Science.gov

Sample records for fusion reaction rates

  1. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  2. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  3. Fusion Reaction Rate in an Inhomogeneous Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  4. An efficient nonclassical quadrature for the calculation of nonresonant nuclear fusion reaction rate coefficients from cross section data

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2016-08-01

    Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.

  5. Dinuclear systems in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.

    2014-09-01

    Formation and evolution of dinuclear systems in reactions of complete fusion are considered. Based on the dinuclear system concept, the process of compound nucleus formation is studied. Arguments confirming the validity of this concept are given. The main problems of describing the complete fusion in adiabatic approximation are listed. Calculations of evaporation residue cross sections in complete fusion reactions leading to formation of superheavy nuclei are shown. Isotopic trends of the cross sections of heavy nuclei formation in complete fusion reactions are considered.

  6. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  7. Fusion and reactions of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Martel, I.; Aguilera, E. F.; Acosta, L.; Sánchez-Benítez, A. M.; Wolski, R.

    2011-10-01

    Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  8. Results of an attempt to measure increased rates of the reaction D-2 + D-2 yields He-3 + n in a nonelectrochemical cold fusion experiment

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Decker, Arthur J.; Blue, James W.

    1989-01-01

    An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.

  9. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  10. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas. PMID:26329194

  11. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  12. Electron screening and stellar rates in the {sup 3}He({sup 3}He,2p){sup 4}He and {sup 3}He(d,p){sup 4}He fusion reactions

    SciTech Connect

    Messahel, L.; Ouichaoui, S.; Belhout, A.; Fouka, M.; Trabelsi, A.

    2008-05-12

    The astrophysical S(E) factor experimental data available over the energy region E (C.M.)<1.0 MeV for the {sup 3}He({sup 3}He,2p){sup 4}He and {sup 3}He(d,p){sup 4}He fusion reactions are analyzed using a polynomial expression and the R-Matrix formalism, respectively. The reaction thermonuclear rates for bare nuclei are determined and compared to previous ones after a precise assessment of the electron screening factors. New level parameter values are deduced for the {sup 5}Li nucleus.

  13. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  14. Dynamical dipole mode in fusion reactions

    SciTech Connect

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  15. Microdroplet fusion mass spectrometry for fast reaction kinetics

    PubMed Central

    Lee, Jae Kyoo; Kim, Samuel; Nam, Hong Gil; Zare, Richard N.

    2015-01-01

    We investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical reactions on the order of microseconds. Two streams of micrometer-size droplets collide with one another. The droplets that fused (13 μm in diameter) at the intersection of the two streams entered the heated capillary inlet of a mass spectrometer. The mass spectrum was recorded as a function of the distance x between the mass spectrometer inlet and the droplet fusion center. Fused droplet trajectories were imaged with a high-speed camera, revealing that the droplet fusion occurred approximately within a 500-μm radius from the droplet fusion center and both the size and the speed of the fused droplets remained relatively constant as they traveled from the droplet fusion center to the mass spectrometer inlet. Evidence is presented that the reaction effectively stops upon entering the heated inlet of the mass spectrometer. Thus, the reaction time was proportional to x and could be measured and manipulated by controlling the distance x. Kinetic studies were carried out in fused water droplets for acid-induced unfolding of cytochrome c and hydrogen–deuterium exchange in bradykinin. The kinetics of the former revealed the slowing of the unfolding rates at the early stage of the reaction within 50 μs. The hydrogen–deuterium exchange revealed the existence of two distinct populations with fast and slow exchange rates. These studies demonstrated the power of this technique to detect reaction intermediates in fused liquid droplets with microsecond temporal resolution. PMID:25775573

  16. Renormalized reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Gorbachev, Yuriy E.

    2016-06-01

    Impact of the non-equilibrium on the reaction and relaxation rates (called as generalized relaxation rates - GRR), for the spatially inhomogeneous gas mixture is considered. Discarding the assumption that the 'chemical' part of the collisional integral is a small correction to non-reactive part, the expression for the zero-order GRR is derived. They are represented as a renormalization of the traditional reaction and relaxation rates, which means mixing of all corresponding processes. Thus all reactions and relaxation processes are entangled.

  17. Some considerations of cold fusion including the calculation of fusion rates in molecules of hydrogen isotopes

    SciTech Connect

    Cowley, S.C.; Kulsrud, R.M.

    1989-11-01

    We calculate the fusion reaction rates in molecules of hydrogen isotopes. The rates are calculated analytically (for the first time) as an asymptotic expansion in the ratio of the electron mass to the reduced mass of the nucleii. The fusion rates of the P-D, D-D, and D-T reactions are given for a variable electron mass by a simple analytic formula. However, we do not know any mechanism by which a sufficiently localized electron in solid can have an effective mass' large enough to explain the result of Fleischman and Pons (FP). This calculation indicates that P-D rates should exceed D-D rates for D-D fusion rates less than approximately 10{sup {minus}23} per molecule per second. The D-D fusion rate is enhanced by a factor of 10{sup 5} at 10,000{degree}K if the excited vibrational states are populated with a Boltzmann distribution and the rotational excitations suppressed. The suggestion that experimental results could be explained by bombardment of cold deuterons by kilovolt deuterons is shown to be an unlikely from an energetic point of view. 12 refs., 3 figs., 1 tab.

  18. Trojan Horse particle invariance in fusion reactions

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spitaleril, C.; Bertulani, C.; Mukhamedzhanov, A.; Blokhintsev, L.; La Cognata, M.; Lamia, L.; Spartá, R.; Tumino, A.

    2015-01-01

    Trojan Horse method plays an important part for the measurement of several charged particle induced reactions cross sections of astrophysical interest. In order to better understand its cornerstones and the related applications to different astrophysical scenarios several tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance for the binary reactions d(d,p)t, 6,7Li(p,α)3,4He was therefore tested using the appropriate quasi free break- ups, respectively. In the first cases results from 6Li and 3He break up were used, while for the lithium fusion reactions break-ups of 2H and 3He were compared. The astrophysical S(E)-factors for the different processes were then extracted in the framework of the PlaneWave Approximation applied to the different break-up schemes. The obtained results are compared with direct data as well as with previous indirect investigations. The very good agreement between data coming from different break-up schemes confirms the applicability of the plane wave approximation and suggests the independence of binary indirect cross section on the chosen Trojan Horse nucleus also for the present cases. Moreover the astrophysical implications of the results will also be discussed in details.

  19. Synthesis of the heaviest nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Münzenberg, G.; Morita, K.

    2015-12-01

    Cold fusion of heavy ions paved the way to superheavy elements. It was proposed by Yu.Ts. Oganessian more than forty years ago in 1974 [1,2]. First experiments were carried out at JINR Dubna, starting with the reaction 40Ar + 208Pb → 248Fm* where several hundreds to thousand atoms were produced on one day. The large production rate indicating an enhancement of the fusion cross section, especially for the evaporation of two or three neutrons, proved the concept of cold-fusion with the use of the doubly magic nucleus 208Pb as a target. The Dubna experiments were extended to the transactinide region beyond rutherfordium. The breakthrough came with the separation in-flight. Two different approaches were used: kinematic separation with the velocity filter SHIP [3] at GSI Darmstadt, and with the gasfilled separator GARIS [4,5] at RIKEN. With SHIP the concept of cold fusion of massive nuclear systems was convincingly confirmed by the observation of the one-neutron evaporation channel in the production of 247Rf in an irradiation of 208Pb with 50Ti [6] in 1981 which opened the way to the transactinide region. At SHIP the elements bohrium (107) to copernicium (112) were discovered [7]. A new closed shell region around hassium was found. The RIKEN experiments started in 2002. They confirmed the GSI results and in addition improved the data on structure and production of elements hassium to copernicium significantly. The heaviest element ever created in a cold fusion reaction, Z = 113, was observed at GARIS [8,9].

  20. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

    SciTech Connect

    Shen Caiwan; Li Qingfeng; Boilley, David; Shen Junjie; Abe, Yasuhisa

    2011-05-15

    The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter {alpha} is smaller than that at large {alpha}. In the formation of a given compound nucleus, if a reaction with {alpha}{sub c} is not hindered, then other reactions with {alpha}>{alpha}{sub c} are also not hindered, as is well known experimentally.

  1. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (˜100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  2. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  3. Fusion reactions of Ni,6458+124Sn

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M. M.; Montanari, D.; Montagnoli, G.; Mijatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E. E.; Szilner, S.

    2015-04-01

    Measurements of fusion excitation functions of 58Ni+124Sn and 64Ni+124Sn are extended towards lower energy to cross sections of 1 μ b and are compared to detailed coupled-channels calculations. The calculations clearly show the importance of including transfer reactions in a coupled-channels treatment for such heavy systems. This result is different from the conclusion made in a previous article which claimed that the influence of transfer on fusion is not important for fusion reactions of Ni +Sn . In the energy region studied in this experiment no indication of fusion hindrance has been observed, which is consistent with a systematic study of this behavior.

  4. Nova reaction rates and experiments

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Herlitzius, C.; Fiehl, J.

    2011-04-01

    Oxygen-neon novae form a subset of classical novae events known to freshly synthesize nuclei up to mass number A≲40. Because several gamma-ray emitters lie in this mass range, these novae are also interesting candidates for gamma-ray astronomy. The properties of excited states within those nuclei in this mass region play a critical role in determining the resonant (p,γ) reaction rates, themselves, largely unknown for the unstable nuclei. We describe herein a new Doppler shift lifetime facility at the Maier-Leibnitz tandem laboratory, Technische Universität München, with which we will map out important resonant (p,γ) nova reaction rates.

  5. Transfer-type products accompanying cold fusion reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  6. Evaluation of charged-particle reactions for fusion applications

    SciTech Connect

    White, R.M.; Resler, D.A.; Warshaw, S.I.

    1991-01-01

    New evaluations of the total reaction cross sections for {sup 2}H(d,n){sup 3}He, {sup 2}H(d,p){sup 3}H, {sup 3}H(t,2n){sup 4}He,{sup 3}H(d,n){sup 4}He, and {sup 3}He(d,p){sup 4}He have been completed. These evaluations are based on all known published data from 1946 to 1990 and include over 1150 measured data points from 67 references. The purpose of this work is to provide a consistent and well-documented set of cross sections for use in calculations relating to fusion energy research. A new thermonuclear data file, TDF, and a library of FORTRAN subprograms to read the file have been developed. Calculated from the new evaluations, the TDF file contains information on the Maxwellian-averaged reaction rates as a function of reaction and plasma temperature and the Maxwellian-averaged average energy of the interacting particles and reaction products. Routines are included that provide thermally-broadened spectral information for the secondary reaction products. 67 refs., 18 figs.

  7. Competition between complete fusion and quasifission in reactions with heavy nuclei

    SciTech Connect

    Antonenko, N. V.; Scheid, W.; Adamian, G. G.; Volkov, V. V.

    1998-02-15

    A model based on the dinuclear system concept is suggested for the calculation of the competition between complete fusion and quasifission in reactions with heavy nuclei. The fusion rate through the inner fusion barrier in mass asymmetry is found by using the Kramers-type expression. The calculated cross sections for the heaviest nuclei are in a good agreement with the experimental data. The experimentally observed rapid fall-off of the cross section of the cold fusion with increasing charge number Z of the compound nucleus is explained.

  8. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Loisel, G.; Yahia, V.; Rafelski, J.

    2013-10-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

  9. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.

    PubMed

    Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. PMID:24104859

  10. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  11. Fusion probability for neutron-rich radioactive Sn induced reactions

    SciTech Connect

    Liang, J Felix; Gross, Carl J; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Allmond, James M; Caraley, Anne L; Lagergren, Karin B; Mueller, Paul Edward

    2012-01-01

    Evaporation residue cross sections for $^{124,126,127,128}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni have been measured to study the effects of neutron excess in neutron-rich radioactive nuclei on fusion. For the reactions with $^{64}$Ni, the fusion probability does not decrease with increasing neutron excess in Sn, contrary to the result of the stable beam Sn+Zr measurement. A comparison of the reduced evaporation residue cross sections for $^{126}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni, which make the same compound nucleus, shows that the fusion probability is indistinguishable for reactions involving the same atomic elements but different isotope combinations.

  12. Observation of incomplete fusion reactions at l < l {sub crit}

    SciTech Connect

    Yadav, Abhishek Sharma, Vijay R. Singh, Devendra P. Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Sharma, M. K.

    2014-08-14

    In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

  13. The Rate Laws for Reversible Reactions.

    ERIC Educational Resources Information Center

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  14. /sup 18/O + /sup 12/C fusion-evaporation reaction

    SciTech Connect

    Heusch, B; Beck, C; Coffin, J P; Freeman, R M; Gallmann, A; Haas, F; Rami, F; Wagner, P; Alburger, D E

    1980-01-01

    A study of the /sup 18/O + /sup 12/C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus /sup 30/Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model.

  15. Compound nucleus formation in reactions between massive nuclei: Fusion barrier

    SciTech Connect

    Antonenko, N.V.; Cherepanov, E.A.; Nasirov, A.K.; Permjakov, V.P.; Volkov, V.V.

    1995-05-01

    The evaporation residue cross sections {sigma}{sub ER} in reactions between massive nuclei have been analyzed within different models of complete fusion. The calculations in the framework of the optical model, the surface friction model, and the macroscopic dynamic model can give the results which are by few orders of magnitude different from experimental data. This takes place due to neglect of the competition between complete fusion and quasifission. A possible mechanism of compound nucleus formation in heavy-ion-induced reactions has been suggested. The analysis of the complete fusion of nuclei on the basis of dinuclear system approach has allowed one to reveal an important feature of the fusion process of massive nuclei, that is, the appearance of the fusion barrier during dinuclear system evolution to a compound nucleus. As a result, the competition between complete fusion and quasifission arises and strongly reduces the cross section of the compound nucleus formation. A model is proposed for calculation of this competition in a massive symmetric dinuclear system. This model is applied for collision energies above the Coulomb barrier. The {sigma}{sub ER} values calculated in the framework of dinuclear system approach seem to be close to the experimental data. For illustration the reactions {sup 100}Mo+{sup 100}Mo, {sup 110}Pd+{sup 110}Pd, and {sup 124}Sn+{sup 96}Zr have been considered.

  16. Formation of superheavy nuclei in cold fusion reactions

    SciTech Connect

    Feng Zhaoqing; Jin Genming; Li Junqing; Scheid, Werner

    2007-10-15

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  17. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  18. Fission and Quasifission in the 'Warm' Fusion Reactions

    SciTech Connect

    Itkis, M. G.; Bogachev, A. A.; Chernysheva, E. V.; Itkis, I. M.; Knyazheva, G. N.; Kozulin, E. M.

    2010-06-01

    Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions of {sup 48}Ca, {sup 58}Fe and {sup 64}Ni ions with actinides leading to the formation of superheavy compound system with Z = 112-120 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is approximately the same for the reactions with {sup 48}Ca ions and drops three orders of magnitude at the transition to {sup 64}Ni ions.

  19. Acrosome Reaction as a Preparation for Gamete Fusion.

    PubMed

    Cuasnicú, Patricia S; Da Ros, Vanina G; Weigel Muñoz, Mariana; Cohen, Débora J

    2016-01-01

    The acrosome reaction (AR) is a universal requisite for sperm-egg fusion. However, whereas through the animal kingdom fusion of spermatozoa with the egg plasma membrane occurs via the inner acrosomal membrane exposed after the AR, in eutherian mammals, gamete fusion takes place through a specialized region of the acrosome known as the equatorial segment (ES) which becomes fusogenic only after the AR is completed. This chapter focuses on the different molecular mechanisms involved in the acquisition of the fusogenicity of the ES after the AR. We provide an update of the knowledge about the proteins proposed to have a role in this process either by modifying cytoskeletal and/or membrane molecules or by relocalizing to the ES after the AR to subsequently participate in gamete fusion. PMID:27194355

  20. Analysis of quasifission competition in fusion reactions forming heavy nuclei

    NASA Astrophysics Data System (ADS)

    Hammerton, Kalee; Kohley, Zachary; Morrissey, Dave; Wakhle, Aditya; Stiefel, Krystin; Hinde, David; Dasgupta, Mahananda; Williams, Elizabeth; Simenel, Cedric; Carter, Ian; Cook, Kaitlin; Jeung, Dongyun; Luong, Duc Huy; McNeil, Steven; Palshetkar, Chandani; Rafferty, Dominic

    2015-10-01

    Heavy-ion fusion reactions have provided a mechanism for the production of superheavy elements allowing for the extension of both the periodic table and chart of the nuclides. However, fusion of the projectile and target, forming a compound nucleus, is hindered by orders of magnitude by the quasifission process in heavy systems. In order to fully understand this mechanism, and make accurate predictions for superheavy element production cross sections, a clear description of the interplay between the fusion-fission and quasifission reaction channels is necessary. The mass-angle distributions of fragments formed in 8 different Cr + W reactions were measured at the Australia National University in order to explore the N/Z dependence of the quasifission process. Two sets of data were measured: one at a constant energy relative to the fusion barrier and one at a constant compound nucleus excitation energy. The results of this analysis will provide insight into the effect of using more neutron-rich beams in superheavy element production reactions.

