diagnostic systems continued and has shown a capability for measuring both magnetic field pitch angle and relative current density profiles. Experiments on Ergodic Magnetic Divertor (EMD) phenomena on the Texas Experimental Tokamak (TEXT) continued to demonstrate low plasma edge temperatures and impurity reduction that make the concept attractive for reactor applications. GA led efforts continuing the Resonant Island Divertor (RID) experiments on TEXT using the EMD as a controlled magnetic perturbation. Research carried out in GA's Development and Technology programs included reactor systems design studies, and development of ferritic steels suitable for use as a structural material in fusion reactors. In the reactor systems design area, GA participated in the TITAN Reserved Field Pinch (RFP) Reactor Design Study. GA is responsible for project operation, safety design and analysis, and blanket shield neutronics calculations for this study.
First 3-D simulations of meteor plasma dynamics and turbulence
NASA Astrophysics Data System (ADS)
Oppenheim, Meers M.; Dimant, Yakov S.
2015-02-01
Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.
Edge ambipolar potential in toroidal fusion plasmas
Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.
2014-05-15
A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.
Free energy and entropy flows in magnetised plasma turbulence
NASA Astrophysics Data System (ADS)
Schekochihin, A.; Cowley, S.; Dorland, W.; Howes, G. G.; Quataert, E.; Tatsuno, T.; Plunk, G.; TenBarge, J.; Mallet, A.; Kanekar, A.
2011-12-01
Just as fluid turbulence can be conceptualised as a cascade of kinetic energy from large to small scales, kinetic plasma turbulence is a cascade of free energy in the 6D phase space (position and velocity). I will discuss this as a general principle and then specialise to the case of magnetised plasma turbulence at kinetic (sub-ion-Larmor) scales. At these scales, the free energy flux arriving from the inertial range splits into two channels: the kinetic Alfven wave cascade destined to be dissipated into electron heat and the ion entropy cascade, resulting in ion heating. The phase-space nature of the cascade is particularly manifest in this case as the ion entropy cascade involves simultaneous generation of small spatial scales and small scales in velocity space, the latter via a nonlinear phase-mixing process due to ion gyromotion. I will also discuss how the electron Landau damping and the associated process of parallel phase mixing fit into this cascade picture and whether they represent an effective dissipation mechanism in a strongly turbulent nonlinear system.
NASA Astrophysics Data System (ADS)
Basse, N. P.; Zoletnik, S.; Michelsen, P. K.; W7-As Team
2005-01-01
Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100μs, similar to the lifetime observed during edge localized modes.
Basse, N.P.; Zoletnik, S.; Michelsen, P.K.
2005-01-01
Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100 {mu}s, similar to the lifetime observed during edge localized modes.
Intermittent dissipation and heating in 3D kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Karimabadi, H.; Parashar, T.; Wu, P.; Shay, M. A.
2014-12-01
The nature of collisionless dissipation has been hotlydebated in recent years, with alternative ideas posed interms of various wave modes, such as kinetic Alfven waves,whistlers, linear Vlasov instabilities, cyclotron resonance,and Landau damping. Here we use large scale, fully kinetic3D simulations of collisionless plasma turbulence which showthe development of turbulence characterized by sheet-likecurrent density structures spanning a range of scales.We present evidence that these structures are sites for heatingand dissipation, and that stronger current structures signifyhigher dissipation rates. The analyses focus on quantities such as J.E, electron and proton temperatures, and PVI of the magnetic field. Evidently, kinetic scale plasma,like magnetohydrodynamics, becomes intermittent due tocurrent sheet formation, leading to the expectationthat heating and dissipation in astrophysical and space plasmasmay be highly nonuniform. Comparison with previousresults from 2D kinetic simulations, as well as high frequencysolar wind observational data will also be discussed.
Global spectral investigation of plasma turbulence in gyrokinetic simulations
Henriksson, S. V.; Janhunen, S. J.; Kiviniemi, T. P.; Heikkinen, J. A.
