Science.gov

Sample records for fusion reaction rates

  1. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  2. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  3. Fusion Reaction Rate in an Inhomogeneous Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  4. An efficient nonclassical quadrature for the calculation of nonresonant nuclear fusion reaction rate coefficients from cross section data

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2016-08-01

    Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.

  5. Dinuclear systems in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.

    2014-09-01

    Formation and evolution of dinuclear systems in reactions of complete fusion are considered. Based on the dinuclear system concept, the process of compound nucleus formation is studied. Arguments confirming the validity of this concept are given. The main problems of describing the complete fusion in adiabatic approximation are listed. Calculations of evaporation residue cross sections in complete fusion reactions leading to formation of superheavy nuclei are shown. Isotopic trends of the cross sections of heavy nuclei formation in complete fusion reactions are considered.

  6. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  7. Fusion and reactions of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Martel, I.; Aguilera, E. F.; Acosta, L.; Sánchez-Benítez, A. M.; Wolski, R.

    2011-10-01

    Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  8. Results of an attempt to measure increased rates of the reaction D-2 + D-2 yields He-3 + n in a nonelectrochemical cold fusion experiment

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Decker, Arthur J.; Blue, James W.

    1989-01-01

    An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.

  9. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas. PMID:26329194

  10. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  11. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  12. Electron screening and stellar rates in the {sup 3}He({sup 3}He,2p){sup 4}He and {sup 3}He(d,p){sup 4}He fusion reactions

    SciTech Connect

    Messahel, L.; Ouichaoui, S.; Belhout, A.; Fouka, M.; Trabelsi, A.

    2008-05-12

    The astrophysical S(E) factor experimental data available over the energy region E (C.M.)<1.0 MeV for the {sup 3}He({sup 3}He,2p){sup 4}He and {sup 3}He(d,p){sup 4}He fusion reactions are analyzed using a polynomial expression and the R-Matrix formalism, respectively. The reaction thermonuclear rates for bare nuclei are determined and compared to previous ones after a precise assessment of the electron screening factors. New level parameter values are deduced for the {sup 5}Li nucleus.

  13. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  14. Dynamical dipole mode in fusion reactions

    SciTech Connect

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  15. Microdroplet fusion mass spectrometry for fast reaction kinetics

    PubMed Central

    Lee, Jae Kyoo; Kim, Samuel; Nam, Hong Gil; Zare, Richard N.

    2015-01-01

    We investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical reactions on the order of microseconds. Two streams of micrometer-size droplets collide with one another. The droplets that fused (13 μm in diameter) at the intersection of the two streams entered the heated capillary inlet of a mass spectrometer. The mass spectrum was recorded as a function of the distance x between the mass spectrometer inlet and the droplet fusion center. Fused droplet trajectories were imaged with a high-speed camera, revealing that the droplet fusion occurred approximately within a 500-μm radius from the droplet fusion center and both the size and the speed of the fused droplets remained relatively constant as they traveled from the droplet fusion center to the mass spectrometer inlet. Evidence is presented that the reaction effectively stops upon entering the heated inlet of the mass spectrometer. Thus, the reaction time was proportional to x and could be measured and manipulated by controlling the distance x. Kinetic studies were carried out in fused water droplets for acid-induced unfolding of cytochrome c and hydrogen–deuterium exchange in bradykinin. The kinetics of the former revealed the slowing of the unfolding rates at the early stage of the reaction within 50 μs. The hydrogen–deuterium exchange revealed the existence of two distinct populations with fast and slow exchange rates. These studies demonstrated the power of this technique to detect reaction intermediates in fused liquid droplets with microsecond temporal resolution. PMID:25775573

  16. Renormalized reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Gorbachev, Yuriy E.

    2016-06-01

    Impact of the non-equilibrium on the reaction and relaxation rates (called as generalized relaxation rates - GRR), for the spatially inhomogeneous gas mixture is considered. Discarding the assumption that the 'chemical' part of the collisional integral is a small correction to non-reactive part, the expression for the zero-order GRR is derived. They are represented as a renormalization of the traditional reaction and relaxation rates, which means mixing of all corresponding processes. Thus all reactions and relaxation processes are entangled.

  17. Some considerations of cold fusion including the calculation of fusion rates in molecules of hydrogen isotopes

    SciTech Connect

    Cowley, S.C.; Kulsrud, R.M.

    1989-11-01

    We calculate the fusion reaction rates in molecules of hydrogen isotopes. The rates are calculated analytically (for the first time) as an asymptotic expansion in the ratio of the electron mass to the reduced mass of the nucleii. The fusion rates of the P-D, D-D, and D-T reactions are given for a variable electron mass by a simple analytic formula. However, we do not know any mechanism by which a sufficiently localized electron in solid can have an effective mass' large enough to explain the result of Fleischman and Pons (FP). This calculation indicates that P-D rates should exceed D-D rates for D-D fusion rates less than approximately 10{sup {minus}23} per molecule per second. The D-D fusion rate is enhanced by a factor of 10{sup 5} at 10,000{degree}K if the excited vibrational states are populated with a Boltzmann distribution and the rotational excitations suppressed. The suggestion that experimental results could be explained by bombardment of cold deuterons by kilovolt deuterons is shown to be an unlikely from an energetic point of view. 12 refs., 3 figs., 1 tab.

  18. Trojan Horse particle invariance in fusion reactions

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spitaleril, C.; Bertulani, C.; Mukhamedzhanov, A.; Blokhintsev, L.; La Cognata, M.; Lamia, L.; Spartá, R.; Tumino, A.

    2015-01-01

    Trojan Horse method plays an important part for the measurement of several charged particle induced reactions cross sections of astrophysical interest. In order to better understand its cornerstones and the related applications to different astrophysical scenarios several tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance for the binary reactions d(d,p)t, 6,7Li(p,α)3,4He was therefore tested using the appropriate quasi free break- ups, respectively. In the first cases results from 6Li and 3He break up were used, while for the lithium fusion reactions break-ups of 2H and 3He were compared. The astrophysical S(E)-factors for the different processes were then extracted in the framework of the PlaneWave Approximation applied to the different break-up schemes. The obtained results are compared with direct data as well as with previous indirect investigations. The very good agreement between data coming from different break-up schemes confirms the applicability of the plane wave approximation and suggests the independence of binary indirect cross section on the chosen Trojan Horse nucleus also for the present cases. Moreover the astrophysical implications of the results will also be discussed in details.

  19. Synthesis of the heaviest nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Münzenberg, G.; Morita, K.

    2015-12-01

    Cold fusion of heavy ions paved the way to superheavy elements. It was proposed by Yu.Ts. Oganessian more than forty years ago in 1974 [1,2]. First experiments were carried out at JINR Dubna, starting with the reaction 40Ar + 208Pb → 248Fm* where several hundreds to thousand atoms were produced on one day. The large production rate indicating an enhancement of the fusion cross section, especially for the evaporation of two or three neutrons, proved the concept of cold-fusion with the use of the doubly magic nucleus 208Pb as a target. The Dubna experiments were extended to the transactinide region beyond rutherfordium. The breakthrough came with the separation in-flight. Two different approaches were used: kinematic separation with the velocity filter SHIP [3] at GSI Darmstadt, and with the gasfilled separator GARIS [4,5] at RIKEN. With SHIP the concept of cold fusion of massive nuclear systems was convincingly confirmed by the observation of the one-neutron evaporation channel in the production of 247Rf in an irradiation of 208Pb with 50Ti [6] in 1981 which opened the way to the transactinide region. At SHIP the elements bohrium (107) to copernicium (112) were discovered [7]. A new closed shell region around hassium was found. The RIKEN experiments started in 2002. They confirmed the GSI results and in addition improved the data on structure and production of elements hassium to copernicium significantly. The heaviest element ever created in a cold fusion reaction, Z = 113, was observed at GARIS [8,9].

  20. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

    SciTech Connect

    Shen Caiwan; Li Qingfeng; Boilley, David; Shen Junjie; Abe, Yasuhisa

    2011-05-15

    The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter {alpha} is smaller than that at large {alpha}. In the formation of a given compound nucleus, if a reaction with {alpha}{sub c} is not hindered, then other reactions with {alpha}>{alpha}{sub c} are also not hindered, as is well known experimentally.

  1. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (˜100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  2. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  3. Fusion reactions of Ni,6458+124Sn

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M. M.; Montanari, D.; Montagnoli, G.; Mijatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E. E.; Szilner, S.

    2015-04-01

    Measurements of fusion excitation functions of 58Ni+124Sn and 64Ni+124Sn are extended towards lower energy to cross sections of 1 μ b and are compared to detailed coupled-channels calculations. The calculations clearly show the importance of including transfer reactions in a coupled-channels treatment for such heavy systems. This result is different from the conclusion made in a previous article which claimed that the influence of transfer on fusion is not important for fusion reactions of Ni +Sn . In the energy region studied in this experiment no indication of fusion hindrance has been observed, which is consistent with a systematic study of this behavior.

  4. Nova reaction rates and experiments

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Herlitzius, C.; Fiehl, J.

    2011-04-01

    Oxygen-neon novae form a subset of classical novae events known to freshly synthesize nuclei up to mass number A≲40. Because several gamma-ray emitters lie in this mass range, these novae are also interesting candidates for gamma-ray astronomy. The properties of excited states within those nuclei in this mass region play a critical role in determining the resonant (p,γ) reaction rates, themselves, largely unknown for the unstable nuclei. We describe herein a new Doppler shift lifetime facility at the Maier-Leibnitz tandem laboratory, Technische Universität München, with which we will map out important resonant (p,γ) nova reaction rates.

  5. Transfer-type products accompanying cold fusion reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  6. Evaluation of charged-particle reactions for fusion applications

    SciTech Connect

    White, R.M.; Resler, D.A.; Warshaw, S.I.

    1991-01-01

    New evaluations of the total reaction cross sections for {sup 2}H(d,n){sup 3}He, {sup 2}H(d,p){sup 3}H, {sup 3}H(t,2n){sup 4}He,{sup 3}H(d,n){sup 4}He, and {sup 3}He(d,p){sup 4}He have been completed. These evaluations are based on all known published data from 1946 to 1990 and include over 1150 measured data points from 67 references. The purpose of this work is to provide a consistent and well-documented set of cross sections for use in calculations relating to fusion energy research. A new thermonuclear data file, TDF, and a library of FORTRAN subprograms to read the file have been developed. Calculated from the new evaluations, the TDF file contains information on the Maxwellian-averaged reaction rates as a function of reaction and plasma temperature and the Maxwellian-averaged average energy of the interacting particles and reaction products. Routines are included that provide thermally-broadened spectral information for the secondary reaction products. 67 refs., 18 figs.

  7. Competition between complete fusion and quasifission in reactions with heavy nuclei

    SciTech Connect

    Antonenko, N. V.; Scheid, W.; Adamian, G. G.; Volkov, V. V.

    1998-02-15

    A model based on the dinuclear system concept is suggested for the calculation of the competition between complete fusion and quasifission in reactions with heavy nuclei. The fusion rate through the inner fusion barrier in mass asymmetry is found by using the Kramers-type expression. The calculated cross sections for the heaviest nuclei are in a good agreement with the experimental data. The experimentally observed rapid fall-off of the cross section of the cold fusion with increasing charge number Z of the compound nucleus is explained.

  8. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Loisel, G.; Yahia, V.; Rafelski, J.

    2013-10-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

  9. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.

    PubMed

    Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. PMID:24104859

  10. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  11. Fusion probability for neutron-rich radioactive Sn induced reactions

    SciTech Connect

    Liang, J Felix; Gross, Carl J; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Allmond, James M; Caraley, Anne L; Lagergren, Karin B; Mueller, Paul Edward

    2012-01-01

    Evaporation residue cross sections for $^{124,126,127,128}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni have been measured to study the effects of neutron excess in neutron-rich radioactive nuclei on fusion. For the reactions with $^{64}$Ni, the fusion probability does not decrease with increasing neutron excess in Sn, contrary to the result of the stable beam Sn+Zr measurement. A comparison of the reduced evaporation residue cross sections for $^{126}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni, which make the same compound nucleus, shows that the fusion probability is indistinguishable for reactions involving the same atomic elements but different isotope combinations.

  12. Observation of incomplete fusion reactions at l < l {sub crit}

    SciTech Connect

    Yadav, Abhishek Sharma, Vijay R. Singh, Devendra P. Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Sharma, M. K.