  1. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  2. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  3. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  4. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  5. Effective reaction rates for diffusion-limited reaction cycles

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  6. Controlled shock shells and intracluster fusion reactions in the explosion of large clusters

    SciTech Connect

    Peano, F.

    2006-05-15

    The ion phase-space dynamics in the Coulomb explosion of very large ({approx}10{sup 6}-10{sup 7} atoms) deuterium clusters can be tailored using two consecutive laser pulses with different intensities and an appropriate time delay. For suitable sets of laser parameters (intensities and delay), large-scale shock shells form during the explosion, thus highly increasing the probability of fusion reactions within the single exploding clusters. In order to analyze the ion dynamics and evaluate the intracluster reaction rate, a one-dimensional theory is used, which approximately accounts for the electron expulsion from the clusters. It is found that, for very large clusters (initial radius {approx}100 nm), and optimal laser parameters, the intracluster fusion yield becomes comparable to the intercluster fusion yield. The validity of the results is confirmed with three-dimensional particle-in-cell simulations.

  7. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  8. Distribution of Ions in Laser-Driven Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Warrens, Mackenzie; Barbarino, Matteo; Bonasera, Aldo; Lattuada, Dario; Group Bonasera Team

    2015-10-01

    Experiments of laser-driven fusion reactions are important for many aspects, such as measuring the cross section of plasma. In the experiments at University of Texas using the Texas Petawatt laser, deuterium clusters of various sizes suspended in 3He gas absorb the laser's energy and are irradiated. The clusters undergo a Coulomb explosion, forming a hot plasma which initiates the reactions. This analysis studies two possible fusions: D(d, 3He)n and 3He(d,p)4He. Signals are recorded using a Faraday cup detector, then transformed and analyzed in energy space. In this work, we investigate if the log-normal distribution is an appropriate description of the energy distribution of the ions. If the log-normal distribution is a good fit, the energy distribution can be thought of as chaotic enough to appear thermalized. The chaos may be due to many-body interactions over long distances, as well as the different charges and masses of the particles involved. Using the well-known S-factor for the two reactions and the extrapolated fits, the number of fusions is calculated and compared with experimental data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1263281.

  9. f 1 (1285) formation in photon-photon fusion reactions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnett, B. A.; Bauer, D. A.; Bay, A.; Bengtsson, H.-U.; Bobbink, G. J.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Chao, H.-Y.; Chun, S.-B.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Daoudi, M.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fairfield, K. H.; Hauptman, J. M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kenney, R. W.; Khacheryan, S.; Kofler, R. R.; Langeveld, W. G. J.; Layter, J. G.; Lin, W. T.; Linde, F. L.; Loken, S. C.; Lu, A.; Lynch, G. R.; Madaras, R. J.; Magnuson, B. D.; Masek, G. E.; Mathis, L. G.; Matthews, J. A. J.; Maxfield, S. J.; Miller, E. S.; Moses, W.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stephens, R. W.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Toutounchi, S.; Van Tyen, R.; Van Dalen, G. J.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y.-X.; Wenzel, W. A.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.; TPC/Two-Gamma Collaboration

    1988-07-01

    We have observed formation of the f 1 (1285) in the reaction e +e -→e +e -π+π-η( η→ γγ). Its γγ ∗ width is determined in several Q2 bins. The γγ coupling parameter for the f 1 (1285) is found to be 2.4±0.5±0.5 keV. This value is compared to that for the X (1420), another J=1 state formed in γγ fusion reactions, which may belong to the same meson nonet.

  10. Fusion and direct reactions for strongly and weakly bound projectiles

    NASA Astrophysics Data System (ADS)

    Hugi, M.; Lang, J.; Müller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzałkowski, A.; Willim, G.

    1981-09-01

    The interaction of 6Li, 9Be and 12C projectiles with a 28Si target was investigated by measuring the angular distributions of the elastically scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was performed in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel model describing the fusion reaction vary smoothly with the atomic number. In the system 9Be + 28Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systems the direct part amounts to 15 % ( 12C) and 30 % ( 6Li) only.

  11. Astrophysical Reaction Rates Obtained By Indirect Techniques

    SciTech Connect

    Tribble, R. E.; Al-Abdullah, T.; Alharbi, A.; Banu, A.; Chen, X.; Clark, H. L.; Fu, C.; Gagliardi, C. A.; Hardy, J. C.; Iacob, V. E.; Lui, Y.-W.; McCleskey, M.; Mukhamedzhanov, A.; Nica, N.; Park, H. I.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tokimoto, Y.; Trache, L.

    2010-08-12

    Indirect techniques have been used to obtain information about reaction rates for several proton capture reactions that occur on short-lived nuclei. The techniques used to carry out the measurements are reviewed and the results obtained are presented. Also future prospects for further measurements with a new facility, T-REX are discussed.

  12. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  13. Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2014-10-01

    The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  14. Formation of superheavy elements in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Smolańczuk, Robert

    2001-04-01

    We calculate the formation cross sections of transactinides (superheavy elements), as well as heavy actinides (No and Lr), which have been or might be obtained in fusion reactions with the evaporation of only one neutron. We use both more realistic fusion barrier and survival probability of the compound nucleus in comparison with the original phenomenological model [Phys. Rev. C 59, 2634 (1999)] that prompted the Berkeley experiment on the synthesis of a new superheavy element 118 [Phys. Rev. Lett. 83, 1104 (1999)]. Calculations are performed for asymmetric and symmetric target-projectile combinations and for reactions with stable and radioactive-ion beams. The formation cross sections measured at GSI-Darmstadt for transactinides and heavy actinides, as well as that for superheavy element 118 reported by the LBNL-Berkeley group, are reproduced within a factor of 2.4, on average. Based on the obtained relatively large cross sections, we predict that optimal reactions with stable beams for the synthesis of so far unobserved superheavy elements 119, 120, and 121 are 209Bi(86Kr, 1n)294119, 208Pb(88Sr, 1n)295120, and 209Bi(88Sr, 1n)296121, respectively. This is because of the magic of both the target and the projectile that leads to larger Q value and, consequently, lower effective fusion barrier with larger transmission probability. The same effect is responsible for relatively large cross sections predicted for the symmetric reactions 136Xe(124Sn, 1n)259Rf, 136Xe(136Xe, 1n)271Hs,138Ba(136Xe, 1n)273110, and 140Ce(136Xe, 1n)275112. Although shell effects in the magic nuclei 124Sn, 136Xe, 138Ba, and 140Ce are not as strong as in 208Pb and 209Bi, they act on both the target and the projectile and lead to the prediction of measurable cross sections.

  15. Observation of neutronless fusion reactions in picosecond laser plasmas.

    PubMed

    Belyaev, V S; Matafonov, A P; Vinogradov, V I; Krainov, V P; Lisitsa, V S; Roussetski, A S; Ignatyev, G N; Andrianov, V P

    2005-08-01

    The yield of alpha particles in neutronless fusion reactions 11B +p in plasmas produced by picosecond laser pulses with the peak intensity of 2 x 10(18) W/cm2 has been observed. Experiments were carried out on the "Neodymium" laser facility at the pulse energy of 10-12 J and pulse duration of 1.5 ps. The composite targets 11B + (CH2)n were used. The yield of 10(3) alpha particles per pulse has been observed. The energy spectrum of alpha particles contains two maxima: at 3-4 MeV and at 6-10 MeV . The first of these peaks corresponds to the secondary alpha12 particles at the decay of the intermediate first excited state of 8Be, whereas the second peak demonstrates generation of alpha1 particles in the reaction 11B +p with the production of this excited state. Simultaneous measurements of neutrons result in zero yield, which proves the observation of neutronless fusion reactions in our experiments. PMID:16196717

  16. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  17. Fusion reactions of 58,64Ni+124Sn

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Goasduff, A.; Haas, F.; Mazzocco, M.; Montanari, D.; Montagnoli, G.; Mijiatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E.; Szilner, S.

    2016-05-01

    In order to better understand the influence of transfer in sub-barrier nuclear reactions, cross sections for the system 58,64Ni+124Sn have been measured down to 0.5-1 µb and compared to detailed coupledchannel calculations. In agreement with a phenomenological Q-value systematics, calculations show the importance of including the coupling to the transfer channel for these heavy systems. No clear evidence of fusion hindrance is observed, probably due to the fact that the cross sections measured in this experiment are not low enough for the appearance of that phenomenon.

  18. Impact of Reaction Cross Section on the Unified Description of Fusion Excitation Function

    NASA Astrophysics Data System (ADS)

    Basrak, Z.; Eudes, P.; de la Mota, V.; Sébille, F.; Royer, G.

    A systematics of over 300 complete and incomplete fusion cross section data points covering energies beyond the barrier for fusion is presented. Owing to a usual reduction of the fusion cross sections by the total reaction cross sections and an original scaling of energy, a fusion excitation function common to all the data points is established. A universal description of the fusion exci- tation function relying on basic nuclear concepts is proposed and its dependence on the reaction cross section used for the cross section normalization is discussed. The pioneering empirical model proposed by Bass in 1974 to describe the complete fusion cross sections is rather successful for the incomplete fusion too and provides cross section predictions in satisfactory agreement with the observed universality of the fusion excitation function. The sophisticated microscopic transport DYWAN model not only reproduces the data but also predicts that fusion reaction mechanism disappears due to weakened nuclear stopping power around the Fermi energy.

  19. Astrophysical S factors for fusion reactions involving C, O, Ne, and Mg isotopes

    SciTech Connect

    Beard, M.; Afanasjev, A.V.; Chamon, L.C.; Gasques, L.R.; Wiescher, M.; Yakovlev, D.G.

    2010-09-15

    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to {approx}18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.

  20. Sparking fusion: A step toward laser-initiated nuclear fusion reactions

    SciTech Connect

    Peterson, I.

    1996-10-19

    The fusion furnace at the sun`s core burns hydrogen to make helium. Each time two hydrogen nuclei, or protons, merge to create a deuterium nucleus, the process releases energy. A chain of additional energy-producing nuclear reactions then converts deuterium into helium. Because protons, with their like electric charges, naturally repel each other, high temperatures and tremendous pressures are needed to force them together closely enough to initiate and sustain the reactions. These mergers cost energy initially, but the return on that investment proves prodigious. On Earth, such an energy payoff has been achieved only in the uncontrolled fury of a detonated hydrogen bomb. The vision of harnessing and controlling nuclear fusion as a terrestrial energy source has yet to be fulfilled. The proposed National Ignition Facility (NIF) represents an ambitious effort to use powerful lasers to deposit sufficient energy in a small capsule of nuclear fuel to trigger fusion. The main justification for the project is to ensure that a core group of physicists and engineers maintains its expertise in the physics of nuclear weapons. This article presents both the scientific and political sides of the NIF facility.

  1. Critical reaction rates in hypersonic combustion chemistry

    SciTech Connect

    Oldenborg, R.C.; Harradine, D.M.; Loge, G.W.; Lyman, J.L.; Schott, G.L.; Winn, K.R.

    1989-01-01

    High Mach number flight requires that the scramjet propulsion system operate at a relatively low static inlet pressure and a high inlet temperature. These two constraints can lead to extremely high temperatures in the combustor, yielding high densities of radical species and correspondingly poor chemical combustion efficiency. As the temperature drops in the nozzle expansion, recombination of these excess radicals can produce more product species, higher heat yield, and potentially more thrust. The extent to which the chemical efficiency can be enhanced in the nozzle expansion depends directly on the rate of the radical recombination reactions. A comprehensive assessment of the important chemical processes and an experimental validation of the critical rate parameters is therefore required if accurate predictions of scramjet performance are to be obtained. This report covers the identification of critical reactions, and the critical reaction rates in hypersonic combustion chemistry. 4 refs., 2 figs.

  2. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion

    PubMed Central

    Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun

    2016-01-01

    Objective To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. Methods From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). Results We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). Conclusion The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might

  3. Universal reaction rates for ultracold molecular collisions

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Idziaszek, Zbigniew

    2010-03-01

    We offer a simple yet general model of reactive collisions using a quantum defect framework based on the separation of the collision dynamics into long-range and a short-range parts [1]. Two dimensionless quantum defect parameters s and y are used to characterize the S-matrix for a given entrance channel; s represents a phase parameter and y the probability of short-range reaction. The simple analytic expressions we obtain give universal values for s-wave and p-wave collision rates for a van der Waals potential when y approaches unity. In this limit, reaction rates are governed entirely by the threshold laws governing the quantum transmission of the long range potential and depend only on the van der Waals coefficient. The universal rate constants explain the magnitude of the observed rate constants for reactive collisions of fermionic KRb + KRb or K + KRb [2]. In contrast, reaction rates will be non-universal and depend strongly on the phase parameter s if the short range reaction probability is low, y << 1. [1] Z. Idziaszek and P. S. Julienne, arXiv:0912.0370. [2] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Qu'em'ener, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, arXiv:0912.3854.

  4. Measurement of the survival probabilities for hot fusion reactions.

    PubMed

    Yanez, R; Loveland, W; Yao, L; Barrett, J S; Zhu, S; Back, B B; Khoo, T L; Alcorta, M; Albers, M

    2014-04-18

    We have studied the fission-neutron emission competition in highly excited (274)Hs (Z=108) (where the fission barrier is due to shell effects) formed by a hot fusion reaction. Matching cross bombardments ((26)Mg+(248)Cm and (25)Mg+(248)Cm) were used to identify the properties of first chance fission of (274)Hs. A Harding-Farley analysis of the fission neutrons emitted in the (25)Mg,26+(248)Cm was performed to identify the prescission and postscission components of the neutron multiplicities in each system. (Γn/Γt) for the first chance fission of (274)Hs (E*=63  MeV) is 0.89±0.13; i.e., ∼90% of the highly excited nuclei survive. The high value of that survival probability is due to dissipative effects during deexcitation. A proper description of the survival probabilities of excited superheavy nuclei formed in hot fusion reactions requires consideration of both dynamic and static (shell-related) effects. PMID:24785034

  5. Spin polarization effects in the /sup 3/H(d,n)/sup 4/He fusion reaction

    SciTech Connect

    Conzett, H.E.; Rioux, C.

    1985-06-01

    A recent investigation has shown that the /sup 3/H(d,n)/sup 4/He fusion reaction rate could be enhanced by a factor of 3/2 if the fusion plasma consisted of both polarized deuterons and tritons, forming exclusively the channel-spin S = 3/2, J = 3/2/sup +/ state. This result follows simply from the statistical weights of the quartet S = 3/2 and doublet S = 1/2 initial states, with the assumption of the single J = 3/2/sup +/ reaction amplitude. Since, with a small but nonzero J = 1/2/sup +/ amplitude, the maximum enhancement of the reaction occurs at the peak of the J = 3/2/sup +/ resonance, corresponding to a deuteron lab energy of 107 keV, it is of obvious interest to know what the enhancement would be at the lower energies that are typical of fusion plasmas. We are able to address this question by extending earlier calculations which gave the values of all of the spin-polarization observables at this J = 3/2/sup +/ resonance in both the /sup 3/H(d,n)/sup 4/He and the /sup 3/He(d,p)/sup 4/He reactions.

  6. Enhanced aqueous photochemical reaction rates after freezing.

    PubMed

    Grannas, Amanda M; Bausch, Alexandra R; Mahanna, Kendell M

    2007-11-01

    Sunlit snow/ice is known to play an important role in the processing of atmospheric species, including photochemical production of NO(x), HONO, molecular halogens, alkyl halides, and carbonyl compounds, among others. It has been shown that a liquid-like (quasi-liquid or disordered) layer exists on the surface of pure ice and that this quasi-liquid layer is also found on the surface of ambient snow crystals and ice at temperatures similar to polar conditions. However, it is unclear what role the liquid-like fractions present in and on frozen water play in potential photochemical reactions, particularly with regard to organic substrates. Here, we report a detailed study of enhanced rates of photochemical nucleophilic substitution of p-nitroanisole (PNA) with pyridine, a well-characterized and commonly used actinometer system. Reaction rates were enhanced by a factor of up to approximately 40 when frozen at temperatures between 236 and 272 K. Reaction rates were dependent on temperature and solute concentration, both variables that control the nature of the liquid-like fraction in frozen water. The results obtained indicate that a major portion of the organic solutes is excluded to the liquid-like layer, significantly impacting the rate of the photochemical nucleophilic substitution reaction studied here. Also, the direct comparison of liquid-phase kinetics to reactions occurring in frozen water systems is drawn into question, indicating that a simple extrapolation of liquid-phase mechanisms to snow/ice may not be valid for certain reactions. PMID:17918916

  7. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  8. Reaction rates for a generalized reaction-diffusion master equation

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  9. The application of diagnostic equipment in the Tokamak fusion reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Bang-shuai; Chang, Jun; Gong, Xian-zu; Gan, Jia-fu; Feng, Shu-long

    2011-11-01

    This paper introduces the infrared optical system in the Tokamak fusion reaction device. In this optical system, the traditional optical structure can't meet the requirements, because the length of the infrared optical system in the Tokamak is very long. The design of optical system in the detection facility includes three parts:1.the combination of the concave aspheric mirror and flat mirror; 2.the Cassegrain system; 3.the relay group lenses. This paper describes the decrease of the modulation transfer function (MTF) when the temperature changes and how to compensate the decrease of the MTF in order to maintain the image quality in a high level. As a result, the image quality of this optical system can reach the requirements when the temperature changes.