2006-07-15
Gyrokinetic global particle-in-cell simulations for a small torus with a large aspect ratio ({epsilon}{sup -1}>{approx}7) indicate a k{sub perpendicular}{sup -{alpha}} spectrum for electrostatic turbulence. When electrons are treated kinetically, the simulation results fit {alpha} that grows from about 1 at the plasma core to about 3 at the plasma edge for the flux surface component of the wave vector perpendicular to the magnetic field, while for adiabatic electrons {alpha}=4 is found for all radii, in agreement with the Hasegawa-Mima model. The relation between spectra and transport is investigated through the formation of an internal transport barrier. The role of flow shear in suppressing turbulence is illustrated by spectral diagnostics. A strong dependence between the presence of small wavenumbers and transport is explicitly observed. The simulated spectra are compared to recent experimental results.
Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas
NASA Technical Reports Server (NTRS)
Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin
2004-01-01
The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.
Anisotropy in solar wind plasma turbulence
Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.
2015-01-01
A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082
Anisotropy in solar wind plasma turbulence.
Oughton, S; Matthaeus, W H; Wan, M; Osman, K T
2015-05-13
A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082
PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)
NASA Astrophysics Data System (ADS)
Garbet, Xavier; Sauter, Olivier
2012-12-01
The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012
Electrostatic and magnetic transport of energetic ions in turbulent plasmas
Hauff, T.; Pueschel, M. J.; Jenko, F.; Dannert, T.
2009-02-20
Analytical and numerical work is used in tandem to address the problem of turbulent transport of energetic ions in magnetized plasmas. It is shown that orbit averaging is not valid under rather generic conditions, and that perpendicular decorrelation effects lead to a slow 1/E decay of the electrostatic particle diffusivity of beam ions, while the respective magnetic quantity is even independent of the particle energy E.
Numerical simulations of tokamak plasma turbulence and internal transport barriers
NASA Astrophysics Data System (ADS)
Thyagaraja, A.
2000-12-01
A wide variety of magnetically confined plasmas, including many tokamaks such as the JET, TFTR, JT-60U, DIII-D, RTP, show clear evidence for the existence of the so-called `internal transport barriers' (ITBs) which are regions of relatively good confinement, associated with substantial gradients in temperature and/or density. A computational approach to investigating the properties of tokamak plasma turbulence and transport is developed. This approach is based on the evolution of global, two-fluid, nonlinear, electromagnetic plasma equations of motion with specified sources. In this paper, the computational model is applied to the problem of determining the nature and physical characteristics of barrier phenomena, with particular reference to RTP (electron-cyclotron resonance heated) and JET (neutral beam heated) observations of ITBs. The simulations capture features associated with the formation of these ITBs, and qualitatively reproduce some of the observations made on RTP and JET. The picture of plasma turbulence suggested involves variations of temperature and density profiles induced by the electromagnetic fluctuations, on length scales intermediate between the system size and the ion Larmor radius, and time scales intermediate between the confinement time and the Alfvén time (collectively termed `mesoscales'). The back-reaction of such profile `corrugations' (features exhibiting relatively high local spatial gradients and rapid time variations) on the development and saturation of the turbulence itself plays a key role in the nonlinear dynamics of the system. The corrugations are found to modify the dynamical evolution of radial electric field shear and the bootstrap current density, which in turn influence the turbulence. The interaction is mediated by relatively long wavelength, electromagnetic modes excited by an inverse cascade and involving nonlinear instabilities and relaxation phenomena such as intermittency and internal mode locking.
Aspect ratio effects on limited scrape-off layer plasma turbulence
NASA Astrophysics Data System (ADS)
Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-01
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Aspect ratio effects on limited scrape-off layer plasma turbulence
Jolliet, Sébastien Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-15
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Fission and activation of uranium by fusion-plasma neutrons
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.; Mcfarland, D. R.