    2014-08-14

    In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

  13. The Rate Laws for Reversible Reactions.

    ERIC Educational Resources Information Center

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  14. /sup 18/O + /sup 12/C fusion-evaporation reaction

    SciTech Connect

    Heusch, B; Beck, C; Coffin, J P; Freeman, R M; Gallmann, A; Haas, F; Rami, F; Wagner, P; Alburger, D E

    1980-01-01

    A study of the /sup 18/O + /sup 12/C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus /sup 30/Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model.

  15. Compound nucleus formation in reactions between massive nuclei: Fusion barrier

    SciTech Connect

    Antonenko, N.V.; Cherepanov, E.A.; Nasirov, A.K.; Permjakov, V.P.; Volkov, V.V.

    1995-05-01

    The evaporation residue cross sections {sigma}{sub ER} in reactions between massive nuclei have been analyzed within different models of complete fusion. The calculations in the framework of the optical model, the surface friction model, and the macroscopic dynamic model can give the results which are by few orders of magnitude different from experimental data. This takes place due to neglect of the competition between complete fusion and quasifission. A possible mechanism of compound nucleus formation in heavy-ion-induced reactions has been suggested. The analysis of the complete fusion of nuclei on the basis of dinuclear system approach has allowed one to reveal an important feature of the fusion process of massive nuclei, that is, the appearance of the fusion barrier during dinuclear system evolution to a compound nucleus. As a result, the competition between complete fusion and quasifission arises and strongly reduces the cross section of the compound nucleus formation. A model is proposed for calculation of this competition in a massive symmetric dinuclear system. This model is applied for collision energies above the Coulomb barrier. The {sigma}{sub ER} values calculated in the framework of dinuclear system approach seem to be close to the experimental data. For illustration the reactions {sup 100}Mo+{sup 100}Mo, {sup 110}Pd+{sup 110}Pd, and {sup 124}Sn+{sup 96}Zr have been considered.

  16. Formation of superheavy nuclei in cold fusion reactions

    SciTech Connect

    Feng Zhaoqing; Jin Genming; Li Junqing; Scheid, Werner

    2007-10-15

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  17. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  18. Fission and Quasifission in the 'Warm' Fusion Reactions

    SciTech Connect

    Itkis, M. G.; Bogachev, A. A.; Chernysheva, E. V.; Itkis, I. M.; Knyazheva, G. N.; Kozulin, E. M.

    2010-06-01

    Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions of {sup 48}Ca, {sup 58}Fe and {sup 64}Ni ions with actinides leading to the formation of superheavy compound system with Z = 112-120 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is approximately the same for the reactions with {sup 48}Ca ions and drops three orders of magnitude at the transition to {sup 64}Ni ions.

  19. Acrosome Reaction as a Preparation for Gamete Fusion.

    PubMed

    Cuasnicú, Patricia S; Da Ros, Vanina G; Weigel Muñoz, Mariana; Cohen, Débora J

    2016-01-01

    The acrosome reaction (AR) is a universal requisite for sperm-egg fusion. However, whereas through the animal kingdom fusion of spermatozoa with the egg plasma membrane occurs via the inner acrosomal membrane exposed after the AR, in eutherian mammals, gamete fusion takes place through a specialized region of the acrosome known as the equatorial segment (ES) which becomes fusogenic only after the AR is completed. This chapter focuses on the different molecular mechanisms involved in the acquisition of the fusogenicity of the ES after the AR. We provide an update of the knowledge about the proteins proposed to have a role in this process either by modifying cytoskeletal and/or membrane molecules or by relocalizing to the ES after the AR to subsequently participate in gamete fusion. PMID:27194355

  20. Analysis of quasifission competition in fusion reactions forming heavy nuclei

    NASA Astrophysics Data System (ADS)

    Hammerton, Kalee; Kohley, Zachary; Morrissey, Dave; Wakhle, Aditya; Stiefel, Krystin; Hinde, David; Dasgupta, Mahananda; Williams, Elizabeth; Simenel, Cedric; Carter, Ian; Cook, Kaitlin; Jeung, Dongyun; Luong, Duc Huy; McNeil, Steven; Palshetkar, Chandani; Rafferty, Dominic

    2015-10-01

    Heavy-ion fusion reactions have provided a mechanism for the production of superheavy elements allowing for the extension of both the periodic table and chart of the nuclides. However, fusion of the projectile and target, forming a compound nucleus, is hindered by orders of magnitude by the quasifission process in heavy systems. In order to fully understand this mechanism, and make accurate predictions for superheavy element production cross sections, a clear description of the interplay between the fusion-fission and quasifission reaction channels is necessary. The mass-angle distributions of fragments formed in 8 different Cr + W reactions were measured at the Australia National University in order to explore the N/Z dependence of the quasifission process. Two sets of data were measured: one at a constant energy relative to the fusion barrier and one at a constant compound nucleus excitation energy. The results of this analysis will provide insight into the effect of using more neutron-rich beams in superheavy element production reactions.

  1. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  2. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  3. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  4. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  5. Effective reaction rates for diffusion-limited reaction cycles

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  6. Controlled shock shells and intracluster fusion reactions in the explosion of large clusters

    SciTech Connect

    Peano, F.

    2006-05-15

    The ion phase-space dynamics in the Coulomb explosion of very large ({approx}10{sup 6}-10{sup 7} atoms) deuterium clusters can be tailored using two consecutive laser pulses with different intensities and an appropriate time delay. For suitable sets of laser parameters (intensities and delay), large-scale shock shells form during the explosion, thus highly increasing the probability of fusion reactions within the single exploding clusters. In order to analyze the ion dynamics and evaluate the intracluster reaction rate, a one-dimensional theory is used, which approximately accounts for the electron expulsion from the clusters. It is found that, for very large clusters (initial radius {approx}100 nm), and optimal laser parameters, the intracluster fusion yield becomes comparable to the intercluster fusion yield. The validity of the results is confirmed with three-dimensional particle-in-cell simulations.

  7. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  8. Distribution of Ions in Laser-Driven Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Warrens, Mackenzie; Barbarino, Matteo; Bonasera, Aldo; Lattuada, Dario; Group Bonasera Team

    2015-10-01

    Experiments of laser-driven fusion reactions are important for many aspects, such as measuring the cross section of plasma. In the experiments at University of Texas using the Texas Petawatt laser, deuterium clusters of various sizes suspended in 3He gas absorb the laser's energy and are irradiated. The clusters undergo a Coulomb explosion, forming a hot plasma which initiates the reactions. This analysis studies two possible fusions: D(d, 3He)n and 3He(d,p)4He. Signals are recorded using a Faraday cup detector, then transformed and analyzed in energy space. In this work, we investigate if the log-normal distribution is an appropriate description of the energy distribution of the ions. If the log-normal distribution is a good fit, the energy distribution can be thought of as chaotic enough to appear thermalized. The chaos may be due to many-body interactions over long distances, as well as the different charges and masses of the particles involved. Using the well-known S-factor for the two reactions and the extrapolated fits, the number of fusions is calculated and compared with experimental data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1263281.

  9. f 1 (1285) formation in photon-photon fusion reactions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnett, B. A.; Bauer, D. A.; Bay, A.; Bengtsson, H.-U.; Bobbink, G. J.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Chao, H.-Y.; Chun, S.-B.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Daoudi, M.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fairfield, K. H.; Hauptman, J. M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kenney, R. W.; Khacheryan, S.; Kofler, R. R.; Langeveld, W. G. J.; Layter, J. G.; Lin, W. T.; Linde, F. L.; Loken, S. C.; Lu, A.; Lynch, G. R.; Madaras, R. J.; Magnuson, B. D.; Masek, G. E.; Mathis, L. G.; Matthews, J. A. J.; Maxfield, S. J.; Miller, E. S.; Moses, W.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stephens, R. W.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Toutounchi, S.; Van Tyen, R.; Van Dalen, G. J.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y.-X.; Wenzel, W. A.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.; TPC/Two-Gamma Collaboration

    1988-07-01

    We have observed formation of the f 1 (1285) in the reaction e +e -→e +e -π+π-η( η→ γγ). Its γγ ∗ width is determined in several Q2 bins. The γγ coupling parameter for the f 1 (1285) is found to be 2.4±0.5±0.5 keV. This value is compared to that for the X (1420), another J=1 state formed in γγ fusion reactions, which may belong to the same meson nonet.

  10. Fusion and direct reactions for strongly and weakly bound projectiles

    NASA Astrophysics Data System (ADS)

    Hugi, M.; Lang, J.; Müller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzałkowski, A.; Willim, G.

    1981-09-01

    The interaction of 6Li, 9Be and 12C projectiles with a 28Si target was investigated by measuring the angular distributions of the elastically scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was performed in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel model describing the fusion reaction vary smoothly with the atomic number. In the system 9Be + 28Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systems the direct part amounts to 15 % ( 12C) and 30 % ( 6Li) only.

  11. Astrophysical Reaction Rates Obtained By Indirect Techniques

    SciTech Connect

    Tribble, R. E.; Al-Abdullah, T.; Alharbi, A.; Banu, A.; Chen, X.; Clark, H. L.; Fu, C.; Gagliardi, C. A.; Hardy, J. C.; Iacob, V. E.; Lui, Y.-W.; McCleskey, M.; Mukhamedzhanov, A.; Nica, N.; Park, H. I.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tokimoto, Y.; Trache, L.

    2010-08-12

    Indirect techniques have been used to obtain information about reaction rates for several proton capture reactions that occur on short-lived nuclei. The techniques used to carry out the measurements are reviewed and the results obtained are presented. Also future prospects for further measurements with a new facility, T-REX are discussed.

  12. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  13. Formation of superheavy elements in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Smolańczuk, Robert

    2001-04-01

    We calculate the formation cross sections of transactinides (superheavy elements), as well as heavy actinides (No and Lr), which have been or might be obtained in fusion reactions with the evaporation of only one neutron. We use both more realistic fusion barrier and survival probability of the compound nucleus in comparison with the original phenomenological model [Phys. Rev. C 59, 2634 (1999)] that prompted the Berkeley experiment on the synthesis of a new superheavy element 118 [Phys. Rev. Lett. 83, 1104 (1999)]. Calculations are performed for asymmetric and symmetric target-projectile combinations and for reactions with stable and radioactive-ion beams. The formation cross sections measured at GSI-Darmstadt for transactinides and heavy actinides, as well as that for superheavy element 118 reported by the LBNL-Berkeley group, are reproduced within a factor of 2.4, on average. Based on the obtained relatively large cross sections, we predict that optimal reactions with stable beams for the synthesis of so far unobserved superheavy elements 119, 120, and 121 are 209Bi(86Kr, 1n)294119, 208Pb(88Sr, 1n)295120, and 209Bi(88Sr, 1n)296121, respectively. This is because of the magic of both the target and the projectile that leads to larger Q value and, consequently, lower effective fusion barrier with larger transmission probability. The same effect is responsible for relatively large cross sections predicted for the symmetric reactions 136Xe(124Sn, 1n)259Rf, 136Xe(136Xe, 1n)271Hs,138Ba(136Xe, 1n)273110, and 140Ce(136Xe, 1n)275112. Although shell effects in the magic nuclei 124Sn, 136Xe, 138Ba, and 140Ce are not as strong as in 208Pb and 209Bi, they act on both the target and the projectile and lead to the prediction of measurable cross sections.

  14. Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2014-10-01

    The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Observation of neutronless fusion reactions in picosecond laser plasmas.

    PubMed

    Belyaev, V S; Matafonov, A P; Vinogradov, V I; Krainov, V P; Lisitsa, V S; Roussetski, A S; Ignatyev, G N; Andrianov, V P

    2005-08-01

    The yield of alpha particles in neutronless fusion reactions 11B +p in plasmas produced by picosecond laser pulses with the peak intensity of 2 x 10(18) W/cm2 has been observed. Experiments were carried out on the "Neodymium" laser facility at the pulse energy of 10-12 J and pulse duration of 1.5 ps. The composite targets 11B + (CH2)n were used. The yield of 10(3) alpha particles per pulse has been observed. The energy spectrum of alpha particles contains two maxima: at 3-4 MeV and at 6-10 MeV . The first of these peaks corresponds to the secondary alpha12 particles at the decay of the intermediate first excited state of 8Be, whereas the second peak demonstrates generation of alpha1 particles in the reaction 11B +p with the production of this excited state. Simultaneous measurements of neutrons result in zero yield, which proves the observation of neutronless fusion reactions in our experiments. PMID:16196717

  16. Fusion reactions of 58,64Ni+124Sn

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Goasduff, A.; Haas, F.; Mazzocco, M.; Montanari, D.; Montagnoli, G.; Mijiatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E.; Szilner, S.