  10. Thermodynamic limitations on microbially catalyzed reaction rates

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Amend, Jan P.; Van Cappellen, Philippe

    2012-08-01

    Quantification of global biogeochemical cycles requires knowledge of the rates at which microorganisms catalyze chemical reactions. In order for models that describe these processes to capture global patterns of change, the underlying formulations in them must account for biogeochemical transformations over seasonal and millennial time scales in environments characterized by different energy levels. Building on existing models, a new thermodynamic limiting function is introduced. With only one adjustable parameter, this function that can be used to model microbial metabolism throughout the range of conditions in which organisms are known to be active. The formulation is based on a comparison of the amount of energy available from any redox reaction to the energy required to maintain a membrane potential, a proxy for the minimum amount of energy required by an active microorganism. This function does not require species- or metabolism-specific parameters, and can be used to model metabolisms that capture any amount of energy. The utility of this new thermodynamic rate limiting term is illustrated by applying it to three low-energy processes: fermentation, methanogenesis and sulfate reduction. The model predicts that the rate of fermentation will be reduced by half once the Gibbs energy of the catalyzed reaction reaches -12 kJ (mol e-)-1, and then slowing exponentially until the energy yield approaches zero. Similarly, the new model predicts that the low energy yield of methanogenesis, -4 to -0.5 kJ (mol e-)-1, for a partial pressure of H2 between 11 and 0.6 Pa decreases the reaction rate by 95-99%. Finally, the new function's utility is illustrated through its ability to accurately model sulfate concentration data in an anoxic marine sediment.

  11. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  12. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  13. Selected component failure rate values from fusion safety assessment tasks

    SciTech Connect

    Cadwallader, L.C.

    1998-09-01

    This report is a compilation of component failure rate and repair rate values that can be used in magnetic fusion safety assessment tasks. Several safety systems are examined, such as gas cleanup systems and plasma shutdown systems. Vacuum system component reliability values, including large vacuum chambers, have been reviewed. Values for water cooling system components have also been reported here. The report concludes with the examination of some equipment important to personnel safety, atmospheres, combustible gases, and airborne releases of radioactivity. These data should be useful to system designers to calculate scoping values for the availability and repair intervals for their systems, and for probabilistic safety or risk analysts to assess fusion systems for safety of the public and the workers.

  14. Selected Component Failure Rate Values from Fusion Safety Assessment Tasks

    SciTech Connect

    Cadwallader, Lee Charles

    1998-09-01

    This report is a compilation of component failure rate and repair rate values that can be used in magnetic fusion safety assessment tasks. Several safety systems are examined, such as gas cleanup systems and plasma shutdown systems. Vacuum system component reliability values, including large vacuum chambers, have been reviewed. Values for water cooling system components have also been reported here. The report concludes with the examination of some equipment important to personnel safety, atmospheres, combustible gases, and airborne releases of radioactivity. These data should be useful to system designers to calculate scoping values for the availability and repair intervals for their systems, and for probabilistic safety or risk analysts to assess fusion systems for safety of the public and the workers.

  15. The effects of vacuum polarization on thermonuclear reaction rates

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1990-01-01

    Added to the pure Coulomb potential, the contribution from vacuum polarization increases the barrier, reducing the wave function (u) for reacting nuclei within the range of nuclear forces. The cross section and reaction rate are then reduced accordingly by a factor proportional to u squared. The effect is treated by evaluating the vacuum polarization potential as a small correction to the Coulomb term, then computing u in a WKB formulation. The calculation is done analytically employing the small r power-series expansion for the Uehling potential to express the final result in terms of convenient parameters. At a temperature of 1.4 x 10 to the 7th K the (negative) correction is 1.3 percent for the fundamental fusion process p + p yields d + e(+) + nu.

  16. Comparison of Fusion Rates between Glycerol-Preserved and Frozen Composite Allografts in Cervical Fusion

    PubMed Central

    Rodway, Ian; Gander, Julie

    2014-01-01

    Background. This retrospective, two cohort series study was designed to compare a room temperature, glycerol-preserved composite pinned bone allograft (G-CPBA) with the same graft type provided in a frozen state (F-CPBA) for use as a cervical interbody spacer in anterior cervical discectomy and fusion (ACDF). Methods. A comprehensive chart review was performed for 67 sequential patients that received either a F-CPBA or a G-CPBA and had at least one-year follow-up. Twenty-eight patients had received G-CPBA grafts and 37 patients had received F-CPBA grafts. Two additional 2-level patients had received one of each type of grafts. Results. At 3 months, 45.3% (29 of 64) of glycerol-preserved and 41.4% (29 of 70) of frozen allografts, respectively, were considered to be fused radiographically. At 12 months, 100% of both treatment groups (41 glycerol-preserved and 45 frozen) were considered fused. Fusion rates for G-CPBA were statistically similar to F-CPBA at both 3 and 12 months (P = 0.6535 and >0.999, resp.). There were no allograft related complications in either treatment group. Conclusions. 100% fusion rates were attained by both treatment groups at 12 months and were similar at short-term follow-up for all comparable levels. Level of Evidence. Level of evidence is III.

  17. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  18. Calculations of Proton Emission Cross Sections in Deuteron Induced Reactions of Some Fusion Structural Materials

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Tanır, G.

    2013-06-01

    The growing demands for energy consumption have led to the increase of the research and development activities on new energy sources. Fusion energy has the highest potential to become a very safe, clean and abundant energy source for the future. To get energy from fusion are needed for development of fusion reactor technology. Particularly, the design and development of international facilities as International Thermonuclear Experimental Reactor and International Fusion Material Irradiation Facility requires for the cross-section data of deuteron induced reactions. Moreover, the selection of fusion structural materials are an indispensable component for this technology. Therefore, the cross-section data of deuteron induced reactions on fusion structural materials are of great importance for development of fusion reactor technology. In this study, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as 27Al, 59Co, 55Mn, 50Cr, 54Cr, 64Ni, 109Ag, 184W and 186W have been carried out for incident energies up to 50 MeV. In these calculations, the pre-equilibrium and equilibrium effects for ( d, p) stripping reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model and hybrid model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the literature.

  19. Production of exotic isotopes in complete fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Zubov, A. S.; Adamian, G. G.; Antonenko, N. V.; Heinz, S.

    2013-11-01

    The isotopic dependence of the complete fusion (capture) cross section is analyzed in the reactions 130,132,134,136,138,140,142,144,146,148,150Xe+48Ca with stable and radioactive beams. It is shown for the first time that the very neutron-rich nuclei 186-191W can be reached with relatively large cross sections by complete fusion reactions with radioactive ion beams at incident energies near the Coulomb barrier. A comparison between the complete fusion and fragmentation reactions for the production of neutron-rich W and neutron-deficient Rn isotopes is performed.

  20. Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2016-04-01

    In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.

  1. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  2. Indirect techniques for astrophysical reaction rates determinations

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  3. Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Trzaska, W. H.; Xu, X. X.; Yan, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2014-10-01

    The measured complete fusion (capture) excitation function is presented for the 28Si + 208Pb reaction at deep sub-barrier energies. This excitation function is compared with the one predicted with the quantum diffusion approach.

  4. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  5. Spectral photoplethysmographic imaging sensor fusion for enhanced heart rate detection

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-03-01

    Continuous heart rate monitoring can provide important context for quantitative clinical assessment in scenarios such as long-term health monitoring and disability prevention. Photoplethysmographic imaging (PPGI) systems are particularly useful for such monitoring scenarios as contact-based devices pose problems related to comfort and mobility. Each pixel can be regarded as a virtual PPG sensor, thus enabling simultaneous measurements of multiple skin sites. Existing PPGI systems analyze temporal PPGI sensor uctuations related to hemodynamic pulsations across a region of interest to extract the blood pulse signal. However, due to spatially varying optical properties of the skin, the blood pulse signal may not be consistent across all PPGI sensors, leading to inaccurate heart rate monitoring. To increase the hemodynamic signal-to-noise ratio (SNR), we propose a novel spectral PPGI sensor fusion method for enhanced estimation of the true blood pulse signal. Motivated by the observation that PPGI sensors with high hemodynamic SNR exhibit a spectral energy peak at the heart rate frequency, an entropy-based fusion model was formulated to combine PPGI sensors based on the sensors' spectral energy distribution. The optical PPGI device comprised a near infrared (NIR) sensitive camera and an 850 nm LED. Spatially uniform irradiance was achieved by placing optical elements along the LED beam, providing consistent illumination across the skin area. Dual-mode temporally coded illumination was used to negate the temporal effect of ambient illumination. Experimental results show that the spectrally weighted PPGI method can accurately and consistently extract heart rate information where traditional region-based averaging fails.

  6. Description of the Fusion-Fission Reactions in the Framework of Dinuclear System Conception

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    Within the dinuclear system model fusion-fission reactions 78Kr+40Ca and 86Kr+48Ca is investigated. The charge distributions of the decay products are predicted at bombarding energy 10 MeV/nucleon. The competition is treated between complete fusion followed by the decay of compound nucleus and quasifission channels. The possible explanation of the odd-even staggering in the yield of the final reaction products at high excitation energies is discussed.

  7. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-01

    The excitation functions were measured for the 28Si + 208Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the 28Si + 124Sn, 208Pb; 30Si + 124Sn, 208Pb; 20Ne + 208Pb; 40Ca + 96Zr; and 134Te + 40Ca complete-fusion (capture) reactions is discussed.

  8. Robust sensor fusion of unobtrusively measured heart rate.

    PubMed

    Wartzek, Tobias; Brüser, Christoph; Walter, Marian; Leonhardt, Steffen

    2014-03-01

    Contactless vital sign measurement technologies often have the drawback of severe motion artifacts and periods in which no signal is available. However, using several identical or physically different sensors, redundancy can be used to decrease the error in noncontact heart rate estimation, while increasing the time period during which reliable data are available. In this paper, we show for the first time two major results in case of contactless heart rate measurements deduced from a capacitive ECG and optical pulse signals. First, an artifact detection is an essential preprocessing step to allow a reliable fusion. Second, the robust but computationally efficient median already provides good results; however, using a Bayesian approach, and a short time estimation of the variance, best results in terms of difference to reference heart rate and temporal coverage can be achieved. In this paper, six sensor signals were used and coverage increased from 0-90% to 80-94%, while the difference between the estimated heart rate and the gold standard was less than ±2 BPM. PMID:24608065

  9. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  10. Impact of THM reaction rates for astrophysics

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  11. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  12. Study of fusion-fission dynamics in 19F+238U reaction

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  13. No-capture breakup and incomplete fusion reactions induced by stable weakly bound nucleus 9Be

    NASA Astrophysics Data System (ADS)

    Seyyedi, S. A.

    2016-06-01

    The reactions including the stable weakly bound nucleus 9Be have been studied using the classical trajectory model accompanied with the experimental breakup function and the Aage-Winther interaction potential (AW95). In these calculations, the no-capture breakup and the incomplete fusion cross-sections as well as their competition at around the Coulomb barrier have been investigated. Our calculations showed that at a given far-Coulomb-barrier energy the incomplete fusion reaction in different distributions of angular momentum and energies can dominate the no-capture breakup reaction. This dominating process is reversed at the near-barrier energies.

  14. Typewriting rate as a function of reaction time.

    PubMed

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research. PMID:604897

  15. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Rowley, N.; Yao, J. M.

    2016-06-01

    The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  16. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  17. Revised analysis of 40Ca+96Zr fusion reactions

    NASA Astrophysics Data System (ADS)

    Esbensen, H.; Montagnoli, G.; Stefanini, A. M.

    2016-03-01

    Fusion data for 40Ca+96Zr are analyzed by coupled-channels calculations that are based on a standard Woods-Saxon potential and include couplings to multiphonon excitations and transfer channels. The couplings to multiphonon excitations are the same as those used in a previous work. The transfer couplings are calibrated to reproduce the measured neutron transfer data. This type of calculation gives a poor fit to the fusion data. However, by multiplying the transfer couplings with a √{2 } one obtains an excellent fit. The scaling of the transfer strengths is supposed to simulate the combined effect of neutron and proton transfer, and the calculated one- and two-nucleon transfer cross sections are indeed in reasonable agreement with the measured cross sections.

  18. Role of the neck degree of freedom in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Lenske, H.

    2015-05-01

    Mass parameters for collective variables of dinuclear systems formed in cold fusion reactions are microscopically calculated with the linear response theory making use of the width of single-particle states and the fluctuation-dissipation theorem. The single-particle spectrum and potential energy surface of the adiabatic two-center shell model are used. The microscopical mass parameter in the neck is found to be much larger than one obtained with the hydrodynamical model. Therefore, the dinuclear system lives a rather long time, comparable to the characteristic time of fusion and, correspondingly, the fusion can be considered at fixed neck parameter. With an adiabatic melting of the dinuclear system along the internuclear distance into a compound system one cannot explain the experimental trends in cold fusion reactions.

  19. Investigating multichannel quantum tunneling in heavy-ion fusion reactions with Bayesian spectral deconvolution

    NASA Astrophysics Data System (ADS)

    Hagino, K.

    2016-06-01

    Excitations of colliding nuclei during a nuclear reaction considerably affect fusion cross sections at energies around the Coulomb barrier. It has been demonstrated that such channel coupling effects can be represented in terms of a distribution of multiple fusion barriers. I here apply a Bayesian approach to analyze the so-called fusion barrier distributions. This method determines simultaneously the barrier parameters and the number of barriers. I particularly investigate the 16O+144Sm and 16O+154Sm systems in order to demonstrate the effectiveness of the method. The present analysis indicates that the fusion barrier distribution for the former system is most consistent with three fusion barriers, even though the experimental data show only two distinct peaks.

  20. Sub- and near-barrier fusion reactions experimental results

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.

    2016-05-01

    Early data of sub-barrier fusion teached us that cross sections may strongly depend on the structure of colliding nuclei and on couplings to transfer channels. The influence of transfer is clearly indicated in the excitation functions of different nickel isotopes and various Ca+Zr systems. Fusion barrier distributions often yield the fingerprint of the relevant inelastic and transfer couplings. At lower energies, far below the barrier the slope of the excitation function keeps increasing in many cases, so that the cross sections are strongly over-predicted by standard coupled-channels (CC) calculations; this was named a hindrance effect. Furthermore, light heavy-ion systems show cross section oscillations above the Coulomb barrier. Recent experiments have been performed on the fusion of 28,30Si+28,30Si systems where all phenomena cited above show up. In particular regular oscillations that have been revealed above the barrier for 28Si+28Si and have been interpreted as the consequence of the strong channel couplings and/or the oblate deformation of 28Si.

  1. Isotopic dependence of fusion cross sections in reactions with heavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2000-09-01

    The dependence of fusion cross section on the isotopic composition of colliding nuclei is analysed within the dinuclear system concept for compound nucleus formation. Probabilities of fusion and surviving probabilities, ingredients of the evaporation residue cross sections, depend decisively on the neutron numbers of the dinuclear system. Evaporation residue cross sections for the production of actinides and superheavy nuclei, listed in table form, are discussed and compared with existing experimental data. In the Pb-based reactions neutron-rich radioactive projectiles are shown to lead to similar fusion cross sections as stable projectiles.

  2. Dispersion relation approach to sub-barrier heavy-ion fusion reactions

    SciTech Connect

    Franzin, V.L.M.; Hussein, M.S.

    1988-11-01

    We discuss the conditions under which the dispersion relation technique, extensively employed in the context of elastic scattering, can be used in the analysis of heavy-ion fusion reactions. General unitarity defect arguments are used for this purpose. With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential in terms of the principal part integral involving the real part of the inclusive polarization potential, the sub-barrier fusion of heavy ions is discussed. The system /sup 16/O+/sup A/Sm is taken as an example.

  3. Cross sections calculated for cold fusion reactions for producing superheavy nuclei

    SciTech Connect

    Smolanczuk, Robert

    2008-08-15

    We propose a handy formula for calculating the formation cross sections for optimal bombarding energies for transactinides (superheavy elements). By means of the proposed formula the cross sections for asymmetric and symmetric cold fusion reactions (one-neutron-out reactions) are calculated. The fusion barrier and its position are calculated by using the folding heavy-ion potential that for spherical reaction partners has the form of a seventh-order polynomial of the radial coordinate with built-in dependence on the thickness of the nuclear surface, as well as on the separation energy of the least bound nucleon. Possibilities of further experimental exploitation of cold fusion in producing the superheavy nuclei are briefly discussed.