1978-01-01
Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.
A laser driven fusion plasma for space propulsion
Kammash, T.; Galbraith, D.L. )
1992-07-01
The present inertial-confinement fusion concept employs a magnetized target pellet that is driven by a laser beam in conjunction with a tungsten shell whose inner surface is coated with a deuterium-tritium fusion fuel mixture. A laser beam that enters the pellet through a hole simultaneously creates a fusion-grade plasma and gives rise to a powerful, instantaneous magnetic field which thermally insulates the plasma from the material wall. The plasma lifetime of this self-generated magnetic field scheme is dictated by the shock speed in the tungsten shell rather than by the speed of sound in the plasma: it consequently burns much longer and efficiently than plausible alternatives. A manned mission could by these means be completed in a few months rather than a few years, in virtue of the great specific impulse achieved. 8 refs.
Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas
Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.
2011-02-07
Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________
Langmuir wave decay in turbulent inhomogeneous solar wind plasmas
NASA Astrophysics Data System (ADS)
Krafft, C.; Volokitin, A.
2016-03-01
Langmuir wave decay in solar wind plasmas typical of type III bursts' source regions near 1 AU have been reported by several spacecraft observations. In such plasmas, due to the presence of random density fluctuations, wave decay occurs usually simultaneously and compete with other coupling effects between the fields and the density irregularities, as reflection, scattering and/or refraction processes. Numerical simulations show that resonant three-wave coupling processes including several cascades of Langmuir wave decay can occur in such plasmas, leading to wave energy transfer to smaller wavenumbers k, as shown in the frame of weak turbulence theory. However, in such conditions, and contrary to what occurs in homogeneous plasmas, the decay process is localized in space at a given time. Moreover, wave-wave coupling plays a significant role in the modulation of the Langmuir waveforms, in agreement with recent space observations.
Spherically symmetric simulation of plasma liner driven magnetoinertial fusion
Samulyak, Roman; Parks, Paul; Wu Lingling
2010-09-15
Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.
Kulsrud, R.M.; Sudan, R.N.
1981-04-01
The nonlinear damping in a strongly turbulent convecting plasma computed by Kraichnan's modified direct inteaction approximation and the power spectrum are rederived in a physically transparent form using Kolmogoroff's theory of turbulence.
Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas.
Ciraolo, Guido; Briolle, Françoise; Chandre, Cristel; Floriani, Elena; Lima, Ricardo; Vittot, Michel; Pettini, Marco; Figarella, Charles; Ghendrih, Philippe
2004-05-01
It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations whose form can be explicitly computed. In particular, it is possible to control (reduce) the chaotic diffusion in the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged test particles in a turbulent electric field across the confining magnetic field in controlled thermonuclear fusion devices. Though still far from practical applications, this result suggests that some strategy to control turbulent transport in magnetized plasmas, in particular, tokamaks, is conceivable. The robustness of the control is investigated in terms of a departure from the optimum magnitude, of a varying cutoff at large wave vectors, and of random errors on the phases of the modes. In all three cases, there is a significant region of maximum efficiency in the vicinity of the optimum control term. PMID:15244910
Probing plasma turbulence by modulating the electron temperature gradient
DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.
2010-05-15
The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.
Coherent structure and Intermittent Turbulence in the Solar Wind Plasma
NASA Astrophysics Data System (ADS)
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar
2016-07-01
We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma
Low-frequency instabilities and plasma turbulence
NASA Technical Reports Server (NTRS)
Ilic, D. B.
1973-01-01
A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.
Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J
2015-06-26
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.