    2016-05-01

    In order to better understand the influence of transfer in sub-barrier nuclear reactions, cross sections for the system 58,64Ni+124Sn have been measured down to 0.5-1 µb and compared to detailed coupledchannel calculations. In agreement with a phenomenological Q-value systematics, calculations show the importance of including the coupling to the transfer channel for these heavy systems. No clear evidence of fusion hindrance is observed, probably due to the fact that the cross sections measured in this experiment are not low enough for the appearance of that phenomenon.

  17. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  18. Impact of Reaction Cross Section on the Unified Description of Fusion Excitation Function

    NASA Astrophysics Data System (ADS)

    Basrak, Z.; Eudes, P.; de la Mota, V.; Sébille, F.; Royer, G.

    A systematics of over 300 complete and incomplete fusion cross section data points covering energies beyond the barrier for fusion is presented. Owing to a usual reduction of the fusion cross sections by the total reaction cross sections and an original scaling of energy, a fusion excitation function common to all the data points is established. A universal description of the fusion exci- tation function relying on basic nuclear concepts is proposed and its dependence on the reaction cross section used for the cross section normalization is discussed. The pioneering empirical model proposed by Bass in 1974 to describe the complete fusion cross sections is rather successful for the incomplete fusion too and provides cross section predictions in satisfactory agreement with the observed universality of the fusion excitation function. The sophisticated microscopic transport DYWAN model not only reproduces the data but also predicts that fusion reaction mechanism disappears due to weakened nuclear stopping power around the Fermi energy.

  19. Astrophysical S factors for fusion reactions involving C, O, Ne, and Mg isotopes

    SciTech Connect

    Beard, M.; Afanasjev, A.V.; Chamon, L.C.; Gasques, L.R.; Wiescher, M.; Yakovlev, D.G.

    2010-09-15

    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to {approx}18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.

  20. Sparking fusion: A step toward laser-initiated nuclear fusion reactions

    SciTech Connect

    Peterson, I.

    1996-10-19

    The fusion furnace at the sun`s core burns hydrogen to make helium. Each time two hydrogen nuclei, or protons, merge to create a deuterium nucleus, the process releases energy. A chain of additional energy-producing nuclear reactions then converts deuterium into helium. Because protons, with their like electric charges, naturally repel each other, high temperatures and tremendous pressures are needed to force them together closely enough to initiate and sustain the reactions. These mergers cost energy initially, but the return on that investment proves prodigious. On Earth, such an energy payoff has been achieved only in the uncontrolled fury of a detonated hydrogen bomb. The vision of harnessing and controlling nuclear fusion as a terrestrial energy source has yet to be fulfilled. The proposed National Ignition Facility (NIF) represents an ambitious effort to use powerful lasers to deposit sufficient energy in a small capsule of nuclear fuel to trigger fusion. The main justification for the project is to ensure that a core group of physicists and engineers maintains its expertise in the physics of nuclear weapons. This article presents both the scientific and political sides of the NIF facility.

  1. Critical reaction rates in hypersonic combustion chemistry

    SciTech Connect

    Oldenborg, R.C.; Harradine, D.M.; Loge, G.W.; Lyman, J.L.; Schott, G.L.; Winn, K.R.

    1989-01-01

    High Mach number flight requires that the scramjet propulsion system operate at a relatively low static inlet pressure and a high inlet temperature. These two constraints can lead to extremely high temperatures in the combustor, yielding high densities of radical species and correspondingly poor chemical combustion efficiency. As the temperature drops in the nozzle expansion, recombination of these excess radicals can produce more product species, higher heat yield, and potentially more thrust. The extent to which the chemical efficiency can be enhanced in the nozzle expansion depends directly on the rate of the radical recombination reactions. A comprehensive assessment of the important chemical processes and an experimental validation of the critical rate parameters is therefore required if accurate predictions of scramjet performance are to be obtained. This report covers the identification of critical reactions, and the critical reaction rates in hypersonic combustion chemistry. 4 refs., 2 figs.

  2. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion

    PubMed Central

    Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun

    2016-01-01

    Objective To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. Methods From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). Results We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). Conclusion The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might

  3. Universal reaction rates for ultracold molecular collisions

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Idziaszek, Zbigniew

    2010-03-01

    We offer a simple yet general model of reactive collisions using a quantum defect framework based on the separation of the collision dynamics into long-range and a short-range parts [1]. Two dimensionless quantum defect parameters s and y are used to characterize the S-matrix for a given entrance channel; s represents a phase parameter and y the probability of short-range reaction. The simple analytic expressions we obtain give universal values for s-wave and p-wave collision rates for a van der Waals potential when y approaches unity. In this limit, reaction rates are governed entirely by the threshold laws governing the quantum transmission of the long range potential and depend only on the van der Waals coefficient. The universal rate constants explain the magnitude of the observed rate constants for reactive collisions of fermionic KRb + KRb or K + KRb [2]. In contrast, reaction rates will be non-universal and depend strongly on the phase parameter s if the short range reaction probability is low, y << 1. [1] Z. Idziaszek and P. S. Julienne, arXiv:0912.0370. [2] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Qu'em'ener, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, arXiv:0912.3854.

  4. Measurement of the survival probabilities for hot fusion reactions.

    PubMed

    Yanez, R; Loveland, W; Yao, L; Barrett, J S; Zhu, S; Back, B B; Khoo, T L; Alcorta, M; Albers, M

    2014-04-18

    We have studied the fission-neutron emission competition in highly excited (274)Hs (Z=108) (where the fission barrier is due to shell effects) formed by a hot fusion reaction. Matching cross bombardments ((26)Mg+(248)Cm and (25)Mg+(248)Cm) were used to identify the properties of first chance fission of (274)Hs. A Harding-Farley analysis of the fission neutrons emitted in the (25)Mg,26+(248)Cm was performed to identify the prescission and postscission components of the neutron multiplicities in each system. (Γn/Γt) for the first chance fission of (274)Hs (E*=63  MeV) is 0.89±0.13; i.e., ∼90% of the highly excited nuclei survive. The high value of that survival probability is due to dissipative effects during deexcitation. A proper description of the survival probabilities of excited superheavy nuclei formed in hot fusion reactions requires consideration of both dynamic and static (shell-related) effects. PMID:24785034

  5. Spin polarization effects in the /sup 3/H(d,n)/sup 4/He fusion reaction

    SciTech Connect

    Conzett, H.E.; Rioux, C.

    1985-06-01

    A recent investigation has shown that the /sup 3/H(d,n)/sup 4/He fusion reaction rate could be enhanced by a factor of 3/2 if the fusion plasma consisted of both polarized deuterons and tritons, forming exclusively the channel-spin S = 3/2, J = 3/2/sup +/ state. This result follows simply from the statistical weights of the quartet S = 3/2 and doublet S = 1/2 initial states, with the assumption of the single J = 3/2/sup +/ reaction amplitude. Since, with a small but nonzero J = 1/2/sup +/ amplitude, the maximum enhancement of the reaction occurs at the peak of the J = 3/2/sup +/ resonance, corresponding to a deuteron lab energy of 107 keV, it is of obvious interest to know what the enhancement would be at the lower energies that are typical of fusion plasmas. We are able to address this question by extending earlier calculations which gave the values of all of the spin-polarization observables at this J = 3/2/sup +/ resonance in both the /sup 3/H(d,n)/sup 4/He and the /sup 3/He(d,p)/sup 4/He reactions.

  6. Enhanced aqueous photochemical reaction rates after freezing.

    PubMed

    Grannas, Amanda M; Bausch, Alexandra R; Mahanna, Kendell M

    2007-11-01

    Sunlit snow/ice is known to play an important role in the processing of atmospheric species, including photochemical production of NO(x), HONO, molecular halogens, alkyl halides, and carbonyl compounds, among others. It has been shown that a liquid-like (quasi-liquid or disordered) layer exists on the surface of pure ice and that this quasi-liquid layer is also found on the surface of ambient snow crystals and ice at temperatures similar to polar conditions. However, it is unclear what role the liquid-like fractions present in and on frozen water play in potential photochemical reactions, particularly with regard to organic substrates. Here, we report a detailed study of enhanced rates of photochemical nucleophilic substitution of p-nitroanisole (PNA) with pyridine, a well-characterized and commonly used actinometer system. Reaction rates were enhanced by a factor of up to approximately 40 when frozen at temperatures between 236 and 272 K. Reaction rates were dependent on temperature and solute concentration, both variables that control the nature of the liquid-like fraction in frozen water. The results obtained indicate that a major portion of the organic solutes is excluded to the liquid-like layer, significantly impacting the rate of the photochemical nucleophilic substitution reaction studied here. Also, the direct comparison of liquid-phase kinetics to reactions occurring in frozen water systems is drawn into question, indicating that a simple extrapolation of liquid-phase mechanisms to snow/ice may not be valid for certain reactions. PMID:17918916

  7. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  8. Reaction rates for a generalized reaction-diffusion master equation

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  9. The application of diagnostic equipment in the Tokamak fusion reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Bang-shuai; Chang, Jun; Gong, Xian-zu; Gan, Jia-fu; Feng, Shu-long

    2011-11-01

    This paper introduces the infrared optical system in the Tokamak fusion reaction device. In this optical system, the traditional optical structure can't meet the requirements, because the length of the infrared optical system in the Tokamak is very long. The design of optical system in the detection facility includes three parts:1.the combination of the concave aspheric mirror and flat mirror; 2.the Cassegrain system; 3.the relay group lenses. This paper describes the decrease of the modulation transfer function (MTF) when the temperature changes and how to compensate the decrease of the MTF in order to maintain the image quality in a high level. As a result, the image quality of this optical system can reach the requirements when the temperature changes.

  10. Thermodynamic limitations on microbially catalyzed reaction rates

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Amend, Jan P.; Van Cappellen, Philippe

    2012-08-01

    Quantification of global biogeochemical cycles requires knowledge of the rates at which microorganisms catalyze chemical reactions. In order for models that describe these processes to capture global patterns of change, the underlying formulations in them must account for biogeochemical transformations over seasonal and millennial time scales in environments characterized by different energy levels. Building on existing models, a new thermodynamic limiting function is introduced. With only one adjustable parameter, this function that can be used to model microbial metabolism throughout the range of conditions in which organisms are known to be active. The formulation is based on a comparison of the amount of energy available from any redox reaction to the energy required to maintain a membrane potential, a proxy for the minimum amount of energy required by an active microorganism. This function does not require species- or metabolism-specific parameters, and can be used to model metabolisms that capture any amount of energy. The utility of this new thermodynamic rate limiting term is illustrated by applying it to three low-energy processes: fermentation, methanogenesis and sulfate reduction. The model predicts that the rate of fermentation will be reduced by half once the Gibbs energy of the catalyzed reaction reaches -12 kJ (mol e-)-1, and then slowing exponentially until the energy yield approaches zero. Similarly, the new model predicts that the low energy yield of methanogenesis, -4 to -0.5 kJ (mol e-)-1, for a partial pressure of H2 between 11 and 0.6 Pa decreases the reaction rate by 95-99%. Finally, the new function's utility is illustrated through its ability to accurately model sulfate concentration data in an anoxic marine sediment.

  11. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  12. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  13. Selected component failure rate values from fusion safety assessment tasks

    SciTech Connect

    Cadwallader, L.C.

    1998-09-01

    This report is a compilation of component failure rate and repair rate values that can be used in magnetic fusion safety assessment tasks. Several safety systems are examined, such as gas cleanup systems and plasma shutdown systems. Vacuum system component reliability values, including large vacuum chambers, have been reviewed. Values for water cooling system components have also been reported here. The report concludes with the examination of some equipment important to personnel safety, atmospheres, combustible gases, and airborne releases of radioactivity. These data should be useful to system designers to calculate scoping values for the availability and repair intervals for their systems, and for probabilistic safety or risk analysts to assess fusion systems for safety of the public and the workers.