  4. Competition between fusion and quasi-fission in heavy ion induced reactions

    SciTech Connect

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab.

  5. Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

    SciTech Connect

    Ghodsi, O. N.; Gharaei, R.

    2011-08-15

    We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.

  6. Fusion and quasi-fission dynamics in nearly-symmetric reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Kai; Li, ZhuXia

    2015-11-01

    Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in 154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5 for this reaction, and the nuclear contact time is generally smaller than 1500 fm/ c. From the central collisions of Sm+Gd, the neutron-rich fragments such as 164,165Gd, 192W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

  7. Probing systematic model dependence of complete fusion for reactions with the weakly bound projectiles Li,76

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2016-07-01

    Background: Complete fusion cross section measurements involving weakly bound projectiles show suppression at above-barrier energies compared to coupled-channels (CC) calculations, but no definite conclusion could be drawn for sub-barrier energies. Different CC models often lead to contrasting results. Purpose: We aim to investigate the differences in the fusion cross sections predicted by commonly used CC calculations, using codes such as fresco and ccfull, when compared to experimental data. Methods: The fusion cross sections are normalized to a dimensionless form by isolating the effect of only dynamic channel couplings calculated by both fresco and ccfull, by the method of fusion functions, and compared to a universal fusion function. This acts as a probe for obtaining the model dependence of fusion. Results: A difference is observed between the predictions of fresco and ccfull for all the reactions involving Li,76 as projectiles, and it is noticeably more for systems involving 7Li. Conclusions: With the theoretical foundations of the two CC models being different, their calculation of fusion is different even for the same system. The conclusion about the enhancement or suppression of fusion cross sections is model dependent.

  8. Multidimensional reaction rate theory with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang

    2014-11-01

    An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.

  9. DSMC predictions of non-equilibrium reaction rates.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-04-01

    A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

  10. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  11. Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay R.; Yadav, Abhishek; Singh, Devendra P.; Singh, Pushpendra P.; Gupta, Sunita; Sharma, Manoj K.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Singh, B. P.; Prasad, R.; Bhowmik, R. K.

    2015-01-01

    In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.

  12. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  13. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  14. Fusion reactions and experimental approaches to the synthesis of superheavy nuclei

    SciTech Connect

    Yeremin, A. V.; Utyonkov, V. K.; Oganessian, Yu. Ts.

    1998-02-15

    The question whether the asymmetric actinide based heavy ion reactions could be used for the synthesis of heavy (Z{>=}106) nuclides is essential from the point of view of the study of limitation on fusion, it is also important in such reactions new nuclides close to the magic number N=162 can be produced. Thus as the problem of a hindrance to fusion still remains unsolved the high excitation energy of the compound nucleus looks to be an obvious obstacle to using these reactions. Using the gas-filled recoil separator and electrostatic recoil separator VAS-SILISSA installed at the beam lines of the U-400 heavy ion cyclotron of the FLNR JINR we investigated the fusion reactions leading to 102, 103, 104, 105 and heaviest isotopes of the 106, 108 and 110 elements. The analysis of the measured cross-sections did not reveal any evidence of a hindrance to fusion at the ion bombarding energy close to the Coulomb barrier. {sup 48}Ca+{sup 232}Th{yields}{sup 280}110*, {sup 48}Ca+{sup 238}U{yields}{sup 286}112*, {sup 48}Ca+{sup 244}Pu{yields}{sup 292}114* appear to be the best reactions from the point of view of their cross-sections.

  15. Empirical rate equation for association reactions and ion-molecule reactions

    NASA Astrophysics Data System (ADS)

    Sato, Shin

    2016-05-01

    Temperature dependence of the rate constants of many association reactions is now available. In order to express the rate constants at temperatures from very low to high, we tried to use the sum of new empirical rate equations for association reactions and Arrhenius equations. Temperature dependence of a number of radical-molecule and some ion-molecule reactions could be successfully demonstrated. A new procedure to analyze ion-molecule reactions was proposed. This might suggest a new viewpoint to understanding chemical reactions.

  16. The new possibility of the fusion p + 11B chain reaction being induced by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.; Krainov, V. P.; Matafonov, A. P.; Zagreev, B. V.

    2015-09-01

    We discuss the experimental and theoretical principal schemes of a thermonuclear reactor, based on the fusion reaction p + 11B: beam collisions, fusion in degenerate plasmas, ignition at the plasma, particle acceleration by nonlinear ponderomotive forces and irradiation of the solid 11B target by a proton beam at the Coulomb explosion of hydrogen microdroplets. The fusion reaction p + 11B can be initiated by ultrashort high intensity laser pulses under conditions far from thermodynamic equilibrium. This may result in fusion products containing a small amount of neutrons and other nuclear radiation effects. It was found that the fusion reaction p + 11B produces further nuclear reactions and generates high-energy protons. The latter can support the chain reaction process. Our approach allows us to also investigate nuclear reactions in the early Universe and in stars.

  17. A review: Reduced reoperation rate for multilevel lumbar laminectomies with noninstrumented versus instrumented fusions

    PubMed Central

    Epstein, Nancy Ellen

    2016-01-01

    Background: The reoperation rate, including for adjacent segment disease (ASD), is lower following multilevel lumbar laminectomy with noninstrumented versus instrumented fusions. Methods: This study reviews selected literature focusing on the reoperation rate, including for ASD, following multilevel laminectomies with noninstrumented versus instrumented fusions. Several prior studies document a 1.3–5.6% reoperation rate following multilevel laminectomy with/without noninstrumented fusions. Results: The reoperation rates for instrumented fusions, including for ASD, are substantially higher. One study cited a 12.2–18.5% frequency for reoperation following instrumented transforaminal lumbar and posterior lumbar interbody fusions (TLIF and PLIFs) at an average of 164 postoperative months. Another study cited a 9.9% reoperation rate for ASD 1 year following PLIF; this increased to 80% at 5 postoperative years. A further study compared 380 patients variously undergoing laminectomies/noninstrumented posterolateral fusions, laminectomies with instrumented fusions (PLFs), and laminectomies with instrumented PLF plus an interbody fusions; this study documented no significant differences in outcomes for any of these operations at 4 postoperative years. Furthermore, other series showed fusion rates for 1–2 level procedures which were often similar with or without instrumentation, while instrumentation increased reoperation rates and morbidity. Conclusions: Many studies document no benefit for adding instrumentation to laminectomies performed for degenerative disease, including spondylolisthesis. Reoperation rates for laminectomy alone/laminectomy with noninstrumented fusions vary from 1.3% to 5.6% whereas reoperation rates for ASD after instrumented PLIF was 80% at 5 postoperative years. This review should prompt spinal surgeons to reexamine when, why, and whether instrumentation is really necessary, particularly for treating degenerative lumbar disease. PMID:27274408

  18. Yield decomposition and excitation energy reconstruction in an incomplete fusion reaction

    SciTech Connect

    Chbihi, A.; Sobotka, L.G.; Majka, Z.; Sarantites, D.G.; Stracener, D.W.; Abenante, V.; Semkow, T.M.; Nicolis, N.G. ); Hensley, D.C.; Beene, J.R.; Halbert, M.L. )

    1991-02-01

    The velocity distribution of fusionlike products formed in the reaction 701 MeV {sup 28}Si+{sup 100}Mo is decomposed into 26 incomplete fusion channels. If Coulomb corrections are neglected the yields of the incomplete fusion channels correlate much better with the {ital Q} value for projectile fragmentation than with the {ital Q} value for incomplete fusion. However, the correlation is much improved for incomplete fusion if a Coulomb correction is included. The partition of linear momentum between various sources is deduced using the measured residue velocity, multicomponent fits to light charged particle spectra, and mean neutron multiplicities. This reconstruction indicates that a substantial fraction of the momentum is not detected by our apparatus when slow residues are produced. With reasonable assumptions about this missing momentum component, the initial excitation of the compoundlike system is calculated as a function of the residue velocity.

  19. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  20. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  1. Microscopic study of 40Ca+58,64Ni fusion reactions

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Simenel, C.; Courtin, S.; Haas, F.

    2016-03-01

    Background: Heavy-ion fusion reactions at energies near the Coulomb barrier are influenced by couplings between the relative motion and nuclear intrinsic degrees of freedom of the colliding nuclei. The time-dependent Hartree-Fock (TDHF) theory, incorporating the couplings at the mean-field level, as well as the coupled-channels (CC) method are standard approaches to describe low energy nuclear reactions. Purpose: To investigate the effect of couplings to inelastic and transfer channels on the fusion cross sections for the reactions 40Ca+58Ni and 40Ca+64Ni . Methods: Fusion cross sections around and below the Coulomb barrier have been obtained from CC calculations, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock method and coupling parameters taken from known nuclear structure data. The fusion thresholds and neutron transfer probabilities have been calculated with the TDHF method. Results: For 40Ca+58Ni , the TDHF fusion threshold is in agreement with the most probable barrier obtained in the CC calculations including the couplings to the low-lying octupole 31- state for 40Ca and to the low-lying quadrupole 21+ state for 58Ni. This indicates that the octupole and quadrupole states are the dominant excitations while neutron transfer is shown to be weak. For 40Ca+64Ni , the TDHF barrier is lower than predicted by the CC calculations including the same inelastic couplings as those for 40Ca+58Ni . TDHF calculations show large neutron transfer probabilities in 40Ca+64Ni which could result in a lowering of the fusion threshold. Conclusions: Inelastic channels play an important role in 40Ca+58Ni and 40Ca+64Ni reactions. The role of neutron transfer channels has been highlighted in 40Ca+64Ni .

  2. Theory of Crowding Effects on Bimolecular Reaction Rates.

    PubMed

    Berezhkovskii, Alexander M; Szabo, Attila

    2016-07-01

    An analytical expression for the rate constant of a diffusion-influenced bimolecular reaction in a crowded environment is derived in the framework of a microscopic model that accounts for: (1) the slowdown of diffusion due to crowding and the dependence of the diffusivity on the distance between the reactants, (2) a crowding-induced attractive short-range potential of mean force, and (3) nonspecific reversible binding to the crowders. This expression spans the range from reaction to diffusion control. Crowding can increase the reaction-controlled rate by inducing an effective attraction between reactants but decrease the diffusion-controlled rate by reducing their relative diffusivity. PMID:27096470

  3. Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takatoshi

    2015-12-01

    Background: At extremely low incident energies, unexpected decreases in fusion cross sections, compared to the standard coupled-channels (CC) calculations, have been observed in a wide range of fusion reactions. These significant reductions of the fusion cross sections are often referred to as the fusion hindrance. However, the physical origin of the fusion hindrance is still unclear. Purpose: To describe the fusion hindrance based on an adiabatic approach, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes, that is, the transition from the separated two-body to the united dinuclear system. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. Method: I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. This avoids double counting of the CC effects, when two colliding nuclei overlap one another. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Results: Calculated fusion cross sections for the medium-heavy mass systems of 64Ni+64Ni , 58Ni+58Ni , and 58Ni+54Fe , the medium-light mass systems of 40Ca+40Ca , 48Ca+48Ca , and 24Mg+30Si , and the mass-asymmetric systems of 48Ca+96Zr and 16O+208Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. The values obtained for the individual radius and diffuseness parameters in the damping factor, which reproduce the fusion cross sections well, are nearly equal to the average value for all the systems

  4. Fusion Reactions of Superheavy and Giant Nuclear Systems

    SciTech Connect

    Greiner, Walter; Zagrebaev, Valery

    2007-05-22

    The problem of production and study of superheavy elements is discussed in the talk. Different nuclear reactions leading to formation of superheavy nuclei are analyzed. Collisions of transactinide nuclei are investigated as an alternative way for production of neutron-rich superheavy elements. In many events lifetime of the composite giant nuclear system consisting of two touching nuclei turns out to be rather long ({>=} 10-20 s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields, a fundamental QED process.

  5. Production of heavy actinides in incomplete fusion reactions

    NASA Astrophysics Data System (ADS)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  6. Charged particle decay of hot and rotating 88Mo nuclei in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Piantelli, S.; Casini, G.; Barlini, S.; Carboni, S.; Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Cinausero, M.; Gramegna, F.; Kravchuk, V. L.; Morelli, L.; Marchi, T.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Chbihi, A.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Fornal, B.; Giaz, A.; Krzysiek, M.; Leoni, S.; Matejska-Minda, M.; Mazumdar, I.; MÈ©czyński, W.; Million, B.; Montanari, D.; Myalski, S.; Nicolini, R.; Olmi, A.; Pasquali, G.; Prete, G.; Roberts, O. J.; Styczeń, J.; Szpak, B.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; ZiÈ©bliński, M.

    2016-03-01

    A study of fusion-evaporation and (partly) fusion-fission channels for the 88Mo compound nucleus, produced at different excitation energies in the reaction 48Ti+40Ca at 300, 450, and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α particles; they may be due both to pre-equilibrium emission and to reaction channels (such as deep inelastic collisions or quasifission/quasifusion) different from the compound nucleus formation.

  7. An Improved Reaction Rate Equation for Simulating the Ignition and Growth of Reaction in High Explosives

    SciTech Connect

    Murphy, M J

    2010-03-08

    We describe an improved reaction rate equation for simulating ignition and growth of reaction in high explosives. It has been implemented into CALE and ALE3D as an alternate to the baseline the Lee-Tarver reactive flow model. The reactive flow model treats the explosive in two phases (unreacted/reactants and reacted/products) with a reaction rate equation to determine the fraction reacted, F. The improved rate equation has fewer parameters, is continuous with continuous derivative, results in a unique set of reaction rate parameters for each explosive while providing the same functionality as the baseline rate equation. The improved rate equation uses a cosine function in the ignition term and a sine function in the growth and completion terms. The improved rate equation is simpler with fewer parameters.

  8. Gas-solid reaction-rate enhancement by pressure cycling

    NASA Astrophysics Data System (ADS)

    Sohn, H. Y.; Aboukheshem, M. B.

    1992-06-01

    An experimental study and mathematical modeling of the effects of external pressure cycling on gas-solid reactions have been conducted using the reduction of nickel oxide pellets by hy-drogen. Experiments were carried out in two phases: In the first phase, the intrinsic kinetic parameters were measured, and in the second phase, the gas-solid reaction was carried out under a constant or cycling external pressure. The effects of the frequency and amplitude of pressure cycling were studied at various reaction conditions. Pressure cycling substantially increases the overall rate of the reaction. A mathematical model was developed from the first principles to establish the extent of the overall reaction-rate enhancement and subsequently to analyze the experimental observations. The calculated values from the mathematical model are in good agreement with the experimental results. The effects are most pronounced when the overall rate under a constant pressure is controlled by diffusion. Depending on the reaction condition, a very large degree of rate enhancement could be achieved. Furthermore, low-amplitude pressure waves, like acoustic waves, could significantly increase the rates of gas-solid reactions.

  9. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    PubMed

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PMID:25375715

  10. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    SciTech Connect

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T

    2015-06-15

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  11. Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014), 10.1103/PhysRevLett.113.155003] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  12. Study of the mechanism of muon-catalyzed t + t fusion reaction

    SciTech Connect

    Bogdanova, L. N.; Demin, D. L.; Filchenkov, V. V.

    2015-01-15

    The mechanism for the muon catalyzed fusion reaction t + t → {sup 4}He + 2n + 11.33 MeV is investigated. The model of the cascade reaction with {sup 5}He as an intermediate state is considered, both the ground and the first exited states being taken into account. The neutron energy spectrum measured in the recent experiment is compared with the Monte-Carlo-simulated one. Varying reaction parameters, we obtain optimum values for the relative weights of the {sup 5}He ground and excited states and for the excitation energy and width of the excited state.

  13. Non-resonant triple alpha reaction rate at low temperature

    SciTech Connect

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K.; Carter, J.; Donaldson, L.; Sideras-Haddad, E.; Furuno, T.; Kawabata, T.; Kamimura, M.; Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C.

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  14. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars

    SciTech Connect

    Golf, B.; Hellmers, J.; Weber, F.

    2009-07-15

    This article presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this article is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether quark nuggets are in this novel state of matter, their electric charge properties vary drastically, which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclear fusion network calculations may thus have the potential to shed light on the existence of strange quark matter nuggets and on whether they are in a color superconducting state, as suggested by QCD.

  15. Rate of reaction between molecular hydrogen and molecular oxygen

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.

    1973-01-01

    The shock tube data of Jachimowski and Houghton were rigorously analyzed to obtain rate constants for the candidate initiation reactions H2 + O2 yields H + HO2, H2 + O2 yields H2O + O, and H2 + O2 yields OH + OH. Reaction (01) is probably not the initiation process because the activation energy obtained is less than the endothermicity and because the derived rates greatly exceed values inferred in the literature from the reverse of reaction (01). Reactions (02) and (03) remain as possibilities, with reaction (02) slightly favored on the basis of steric and statistical considerations. The solution of the differential equations is presented in detail to show how the kinetics of other ignition systems may be solved.