2015-06-01
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
Heavy particle collisions in astrophysical, fusion, and other plasmas
NASA Astrophysics Data System (ADS)
Schultz, David
2013-09-01
Contemporary computational methods to treat few-body, atomic-scale interactions have opened opportunities to study them at a new level of detail to both uncover unexpected phenomena and to create data of unprecedented accuracy and scope for applications. Such interactions within gaseous, plasma, and even material environments are fundamental to such diverse phenomena as low temperature plasma processing of semiconductors, collapsing giant molecular clouds forming stars, fluorescent lighting, radiation treatment of disease, and the chemistry of earth's atmosphere. I will illustrate progress using examples from recent work treating heavy particle collision systems, for which our knowledge has been both subtly refined and significantly changed. Examples will include elastic and transport-related processes in fusion and solar-system plasmas, charge transfer leading to diagnostic light emission in planetary atmospheres and fusion plasmas, and excitation and ionization processes needed for plasma modeling and diagnostics.
Alpha heating and burning plasmas in inertial confinement fusion
Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.
2015-06-01
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
User facility for research on fusion systems with dense plasmas
Ryutov, D. D.
1999-01-07
There are a number of fusion systems whose dimensions can be scaled down to a few centimeters, if the plasma density and confining magnetic field are raised to sufficiently high values. This prompts a "user-facility" approach to the studies of this class of fusion systems. The concept of such a user facility was first briefly mentioned in Ref. 1. Here we present a more detailed description.
Plasma Physics, Fusion Science, and California High School Science
NASA Astrophysics Data System (ADS)
Correll, Donald
2004-11-01
In order to further engage California HIgh School science teachers in plasma physics and fusion science, a collaboration was formed between LLNL's Fusion Energy Program and the University of California's Edward Teller Education Center (etec.ucdavis.edu). California's Science Content Standards for high school physics (www.cde.ca.gov/be/st/ss/scphysics.asp) were used to create a public lecture (education.llnl.gov/sos/) that covered "students are expected to achieve" physics topics relevant to astrophysical and fusion plasma research. In addition to the lecture, a two day workshop for the Edward Teller Education Symposium, September 24 - 25, 2004 (education.llnl.gov/symposium2004) was designed around plasma spectroscopy (education.llnl.gov/symposium2004/agenda_astro.html). Plasma spectroscopy was chosen as the "anchor" to the workshop given the breadth and depth of the field to both astrophysical and fusion plasma research. Workshop participation includes lectures, tours, spectroscopic measurements, and building a 'spectroscope' for use in the teachers' respective high school classrooms. Accomplishments will be reported and future plans will be presented that include development of a one to two week expanded workshop that includes plasma research methods and advanced science skills essential to guiding students to conduct research projects.
Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.
2015-11-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
The Rayleigh Taylor instability in inertial fusion, astrophysical plasma and flames
NASA Astrophysics Data System (ADS)
Bychkov, V.; Modestov, M.; Akkerman, V.; Eriksson, L.-E.
2007-12-01
Previous results are reviewed and new results are presented on the Rayleigh Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer).
Response of nickel surface to pulsed fusion plasma radiations
Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.
2014-04-24
Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.
A fusion power plant without plasma-material interactions
Cohen, S.A.
1997-04-01
A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.
Solar system plasma Turbulence: Observations, inteRmittency and Multifractals
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2016-04-01
The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a
NASA Astrophysics Data System (ADS)
Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT team
2016-07-01
The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.