  14. Selected Component Failure Rate Values from Fusion Safety Assessment Tasks

    SciTech Connect

    Cadwallader, Lee Charles

    1998-09-01

    This report is a compilation of component failure rate and repair rate values that can be used in magnetic fusion safety assessment tasks. Several safety systems are examined, such as gas cleanup systems and plasma shutdown systems. Vacuum system component reliability values, including large vacuum chambers, have been reviewed. Values for water cooling system components have also been reported here. The report concludes with the examination of some equipment important to personnel safety, atmospheres, combustible gases, and airborne releases of radioactivity. These data should be useful to system designers to calculate scoping values for the availability and repair intervals for their systems, and for probabilistic safety or risk analysts to assess fusion systems for safety of the public and the workers.

  15. The effects of vacuum polarization on thermonuclear reaction rates

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1990-01-01

    Added to the pure Coulomb potential, the contribution from vacuum polarization increases the barrier, reducing the wave function (u) for reacting nuclei within the range of nuclear forces. The cross section and reaction rate are then reduced accordingly by a factor proportional to u squared. The effect is treated by evaluating the vacuum polarization potential as a small correction to the Coulomb term, then computing u in a WKB formulation. The calculation is done analytically employing the small r power-series expansion for the Uehling potential to express the final result in terms of convenient parameters. At a temperature of 1.4 x 10 to the 7th K the (negative) correction is 1.3 percent for the fundamental fusion process p + p yields d + e(+) + nu.

  16. Comparison of Fusion Rates between Glycerol-Preserved and Frozen Composite Allografts in Cervical Fusion

    PubMed Central

    Rodway, Ian; Gander, Julie

    2014-01-01

    Background. This retrospective, two cohort series study was designed to compare a room temperature, glycerol-preserved composite pinned bone allograft (G-CPBA) with the same graft type provided in a frozen state (F-CPBA) for use as a cervical interbody spacer in anterior cervical discectomy and fusion (ACDF). Methods. A comprehensive chart review was performed for 67 sequential patients that received either a F-CPBA or a G-CPBA and had at least one-year follow-up. Twenty-eight patients had received G-CPBA grafts and 37 patients had received F-CPBA grafts. Two additional 2-level patients had received one of each type of grafts. Results. At 3 months, 45.3% (29 of 64) of glycerol-preserved and 41.4% (29 of 70) of frozen allografts, respectively, were considered to be fused radiographically. At 12 months, 100% of both treatment groups (41 glycerol-preserved and 45 frozen) were considered fused. Fusion rates for G-CPBA were statistically similar to F-CPBA at both 3 and 12 months (P = 0.6535 and >0.999, resp.). There were no allograft related complications in either treatment group. Conclusions. 100% fusion rates were attained by both treatment groups at 12 months and were similar at short-term follow-up for all comparable levels. Level of Evidence. Level of evidence is III.

  17. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  18. Calculations of Proton Emission Cross Sections in Deuteron Induced Reactions of Some Fusion Structural Materials

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Tanır, G.

    2013-06-01

    The growing demands for energy consumption have led to the increase of the research and development activities on new energy sources. Fusion energy has the highest potential to become a very safe, clean and abundant energy source for the future. To get energy from fusion are needed for development of fusion reactor technology. Particularly, the design and development of international facilities as International Thermonuclear Experimental Reactor and International Fusion Material Irradiation Facility requires for the cross-section data of deuteron induced reactions. Moreover, the selection of fusion structural materials are an indispensable component for this technology. Therefore, the cross-section data of deuteron induced reactions on fusion structural materials are of great importance for development of fusion reactor technology. In this study, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as 27Al, 59Co, 55Mn, 50Cr, 54Cr, 64Ni, 109Ag, 184W and 186W have been carried out for incident energies up to 50 MeV. In these calculations, the pre-equilibrium and equilibrium effects for ( d, p) stripping reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model and hybrid model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the literature.

  19. Production of exotic isotopes in complete fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Zubov, A. S.; Adamian, G. G.; Antonenko, N. V.; Heinz, S.

    2013-11-01

    The isotopic dependence of the complete fusion (capture) cross section is analyzed in the reactions 130,132,134,136,138,140,142,144,146,148,150Xe+48Ca with stable and radioactive beams. It is shown for the first time that the very neutron-rich nuclei 186-191W can be reached with relatively large cross sections by complete fusion reactions with radioactive ion beams at incident energies near the Coulomb barrier. A comparison between the complete fusion and fragmentation reactions for the production of neutron-rich W and neutron-deficient Rn isotopes is performed.

  20. Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2016-04-01

    In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.

  1. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  2. Indirect techniques for astrophysical reaction rates determinations

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  3. Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Trzaska, W. H.; Xu, X. X.; Yan, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2014-10-01

    The measured complete fusion (capture) excitation function is presented for the 28Si + 208Pb reaction at deep sub-barrier energies. This excitation function is compared with the one predicted with the quantum diffusion approach.

  4. Spectral photoplethysmographic imaging sensor fusion for enhanced heart rate detection

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-03-01

    Continuous heart rate monitoring can provide important context for quantitative clinical assessment in scenarios such as long-term health monitoring and disability prevention. Photoplethysmographic imaging (PPGI) systems are particularly useful for such monitoring scenarios as contact-based devices pose problems related to comfort and mobility. Each pixel can be regarded as a virtual PPG sensor, thus enabling simultaneous measurements of multiple skin sites. Existing PPGI systems analyze temporal PPGI sensor uctuations related to hemodynamic pulsations across a region of interest to extract the blood pulse signal. However, due to spatially varying optical properties of the skin, the blood pulse signal may not be consistent across all PPGI sensors, leading to inaccurate heart rate monitoring. To increase the hemodynamic signal-to-noise ratio (SNR), we propose a novel spectral PPGI sensor fusion method for enhanced estimation of the true blood pulse signal. Motivated by the observation that PPGI sensors with high hemodynamic SNR exhibit a spectral energy peak at the heart rate frequency, an entropy-based fusion model was formulated to combine PPGI sensors based on the sensors' spectral energy distribution. The optical PPGI device comprised a near infrared (NIR) sensitive camera and an 850 nm LED. Spatially uniform irradiance was achieved by placing optical elements along the LED beam, providing consistent illumination across the skin area. Dual-mode temporally coded illumination was used to negate the temporal effect of ambient illumination. Experimental results show that the spectrally weighted PPGI method can accurately and consistently extract heart rate information where traditional region-based averaging fails.

  5. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  6. Description of the Fusion-Fission Reactions in the Framework of Dinuclear System Conception

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    Within the dinuclear system model fusion-fission reactions 78Kr+40Ca and 86Kr+48Ca is investigated. The charge distributions of the decay products are predicted at bombarding energy 10 MeV/nucleon. The competition is treated between complete fusion followed by the decay of compound nucleus and quasifission channels. The possible explanation of the odd-even staggering in the yield of the final reaction products at high excitation energies is discussed.

  7. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-01

    The excitation functions were measured for the 28Si + 208Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the 28Si + 124Sn, 208Pb; 30Si + 124Sn, 208Pb; 20Ne + 208Pb; 40Ca + 96Zr; and 134Te + 40Ca complete-fusion (capture) reactions is discussed.

  8. Robust sensor fusion of unobtrusively measured heart rate.

    PubMed

    Wartzek, Tobias; Brüser, Christoph; Walter, Marian; Leonhardt, Steffen

    2014-03-01

    Contactless vital sign measurement technologies often have the drawback of severe motion artifacts and periods in which no signal is available. However, using several identical or physically different sensors, redundancy can be used to decrease the error in noncontact heart rate estimation, while increasing the time period during which reliable data are available. In this paper, we show for the first time two major results in case of contactless heart rate measurements deduced from a capacitive ECG and optical pulse signals. First, an artifact detection is an essential preprocessing step to allow a reliable fusion. Second, the robust but computationally efficient median already provides good results; however, using a Bayesian approach, and a short time estimation of the variance, best results in terms of difference to reference heart rate and temporal coverage can be achieved. In this paper, six sensor signals were used and coverage increased from 0-90% to 80-94%, while the difference between the estimated heart rate and the gold standard was less than ±2 BPM. PMID:24608065

  9. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  10. Impact of THM reaction rates for astrophysics

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  11. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  12. Study of fusion-fission dynamics in 19F+238U reaction

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  13. No-capture breakup and incomplete fusion reactions induced by stable weakly bound nucleus 9Be

    NASA Astrophysics Data System (ADS)

    Seyyedi, S. A.

    2016-06-01

    The reactions including the stable weakly bound nucleus 9Be have been studied using the classical trajectory model accompanied with the experimental breakup function and the Aage-Winther interaction potential (AW95). In these calculations, the no-capture breakup and the incomplete fusion cross-sections as well as their competition at around the Coulomb barrier have been investigated. Our calculations showed that at a given far-Coulomb-barrier energy the incomplete fusion reaction in different distributions of angular momentum and energies can dominate the no-capture breakup reaction. This dominating process is reversed at the near-barrier energies.

  14. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Rowley, N.; Yao, J. M.

    2016-06-01

    The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  15. Typewriting rate as a function of reaction time.

    PubMed

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research. PMID:604897

  16. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  17. Revised analysis of 40Ca+96Zr fusion reactions

    NASA Astrophysics Data System (ADS)

    Esbensen, H.; Montagnoli, G.; Stefanini, A. M.

    2016-03-01

    Fusion data for 40Ca+96Zr are analyzed by coupled-channels calculations that are based on a standard Woods-Saxon potential and include couplings to multiphonon excitations and transfer channels. The couplings to multiphonon excitations are the same as those used in a previous work. The transfer couplings are calibrated to reproduce the measured neutron transfer data. This type of calculation gives a poor fit to the fusion data. However, by multiplying the transfer couplings with a √{2 } one obtains an excellent fit. The scaling of the transfer strengths is supposed to simulate the combined effect of neutron and proton transfer, and the calculated one- and two-nucleon transfer cross sections are indeed in reasonable agreement with the measured cross sections.

  18. Role of the neck degree of freedom in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Lenske, H.

    2015-05-01

    Mass parameters for collective variables of dinuclear systems formed in cold fusion reactions are microscopically calculated with the linear response theory making use of the width of single-particle states and the fluctuation-dissipation theorem. The single-particle spectrum and potential energy surface of the adiabatic two-center shell model are used. The microscopical mass parameter in the neck is found to be much larger than one obtained with the hydrodynamical model. Therefore, the dinuclear system lives a rather long time, comparable to the characteristic time of fusion and, correspondingly, the fusion can be considered at fixed neck parameter. With an adiabatic melting of the dinuclear system along the internuclear distance into a compound system one cannot explain the experimental trends in cold fusion reactions.

  19. Investigating multichannel quantum tunneling in heavy-ion fusion reactions with Bayesian spectral deconvolution

    NASA Astrophysics Data System (ADS)

    Hagino, K.

    2016-06-01

    Excitations of colliding nuclei during a nuclear reaction considerably affect fusion cross sections at energies around the Coulomb barrier. It has been demonstrated that such channel coupling effects can be represented in terms of a distribution of multiple fusion barriers. I here apply a Bayesian approach to analyze the so-called fusion barrier distributions. This method determines simultaneously the barrier parameters and the number of barriers. I particularly investigate the 16O+144Sm and 16O+154Sm systems in order to demonstrate the effectiveness of the method. The present analysis indicates that the fusion barrier distribution for the former system is most consistent with three fusion barriers, even though the experimental data show only two distinct peaks.

  20. Sub- and near-barrier fusion reactions experimental results

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.

    2016-05-01

    Early data of sub-barrier fusion teached us that cross sections may strongly depend on the structure of colliding nuclei and on couplings to transfer channels. The influence of transfer is clearly indicated in the excitation functions of different nickel isotopes and various Ca+Zr systems. Fusion barrier distributions often yield the fingerprint of the relevant inelastic and transfer couplings. At lower energies, far below the barrier the slope of the excitation function keeps increasing in many cases, so that the cross sections are strongly over-predicted by standard coupled-channels (CC) calculations; this was named a hindrance effect. Furthermore, light heavy-ion systems show cross section oscillations above the Coulomb barrier. Recent experiments have been performed on the fusion of 28,30Si+28,30Si systems where all phenomena cited above show up. In particular regular oscillations that have been revealed above the barrier for 28Si+28Si and have been interpreted as the consequence of the strong channel couplings and/or the oblate deformation of 28Si.