  16. Systematic study of suppression of complete fusion in reactions involving weakly bound nuclei at energies above the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, Wei-Juan; Diaz-Torres, Alexis; Zhao, En-Guang; Zhou, Shan-Gui

    2016-01-01

    Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion is roughly independent of the target for the reactions involving the same projectile.

  17. Analysis of reaction schemes using maximum rates of constituent steps

    NASA Astrophysics Data System (ADS)

    Hussain Motagamwala, Ali; Dumesic, James A.

    2016-05-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.

  18. Analysis of reaction schemes using maximum rates of constituent steps.

    PubMed

    Motagamwala, Ali Hussain; Dumesic, James A

    2016-05-24

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  19. Deep Sub-Barrier Fusion Enhancement in the {sup 6}He+{sup 206}Pb Reaction

    SciTech Connect

    Penionzhkevich, Yu.E.; Zagrebaev, V.I.; Lukyanov, S.M.; Kalpakchieva, R.

    2006-04-28

    The fusion of {sup 6}He with {sup 206}Pb has been studied at energies close to and below the Coulomb barrier. The experiment was carried out at the Dubna Radioactive Ion Beams complex of FLNR, JINR. The {sup 6}He beam intensity was about 5x10{sup 6} pps, the maximum energy being 60.3{+-}0.4 MeV. The yield of the {sup 210}Po isotope, produced in the 2n-evaporation channel, demonstrates an extremely large enhancement of the sub-barrier fusion cross section as compared with the {sup 4}He+{sup 208}Pb reaction. This enhancement is most likely due to the mechanism of 'sequential fusion' with an intermediate neutron transfer from {sup 6}He to the Pb nucleus with positive Q values.

  20. Intimations of neck formation in heavy-ion subbarrier fusion reactions

    SciTech Connect

    Stelson, P.H.

    1990-07-01

    Since the observed fusion cross sections for collisions between heavy ions at subbarrier energies are orders of magnitude larger than would be expected for barrier tunnelling, one is faced with the task of identifying the basic force which is strong enough to overcome the strong Coulomb force and bring about fusion. The two possibilities seem to be excursions of the nuclear surface (and strong nuclear force) due to collective motions of the colliding nuclei and formation of a neck of nuclear matter. The first possibility has received the most attention. However, the systematics of fusion cross sections suggest neck formation is playing an important role. Neck formation can also result in a reseparation of the composite system and we review the experimental information on these reactions at barrier and subbarrier energies. 15 refs., 18 figs.

  1. Studies of Neutron-Deficient Nuclei Near the Z = 82 Shell Closure via Cold Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Kondev, F. G.; Janssens, R. V. F.; Seweryniak, D.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Camera, F.; Bracco, A.; Million, B.; Leoni, S.; Jenkins, D. G.; Wadsworth, R.

    2009-03-01

    Over the last decade, we have performed in-beam experiments using Gammasphere+FMA to measure excited states in proton-rich Au, Hg, Tl and Pb isotopes. In these studies, the use of the FMA is essential in order to differentiate evaporation residues from the large fission background which dominates the reaction cross-section. In addition, we have found that using near-symmetric reactions at bombarding energies near the Coloumb barrier is beneficial in performing these studies. By keeping the bombarding energy low, fission is minimized and the reaction products are concentrated in only a few channels. New results have recently been obtained using the 90Zr+92Mo reaction to study shape co-existence in 181Tl via the lp evaporation channel. In addition, we have measured the total γ-ray energy and multiplicity associated with the surviving compund system, 179Au, following the fusion reaction, 90Zr+89Y.

  2. Hot fusion-evaporation cross sections of 44Ca-induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Tereshatov, E. E.; Folden, C. M.

    2015-11-01

    Background: Previously reported cross sections of 45Sc-induced reactions with lanthanide targets are much smaller than 48Ca-induced reactions on the same targets. 44Ca is one proton removed from 45Sc and could be used to produce nuclei with a relative neutron content between those produced in the 45Sc- and 48Ca-induced reactions. Purpose: As part of a systematic investigation of fusion-evaporation reactions, cross sections of 44Ca-induced reactions on lanthanide targets were measured. These results are compared to available data for 48Ca- and 45Sc-induced fusion-evaporation cross sections on the same lanthanide targets. Collectively, these data provide insight into the importance of the survival against fission of excited compound nuclei produced near spherical shell closures. Methods: A beam of 6+Ca at an energy of ≈5 MeV /u was delivered by the K500 superconducting cyclotron at the Cyclotron Institute at Texas A&M University. The desired evaporation residues were selected by the Momentum Achromat Recoil Spectrometer and identified via their characteristic α -decay energies. Excitation functions for the 44Ca+158Gd ,159Tb, and 162Dy reactions were measured at five or more energies each. A theoretical model was employed to study the fusion-evaporation process. Results: The 44Ca-induced reactions have x n cross sections that are two orders of magnitude larger than 45Sc-induced reactions but two orders of magnitude smaller than 48Ca-induced reactions on the same targets. Proton emission competes effectively with neutron emission for the 44Ca+159Tb and 162Dy reactions. The maximum 4 n cross sections in the 44Ca+158Gd ,159Tb, and 162Dy reactions were 2100 ± 230 ,230 ± 20 , and 130 ±20 μ b , respectively. The 44Ca+158Gd and 159Tb cross sections are in good agreement with the respective cross bombardments of 48Ca+154Gd and 45Sc+158Gd once differences in capture cross sections and compound nucleus formation probabilities are corrected for. Conclusions: Excitation

  3. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104

  4. Load Rate of Facet Joints at the Adjacent Segment Increased After Fusion

    PubMed Central

    Li, Hui; Pei, Bao-Qing; Yang, Jin-Cai; Hai, Yong; Li, De-Yu; Wu, Shu-Qin

    2015-01-01

    Background: The cause of the adjacent segment degeneration (ASD) after fusion remains unknown. It is reported that adjacent facet joint stresses increase after anterior cervical discectomy and fusion. This increase of stress rate may lead to tissue injury. Thus far, the load rate of the adjacent segment facet joint after fusion remains unclear. Methods: Six C2–C7 cadaveric spine specimens were loaded under four motion modes: Flexion, extension, rotation, and lateral bending, with a pure moment using a 6° robot arm combined with an optical motion analysis system. The Tecscan pressure test system was used for testing facet joint pressure. Results: The contact mode of the facet joints and distributions of the force center during different motions were recorded. The adjacent segment facet joint forces increased faster after fusion, compared with intact conditions. While the magnitude of pressures increased, there was no difference in distribution modes before and after fusion. No pressures were detected during flexion. The average growth velocity during extension was the fastest and was significantly faster than lateral bending. Conclusions: One of the reasons for cartilage injury was the increasing stress rate of loading. This implies that ASD after fusion may be related to habitual movement before and after fusion. More and faster extension is disadvantageous for the facet joints and should be reduced as much as possible. PMID:25881597

  5. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  6. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  7. Expected production of new exotic α emitters 108Xe and 112Ba in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    The production cross sections of neutron-deficient isotopes Xe-110108 and Ba-114112 in the complete fusion reactions Ni,5658+54Fe and Ni,5658+58Ni with stable and radioactive beams are studied with the dinuclear system model. The calculated results are compared with the available experimental data. The optimal beam energies and corresponding maximum production cross sections of new isotopes 108Xe and 112Ba are predicted.

  8. Quantum-mechanical description of the initial stage of fusion reaction

    SciTech Connect

    Sargsyan, V. V. Zubov, A.S.; Kanokov, Z.; Adamian, G. G. Antonenko, N. V.

    2009-03-15

    Projectile-nucleus capture by a target nucleus at bombarding energies in the vicinity of the Coulomb barrier is treated on the basis of the reduced-density-matrix formalism. The effect of dissipation and fluctuations on the capture process is taken into account self-consistently within this model. Cross sections for evaporation-residue formation in asymmetric-fusion reactions are found by using the calculated capture probabilities averaged over all orientations of the deformed projectile or target nucleus.

  9. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  10. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  11. Parameterization of fusion barriers for light-projectiles-induced reactions using the proximity approach

    NASA Astrophysics Data System (ADS)

    Gharaei, R.; Sheibani, J.

    2016-05-01

    In this article we propose a pocket formula for fusion barriers calculated by three versions of the proximity formalism, namely AW 95, Bass 80 and Prox. 2010 potentials, for fusion reactions involving the collisions of the proton and helium projectiles with different targets in mass ranges 51≤ AT ≤ 130 and 40≤ AT ≤ 233 , respectively. For the first type of the colliding systems, it is shown that the proposed pocket formulas are able to predict the actual values of RB and VB within accuracies of ±0.4% and ±0.45% , respectively. Moreover, for the second type of the selected reactions, these accuracies are obtained ±0.24% and ±0.36% , respectively. In this study, the ability of the present pocket formulas is also demonstrated to predict the exact values of the fusion cross sections for our selected mass ranges. A comparison with the results of the previous pocket formulas reveals that our parameterized forms are more successful to reproduce the empirical data of the barrier height and position in the proton- and helium-induced reactions.

  12. Fusion-Fission In The {sup 86}Kr+{sup 238}U Reaction

    SciTech Connect

    Lipoglavsek, M.; Hansen, E. Lindbo; Petrovic, T.; Vencelj, M.; Bark, R. A.; Gueorguieva, E. A.; Lawrie, J. J.; Lieder, E.; Lieder, R.; Mullins, S. M.; Ntshangase, S. S.; Papka, P.

    2008-05-12

    The {sup 86}Kr+{sup 238}U reaction has been studied at krypton beam energies about 30 MeV above the Coulomb barrier. Reaction products were detected by an array of 32 photovoltaic cells coupled to the AFRODITE {gamma}-ray detector array at iThemba LABS. A symmetric fission component has been observed at about 600 MeV total kinetic energy. This could possibly be due to fusion-fission with a cross section of 35{+-}20 mb.

  13. Population of ground-state rotational bands of superheavy nuclei produced in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Zubov, A. S.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2011-10-01

    Using the statistical and quantum diffusion approaches, we study the population of ground-state rotational bands of superheavy nuclei produced in the fusion-evaporation reactions 208Pb(48Ca,2n)254No, 206Pb(48Ca,2n)252No, and 204Hg(48Ca,2n)250Fm. By describing the relative intensities of E2 transitions between the rotational states, the entry spin distributions of residual nuclei, and the excitation functions for these reactions, the dependence of fission barriers of shell-stabilized nuclei on angular momentum is investigated.

  14. Heavy-ion inertial fusion: influence of target gain on accelerator parameters for vacuum-propagation regimes in reaction chambers

    SciTech Connect

    Mark, J.W.K.; Bangerter, R.O.; Barletta, W.A.; Fawley, W.M.; Judd, D.L.

    1982-03-04

    Target physics imposes requirements on the design of inertial fusion drivers. The influence of beam propagation in near vacuum fusion reaction chambers is evaluated for the relation between target gain and the phase-space requirements of heavy-ion accelerators. Initial results suggest that neutralization of the ion beam has a much greater positive effect than the deleterious one of beam stripping provided that the fusion chamber pressure is < 10/sup -3/ torr (of Li vapor or equivalent).

  15. Diagrammatic algorithm for evaluating finite-temperature reaction rates

    NASA Astrophysics Data System (ADS)

    Ashida, Naoki; Nakkagawa, Hisao; Niégawa, Akira; Yokota, Hiroshi

    1992-05-01

    In this paper, by following the procedure of statistical mechanics we present the systematic calculational rules for evaluating the reaction rate of a generic dynamical process taking place in a heat bath. These rules are formulated within the framework of real-time thermal field theory (RTFT), in terms of the Feynman-like diagrams, the so-called circled diagrams. With the machinery developed in this paper we can establish the finite temperature generalization of the Cutkosky, or the cutting rules in quantum field theory at zero temperature. We have also studied the relation between the imaginary part of forward RTFT amplitude and the reaction rates; the imaginary part consists of various reaction rates. This is a finite temperature generalization of the optical theorem.

  16. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    SciTech Connect

    Hussein, M. S.

    2008-04-17

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound-nucleus Hauser-Feshbach cross section, and the fluctuations in the intermediate channels result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in detail and comment on the validity of the assumptions used in the development of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate-channel optical potentials.

  17. Experimental study of the 13C+12C fusion reaction at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Tudor, D.; Chilug, A. I.; Straticiuc, M.; Trache, L.; Chesneanu, D.; Toma, S.; Ghita, D. G.; Burducea, I.; Margineanu, R.; Pantelica, A.; Gomoiu, C.; Zhang, N. T.; Tang, X.; Li, Y. J.

    2016-04-01

    Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied because of their significance for a wide variety of stellar burning scenarios. One important stellar reaction is 12C+12C, but it is difficult to measure it in the Gamow window because of very low cross sections and several resonances occurring. Hints can be obtained from the study of 13C+12C reaction. We have measured this process by an activation method for energies down to Ecm=2.5 MeV using 13C beams from the Bucharest 3 MV tandetron and gamma-ray deactivation measurements in our low and ultralow background laboratories, the latter located in a salt mine about 100 km north of Bucharest. Results obtained so far are shown and discussed in connection with the possibility to go even further down in energy and with the interpretation of the reaction mechanism at such deep sub-barrier energies.

  18. Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik

    2015-06-01

    Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.

  19. A transition in the spatially integrated reaction rate of bimolecular reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar

    2015-09-01

    Numerical simulations of diffusion with bimolecular reaction demonstrate a transition in the spatially integrated reaction rate—increasing with time initially, and transitioning to a decrease with time. In previous work, this reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), leading to predictions that front motion scales as √t, and correspondingly the spatially integrated reaction rate decreases as the square root of time 1/√t. We present a general nondimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the spatially integrated reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients, and initial concentrations of the two species. Numerical simulation results confirm the theoretical estimates of the transition time. We present illustrative calculations in the context of in situ chemical oxidation for remediation of fractured rock systems where contaminants are largely dissolved in the rock matrix. We consider different contaminants of concern (COCs), including TCE, PCE, MTBE, and RDX. While the early time regime is very short lived for TCE, it can persist over months to years for MTBE and RDX, due to slow oxidation kinetics.

  20. Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening

    NASA Astrophysics Data System (ADS)

    Coraddu, Massimo; Lissia, Marcello; Quarati, Piero

    2009-09-01

    Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-Hückel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical expectations.

  1. Measurement of the ^12C+^12C Fusion Reaction with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Henderson, D.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Esbensen, H.; Fernandez-Niello, J. O.; Jiang, C. L.; Lighthall, J. C.; Marley, S. T.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.

    2012-10-01

    The fusion of the ^12C+^12C system is of great interest in nuclear structure and nuclear astrophysics. Above the Coulomb barrier, the excitation function of this system exhibits oscillations, which are not well understood. There is also a significant discrepancy between the experimental fusion cross-section and recent coupled-channel calculations that is not present in other carbon systems. To address these issues, we have re-measured the fusion excitation function for ^12,13C+^12C in the energy range of 10 MeV < Ecm < 20 MeV using a Multi-Sampling Ionization Chamber (MUSIC) detector. The gas of the ionization chamber (CH4) served as both the target material and the counter gas. One of the main advantages of this method is that the excitation function is measured over a large range of energies using only one beam energy. This method has been proven to be successful and it will be used to measure fusion reactions in other light systems. The experimental results will be presented and compared to previous experimental data and theoretical models.

  2. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  3. Reaction rate uncertainties and the ν p-process

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Rauscher, T.

    2012-11-01

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the νp-process. The detailed nucleosynthesis patterns of the νp-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the νp-process nucleosynthesis.

  4. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  5. Reaction rate uncertainties and the {nu}p-process

    SciTech Connect

    Froehlich, C.; Rauscher, T.

    2012-11-12

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the {nu}p-process. The detailed nucleosynthesis patterns of the {nu}p-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the {nu}p-process nucleosynthesis.

  6. A transport equation for reaction rate in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sabelnikov, V. A.; Lipatnikov, A. N.; Chakraborty, N.; Nishiki, S.; Hasegawa, T.

    2016-08-01

    New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.

  7. Fusion of liposomones and chromatophores of Rhodopseudomonas capsulata: effect on photosynthetic energy transfer between B875 and reaction center complexes

    SciTech Connect

    Takemoto, J.Y.; Schonhardt, T.; Golecki, J.R.; Drews, G.

    1985-06-01

    The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.

  8. Quantum and semiclassical theories of chemical reaction rates

    SciTech Connect

    Miller, W.H. |

    1995-09-01

    A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.