Modification of Edge Plasma Turbulence by External Magnetic Pertubations
Boedo, J; McKee, G; Rudakov, D; Reiser, D; Evans, T; Moyer, R; Schaffer, M; Watkins, J; Allen, S; Fenstermacher, M; Groth, M; Holland, C; Hollmann, E; Lasnier, C; Leonard, A; Mahdavi, M; McLean, A; Tynan, G; Wang, G; West, W; Zeng, L
2006-06-19
Magnetostatic perturbations applied to the DIII-D plasma using a n=3 coil set have significant impact on the plasma edge, such as edge localized mode (ELM) suppression [1], but also affect the background turbulence levels. Discharges with parameters R=1.75 m, a=0.56 m, B{sub T} {approx} 1.6 T, I{sub p} {approx} 1 MA and n{sub e} {approx} 3 x 10{sup 13} cm{sup -3}-n{sub e} {approx} 7 x 10{sup 13} cm{sup -3} (low, v*{sub e} {approx} 0.1 and moderate, v*{sub e} {approx} 1 electron pedestal collisionality) were used as a target for the perturbation, [applied at 3 s Fig. 1(a) and 2 s Fig. 1(b)]. The global density and energy content, among many other parameters, are unaffected, raising the issue of what mechanism replaces the particle and heat exhaust otherwise mediated by ELMs. Mixed ELMs (high frequency, low amplitude Type II ELMs interspersed with Type I) in the moderate collisionality regime and Type I ELMs in the low collisionality regime, are replaced by intermittency and broadband turbulence or semiperiodic events. It is important to notice that the coils can be energized in high poloidal mode spectra (upper and lower coils produce fields in the same direction) or odd configuration (upper and lower coils produce fields in the opposite direction) and also rotated 60 deg toroidally. Although we will focus on scanning probe [2] data obtained in the scrape-off layer (SOL), other diagnostics, beam emission spectroscopy (BES), reflectometry [3], were used to study the changes in the plasma turbulence when the ELMs are suppressed and the underlying turbulence and transport change. Thomson scattering n{sub e} and T{sub e} profiles (Fig. 2) accumulated over 200 ms before (red) and during (blue) I-coil perturbation are fitted with y = a + b* tanh[(r-c)/d] resulting in a,b staying constant while d varies from -0.009 to -0.011 and c from -0.013 to -0.009, i.e. the profiles mostly broaden and shift outward, changes which may be connected to an increase in radial turbulent
Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas
Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.
2007-07-18
Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.
Experimental Investigation of Complex Dynamics of Plasma Turbulence and Transport
NASA Astrophysics Data System (ADS)
Gilmore, M.; Peebles, W. A.; Rhodes, T. L.; Newman, D. E.; Sanchez, R.
2000-10-01
Theoretical predictions of complex dynamics, such as self-organized criticality (SOC), have led to new insights into the behavior of a wide range of complex systems, such as sandpiles, evolution/extinction models and earthquake fault zones. Recently, complex dynamics have been invoked as a paradigm for understanding turbulent transport in plasmas. In particular, complex dynamical models of turbulent transport make specific predictions regarding power spectra and long range spatial and temporal correlations. In order to test the models experimentally, detailed studies utilizing probe arrays at many axial and azimuthal positions are under way in the linear Large Plasma Device at UCLA. Preliminary edge fluctuation data show frequency spectra with three distinct regions, scaling approximately as f^0, f-1, and f-4, in low, intermediate, and high frequency intervals respectively. The f-1 frequency interval decreases - eventually to zero - as the plasma is scanned from the edge to the core. These observations are consistent with a recently developed complex dynamics model that includes classical diffusion. *Supported by the National Science Foundation
Dynamics of Turbulence Suppression in a Helicon Plasma
NASA Astrophysics Data System (ADS)
Hayes, Tiffany; Gilmore, Mark
2012-10-01
Experiments are currently being conducted in the the Helicon-Cathode Device (HelCat) at the University of New Mexico. The goal is to the study in detail the transition from a turbulent to a non-turbulent state in the presence of flow shear. HelCat has intrinsic fluctuations that have been identified as drift-waves. Using simple electrode biasing, it has been found that these fluctuations can be completely suppressed. In some extreme cases, a different instability, possibly the Kelvin-Helmholtz instability, can be excited. Detailed studies are underway in order to understand the characteristics of each mode, and to elucidate the underlying physics that cause the change between an unstable plasma, and an instability-free plasma. Dynamics being observed include changes in flow profiles, both azimuthal and parallel, as well as changes in potential and temperature gradients. Further understanding is being sought using several computer codes developed at EPFL: a linear stability solver (LSS,footnotetextP. Ricci and B.N. Rogers (2009). Phys Plasmas 16, 062303. a one-dimensional PIC code/sheath solver, ODISEE,footnotetextJ. Loizu, P. Ricci, and C. Theiler (2011). Phys Rev E 83, 016406 and a global, 3D Braginski code, GBS.footnotetextRicci, Rogers (2009) A basic overview of results will be presented.