  1. Isotopic dependence of fusion cross sections in reactions with heavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2000-09-01

    The dependence of fusion cross section on the isotopic composition of colliding nuclei is analysed within the dinuclear system concept for compound nucleus formation. Probabilities of fusion and surviving probabilities, ingredients of the evaporation residue cross sections, depend decisively on the neutron numbers of the dinuclear system. Evaporation residue cross sections for the production of actinides and superheavy nuclei, listed in table form, are discussed and compared with existing experimental data. In the Pb-based reactions neutron-rich radioactive projectiles are shown to lead to similar fusion cross sections as stable projectiles.

  2. Dispersion relation approach to sub-barrier heavy-ion fusion reactions

    SciTech Connect

    Franzin, V.L.M.; Hussein, M.S.

    1988-11-01

    We discuss the conditions under which the dispersion relation technique, extensively employed in the context of elastic scattering, can be used in the analysis of heavy-ion fusion reactions. General unitarity defect arguments are used for this purpose. With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential in terms of the principal part integral involving the real part of the inclusive polarization potential, the sub-barrier fusion of heavy ions is discussed. The system /sup 16/O+/sup A/Sm is taken as an example.

  3. Cross sections calculated for cold fusion reactions for producing superheavy nuclei

    SciTech Connect

    Smolanczuk, Robert

    2008-08-15

    We propose a handy formula for calculating the formation cross sections for optimal bombarding energies for transactinides (superheavy elements). By means of the proposed formula the cross sections for asymmetric and symmetric cold fusion reactions (one-neutron-out reactions) are calculated. The fusion barrier and its position are calculated by using the folding heavy-ion potential that for spherical reaction partners has the form of a seventh-order polynomial of the radial coordinate with built-in dependence on the thickness of the nuclear surface, as well as on the separation energy of the least bound nucleon. Possibilities of further experimental exploitation of cold fusion in producing the superheavy nuclei are briefly discussed.

  4. Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

    SciTech Connect

    Ghodsi, O. N.; Gharaei, R.

    2011-08-15

    We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.

  5. Competition between fusion and quasi-fission in heavy ion induced reactions

    SciTech Connect

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab.

  6. Fusion and quasi-fission dynamics in nearly-symmetric reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Kai; Li, ZhuXia

    2015-11-01

    Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in 154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5 for this reaction, and the nuclear contact time is generally smaller than 1500 fm/ c. From the central collisions of Sm+Gd, the neutron-rich fragments such as 164,165Gd, 192W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

  7. Probing systematic model dependence of complete fusion for reactions with the weakly bound projectiles Li,76

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2016-07-01

    Background: Complete fusion cross section measurements involving weakly bound projectiles show suppression at above-barrier energies compared to coupled-channels (CC) calculations, but no definite conclusion could be drawn for sub-barrier energies. Different CC models often lead to contrasting results. Purpose: We aim to investigate the differences in the fusion cross sections predicted by commonly used CC calculations, using codes such as fresco and ccfull, when compared to experimental data. Methods: The fusion cross sections are normalized to a dimensionless form by isolating the effect of only dynamic channel couplings calculated by both fresco and ccfull, by the method of fusion functions, and compared to a universal fusion function. This acts as a probe for obtaining the model dependence of fusion. Results: A difference is observed between the predictions of fresco and ccfull for all the reactions involving Li,76 as projectiles, and it is noticeably more for systems involving 7Li. Conclusions: With the theoretical foundations of the two CC models being different, their calculation of fusion is different even for the same system. The conclusion about the enhancement or suppression of fusion cross sections is model dependent.

  8. Multidimensional reaction rate theory with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang

    2014-11-01

    An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.

  9. DSMC predictions of non-equilibrium reaction rates.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-04-01

    A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

  10. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  11. Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay R.; Yadav, Abhishek; Singh, Devendra P.; Singh, Pushpendra P.; Gupta, Sunita; Sharma, Manoj K.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Singh, B. P.; Prasad, R.; Bhowmik, R. K.

    2015-01-01

    In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.

  12. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  13. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  14. Fusion reactions and experimental approaches to the synthesis of superheavy nuclei

    SciTech Connect

    Yeremin, A. V.; Utyonkov, V. K.; Oganessian, Yu. Ts.

    1998-02-15

    The question whether the asymmetric actinide based heavy ion reactions could be used for the synthesis of heavy (Z{>=}106) nuclides is essential from the point of view of the study of limitation on fusion, it is also important in such reactions new nuclides close to the magic number N=162 can be produced. Thus as the problem of a hindrance to fusion still remains unsolved the high excitation energy of the compound nucleus looks to be an obvious obstacle to using these reactions. Using the gas-filled recoil separator and electrostatic recoil separator VAS-SILISSA installed at the beam lines of the U-400 heavy ion cyclotron of the FLNR JINR we investigated the fusion reactions leading to 102, 103, 104, 105 and heaviest isotopes of the 106, 108 and 110 elements. The analysis of the measured cross-sections did not reveal any evidence of a hindrance to fusion at the ion bombarding energy close to the Coulomb barrier. {sup 48}Ca+{sup 232}Th{yields}{sup 280}110*, {sup 48}Ca+{sup 238}U{yields}{sup 286}112*, {sup 48}Ca+{sup 244}Pu{yields}{sup 292}114* appear to be the best reactions from the point of view of their cross-sections.

  15. Empirical rate equation for association reactions and ion-molecule reactions

    NASA Astrophysics Data System (ADS)

    Sato, Shin

    2016-05-01

    Temperature dependence of the rate constants of many association reactions is now available. In order to express the rate constants at temperatures from very low to high, we tried to use the sum of new empirical rate equations for association reactions and Arrhenius equations. Temperature dependence of a number of radical-molecule and some ion-molecule reactions could be successfully demonstrated. A new procedure to analyze ion-molecule reactions was proposed. This might suggest a new viewpoint to understanding chemical reactions.

  16. The new possibility of the fusion p + 11B chain reaction being induced by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.; Krainov, V. P.; Matafonov, A. P.; Zagreev, B. V.

    2015-09-01

    We discuss the experimental and theoretical principal schemes of a thermonuclear reactor, based on the fusion reaction p + 11B: beam collisions, fusion in degenerate plasmas, ignition at the plasma, particle acceleration by nonlinear ponderomotive forces and irradiation of the solid 11B target by a proton beam at the Coulomb explosion of hydrogen microdroplets. The fusion reaction p + 11B can be initiated by ultrashort high intensity laser pulses under conditions far from thermodynamic equilibrium. This may result in fusion products containing a small amount of neutrons and other nuclear radiation effects. It was found that the fusion reaction p + 11B produces further nuclear reactions and generates high-energy protons. The latter can support the chain reaction process. Our approach allows us to also investigate nuclear reactions in the early Universe and in stars.

  17. A review: Reduced reoperation rate for multilevel lumbar laminectomies with noninstrumented versus instrumented fusions

    PubMed Central

    Epstein, Nancy Ellen

    2016-01-01

    Background: The reoperation rate, including for adjacent segment disease (ASD), is lower following multilevel lumbar laminectomy with noninstrumented versus instrumented fusions. Methods: This study reviews selected literature focusing on the reoperation rate, including for ASD, following multilevel laminectomies with noninstrumented versus instrumented fusions. Several prior studies document a 1.3–5.6% reoperation rate following multilevel laminectomy with/without noninstrumented fusions. Results: The reoperation rates for instrumented fusions, including for ASD, are substantially higher. One study cited a 12.2–18.5% frequency for reoperation following instrumented transforaminal lumbar and posterior lumbar interbody fusions (TLIF and PLIFs) at an average of 164 postoperative months. Another study cited a 9.9% reoperation rate for ASD 1 year following PLIF; this increased to 80% at 5 postoperative years. A further study compared 380 patients variously undergoing laminectomies/noninstrumented posterolateral fusions, laminectomies with instrumented fusions (PLFs), and laminectomies with instrumented PLF plus an interbody fusions; this study documented no significant differences in outcomes for any of these operations at 4 postoperative years. Furthermore, other series showed fusion rates for 1–2 level procedures which were often similar with or without instrumentation, while instrumentation increased reoperation rates and morbidity. Conclusions: Many studies document no benefit for adding instrumentation to laminectomies performed for degenerative disease, including spondylolisthesis. Reoperation rates for laminectomy alone/laminectomy with noninstrumented fusions vary from 1.3% to 5.6% whereas reoperation rates for ASD after instrumented PLIF was 80% at 5 postoperative years. This review should prompt spinal surgeons to reexamine when, why, and whether instrumentation is really necessary, particularly for treating degenerative lumbar disease. PMID:27274408

  18. Yield decomposition and excitation energy reconstruction in an incomplete fusion reaction

    SciTech Connect

    Chbihi, A.; Sobotka, L.G.; Majka, Z.; Sarantites, D.G.; Stracener, D.W.; Abenante, V.; Semkow, T.M.; Nicolis, N.G. ); Hensley, D.C.; Beene, J.R.; Halbert, M.L. )

    1991-02-01

    The velocity distribution of fusionlike products formed in the reaction 701 MeV {sup 28}Si+{sup 100}Mo is decomposed into 26 incomplete fusion channels. If Coulomb corrections are neglected the yields of the incomplete fusion channels correlate much better with the {ital Q} value for projectile fragmentation than with the {ital Q} value for incomplete fusion. However, the correlation is much improved for incomplete fusion if a Coulomb correction is included. The partition of linear momentum between various sources is deduced using the measured residue velocity, multicomponent fits to light charged particle spectra, and mean neutron multiplicities. This reconstruction indicates that a substantial fraction of the momentum is not detected by our apparatus when slow residues are produced. With reasonable assumptions about this missing momentum component, the initial excitation of the compoundlike system is calculated as a function of the residue velocity.

  19. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  20. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  1. Microscopic study of 40Ca+58,64Ni fusion reactions

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Simenel, C.; Courtin, S.; Haas, F.

    2016-03-01

    Background: Heavy-ion fusion reactions at energies near the Coulomb barrier are influenced by couplings between the relative motion and nuclear intrinsic degrees of freedom of the colliding nuclei. The time-dependent Hartree-Fock (TDHF) theory, incorporating the couplings at the mean-field level, as well as the coupled-channels (CC) method are standard approaches to describe low energy nuclear reactions. Purpose: To investigate the effect of couplings to inelastic and transfer channels on the fusion cross sections for the reactions 40Ca+58Ni and 40Ca+64Ni . Methods: Fusion cross sections around and below the Coulomb barrier have been obtained from CC calculations, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock method and coupling parameters taken from known nuclear structure data. The fusion thresholds and neutron transfer probabilities have been calculated with the TDHF method. Results: For 40Ca+58Ni , the TDHF fusion threshold is in agreement with the most probable barrier obtained in the CC calculations including the couplings to the low-lying octupole 31- state for 40Ca and to the low-lying quadrupole 21+ state for 58Ni. This indicates that the octupole and quadrupole states are the dominant excitations while neutron transfer is shown to be weak. For 40Ca+64Ni , the TDHF barrier is lower than predicted by the CC calculations including the same inelastic couplings as those for 40Ca+58Ni . TDHF calculations show large neutron transfer probabilities in 40Ca+64Ni which could result in a lowering of the fusion threshold. Conclusions: Inelastic channels play an important role in 40Ca+58Ni and 40Ca+64Ni reactions. The role of neutron transfer channels has been highlighted in 40Ca+64Ni .

  2. Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takatoshi

    2015-12-01

    Background: At extremely low incident energies, unexpected decreases in fusion cross sections, compared to the standard coupled-channels (CC) calculations, have been observed in a wide range of fusion reactions. These significant reductions of the fusion cross sections are often referred to as the fusion hindrance. However, the physical origin of the fusion hindrance is still unclear. Purpose: To describe the fusion hindrance based on an adiabatic approach, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes, that is, the transition from the separated two-body to the united dinuclear system. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. Method: I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. This avoids double counting of the CC effects, when two colliding nuclei overlap one another. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Results: Calculated fusion cross sections for the medium-heavy mass systems of 64Ni+64Ni , 58Ni+58Ni , and 58Ni+54Fe , the medium-light mass systems of 40Ca+40Ca , 48Ca+48Ca , and 24Mg+30Si , and the mass-asymmetric systems of 48Ca+96Zr and 16O+208Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. The values obtained for the individual radius and diffuseness parameters in the damping factor, which reproduce the fusion cross sections well, are nearly equal to the average value for all the systems

  3. Theory of Crowding Effects on Bimolecular Reaction Rates.

    PubMed

    Berezhkovskii, Alexander M; Szabo, Attila

    2016-07-01

    An analytical expression for the rate constant of a diffusion-influenced bimolecular reaction in a crowded environment is derived in the framework of a microscopic model that accounts for: (1) the slowdown of diffusion due to crowding and the dependence of the diffusivity on the distance between the reactants, (2) a crowding-induced attractive short-range potential of mean force, and (3) nonspecific reversible binding to the crowders. This expression spans the range from reaction to diffusion control. Crowding can increase the reaction-controlled rate by inducing an effective attraction between reactants but decrease the diffusion-controlled rate by reducing their relative diffusivity. PMID:27096470

  4. Fusion Reactions of Superheavy and Giant Nuclear Systems

    SciTech Connect

    Greiner, Walter; Zagrebaev, Valery

    2007-05-22

    The problem of production and study of superheavy elements is discussed in the talk. Different nuclear reactions leading to formation of superheavy nuclei are analyzed. Collisions of transactinide nuclei are investigated as an alternative way for production of neutron-rich superheavy elements. In many events lifetime of the composite giant nuclear system consisting of two touching nuclei turns out to be rather long ({>=} 10-20 s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields, a fundamental QED process.