  9. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources. PMID:27329206

  10. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    SciTech Connect

    Maya, I.; Schultz, K.R.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Norman, J.H.; Price, R.J.; Porter, J.; Schuster, H.L.; Simnad, M.J.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO/sub 2/ granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO/sub 2/ granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs.

  11. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  12. Experimental Study of p-11B Reaction Related to the Clean Fusion Fuel

    NASA Astrophysics Data System (ADS)

    Lin, Erh-kang; Wang, Chang-wan; Yuan, Jian; Liu, Xiao-dong; Li, Cheng-bo; Sun, Zu-xun; Zhang, Pei-hua; Chen, Jin-xiang; Yang, Qi-xiang; Wang, Jian-yong; Ling-hua, Gong

    1998-11-01

    Whole continuous α spectra of the p-11B three-body sequential decay reaction have been measured by using a charge particle time-of-flight (TOF) spectrometer with the high-resolution passivated implanted planar silicon detector. A characteristic shape of the saddle-type distribution was obtained. The Monte Carlo calculations show that observed α spectra can be interpreted by anisotropy sequential decay process of the intermediate nucleus 8Be (1) for the p-11B reaction. In the measurement, angular distributions were obtained for proton energies at 667 and 1370 keV, respectively. Total cross-sections for the 11B(p,α)8Be(2α) reaction related to the clean fusion fuel were also reported at two bombarding energies.

  13. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  14. Experimental Studies of Fast Protons Originated from Fusion Reactions in Plasma-Focus Discharges

    SciTech Connect

    Malinowska, A.; Malinowski, K.; Sadowski, M. J.; Zebrowski, J.; Szydlowski, A.

    2008-03-19

    The paper describes results of the recent measurements of fusion-reaction protons, which were performed within the PF-360 facility operated at the IPJ in Swierk, Poland. The main aim of those studies was to perform time-integrated measurements of fast protons (of energy of about 3 MeV) by means of ion-pinhole cameras, which were equipped with solid state nuclear track detectors (SSNTD) of the PM-355 type and absorption filters made of thin metal foils. In order to determine the spatial distribution of fusion-produced protons the use was made of several miniature pinhole cameras placed at different angles to the PF-360 axis. The irradiated and etched detectors were analyzed with an optical microscope coupled with a CCD camera and a PC unit.

  15. Code System to Calculate Integral Parameters with Reaction Rates from WIMS Output.

    Energy Science and Technology Software Center (ESTSC)

    1994-10-25

    Version 00 REACTION calculates different integral parameters related to neutron reactions on reactor lattices, from reaction rates calculated with WIMSD4 code, and comparisons with experimental values.

  16. Rate of reaction of OH with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.

    1981-01-01

    Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.

  17. Reaction rate and products for the reaction O/3P/ + H2CO

    NASA Technical Reports Server (NTRS)

    Chang, J. S.; Barker, J. R.

    1979-01-01

    A study of reaction kinetics of O + H2CO in a discharge-flow system using mass spectrometric detection of reactants and products is presented. It was performed under both oxygen-atom-rich and formaldehyde-rich conditions over the 296 to 437 K range, showing that the global bimolecular rate constant is in agreement with other studies. This study differs from others in that the reaction products can be observed, and a substantial yield of a primary reaction product was measured with a mass spectral peak at m/e=44. This suggests that the global reaction rate probably consists of combination, as well as of simple abstraction. For the combination, one hypothesis is that triplet dioxymethylene is formed which polymerizes to triplet formic acid; the vibrationally excited triplet formic acid may decompose to form several sets of products, including HCO + OH and HCO2 + H.

  18. Scaling of geochemical reaction rates via advective solute transport.

    PubMed

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture. PMID:26232976

  19. Scaling of geochemical reaction rates via advective solute transport

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Ghanbarian, B.; Skinner, T. E.; Ewing, R. P.

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  20. Stellar Evolution Constraints on the Triple-α Reaction Rate

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2011-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 <= M/M sun <= 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M >~ 10 M sun) is minimal. We find that employing the revised rate suppresses helium shell flashes on asymptotic giant branch phase for stars in the initial mass range 0.8 <= M/M sun <= 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = (1-1.2) × 108 K where the cross section is proportional to T ν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~10-29 cm6 s-1 mole-2 at ≈107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical red giant branch tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than 10 orders of magnitude.

  1. STELLAR EVOLUTION CONSTRAINTS ON THE TRIPLE-{alpha} REACTION RATE

    SciTech Connect

    Suda, Takuma; Fujimoto, Masayuki Y.; Hirschi, Raphael

    2011-11-01

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 {<=} M/M{sub sun} {<=} 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M {approx}> 10 M{sub sun}) is minimal. We find that employing the revised rate suppresses helium shell flashes on asymptotic giant branch phase for stars in the initial mass range 0.8 {<=} M/M{sub sun} {<=} 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = (1-1.2) Multiplication-Sign 10{sup 8} K where the cross section is proportional to T {sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx}10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical red giant branch tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than 10 orders of magnitude.

  2. The astrophysical reaction rate for the {sup 18}F(p,{alpha}){sup 15}O reaction

    SciTech Connect

    Rehm, K.E.; Paul, M.; Roberts, A.D.

    1996-03-01

    Proton and alpha widths for a 3/2{sup +} ({ell}{sub p} = 0) state in {sup 19}Ne at E{sub x} = 7.1 MeV have been extracted using the results of recent measurements of the {sup 18}F(p,{alpha}){sup 15}O reaction. This {ell}{sub p} = 0 resonance dominates the astrophysical reaction rates at temperatures T{sub 9} > 0.5.

  3. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  4. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  5. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Källne, J.; Salewski, M.; Tardocchi, M.; Gorini, G.

    2015-11-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the \\text{d}{{≤ft(\\text{p},γ \\right)}3}\\text{He} reaction and the temperature of protons accelerated by radio-frequency heating. The results presented in this paper significantly improve the accuracy of diagnostic information that can be extracted from the gamma-ray emission spectrum of fusion reactions without intrinsic broadening and are of relevance for applications to high performance plasmas of present and next generation devices.

  6. Pore size and the lab-field reaction rate riddle

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Ague, J. J.; Walderhaug, O.

    2009-12-01

    Pore size is usually thought to influence the rate of crystal growth during diagenesis and metamorphism by controlling the ratio of surface area to fluid volume. However, theory suggests that in micron-scale to nanometer-scale pores, interfacial energy effects can also become important. We used mercury porosimetry to investigate the pore-size distributions in naturally cemented sandstone adjacent to stylolites and found that quartz precipitation was inhibited in pores smaller than 10 microns in diameter. We demonstrate that standard kinetic models cannot reproduce the observed pore-size patterns in mineralized samples; by contrast, excellent fits with the data are obtained when interfacial energy effects are taken into account. Moreover, as such micron-scale pores comprise the overwhelming majority of surface area in the sandstone, average reaction rates for the rock are significantly reduced. Reaction rates in geological media determined in field studies can be orders of magnitude lower than those measured in laboratory experiments, and we propose that reduced reaction rates in rocks with micron-scale porosity could account for the apparent paradox.

  7. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  8. Physics of laser-plasma interaction for shock ignition of fusion reactions

    NASA Astrophysics Data System (ADS)

    Tikhonchuk, V. T.; Colaïtis, A.; Vallet, A.; Llor Aisa, E.; Duchateau, G.; Nicolaï, Ph; Ribeyre, X.

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions.

  9. Quantum description of coupling to neutron-rearrangement channels in fusion reactions near the Coulomb barrier

    SciTech Connect

    Samarin, V. V.

    2015-10-15

    The fusion cross sections for the {sup 17,18}O+{sup 27}Al, {sup 18}O+{sup 58}Ni, and {sup 6}He+{sup 197}Au reactions were calculated by the coupled-channel method. The radial dependence of matrices that describe coupling to valence-neutron-rearrangement channels was determined with the aid of two-center wave functions. The coupling-strength parameters were evaluated on the basis of numerically solving the time-dependent Schrödinger equation. Satisfactory agreement with experimental data was obtained.

  10. Present status of coupled-channels calculations for heavy-ion subbarrier fusion reactions

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Yao, J. M.

    2016-05-01

    The coupled-channels method has been a standard tool in analyzing heavy-ion fusion reactions at energies around the Coulomb barrier. We investigate three simplifications usually adopted in the coupledchannels calculations. These are i) the exclusion of non-collective excitations, ii) the assumption of coordinate independent coupling strengths, and iii) the harmonic oscillator approximation for multiphonon excitations. In connection to the last point, we propose a novel microscopic method based on the beyond-mean-field approach in order to take into account the anharmonic effects of collective vibrations.

  11. Occupational Injury Rate Estimates in Magnetic Fusion Experiments

    SciTech Connect

    cadwallader, lee

    2006-11-01

    In nuclear facilities, there are two primary aspects of occupational safety. The first aspect is radiological safety, which has rightly been treated in detail in nuclear facilities. Radiological exposure data have been collected from the existing tokamaks to serve as forecasts for ITER radiation safety. The second aspect of occupational safety, “traditional” industrial safety, must also be considered for a complete occupational safety program. Industrial safety data on occupational injury rates from the JET and TFTR tokamaks, three accelerators, and U.S. nuclear fission plants have been collected to set industrial safety goals for the ITER operations staff. The results of this occupational safety data collection and analysis activity are presented here. The data show that an annual lost workday case rate of 0.3 incidents per 100 workers is a conceivable goal for ITER operations.

  12. A model for reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  13. Suppression of excited-state contributions to stellar reaction rates

    NASA Astrophysics Data System (ADS)

    Rauscher, T.

    2013-09-01

    It has been shown in previous work [Kiss , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.191101 101, 191101 (2008); Rauscher , Phys. Rev. C10.1103/PhysRevC.80.035801 80, 035801 (2009)] that a suppression of the stellar enhancement factor (SEF) occurs in some endothermic reactions at and far from stability. This effect is re-evaluated using the ground-state contributions to the stellar reaction rates, which were shown to be better suited to judging the importance of excited-state contributions than the previously applied SEFs. An update of the tables shown in the latter work is given. The new evaluation finds 2350 cases (out of a full set of 57 513 reactions) for which the ground-state contribution is larger in the reaction direction with a negative reaction Q value than in the exothermic direction, thus providing exceptions to the commonly applied Q value rule. The results confirm the Coulomb suppression effect but lead to a larger number of exceptions than previously found. This is due to the fact that often a large variation in the g.s. contribution does not lead to a sizable change in the SEF. On the other hand, several previously identified cases do not appear anymore because it is found that their g.s. contribution is smaller than inferred from the SEF.

  14. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  15. Triple-{alpha} reaction rate constrained by stellar evolution models

    SciTech Connect

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-12

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}25 and in the metallicity range between Z= 0 and Z= 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10M{sub Circled-Dot-Operator }) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = 1-1.2 Multiplication-Sign 10{sup 8}K where the cross section is proportional to T{sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx} 10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  16. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  17. Application of semiclassical methods to reaction rate theory

    SciTech Connect

    Hernandez, R.

    1993-11-01

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.

  18. Measurements of 10B(p,a)7Be Cross-sections: A Reaction Relevant to Nuclear Fusion Energy Research

    NASA Astrophysics Data System (ADS)

    Fisher, Barbara; Kafkarkou, Adamos; Ahmed, Mohammad; Weller, Henry; Myers, Luke; Sparker, Mark; Zimmerman, William; Mueller, Jon; Sikora, Mark; Mazumdar, Indral

    2012-10-01

    There is growing interest in aneutronic nuclear fusion reactors. One facility proposes to utilize the 11B(p,a)7Be reaction. The Radiative Capture Group at Triangle University Nuclear Laboratory (TUNL) has been engaged in a long-term study of this and related reactions. This poster will present preliminary data and analysis of the 10B(p,a)7Be reaction which is of interest because 10B is a potential reactor contaminant. Differential and total cross-sections will be presented for incident protons of 4.4 and 4.6 MeV. The data is necessary for simulations of an aneutrionic nuclear fusion reactor.

  19. Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches

    NASA Astrophysics Data System (ADS)

    Samarin, V. V.

    2016-05-01

    The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.

  20. Fusion Probability in the Reactions {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U

    SciTech Connect

    Knyazheva, G. N.; Bogachev, A. A.; Itkis, I. M.; Itkis, M. G.; Kozulin, E. M.

    2010-04-30

    Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions {sup 64}Ni+{sup 238}U and {sup 58}Fe+{sup 244}Pu leading to the formation of superheavy compound system with Z = 120 and N 182 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is about one order of magnitude higher for the reaction {sup 58}Fe+{sup 244}Pu than that for the reaction with {sup 64}Ni-ions.

  1. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  2. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  3. Role of angular momentum in the production of complex fragments in fusion and quasifission reactions

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2011-05-15

    The influence of angular momentum on the competition between complete fusion followed by the decay of compound nucleus and quasifission channels is treated within the dinuclear system model. The charge distributions of the products in the reactions {sup 28}Si+{sup 96}Zr, {sup 4}He+{sup 130}Te, and {sup 40}Ca+{sup 82}Kr are predicted at bombarding energies above the Coulomb barrier. The results of calculations for the reactions {sup 93}Nb+{sup 9}Be,{sup 12}C,{sup 27}Al; {sup 84}Kr+{sup 27}Al; {sup 86}Kr+{sup 63}Cu; {sup 139}La+{sup 12}C,{sup 27}Al; and {sup 45}Sc+{sup 65}Cu are compared with the available experimental data.

  4. Omphacite breakdown reactions and relation to eclogite exhumation rates

    NASA Astrophysics Data System (ADS)

    Anderson, Eric D.; Moecher, David P.

    2007-09-01

    Clinopyroxene + plagioclase (±Hbl ± Qtz) symplectites after omphacite are widely cited as evidence for prior eclogite-facies or high-pressure (HP) metamorphism. Precursor omphacite compositions of retrograde eclogites, used for reconstructing retrograde P- T paths, are commonly estimated by reintegrating symplectite phases with the assumption that the symplectite-forming reactions were isochemical. Comparisons of broadbeam symplectite compositions to adjacent unreacted pyroxene from various symplectites after clinopyroxene from the Appalachian Blue Ridge (ABR) and Western Gneiss Region (WGR) suggest that the symplectite forming reactions are largely isochemical. Endmember calculations based on reintegrated symplectite compositions from the ABR and WGR suggest that a minor Ca-Eskola (CaEs) component (XCaEs = 0.04-0.15) was present in precursor HP clinopyroxene. WGR symplectites consist of fine-grained (˜1 μm-scale), vermicular intergrowths of Pl + Cpx II ± Hbl that occur at grain boundaries or internally. ABR symplectites contain coarser (˜10 μm-scale) planar lamellae and rods of Pl + Cpx II + Qtz + Hbl within clinopyroxene cores. The contrasting textures correlate with decompression and cooling rate, and degree of overstepping of the retrograde reaction (lamellar: slow, erosionally controlled exhumation with slow/low overstepping; fine-grained, grainboundary symplectite: rapid, tectonic exhumation with rapid/high overstepping). Variations in XCaEs, Xjd, and XCaTs of precursor HP omphacite are related to the symplectic mineral assemblages that result from decompression. Quartz-normative symplectities indicate quartz-producing retrograde reactions (e.g., breakdown of precursor CaEs); quartz-free symplectities (e.g., diopside + plagioclase after omphacite) indicate quartz-consuming reactions (jd, CaTs breakdown) outpaced quartz-producing reactions.

  5. Hot fusion-evaporation cross sections of 45Sc -induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Bennett, M. E.; DeVanzo, M. J.; Frey, M. M.; Tereshatov, E. E.; Folden, C. M.

    2015-09-01

    Background: 45Sc has rarely been studied as a projectile in fusion-evaporation reactions. The synthesis of new superheavy elements with Z >118 will require projectiles with Z >20 , and 45Sc could potentially be used for this purpose. Purpose: Cross sections were measured for the x n and p x n exit channels in the reactions of 45Sc with lanthanide targets for comparison to previous measurements of 48Ca reacting with similar targets. These data provide insight on the survival of spherical, shell-stabilized nuclei against fission, and could have implications for the discovery of new superheavy elements. Methods: Beams of 45Sc6 + were delivered from the K500 superconducting cyclotron at Texas A&M University with an energy of ≈5 MeV /nucleon . Products were purified using the Momentum Achromat Recoil Spectrometer, and excitation functions were measured for reactions of 45Sc+156-158,160Gd, 159Tb , and 162Dy at five or more energies each. Evaporation residues were identified by their characteristic α -decay energies. Experimental data were compared to a simple theoretical model to study each step in the fusion-evaporation process. Results: The maximum measured 4 n cross sections for the reactions 45Sc+156-158,160Gd, 159Tb , and 162Dy are 5.8 ±1.7 , 25 ±5 , 39 ±7 , 150 ±20 , 2 .4-1.4+2.3 , and 1.8 ±0.6 μ b , respectively. Proton emission competes effectively with neutron emission from the excited compound nucleus in most cases. The α ,α n , and α 2 n products were also observed in the 45Sc+162Dy reaction. Conclusions: Excitation functions were reported for 45Sc -induced reactions on lanthanide targets for the first time, and these cross sections are much smaller than for 48Ca -induced reactions on the same targets. The relative neutron-deficiency of the compound nuclei leads to significantly increased fissility and large reductions in the survival probability. Little evidence for improved production cross sections due to shell-stabilization was observed.