TEST FOR WAVEVECTOR ANISOTROPIES IN PLASMA TURBULENCE CASCADES
Gary, S. Peter
2013-05-20
The frequency and wavevector matching conditions in nonlinear three-wave coupling are used to test whether the forward cascade of plasma turbulence may lead to wavevector anisotropies in a homogeneous, collisionless, magnetized plasma. Linear kinetic theory at {beta}{sub p} = 0.01, 0.10, and 1.0 is used to determine the frequency-wavenumber dispersion of three normal modes: long-wavelength Alfven-cyclotron waves, long-wavelength magnetosonic waves, and intermediate-wavelength magnetosonic-whistler waves. Using linear dispersion in the nonlinear matching conditions, the test predicts with one exception that forward cascades are favored by fluctuations propagating nearly perpendicular to the background magnetic field B{sub o}. This is consistent with the typical development of wavevector anisotropies with k >> k{sub Parallel-To} (subscripts refer to directions perpendicular and parallel to B{sub o}, respectively) in computer simulations of the forward cascade of various types of plasma turbulence. The exception is that, at {beta}{sub p} = 1.0, the test predicts that the cascade of long-wavelength magnetosonic waves should be favored by modes at k {approx} k{sub Parallel-To }.
Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets
Max, C.E.
1981-12-01
This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.
Laser-plasma interactions relevant to Inertial Confinement Fusion
Wharton, K.B.
1998-11-02
Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a
Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.
2007-07-15
The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD.
Lithium As Plasma Facing Component for Magnetic Fusion Research
Masayuki Ono
2012-09-10
The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
NASA Astrophysics Data System (ADS)
Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.
Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment
C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson
2003-10-13
The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.
Turbulent equipartition and homogenization of plasma angular momentum.
Gürcan, O D; Diamond, P H; Hahm, T S
2008-04-01
A physical model of turbulent equipartition (TEP) of plasma angular momentum is developed. We show that using a simple, model insensitive ansatz of conservation of total angular momentum, a TEP pinch of angular momentum can be obtained. We note that this term corresponds to a part of the pinch velocity previously calculated using quasilinear gyrokinetic theory. We observe that the nondiffusive TEP flux is inward, and therefore may explain the peakedness of the rotation profiles observed in certain experiments. Similar expressions for linear toroidal momentum and flow are computed and it is noted that there is an additional effect due the radial profile of moment of inertia density. PMID:18517961
Turbulence and Proton–Electron Heating in Kinetic Plasma
NASA Astrophysics Data System (ADS)
Matthaeus, William H.; Parashar, Tulasi N.; Wan, Minping; Wu, P.
2016-08-01
Analysis of particle-in-cell simulations of kinetic plasma turbulence reveals a connection between the strength of cascade, the total heating rate, and the partitioning of dissipated energy into proton heating and electron heating. A von Karman scaling of the cascade rate explains the total heating across several families of simulations. The proton to electron heating ratio increases in proportion to total heating. We argue that the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales controls the ratio of proton and electron heating. The proposed scaling is consistent with simulations.
Length of magnetic field lines in turbulent plasmas.
Nunez, Manuel
2002-06-01
An estimation of the length of any magnetic field line in a two-dimensional periodic magnetohydrodynamic problem is provided. This is done by using some classical function theory results on the analytic extension of the vector potential. The essential parameter, the maximum of this extension, may be analyzed in the case of turbulent plasmas by admitting the Iroshnikov-Kraichnan statistics, establishing in this way a relation between the length of any magnetic field line and the energy dissipation scale. (c) 2002 American Institute of Physics. PMID:12779559