  5. Production of heavy actinides in incomplete fusion reactions

    NASA Astrophysics Data System (ADS)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  6. Charged particle decay of hot and rotating 88Mo nuclei in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Piantelli, S.; Casini, G.; Barlini, S.; Carboni, S.; Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Cinausero, M.; Gramegna, F.; Kravchuk, V. L.; Morelli, L.; Marchi, T.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Chbihi, A.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Fornal, B.; Giaz, A.; Krzysiek, M.; Leoni, S.; Matejska-Minda, M.; Mazumdar, I.; MÈ©czyński, W.; Million, B.; Montanari, D.; Myalski, S.; Nicolini, R.; Olmi, A.; Pasquali, G.; Prete, G.; Roberts, O. J.; Styczeń, J.; Szpak, B.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; ZiÈ©bliński, M.

    2016-03-01

    A study of fusion-evaporation and (partly) fusion-fission channels for the 88Mo compound nucleus, produced at different excitation energies in the reaction 48Ti+40Ca at 300, 450, and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α particles; they may be due both to pre-equilibrium emission and to reaction channels (such as deep inelastic collisions or quasifission/quasifusion) different from the compound nucleus formation.

  7. An Improved Reaction Rate Equation for Simulating the Ignition and Growth of Reaction in High Explosives

    SciTech Connect

    Murphy, M J

    2010-03-08

    We describe an improved reaction rate equation for simulating ignition and growth of reaction in high explosives. It has been implemented into CALE and ALE3D as an alternate to the baseline the Lee-Tarver reactive flow model. The reactive flow model treats the explosive in two phases (unreacted/reactants and reacted/products) with a reaction rate equation to determine the fraction reacted, F. The improved rate equation has fewer parameters, is continuous with continuous derivative, results in a unique set of reaction rate parameters for each explosive while providing the same functionality as the baseline rate equation. The improved rate equation uses a cosine function in the ignition term and a sine function in the growth and completion terms. The improved rate equation is simpler with fewer parameters.

  8. Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014), 10.1103/PhysRevLett.113.155003] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  9. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    PubMed

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PMID:25375715

  10. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    SciTech Connect

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T

    2015-06-15

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  11. Gas-solid reaction-rate enhancement by pressure cycling

    NASA Astrophysics Data System (ADS)

    Sohn, H. Y.; Aboukheshem, M. B.

    1992-06-01

    An experimental study and mathematical modeling of the effects of external pressure cycling on gas-solid reactions have been conducted using the reduction of nickel oxide pellets by hy-drogen. Experiments were carried out in two phases: In the first phase, the intrinsic kinetic parameters were measured, and in the second phase, the gas-solid reaction was carried out under a constant or cycling external pressure. The effects of the frequency and amplitude of pressure cycling were studied at various reaction conditions. Pressure cycling substantially increases the overall rate of the reaction. A mathematical model was developed from the first principles to establish the extent of the overall reaction-rate enhancement and subsequently to analyze the experimental observations. The calculated values from the mathematical model are in good agreement with the experimental results. The effects are most pronounced when the overall rate under a constant pressure is controlled by diffusion. Depending on the reaction condition, a very large degree of rate enhancement could be achieved. Furthermore, low-amplitude pressure waves, like acoustic waves, could significantly increase the rates of gas-solid reactions.

  12. Study of the mechanism of muon-catalyzed t + t fusion reaction

    SciTech Connect

    Bogdanova, L. N.; Demin, D. L.; Filchenkov, V. V.

    2015-01-15

    The mechanism for the muon catalyzed fusion reaction t + t → {sup 4}He + 2n + 11.33 MeV is investigated. The model of the cascade reaction with {sup 5}He as an intermediate state is considered, both the ground and the first exited states being taken into account. The neutron energy spectrum measured in the recent experiment is compared with the Monte-Carlo-simulated one. Varying reaction parameters, we obtain optimum values for the relative weights of the {sup 5}He ground and excited states and for the excitation energy and width of the excited state.

  13. Non-resonant triple alpha reaction rate at low temperature

    SciTech Connect

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K.; Carter, J.; Donaldson, L.; Sideras-Haddad, E.; Furuno, T.; Kawabata, T.; Kamimura, M.; Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C.

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  14. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars

    SciTech Connect

    Golf, B.; Hellmers, J.; Weber, F.

    2009-07-15

    This article presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this article is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether quark nuggets are in this novel state of matter, their electric charge properties vary drastically, which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclear fusion network calculations may thus have the potential to shed light on the existence of strange quark matter nuggets and on whether they are in a color superconducting state, as suggested by QCD.

  15. Rate of reaction between molecular hydrogen and molecular oxygen

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.

    1973-01-01

    The shock tube data of Jachimowski and Houghton were rigorously analyzed to obtain rate constants for the candidate initiation reactions H2 + O2 yields H + HO2, H2 + O2 yields H2O + O, and H2 + O2 yields OH + OH. Reaction (01) is probably not the initiation process because the activation energy obtained is less than the endothermicity and because the derived rates greatly exceed values inferred in the literature from the reverse of reaction (01). Reactions (02) and (03) remain as possibilities, with reaction (02) slightly favored on the basis of steric and statistical considerations. The solution of the differential equations is presented in detail to show how the kinetics of other ignition systems may be solved.

  16. Systematic study of suppression of complete fusion in reactions involving weakly bound nuclei at energies above the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, Wei-Juan; Diaz-Torres, Alexis; Zhao, En-Guang; Zhou, Shan-Gui

    2016-01-01

    Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion is roughly independent of the target for the reactions involving the same projectile.

  17. Intimations of neck formation in heavy-ion subbarrier fusion reactions

    SciTech Connect

    Stelson, P.H.

    1990-07-01

    Since the observed fusion cross sections for collisions between heavy ions at subbarrier energies are orders of magnitude larger than would be expected for barrier tunnelling, one is faced with the task of identifying the basic force which is strong enough to overcome the strong Coulomb force and bring about fusion. The two possibilities seem to be excursions of the nuclear surface (and strong nuclear force) due to collective motions of the colliding nuclei and formation of a neck of nuclear matter. The first possibility has received the most attention. However, the systematics of fusion cross sections suggest neck formation is playing an important role. Neck formation can also result in a reseparation of the composite system and we review the experimental information on these reactions at barrier and subbarrier energies. 15 refs., 18 figs.

  18. Deep Sub-Barrier Fusion Enhancement in the {sup 6}He+{sup 206}Pb Reaction

    SciTech Connect

    Penionzhkevich, Yu.E.; Zagrebaev, V.I.; Lukyanov, S.M.; Kalpakchieva, R.

    2006-04-28

    The fusion of {sup 6}He with {sup 206}Pb has been studied at energies close to and below the Coulomb barrier. The experiment was carried out at the Dubna Radioactive Ion Beams complex of FLNR, JINR. The {sup 6}He beam intensity was about 5x10{sup 6} pps, the maximum energy being 60.3{+-}0.4 MeV. The yield of the {sup 210}Po isotope, produced in the 2n-evaporation channel, demonstrates an extremely large enhancement of the sub-barrier fusion cross section as compared with the {sup 4}He+{sup 208}Pb reaction. This enhancement is most likely due to the mechanism of 'sequential fusion' with an intermediate neutron transfer from {sup 6}He to the Pb nucleus with positive Q values.

  19. Analysis of reaction schemes using maximum rates of constituent steps.

    PubMed

    Motagamwala, Ali Hussain; Dumesic, James A

    2016-05-24

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  20. Analysis of reaction schemes using maximum rates of constituent steps

    NASA Astrophysics Data System (ADS)

    Hussain Motagamwala, Ali; Dumesic, James A.

    2016-05-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.

  1. Studies of Neutron-Deficient Nuclei Near the Z = 82 Shell Closure via Cold Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Kondev, F. G.; Janssens, R. V. F.; Seweryniak, D.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Camera, F.; Bracco, A.; Million, B.; Leoni, S.; Jenkins, D. G.; Wadsworth, R.

    2009-03-01

    Over the last decade, we have performed in-beam experiments using Gammasphere+FMA to measure excited states in proton-rich Au, Hg, Tl and Pb isotopes. In these studies, the use of the FMA is essential in order to differentiate evaporation residues from the large fission background which dominates the reaction cross-section. In addition, we have found that using near-symmetric reactions at bombarding energies near the Coloumb barrier is beneficial in performing these studies. By keeping the bombarding energy low, fission is minimized and the reaction products are concentrated in only a few channels. New results have recently been obtained using the 90Zr+92Mo reaction to study shape co-existence in 181Tl via the lp evaporation channel. In addition, we have measured the total γ-ray energy and multiplicity associated with the surviving compund system, 179Au, following the fusion reaction, 90Zr+89Y.

  2. Hot fusion-evaporation cross sections of 44Ca-induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Tereshatov, E. E.; Folden, C. M.

    2015-11-01

    Background: Previously reported cross sections of 45Sc-induced reactions with lanthanide targets are much smaller than 48Ca-induced reactions on the same targets. 44Ca is one proton removed from 45Sc and could be used to produce nuclei with a relative neutron content between those produced in the 45Sc- and 48Ca-induced reactions. Purpose: As part of a systematic investigation of fusion-evaporation reactions, cross sections of 44Ca-induced reactions on lanthanide targets were measured. These results are compared to available data for 48Ca- and 45Sc-induced fusion-evaporation cross sections on the same lanthanide targets. Collectively, these data provide insight into the importance of the survival against fission of excited compound nuclei produced near spherical shell closures. Methods: A beam of 6+Ca at an energy of ≈5 MeV /u was delivered by the K500 superconducting cyclotron at the Cyclotron Institute at Texas A&M University. The desired evaporation residues were selected by the Momentum Achromat Recoil Spectrometer and identified via their characteristic α -decay energies. Excitation functions for the 44Ca+158Gd ,159Tb, and 162Dy reactions were measured at five or more energies each. A theoretical model was employed to study the fusion-evaporation process. Results: The 44Ca-induced reactions have x n cross sections that are two orders of magnitude larger than 45Sc-induced reactions but two orders of magnitude smaller than 48Ca-induced reactions on the same targets. Proton emission competes effectively with neutron emission for the 44Ca+159Tb and 162Dy reactions. The maximum 4 n cross sections in the 44Ca+158Gd ,159Tb, and 162Dy reactions were 2100 ± 230 ,230 ± 20 , and 130 ±20 μ b , respectively. The 44Ca+158Gd and 159Tb cross sections are in good agreement with the respective cross bombardments of 48Ca+154Gd and 45Sc+158Gd once differences in capture cross sections and compound nucleus formation probabilities are corrected for. Conclusions: Excitation

  3. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104

  4. Load Rate of Facet Joints at the Adjacent Segment Increased After Fusion

    PubMed Central

    Li, Hui; Pei, Bao-Qing; Yang, Jin-Cai; Hai, Yong; Li, De-Yu; Wu, Shu-Qin

    2015-01-01

    Background: The cause of the adjacent segment degeneration (ASD) after fusion remains unknown. It is reported that adjacent facet joint stresses increase after anterior cervical discectomy and fusion. This increase of stress rate may lead to tissue injury. Thus far, the load rate of the adjacent segment facet joint after fusion remains unclear. Methods: Six C2–C7 cadaveric spine specimens were loaded under four motion modes: Flexion, extension, rotation, and lateral bending, with a pure moment using a 6° robot arm combined with an optical motion analysis system. The Tecscan pressure test system was used for testing facet joint pressure. Results: The contact mode of the facet joints and distributions of the force center during different motions were recorded. The adjacent segment facet joint forces increased faster after fusion, compared with intact conditions. While the magnitude of pressures increased, there was no difference in distribution modes before and after fusion. No pressures were detected during flexion. The average growth velocity during extension was the fastest and was significantly faster than lateral bending. Conclusions: One of the reasons for cartilage injury was the increasing stress rate of loading. This implies that ASD after fusion may be related to habitual movement before and after fusion. More and faster extension is disadvantageous for the facet joints and should be reduced as much as possible. PMID:25881597

  5. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  6. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  7. Quantum-mechanical description of the initial stage of fusion reaction

    SciTech Connect

    Sargsyan, V. V. Zubov, A.S.; Kanokov, Z.; Adamian, G. G. Antonenko, N. V.