  6. Increased D-D Fusion Reaction Boosted by Electron Screening at the Inner Shell of Metal Atoms

    NASA Astrophysics Data System (ADS)

    Luo, Nie; Miley, George

    2004-10-01

    Recent experiments indicate an abnormally high electron screening effect on the D-D fusion cross-section during low energy (< 10 keV) bombardment of select deuterated metals [1]. The authors attribute this effect to a contribution from core electrons ignored in normal screening calculations [2]. This research studies the contribution of the atomic potential distribution on the classical dynamics of keV deuterons in a host metal, taken here as Pd. A standard atomic code is used to obtain the atomic electron charge density and the potential profile in the metal atom. Using these results, the deuterons are found to spend most of their penetration time near the Pd M shell. This effect drastically increases the probability of a rendezvous between two deuterons in a rather confined area roughly 0.1 angstrom from the Pd nucleus. This mechanism, combined with the increased tunneling rate due to screening from the high electron density at M-shell, enhances the low energy D-D fusion cross-section for metal hydrides. Results from these calculations and comparisons with experimental data will be presented. [1] F. Strieder, C. Rolfs, C. Spitaleri, and P.Corvisiero, Naturwissenschaften, 88 (2001) 461. [2] G. H. Miley, H. Hora, N. Luo, ¡°Screening in Low Energy Nuclear Reactions of Importance to Nuclear Astrophysics¡±, APS April Mtg. (2004), Denver, CO.

  7. Product PCNPsurv or the "reduced" evaporation residue cross section σER/σfusion for "hot" fusion reactions studied with the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Hemdeep, Gupta, Raj K.

    2016-04-01

    The product PCNPsurv of compound nucleus (CN) fusion probability PCN and survival probability Psurv is calculated to determine the reduced evaporation residue cross section σER/σfusion , denoted σERreduced, with (total) fusion cross section σfusion given as a sum of CN-formation cross section σCN and non-CN cross section σnCN for each reaction, where σCN is the sum of evaporation residue cross section σER and fusion-fission cross section σff and σnCN, if not measured, is estimated empirically as the difference between measured and calculated σfusion. Our calculations of PCN and Psurv, based on the dynamical cluster-decay model, were successfully made for some 17 "hot" fusion reactions, forming different CN of mass numbers ACN˜100 -300 , with deformations of nuclei up to hexadecapole deformations and "compact" orientations for both coplanar (Φc=0∘ ) and noncoplanar (Φc≠0∘ ) configurations, using various different nuclear interaction potentials. Interesting variations of σERreduced with CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 show that, independent of entrance channel, different isotopes of CN, and nuclear interaction potentials used, the dominant quantity in the product is Psurv, which classifies all the studied CN into three groups of weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, with relative magnitudes of σERreduced˜1 , ˜10-6 , and ˜10-11 , which, like for PCN, get further grouped in two dependencies of (i) weakly fissioning and strongly fissioning superheavy nuclei decreasing with increasing E* and (ii) radioactive nuclei increasing with increasing E*.

  8. Detailed determination of the nuclear fusion radius by a simultaneous optical model calculation of elastic scattering and fusion cross sections in reactions involving weakly bound projectiles

    SciTech Connect

    Camacho, A. Gomez; Aguilera, E. F.; Gomes, P. R. S.; Lubian, J.

    2007-10-15

    Within the optical model for direct reactions, simultaneous calculations of elastic scattering, complete fusion, and total reaction cross sections for energies around the Coulomb barrier are presented for reactions involving the weakly bound projectile {sup 9}Be on {sup 64}Zn. Volume (W{sub F}) and surface (W{sub DR}) Woods-Saxon optical potentials are used such that the former is responsible only for complete fusion reactions while the latter for all direct reactions plus incomplete fusion. Simultaneous fits can be obtained with several sets of potential parameters, but if we impose the condition that the strength of W{sub F} is smaller than the strength of W{sub DR} at the tail region of the potential (this condition is discussed in detail), then values are required for r{sub F} and r{sub DR} of around 1.6 and 1.7-1.9 fm, respectively. These values are much larger than those frequently used in barrier penetration model calculations. Through the energy dependence of the real and imaginary parts of the polarization potentials, we show that the usual threshold anomaly does not show up for this system, but instead there is evidence of the presence of a breakup threshold anomaly.

  9. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.

    PubMed

    Cernat, Roxana A; Ciorecan, Silvia I; Ungureanu, Constantin; Arends, Johan; Strungaru, Rodica; Ungureanu, G Mihaela

    2015-08-01

    The respiratory rate is a vital parameter that can provide valuable information about the health condition of a patient. The extraction of respiratory information from photoplethysmographic signal (PPG) was actually encouraged by the reported results, our main goal being to obtain accurate respiratory rate estimation from the PPG signal. We developed a fusion algorithm that identifies the best derived respiratory signals, from which is possible to extract the respiratory rate; based on these, a global respiratory rate is computed using the proposed fusion algorithm. The algorithm is qualitatively tested on real PPG signals recorded by an acquisition system we implemented, using a reflection pulse oximeter sensor. Its performance is also statistically evaluated using benchmark dataset publically available from CapnoBase.Org. PMID:26737653

  10. r-PROCESS Reaction Rates for the Actinides and Beyond

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Korneev, I. Yu.; Rauscher, T.; Thielemann, F.-K.

    2011-10-01

    We discuss the importance of different fission rates for the formation of heavy and superheavy nuclei in the astrophysical r-process. Neutron-induced reaction rates, including fission and neutron capture, are calculated in the temperature range 108 ≤ T(K) ≤ 1010 within the framework of the statistical model for targets with the atomic number 84 ≤ Z ≤ 118 (from Po to Uuo) from the neutron to the proton drip-line for different mass and fission barrier predictions based on Thomas-Fermi (TF), Extended Thomas-Fermi plus Strutinsky Integral (ETFSI), Finite-Range Droplet Model (FRDM) and Hartree-Fock-Bogolyubov (HFB) approaches. The contribution of spontaneous fission as well as beta-delayed fission to the recycling r-process is discussed. We also discuss the possibility of rate tests, based on mini r-processed yields in nuclear explosions.

  11. Rate constant for the reaction of atomic chlorine with methane

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Leu, M. T.; Demore, W. B.

    1978-01-01

    The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.

  12. Charge-exchange reaction by Reggeon exchange and W{sup +}W{sup −}-fusion

    SciTech Connect

    Schicker, R.

    2015-04-10

    Charge-exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp → n + Δ{sup ++} taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge-exchange reaction induced by W{sup ±}-fusion is presented, and the corresponding QCD-background is examined.

  13. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  14. (γ,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-08-01

    In this study, the theoretical photo-neutron cross-sections produced by (γ,2n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been carried out for incident photon energies up to 40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf-Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are in good agreement with the experimental data for all reactions along the incident photon energy in this study. Pre-equilibrium option can be recommended, if experimental data are not available or are unlikely to be produced due to the experimental difficulty.

  15. Capture and Fusion-Fission Processes in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogatchev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Gadea, A.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Lyapin, V. G.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Voskresenski, V. M.

    2005-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+204Pb, 48Ca+144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 58Fe+208Pb, 244Pu, 248Cm, and 64Ni+186W, 242Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  16. Low reoperation rate following 336 multilevel lumbar laminectomies with noninstrumented fusions

    PubMed Central

    Epstein, Nancy Ellen

    2016-01-01

    Background: Few reoperations are required in older patients undergoing multilevel lumbar laminectomy with noninstrumented fusions for spinal stenosis with/without spondylolisthesis/instability, and they rarely require instrumentation. Methods: We reviewed 336 patients averaging 66.5 years of age undergoing initial average 4.7 level lumbar laminectomies with average 1.4 level noninstrumented fusions over an average 7.1-year period (range 2.0–16.5 years). Patients uniformly exhibited spinal stenosis, instability (Grade I [195 patients] or Grade II spondylolisthesis [67 patients]), disc herniations (154 patients), and/or synovial cysts (66 patients). Reoperations, including for adjacent segment disease (ASD), addressed new/recurrent pathology. Results: Nine (2.7%) of 336 patients required reoperations, including for ASD, an average of 6.3 years (range 2–15 years) following initial 4.7 level laminectomies with 1.4 level noninstrumented fusions. Second operations warranted average 4.8 level (range 3–6) laminectomies and average 1.1 level non instrumented fusions addressing stenosis with instability (Grade I [7 patients] or Grade II [1 patient] spondylolisthesis), new disc herniations (2 patients), and/or a synovial cyst (1 patient). Conclusions: Only 9 (2.7%) of 336 patients required reoperations (including for ASD) consisting of multilevel laminectomies with noninstrumented fusions for recurrent/new stenosis even with instability; these older patients were not typically unstable, or were likely already fused, and did not require instrumentation. Alternatively, reoperation rates following instrumented fusions in other series approached 80% at 5 postoperative years. Therefore, we as spinal surgeons should realize that older patients even with instability rarely require instrumentation and that the practice of performing instrumented fusions in everyone, irrespective of age, needs to stop. PMID:27274407

  17. Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts.

    PubMed Central

    Krause, R M; Hamann, M; Bader, C R; Liu, J H; Baroffio, A; Bernheim, L

    1995-01-01

    1. Fusion of myogenic cells is important for muscle growth and repair. The aim of this study was to examine the possible involvement of nicotinic acetylcholine receptors (nAChR) in the fusion process of myoblasts derived from postnatal human satellite cells. 2. Acetylcholine-activated currents (ACh currents) were characterized in pure preparations of freshly isolated satellite cells, proliferating myoblasts, myoblasts triggered to fuse and myotubes, using whole-cell and single-channel voltage clamp recordings. Also, the effect of cholinergic agonists on myoblast fusion was tested. 3. No nAChR were observed in freshly isolated satellite cells. nAChR were first observed in proliferating myoblasts, but ACh current densities increased markedly only just before fusion. At that time most mononucleated myoblasts had ACh current densities similar to those of myotubes. ACh channels had similar properties at all stages of myoblast maturation. 4. The fraction of myoblasts that did not fuse under fusion-promoting conditions had no ACh current and thus resembled freshly isolated satellite cells. 5. The rate of myoblast fusion was increased by carbachol, an effect antagonized by alpha-bungarotoxin, curare and decamethonium, but not by atropine, indicating that nAChR were involved. Even though a prolonged exposure to carbachol led to desensitization, a residual ACh current persisted after several days of exposure to the nicotinic agonist. 6. Our observations suggest that nAChR play a role in myoblast fusion and that part of this role is mediated by the flow of ions through open ACh channels. Images Figure 1 Figure 2 Figure 3 PMID:8788942

  18. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  19. Primordial lithium: New reaction rates, new abundances, new constraints

    SciTech Connect

    Kawano, L.; Schramm, D.; Steigman, G.

    1986-12-01

    Newly measured nuclear reaction rates for /sup 3/H(..cap alpha..,..gamma..)/sup 7/Li (higher than previous values) and /sup 7/Li(p,..cap alpha..)/sup 4/He (lower than previous values) are shown to increase the /sup 7/Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta less than or equal to 4 x 10/sup -10/); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of /sup 7/Li in big bang baryon density determinations. The new /sup 7/Li constraints imply a lower limit on eta of 2 x 10/sup -10/ and an upper limit of 5 x 10/sup -10/. This lower limit to eta is concordant with that obtained from considerations of D + /sup 3/He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10/sup -10/ would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,..gamma..)/sup 4/He reaction. 28 refs., 1 fig.

  20. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  1. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  2. Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2016-06-01

    Within the framework of a dinuclear system model, the influence of projectile and target neutron number on capture cross section, fusion probability, and survival probability for the reactions S,3634+238U and 48Ca+Pu 239 ,240 ,242 ,244 are investigated. The calculated excitation functions are in good agreement with the experimental data. To synthesize more unknown neutron-deficient isotopes of already-known superheavy elements, the possibility of using lighter calcium isotopes to induce hot fusion reactions is investigated and the maximal evaporation residual cross sections for Ca 44 ,46 ,48 -induced hot fusion reactions to produce unknown neutron-deficient superheavy nuclei with Z =112 -116 are predicted.

  3. Comparative analysis of anodized, implanted and sputtered tantalum oxide targets for the study of 16O+16O fusion reaction

    NASA Astrophysics Data System (ADS)

    Silva, H.; Cruz, J.; Redondo-Cubero, A.; Santos, C.; Fonseca, M.; Luis, H.; Jesus, A. P.

    2014-07-01

    Measuring the total cross section of a fusion reaction in the region of astrophysical interest, such as the 16O+16O fusion reaction, is a real challenge due the very small cross sections involved and the large number of possible exit channels. Taking into account these difficulties, the use of targets with known thickness, stoichiometry and minimal contamination that can withstand high beam currents is required. In this study, we report the comparison between three different types of targets for the study of this fusion reaction, such as anodized, implanted and sputtered tantalum oxide targets and the results show that the anodized and sputtered targets are more suitable for this study due to their higher oxygen density and to the formation of a stable oxide compound, tantalum pentoxide (Ta2O5).

  4. Suppression of complete fusion due to breakup in the reactions {sup 10,11}B+{sup 209}Bi

    SciTech Connect

    Gasques, L. R.; Hinde, D. J.; Dasgupta, M.; Mukherjee, A.; Thomas, R. G.

    2009-03-15

    Above-barrier cross sections of fission and {alpha}-active heavy reaction products were measured for the reactions of {sup 10,11}B with {sup 209}Bi. Systematic analysis showed that the fission originates almost exclusively from complete fusion (CF). Existing measurements of above-barrier fusion products for the {sup 30}Si+{sup 186}W reaction, assumed to proceed exclusively through CF, were extrapolated to the current systems using statistical model calculations. This extrapolation showed that the heavy reaction products from the {sup 10,11}B+{sup 209}Bi reactions include substantial components from incomplete fusion as well as from CF. Compared with fusion calculations without breakup, the CF cross sections are suppressed by 15% for {sup 10}B and 7% for {sup 11}B. A consistent and systematic variation of the suppression of CF for reactions of the weakly bound nuclei {sup 6,7}Li, {sup 9}Be, and {sup 10,11}B on targets of {sup 208}Pb and {sup 209}Bi is found as a function of the breakup threshold energy.

  5. Do Trunk Muscles Affect the Lumbar Interbody Fusion Rate?: Correlation of Trunk Muscle Cross Sectional Area and Fusion Rates after Posterior Lumbar Interbody Fusion Using Stand-Alone Cage

    PubMed Central

    Choi, Man Kyu; Park, Bong Jin; Park, Chang Kyu; Kim, Sung Min

    2016-01-01

    Objective Although trunk muscles in the lumbar spine preserve spinal stability and motility, little is known about the relationship between trunk muscles and spinal fusion rate. The aim of the present study is to evaluate the correlation between trunk muscles cross sectional area (MCSA) and fusion rate after posterior lumbar interbody fusion (PLIF) using stand-alone cages. Methods A total of 89 adult patients with degenerative lumbar disease who were performed PLIF using stand-alone cages at L4–5 were included in this study. The cross-sectional area of the psoas major (PS), erector spinae (ES), and multifidus (MF) muscles were quantitatively evaluated by preoperative lumbar magnetic resonance imaging at the L3–4, L4–5, and L5–S1 segments, and bone union was evaluated by dynamic lumbar X-rays. Results Of the 89 patients, 68 had bone union and 21 did not. The MCSAs at all segments in both groups were significantly different (p<0.05) for the PS muscle, those at L3–4 and L4–5 segments between groups were significantly different (p=0.048, 0.021) for the ES and MF muscles. In the multivariate analysis, differences in the PS MCSA at the L4–5 and L5–S1 segments remained significant (p=0.048, 0.043 and odds ratio=1.098, 1.169). In comparison analysis between male and female patients, most MCSAs of male patients were larger than female's. Fusion rates of male patients (80.7%) were higher than female's (68.8%), too. Conclusion For PLIF surgery, PS muscle function appears to be an important factor for bone union and preventing back muscle injury is essential for better fusion rate. PMID:27226860

  6. Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Keck, James C.

    2008-08-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method for simplifying the treatment of reactions in complex systems is summarized and the selection of constraints for both close-to and far-from equilibrium systems is discussed. Illustrative examples of RCCE calculations of carbon monoxide concentrations in the exhaust products of an internal combustion engine and ignition delays for methane-oxygen mixtures in a constant volume adiabatic chamber are given and compared with "detailed" calculations. The advantages of RCCE calculations over "detailed" calculations are discussed.