    2009-03-15

    Projectile-nucleus capture by a target nucleus at bombarding energies in the vicinity of the Coulomb barrier is treated on the basis of the reduced-density-matrix formalism. The effect of dissipation and fluctuations on the capture process is taken into account self-consistently within this model. Cross sections for evaporation-residue formation in asymmetric-fusion reactions are found by using the calculated capture probabilities averaged over all orientations of the deformed projectile or target nucleus.

  8. Expected production of new exotic α emitters 108Xe and 112Ba in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    The production cross sections of neutron-deficient isotopes Xe-110108 and Ba-114112 in the complete fusion reactions Ni,5658+54Fe and Ni,5658+58Ni with stable and radioactive beams are studied with the dinuclear system model. The calculated results are compared with the available experimental data. The optimal beam energies and corresponding maximum production cross sections of new isotopes 108Xe and 112Ba are predicted.

  9. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  10. Parameterization of fusion barriers for light-projectiles-induced reactions using the proximity approach

    NASA Astrophysics Data System (ADS)

    Gharaei, R.; Sheibani, J.

    2016-05-01

    In this article we propose a pocket formula for fusion barriers calculated by three versions of the proximity formalism, namely AW 95, Bass 80 and Prox. 2010 potentials, for fusion reactions involving the collisions of the proton and helium projectiles with different targets in mass ranges 51≤ AT ≤ 130 and 40≤ AT ≤ 233 , respectively. For the first type of the colliding systems, it is shown that the proposed pocket formulas are able to predict the actual values of RB and VB within accuracies of ±0.4% and ±0.45% , respectively. Moreover, for the second type of the selected reactions, these accuracies are obtained ±0.24% and ±0.36% , respectively. In this study, the ability of the present pocket formulas is also demonstrated to predict the exact values of the fusion cross sections for our selected mass ranges. A comparison with the results of the previous pocket formulas reveals that our parameterized forms are more successful to reproduce the empirical data of the barrier height and position in the proton- and helium-induced reactions.

  11. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  12. Heavy-ion inertial fusion: influence of target gain on accelerator parameters for vacuum-propagation regimes in reaction chambers

    SciTech Connect

    Mark, J.W.K.; Bangerter, R.O.; Barletta, W.A.; Fawley, W.M.; Judd, D.L.

    1982-03-04

    Target physics imposes requirements on the design of inertial fusion drivers. The influence of beam propagation in near vacuum fusion reaction chambers is evaluated for the relation between target gain and the phase-space requirements of heavy-ion accelerators. Initial results suggest that neutralization of the ion beam has a much greater positive effect than the deleterious one of beam stripping provided that the fusion chamber pressure is < 10/sup -3/ torr (of Li vapor or equivalent).

  13. Fusion-Fission In The {sup 86}Kr+{sup 238}U Reaction

    SciTech Connect

    Lipoglavsek, M.; Hansen, E. Lindbo; Petrovic, T.; Vencelj, M.; Bark, R. A.; Gueorguieva, E. A.; Lawrie, J. J.; Lieder, E.; Lieder, R.; Mullins, S. M.; Ntshangase, S. S.; Papka, P.

    2008-05-12

    The {sup 86}Kr+{sup 238}U reaction has been studied at krypton beam energies about 30 MeV above the Coulomb barrier. Reaction products were detected by an array of 32 photovoltaic cells coupled to the AFRODITE {gamma}-ray detector array at iThemba LABS. A symmetric fission component has been observed at about 600 MeV total kinetic energy. This could possibly be due to fusion-fission with a cross section of 35{+-}20 mb.

  14. Population of ground-state rotational bands of superheavy nuclei produced in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Zubov, A. S.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2011-10-01

    Using the statistical and quantum diffusion approaches, we study the population of ground-state rotational bands of superheavy nuclei produced in the fusion-evaporation reactions 208Pb(48Ca,2n)254No, 206Pb(48Ca,2n)252No, and 204Hg(48Ca,2n)250Fm. By describing the relative intensities of E2 transitions between the rotational states, the entry spin distributions of residual nuclei, and the excitation functions for these reactions, the dependence of fission barriers of shell-stabilized nuclei on angular momentum is investigated.

  15. Diagrammatic algorithm for evaluating finite-temperature reaction rates

    NASA Astrophysics Data System (ADS)

    Ashida, Naoki; Nakkagawa, Hisao; Niégawa, Akira; Yokota, Hiroshi

    1992-05-01

    In this paper, by following the procedure of statistical mechanics we present the systematic calculational rules for evaluating the reaction rate of a generic dynamical process taking place in a heat bath. These rules are formulated within the framework of real-time thermal field theory (RTFT), in terms of the Feynman-like diagrams, the so-called circled diagrams. With the machinery developed in this paper we can establish the finite temperature generalization of the Cutkosky, or the cutting rules in quantum field theory at zero temperature. We have also studied the relation between the imaginary part of forward RTFT amplitude and the reaction rates; the imaginary part consists of various reaction rates. This is a finite temperature generalization of the optical theorem.

  16. Experimental study of the 13C+12C fusion reaction at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Tudor, D.; Chilug, A. I.; Straticiuc, M.; Trache, L.; Chesneanu, D.; Toma, S.; Ghita, D. G.; Burducea, I.; Margineanu, R.; Pantelica, A.; Gomoiu, C.; Zhang, N. T.; Tang, X.; Li, Y. J.

    2016-04-01

    Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied because of their significance for a wide variety of stellar burning scenarios. One important stellar reaction is 12C+12C, but it is difficult to measure it in the Gamow window because of very low cross sections and several resonances occurring. Hints can be obtained from the study of 13C+12C reaction. We have measured this process by an activation method for energies down to Ecm=2.5 MeV using 13C beams from the Bucharest 3 MV tandetron and gamma-ray deactivation measurements in our low and ultralow background laboratories, the latter located in a salt mine about 100 km north of Bucharest. Results obtained so far are shown and discussed in connection with the possibility to go even further down in energy and with the interpretation of the reaction mechanism at such deep sub-barrier energies.

  17. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    SciTech Connect

    Hussein, M. S.

    2008-04-17

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound-nucleus Hauser-Feshbach cross section, and the fluctuations in the intermediate channels result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in detail and comment on the validity of the assumptions used in the development of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate-channel optical potentials.

  18. Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik

    2015-06-01

    Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.

  19. A transition in the spatially integrated reaction rate of bimolecular reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar

    2015-09-01

    Numerical simulations of diffusion with bimolecular reaction demonstrate a transition in the spatially integrated reaction rate—increasing with time initially, and transitioning to a decrease with time. In previous work, this reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), leading to predictions that front motion scales as √t, and correspondingly the spatially integrated reaction rate decreases as the square root of time 1/√t. We present a general nondimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the spatially integrated reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients, and initial concentrations of the two species. Numerical simulation results confirm the theoretical estimates of the transition time. We present illustrative calculations in the context of in situ chemical oxidation for remediation of fractured rock systems where contaminants are largely dissolved in the rock matrix. We consider different contaminants of concern (COCs), including TCE, PCE, MTBE, and RDX. While the early time regime is very short lived for TCE, it can persist over months to years for MTBE and RDX, due to slow oxidation kinetics.

  20. Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening

    NASA Astrophysics Data System (ADS)

    Coraddu, Massimo; Lissia, Marcello; Quarati, Piero

    2009-09-01

    Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-Hückel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical expectations.

  1. Measurement of the ^12C+^12C Fusion Reaction with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Henderson, D.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Esbensen, H.; Fernandez-Niello, J. O.; Jiang, C. L.; Lighthall, J. C.; Marley, S. T.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.

    2012-10-01

    The fusion of the ^12C+^12C system is of great interest in nuclear structure and nuclear astrophysics. Above the Coulomb barrier, the excitation function of this system exhibits oscillations, which are not well understood. There is also a significant discrepancy between the experimental fusion cross-section and recent coupled-channel calculations that is not present in other carbon systems. To address these issues, we have re-measured the fusion excitation function for ^12,13C+^12C in the energy range of 10 MeV < Ecm < 20 MeV using a Multi-Sampling Ionization Chamber (MUSIC) detector. The gas of the ionization chamber (CH4) served as both the target material and the counter gas. One of the main advantages of this method is that the excitation function is measured over a large range of energies using only one beam energy. This method has been proven to be successful and it will be used to measure fusion reactions in other light systems. The experimental results will be presented and compared to previous experimental data and theoretical models.

  2. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  3. Reaction rate uncertainties and the ν p-process

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Rauscher, T.

    2012-11-01

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the νp-process. The detailed nucleosynthesis patterns of the νp-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the νp-process nucleosynthesis.

  4. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  5. A transport equation for reaction rate in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sabelnikov, V. A.; Lipatnikov, A. N.; Chakraborty, N.; Nishiki, S.; Hasegawa, T.

    2016-08-01

    New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.

  6. Reaction rate uncertainties and the {nu}p-process

    SciTech Connect

    Froehlich, C.; Rauscher, T.

    2012-11-12

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the {nu}p-process. The detailed nucleosynthesis patterns of the {nu}p-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the {nu}p-process nucleosynthesis.

  7. Fusion of liposomones and chromatophores of Rhodopseudomonas capsulata: effect on photosynthetic energy transfer between B875 and reaction center complexes

    SciTech Connect

    Takemoto, J.Y.; Schonhardt, T.; Golecki, J.R.; Drews, G.

    1985-06-01

    The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.

  8. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    SciTech Connect

    Maya, I.; Schultz, K.R.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Norman, J.H.; Price, R.J.; Porter, J.; Schuster, H.L.; Simnad, M.J.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO/sub 2/ granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO/sub 2/ granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs.

  9. Quantum and semiclassical theories of chemical reaction rates

    SciTech Connect

    Miller, W.H. |

    1995-09-01

    A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.

  10. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources. PMID:27329206

  11. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  12. Experimental Study of p-11B Reaction Related to the Clean Fusion Fuel

    NASA Astrophysics Data System (ADS)

    Lin, Erh-kang; Wang, Chang-wan; Yuan, Jian; Liu, Xiao-dong; Li, Cheng-bo; Sun, Zu-xun; Zhang, Pei-hua; Chen, Jin-xiang; Yang, Qi-xiang; Wang, Jian-yong; Ling-hua, Gong

    1998-11-01

    Whole continuous α spectra of the p-11B three-body sequential decay reaction have been measured by using a charge particle time-of-flight (TOF) spectrometer with the high-resolution passivated implanted planar silicon detector. A characteristic shape of the saddle-type distribution was obtained. The Monte Carlo calculations show that observed α spectra can be interpreted by anisotropy sequential decay process of the intermediate nucleus 8Be (1) for the p-11B reaction. In the measurement, angular distributions were obtained for proton energies at 667 and 1370 keV, respectively. Total cross-sections for the 11B(p,α)8Be(2α) reaction related to the clean fusion fuel were also reported at two bombarding energies.

  13. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  14. Experimental Studies of Fast Protons Originated from Fusion Reactions in Plasma-Focus Discharges

    SciTech Connect

    Malinowska, A.; Malinowski, K.; Sadowski, M. J.; Zebrowski, J.; Szydlowski, A.

    2008-03-19

    The paper describes results of the recent measurements of fusion-reaction protons, which were performed within the PF-360 facility operated at the IPJ in Swierk, Poland. The main aim of those studies was to perform time-integrated measurements of fast protons (of energy of about 3 MeV) by means of ion-pinhole cameras, which were equipped with solid state nuclear track detectors (SSNTD) of the PM-355 type and absorption filters made of thin metal foils. In order to determine the spatial distribution of fusion-produced protons the use was made of several miniature pinhole cameras placed at different angles to the PF-360 axis. The irradiated and etched detectors were analyzed with an optical microscope coupled with a CCD camera and a PC unit.