  7. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  8. Primordial lithium - New reaction rates, new abundances, new constraints

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence; Schramm, David; Steigman, Gary

    1988-01-01

    Newly measured nuclear reaction rates for H-3(alpha, gamma)Li-7 (higher than previous values) and Li-7(p, alpha)He-4 (lower than previous values) are shown to increase the Li-7 yield from big band nucleosynthesis for lower baryon-to-photon ratio (less than about 4 x 10 to the 10th). Recent revisions in the He-3(alpha, gamma)Be-7 and the D(p, gamma)He-3 rates enhance the high (greater than 4 x 10 to the 10th) Li-7(Be) production. New, independent determinations of Li abundances in extreme population II stars are in excellent agreement with the work of Spites and give continued confidence in the use of Li-7 in big bang baryon density determinations.

  9. Constraining kinetic rates of mineral reactions using reactive transport models

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.; Wang, Z.; Ague, J.; Bercovici, D.; Cai, Z.; Karato, S.; Oristaglio, M. L.; Qiu, L.

    2012-12-01

    We use a reactive transport model to better understand results of experiments to obtain kinetic rates of mineral reactions in closed systems. Closed system experiments pose special challenges in that secondary minerals may form that modify the fluid composition evolution and may grow on the dissolving minerals thus armoring the surface. Even so, such closed system experiments provide critical data for what minerals would actually form in field applications and how coupled dissolution and precipitation mineral reactions are strongly linked. Comparing to experimental observations can test the reactive transport model, and the experimental observations can be better understood by comparing the results to the modeling. We apply a 0D end member of the model to understand the dissolution of single crystals of forsterite in a variety of settings (low pH, high pH, or NaHCO3 initial fluids, at 100 C and 1 bar, or 200 C and 150 bar). Depending on the initial conditions, we observe the precipitation of talc, brucite, amorphous silica, chrysotile, or magnesite, in various combinations. We compare simulation results to fluid compositions and the presence of secondary minerals experimentally sampled at various times. Insight from the simulations helped create an inverse model to extract the rates of forsterite dissolution and to create a simple forward model useful for exploring the influence of system size, secondary mineral surface areas, etc. Our reactive transport model allows secondary minerals to armor the forsterite surface, which can strongly decrease the dissolution rate as the system evolves. Tuning our model with experimentally derived rates and assuring relevant processes are included so as to reproduce experimental observations is necessary before upscaling to heterogeneous field conditions. The reactive transport model will be used for field-scale sequestration simulations and coupled with a geomechanical model that includes the influence of deformation.

  10. Fusion, and advanced-fuel, reaction bibliography. Particle reactions from H1 to B11. Special report, 17 February-17 August 1987

    SciTech Connect

    Pass, H.H.

    1987-08-01

    The Air Force Astronautics Laboratory has an ongoing program of studying the feasibility of fusion powered propulsion. This study first examines nuclear fuels and their associated fuel cycles. The investigated fuels and fuel cycles will then be used to explore present and proposed fusion propulsion concepts. From this study, it will be determined which concepts, if any, will be able to produce fusion propulsion systems using present or near term technology. The objective of the work reported herein was to compile a comprehensive list of the experimentally measured nuclear reactions involving the nuclides up to and including B11 (Boron-11). This compilation was performed in order to identify any new fuels and/or fuel cycles that would be potential candidate to replace the presently utilized fuels deuterium and tritium. Also, the project is intended to provide a readily accessible source of information for individuals who are studying fuels, reactions, and fuel cycles.

  11. Nucleation and reaction rates controlled by local reaction volume and reaction-induced stress - spinel layer growth as an example

    NASA Astrophysics Data System (ADS)

    Götze, Lutz C.; Milke, Ralf; Dohmen, Ralf; Wirth, Richard

    2014-05-01

    We observed the growth of spinel sensu stricto (MgAl2O4) between periclase (MgO) and corundum (Al2O3) in thin films deposited by the pulsed laser deposition method on crystallographically oriented single crystal substrates. The starting samples consisted of cut and ultra polished single crystals of either corundum (parallel (0001)) or periclase (parallel (111)) and an amorphous source layer of the respective reactant that in the very first stages of the experiments became polycrystalline. The cutting direction in the substrate minerals ensures that the substrate phases start to react along their close-packed hexagonal oxygen layers which allows topotactical growth of the newly formed spinel. The entire layer setup on the substrate crystals was only a few 100 nm thick. The growth of these spinel product layers was monitored in-situ using a heating attachment and synchrotron X-ray diffraction. From the reacted samples we took electron transparent foils by the focused ion beam method and analysed them ex-situ by TEM. At 1000°C we found a difference in spinel growth rate between one and two orders of magnitude between the two substrates, all other parameters held constant. At 900 and 1000 °C spinel had formed after one hour by 0.004 nm/s (900°C) and 0.034 nm/s (1000°C) on corundum substrate, while on periclase substrate the reaction had gone completely through the Al2O3 source layer transforming it to spinel by at least 15-30 times higher reaction rates (boundary values) and probably even faster. At 800°C no reaction occurred between periclase layers and corundum single crystals, whereas spinel crystallized at a (linearized) rate of 46 nm/h on periclase single crystals. We explain our findings by the local reaction volume at the periclase-corundum interface. Many studies (including this one) have established that spinel grows by cation exchange in a rather immobile oxygen sublattice. This mechanism implies a negative volume change at the Sp-Per interface (by -13

  12. Reaction-Based SiC Materials for Joining Silicon Carbide Composites for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Singh, M.; Serizawa, H.; Katoh, Y.; Kohyama, A.

    2000-09-01

    The fabrication of large or complex silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) components for fusion energy systems requires a method to assemble smaller components that are limited in size by manufacturing constraints. Previous analysis indicates that silicon carbide should be considered as candidate joint materials. Two methods to obtain SiC joints rely on a reaction between silicon and carbon to produce silicon carbide. This report summarizes preliminary mechanical properties of joints formed by these two methods. The methods appear to provide similar mechanical properties. Both the test methods and materials are preliminary in design and require further optimization. In an effort to determine how the mechanical test data is influenced by the test methodology and specimen size, plans for detailed finite element modeling (FEM) are presented.

  13. Analytical criterion for shock ignition of fusion reaction in hot spot

    NASA Astrophysics Data System (ADS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Le Bel, E.

    2013-11-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations.

  14. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  15. Investigation of the role of break-up processes on the fusion of {sup 16}O induced reactions

    SciTech Connect

    Singh, Devendra P.; Unnati; Singh, Pushpendra P.; Yadav, Abhishek; Singh, B. P.; Prasad, R.; Sharma, Manoj Kumar; Golda, K. S.; Kumar, Rakesh; Sinha, A. K.

    2009-07-15

    An experiment was carried out to explore heavy ion incomplete fusion reaction dynamics, within the framework of the break-up fusion model, at energies near and above the Coulomb barrier. Excitation functions for several radionuclides produced via xn, pxn, and {alpha}xn channels were measured in the {sup 16}O+{sup 181}Ta system at energies of {approx_equal}76-100 MeV. The experimental excitation functions were compared with those calculated using the theoretical model code PACE4. It was observed that excitation functions of xn/pxn channels are in good agreement with theoretical predictions. However, a significant enhancement in the measured excitation functions of {alpha}-emitting channels was observed and attributed to the incomplete fusion processes. The incomplete fusion fraction (F{sub ICF}) that gives the relative importance of complete and incomplete fusion processes was found to increase with energy. The results are discussed in terms of {alpha}-cluster structure of the projectile on various fusion reactions.

  16. Rate Constant for the OH + CO Reaction at Low Temperatures.

    PubMed

    Liu, Yingdi; Sander, Stanley P

    2015-10-01

    Rate constants for the reaction of OH + CO → products (1) have been measured using laser photolysis/laser-induced fluorescence (LP/LIF) over the temperature range 193–296 K and at pressures of 50–700 Torr of Ar and N2. The reaction was studied under pseudo-first-order conditions, monitoring the decay of OH in the presence of a large excess of CO. The rate constants can be expressed as a combination of bimolecular and termolecular components. The bimolecular component was found to be temperature-independent with an expression given by kbi(T) = (1.54 ± 0.14) × 10(–13)[e(–(13±17)/T)] cm(3) molecule(–1) s(–1), with an error of one standard deviation. The termolecular component was fitted to the expression, kter = k0(T)[M]/[1 + (k0(T)[M]/k∞(T)] × 0.6({1+[log10(k0(T)[M]/k∞(T))]2}−1) where k0(T) = k0(300)(T/300)(−n) and k∞(T) = k∞(300)(T/300)(−m). The parameters for k0(T) were determined to be k0(300) = (6.0±0.5) × 10(−33) cm(6) molecule(–2) s(–1) in N2 and k0(300) = (3.4 ± 0.3) × 10(–33) cm(6) molecule(–2) s(–1) in Ar, with n = 1.9±0.5 and 2.0±0.4 in N2 and Ar, respectively. These parameters were determined using k0(T) and m from the NASA kinetics data evaluation (JPL Publication No. 10-6) since the experimental pressure range was far from the high-pressure limit. Addition of low concentrations of O2 had no discernible effect on the mechanism of the OH + CO reaction but resulted in secondary reactions which regenerated OH. PMID:26305192

  17. Incomplete-fusion reactions for {gamma}-ray spectroscopy: Application to the study of high-spin states in {sup 234}U

    SciTech Connect

    Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; McGoram, T. R.; Poletti, A. R.

    1999-09-02

    Incomplete-fusion reactions occur when breakup of the projectile results in only part of the beam particle fusing with the target, the remnant being emitted with an energy equivalent to the beam velocity. Such reactions have been demonstrated to populate slightly neutron-rich nuclei compared to conventional fusion-evaporation reactions, opening possibilities for the study of nuclei along the neutron-rich side of the line of stability. Results from a study of {sup 211}Po are presented to illustrate the use of incomplete-fusion reactions for {gamma}-ray spectroscopy. New results from a test-run which populated high-spin states in {sup 234}U via the {sup 232}Th({sup 9}Be,{alpha}3n) reaction are also presented. An interesting feature of the latter reaction is that the high fission probabilities for the compound nuclei which follow complete fusion, results in the residues from incomplete fusion forming the dominant residue channels.

  18. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Hayakawa, S.; Spitaleri, C.; Burtebayev, N.; Aimaganbetov, A.; Figuera, P.; Fisichella, M.; Guardo, G. L.; Igamov, S.; Indelicato, I.; Kiss, G.; Kliczewski, S.; La Cognata, M.; Lamia, L.; Lattuada, M.; Piasecki, E.; Rapisarda, G. G.; Romano, S.; Sakuta, S. B.; Siudak, R.; Trzcińska, A.; Tumino, A.; Urkinbayev, A.

    2016-05-01

    The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Si)α and 16O(20Ne, p31P)α three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  19. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  20. In Search of Reaction Rate Scaling Law for Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai

    2015-11-01

    As a way of employing the flamelet approach, which was developed essentially for incompressible flows, to model supersonic combustion, the role ascribed to pressure has not been very convincing. That is, the reaction rate is often scaled on the square of the pressure in the finite Mach number flow field relative to the usually atmospheric static pressure field used in the generation of the flamelet library. This scaling assumption is quite simple and will therefore be very attractive if it has a sound theoretical basis and it works for a large selection of high-speed combustion flows. We try to find some justifications for different scaling laws, with the hope of coming up with a more universally-acceptable flamelet procedure for supersonic combustion.

  1. Dynamical Dipole and Equation of State in N/Z Asymmetric Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Giaz, Agnese; Corsi, Anna; Camera, Franco; Wieland, Oliver; Kravchuk, Vladimir L.; Barlini, Sandro; Alba, Rosa; Bednarczyk, P.; Bracco, Angela; Baiocco, Giorgio; Bardelli, Luigi; Benzoni, Giovanna; Bini, M.; Blasi, Nives; Brambilla, Sergio; Bruno, Mauro; Casini, Giovanni; Ciemala, Michal; Cinausero, Marco; Chiari, M.; Colonna, Maria; Crespi, Fabio Celso Luigi; D'Agostino, Michela; Degerlier, Meltem; Di Toro, Massimo; Gramegna, Fabiana; Kmiecik, Maria; Leoni, Silvia; Maiolino, C.; Maj, Adam; Marchi, Tommaso; Mazurek, K.; Meczynski, W.; Million, Benedicte; Montanari, Daniele; Morelli, Luca; Nannini, Adriana; Nicolini, Roberto; Pasquali, G.; Piantelli, S.; Ordine, A.; Poggi, Giacomo; Rizzi, V.; Rizzo, Carmelo; Santonocito, Domenico; Vandone, Valeria; Vannini, G.

    2014-03-01

    In heavy ion reactions, in the case of N/Z asymmetry between projectile and target, the process leading to complete fusion is expected to produce pre-equilibrium dipole γ-ray emission. It is generated during the charge equilibration process and it is known as Dynamical Dipole. A new measurement of the dynamical dipole emission was performed by studying 16O + 116Sn at 12 MeV/u. These data, together with those measured at 8.1 MeV/u and 15.6 MeV/u for the same reaction, provide the dependence on the Dynamical Dipole total emission yield with beam energy and they can be compared with theoretical expectations. The experimental results show a weak increase of the Dynamical Dipole total yield with beam energies and are in agreement with the prediction of a theoretical model based on the Boltzmann-Nordheim-Vlasov (BNV) approach. The measured trend with beam energy does not confirm the rise and fall behavior previously reported for the same fused compound but with a much higher dipole moment.

  2. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.

    2016-06-01

    Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion

  3. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  4. Measurement of sulfur dioxide reaction rates in wintertime orographic clouds

    SciTech Connect

    Snider, J.R.

    1989-01-01

    Releases of SO2 into the wintertime orographic clouds at Elk Mountain in southeastern Wyoming were utilized to accelerate the rate of SO2 oxidation to cloud-water dissolved sulfate (SO4(-2)). Background SO2 mixing ratios were 0.6 parts-per-billion by volume (ppbv) and were consistent with the remote location of the experimental site and with supplemental cloud water, snow, and aerosol composition measurements. Background mixing ratios of hydrogen peroxide (H2O2) and the organohydroperoxides, expressed as methyl hydroperoxide (MHP), were 0.15 and 0.17 ppbv, respectively. The concentration of H2O2 in cloud water, obtained as rime, was also monitored. Analysis of these findings suggests that both reactive loss of H2O2 and volatilization during riming are mechanisms for H2O2 loss. The pseudo first-order SO2 depletion rates varied between 2 and 72 percent /hr (x=32 plus or minus 22 percent/hr, n=10). Observed depletions of H2O2 (x=0.030 ppbv) were consistent with observed yields of SO4(-2) (x=0.027 ppbv) and with model predictions. Observed depletions of MHP were not significantly different from 0.0 ppbv. This observation is both consistent with the much smaller solubility of MHP, compared with H2O2, and with the results of 16 model simulations. Reactions between dissolved SO2 and O3, between SO2 and O2, and between SO2 and HCHO were calculated to contribute less than 40 percent to the total amount of SO4(-2). These reactions were inferred to be inhibited by the low pH (less than 5) of the Elk Mountain cloud water. It is concluded that H2O2 is the dominant SO2 oxidant in these clouds, and that the laboratory measurements form an adequate basis for predicting the rate of in-cloud oxidation of SO2 by H2O2.

  5. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    NASA Astrophysics Data System (ADS)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V.

    2016-07-01

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200-300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  6. An Experiment To Demonstrate How a Catalyst Affects the Rate of a Reaction.

    ERIC Educational Resources Information Center

    Copper, Christine L.; Koubeck, Edward

    1999-01-01

    Describes a chemistry experiment that allows students to calculate rates of reaction, orders of reaction, and activation energies. The activity demonstrates that to increase a reaction's rate, a catalyst need only provide any additional pathway for the reaction, not necessarily a pathway having lower activation energy. (WRM)

  7. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    SciTech Connect

    Warshaw, S I

    2001-07-11

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity {sigma}v is calculated, where {sigma} is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the

  8. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  9. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  10. Attempt to produce the isotopes of element 108 in the fusion reaction {sup 136}Xe+{sup 136}Xe

    SciTech Connect

    Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; Aksenov, N. V.; Bozhikov, G. A.; Chepigin, V. I.; Chelnokov, M. L.; Lebedev, V. Ya.; Malyshev, O. N.; Petrushkin, O. V.; Shishkin, S. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.

    2009-02-15

    A setup of the experiment on the production of the isotopes with Z=108 in the fusion reaction {sup 136}Xe+{sup 136}Xe and the obtained results are presented. At the excitation energy 0{<=}E{sub x}{<=}30 MeV of the {sup 272}Hs* compound nucleus the upper limit of the cross section for evaporation residues {sigma}{sub (1-3)n}{<=}4 pb has been measured. The experimental results together with the data from asymmetric reactions point to a strong limitation of the Hs compound nucleus formation with increasing Coulomb forces in the entrance channel of the reaction.