  15. Code System to Calculate Integral Parameters with Reaction Rates from WIMS Output.

    Energy Science and Technology Software Center (ESTSC)

    1994-10-25

    Version 00 REACTION calculates different integral parameters related to neutron reactions on reactor lattices, from reaction rates calculated with WIMSD4 code, and comparisons with experimental values.

  16. Rate of reaction of OH with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.

    1981-01-01

    Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.

  17. Reaction rate and products for the reaction O/3P/ + H2CO

    NASA Technical Reports Server (NTRS)

    Chang, J. S.; Barker, J. R.

    1979-01-01

    A study of reaction kinetics of O + H2CO in a discharge-flow system using mass spectrometric detection of reactants and products is presented. It was performed under both oxygen-atom-rich and formaldehyde-rich conditions over the 296 to 437 K range, showing that the global bimolecular rate constant is in agreement with other studies. This study differs from others in that the reaction products can be observed, and a substantial yield of a primary reaction product was measured with a mass spectral peak at m/e=44. This suggests that the global reaction rate probably consists of combination, as well as of simple abstraction. For the combination, one hypothesis is that triplet dioxymethylene is formed which polymerizes to triplet formic acid; the vibrationally excited triplet formic acid may decompose to form several sets of products, including HCO + OH and HCO2 + H.

  18. Scaling of geochemical reaction rates via advective solute transport.

    PubMed

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture. PMID:26232976

  19. Scaling of geochemical reaction rates via advective solute transport

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Ghanbarian, B.; Skinner, T. E.; Ewing, R. P.

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  20. Stellar Evolution Constraints on the Triple-α Reaction Rate

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2011-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 <= M/M sun <= 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M >~ 10 M sun) is minimal. We find that employing the revised rate suppresses helium shell flashes on asymptotic giant branch phase for stars in the initial mass range 0.8 <= M/M sun <= 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = (1-1.2) × 108 K where the cross section is proportional to T ν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~10-29 cm6 s-1 mole-2 at ≈107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical red giant branch tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than 10 orders of magnitude.

  1. STELLAR EVOLUTION CONSTRAINTS ON THE TRIPLE-{alpha} REACTION RATE

    SciTech Connect

    Suda, Takuma; Fujimoto, Masayuki Y.; Hirschi, Raphael

    2011-11-01

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 {<=} M/M{sub sun} {<=} 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M {approx}> 10 M{sub sun}) is minimal. We find that employing the revised rate suppresses helium shell flashes on asymptotic giant branch phase for stars in the initial mass range 0.8 {<=} M/M{sub sun} {<=} 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = (1-1.2) Multiplication-Sign 10{sup 8} K where the cross section is proportional to T {sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx}10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical red giant branch tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than 10 orders of magnitude.

  2. The astrophysical reaction rate for the {sup 18}F(p,{alpha}){sup 15}O reaction

    SciTech Connect

    Rehm, K.E.; Paul, M.; Roberts, A.D.

    1996-03-01

    Proton and alpha widths for a 3/2{sup +} ({ell}{sub p} = 0) state in {sup 19}Ne at E{sub x} = 7.1 MeV have been extracted using the results of recent measurements of the {sup 18}F(p,{alpha}){sup 15}O reaction. This {ell}{sub p} = 0 resonance dominates the astrophysical reaction rates at temperatures T{sub 9} > 0.5.

  3. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Källne, J.; Salewski, M.; Tardocchi, M.; Gorini, G.

    2015-11-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the \\text{d}{{≤ft(\\text{p},γ \\right)}3}\\text{He} reaction and the temperature of protons accelerated by radio-frequency heating. The results presented in this paper significantly improve the accuracy of diagnostic information that can be extracted from the gamma-ray emission spectrum of fusion reactions without intrinsic broadening and are of relevance for applications to high performance plasmas of present and next generation devices.

  4. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  5. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  6. Pore size and the lab-field reaction rate riddle

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Ague, J. J.; Walderhaug, O.

    2009-12-01

    Pore size is usually thought to influence the rate of crystal growth during diagenesis and metamorphism by controlling the ratio of surface area to fluid volume. However, theory suggests that in micron-scale to nanometer-scale pores, interfacial energy effects can also become important. We used mercury porosimetry to investigate the pore-size distributions in naturally cemented sandstone adjacent to stylolites and found that quartz precipitation was inhibited in pores smaller than 10 microns in diameter. We demonstrate that standard kinetic models cannot reproduce the observed pore-size patterns in mineralized samples; by contrast, excellent fits with the data are obtained when interfacial energy effects are taken into account. Moreover, as such micron-scale pores comprise the overwhelming majority of surface area in the sandstone, average reaction rates for the rock are significantly reduced. Reaction rates in geological media determined in field studies can be orders of magnitude lower than those measured in laboratory experiments, and we propose that reduced reaction rates in rocks with micron-scale porosity could account for the apparent paradox.

  7. Physics of laser-plasma interaction for shock ignition of fusion reactions

    NASA Astrophysics Data System (ADS)

    Tikhonchuk, V. T.; Colaïtis, A.; Vallet, A.; Llor Aisa, E.; Duchateau, G.; Nicolaï, Ph; Ribeyre, X.

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions.

  8. Present status of coupled-channels calculations for heavy-ion subbarrier fusion reactions

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Yao, J. M.

    2016-05-01

    The coupled-channels method has been a standard tool in analyzing heavy-ion fusion reactions at energies around the Coulomb barrier. We investigate three simplifications usually adopted in the coupledchannels calculations. These are i) the exclusion of non-collective excitations, ii) the assumption of coordinate independent coupling strengths, and iii) the harmonic oscillator approximation for multiphonon excitations. In connection to the last point, we propose a novel microscopic method based on the beyond-mean-field approach in order to take into account the anharmonic effects of collective vibrations.

  9. Quantum description of coupling to neutron-rearrangement channels in fusion reactions near the Coulomb barrier

    SciTech Connect

    Samarin, V. V.

    2015-10-15

    The fusion cross sections for the {sup 17,18}O+{sup 27}Al, {sup 18}O+{sup 58}Ni, and {sup 6}He+{sup 197}Au reactions were calculated by the coupled-channel method. The radial dependence of matrices that describe coupling to valence-neutron-rearrangement channels was determined with the aid of two-center wave functions. The coupling-strength parameters were evaluated on the basis of numerically solving the time-dependent Schrödinger equation. Satisfactory agreement with experimental data was obtained.

  10. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  11. Occupational Injury Rate Estimates in Magnetic Fusion Experiments

    SciTech Connect

    cadwallader, lee

    2006-11-01

    In nuclear facilities, there are two primary aspects of occupational safety. The first aspect is radiological safety, which has rightly been treated in detail in nuclear facilities. Radiological exposure data have been collected from the existing tokamaks to serve as forecasts for ITER radiation safety. The second aspect of occupational safety, “traditional” industrial safety, must also be considered for a complete occupational safety program. Industrial safety data on occupational injury rates from the JET and TFTR tokamaks, three accelerators, and U.S. nuclear fission plants have been collected to set industrial safety goals for the ITER operations staff. The results of this occupational safety data collection and analysis activity are presented here. The data show that an annual lost workday case rate of 0.3 incidents per 100 workers is a conceivable goal for ITER operations.

  12. A model for reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  13. Suppression of excited-state contributions to stellar reaction rates

    NASA Astrophysics Data System (ADS)

    Rauscher, T.

    2013-09-01

    It has been shown in previous work [Kiss , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.191101 101, 191101 (2008); Rauscher , Phys. Rev. C10.1103/PhysRevC.80.035801 80, 035801 (2009)] that a suppression of the stellar enhancement factor (SEF) occurs in some endothermic reactions at and far from stability. This effect is re-evaluated using the ground-state contributions to the stellar reaction rates, which were shown to be better suited to judging the importance of excited-state contributions than the previously applied SEFs. An update of the tables shown in the latter work is given. The new evaluation finds 2350 cases (out of a full set of 57 513 reactions) for which the ground-state contribution is larger in the reaction direction with a negative reaction Q value than in the exothermic direction, thus providing exceptions to the commonly applied Q value rule. The results confirm the Coulomb suppression effect but lead to a larger number of exceptions than previously found. This is due to the fact that often a large variation in the g.s. contribution does not lead to a sizable change in the SEF. On the other hand, several previously identified cases do not appear anymore because it is found that their g.s. contribution is smaller than inferred from the SEF.

  14. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  15. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  16. Triple-{alpha} reaction rate constrained by stellar evolution models

    SciTech Connect

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-12

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}25 and in the metallicity range between Z= 0 and Z= 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10M{sub Circled-Dot-Operator }) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = 1-1.2 Multiplication-Sign 10{sup 8}K where the cross section is proportional to T{sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx} 10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  17. Measurements of 10B(p,a)7Be Cross-sections: A Reaction Relevant to Nuclear Fusion Energy Research

    NASA Astrophysics Data System (ADS)

    Fisher, Barbara; Kafkarkou, Adamos; Ahmed, Mohammad; Weller, Henry; Myers, Luke; Sparker, Mark; Zimmerman, William; Mueller, Jon; Sikora, Mark; Mazumdar, Indral

    2012-10-01

    There is growing interest in aneutronic nuclear fusion reactors. One facility proposes to utilize the 11B(p,a)7Be reaction. The Radiative Capture Group at Triangle University Nuclear Laboratory (TUNL) has been engaged in a long-term study of this and related reactions. This poster will present preliminary data and analysis of the 10B(p,a)7Be reaction which is of interest because 10B is a potential reactor contaminant. Differential and total cross-sections will be presented for incident protons of 4.4 and 4.6 MeV. The data is necessary for simulations of an aneutrionic nuclear fusion reactor.

  18. Fusion Probability in the Reactions {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U

    SciTech Connect

    Knyazheva, G. N.; Bogachev, A. A.; Itkis, I. M.; Itkis, M. G.; Kozulin, E. M.

    2010-04-30

    Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions {sup 64}Ni+{sup 238}U and {sup 58}Fe+{sup 244}Pu leading to the formation of superheavy compound system with Z = 120 and N 182 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is about one order of magnitude higher for the reaction {sup 58}Fe+{sup 244}Pu than that for the reaction with {sup 64}Ni-ions.

  19. Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches

    NASA Astrophysics Data System (ADS)

    Samarin, V. V.

    2016-05-01

    The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.

  20. Application of semiclassical methods to reaction rate theory

    SciTech Connect

    Hernandez, R.

    1993-11-01

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.

  1. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  2. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  3. Role of angular momentum in the production of complex fragments in fusion and quasifission reactions

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2011-05-15

    The influence of angular momentum on the competition between complete fusion followed by the decay of compound nucleus and quasifission channels is treated within the dinuclear system model. The charge distributions of the products in the reactions {sup 28}Si+{sup 96}Zr, {sup 4}He+{sup 130}Te, and {sup 40}Ca+{sup 82}Kr are predicted at bombarding energies above the Coulomb barrier. The results of calculations for the reactions {sup 93}Nb+{sup 9}Be,{sup 12}C,{sup 27}Al; {sup 84}Kr+{sup 27}Al; {sup 86}Kr+{sup 63}Cu; {sup 139}La+{sup 12}C,{sup 27}Al; and {sup 45}Sc+{sup 65}Cu are compared with the available experimental data.

  4. Omphacite breakdown reactions and relation to eclogite exhumation rates

    NASA Astrophysics Data System (ADS)

    Anderson, Eric D.; Moecher, David P.

    2007-09-01

    Clinopyroxene + plagioclase (±Hbl ± Qtz) symplectites after omphacite are widely cited as evidence for prior eclogite-facies or high-pressure (HP) metamorphism. Precursor omphacite compositions of retrograde eclogites, used for reconstructing retrograde P- T paths, are commonly estimated by reintegrating symplectite phases with the assumption that the symplectite-forming reactions were isochemical. Comparisons of broadbeam symplectite compositions to adjacent unreacted pyroxene from various symplectites after clinopyroxene from the Appalachian Blue Ridge (ABR) and Western Gneiss Region (WGR) suggest that the symplectite forming reactions are largely isochemical. Endmember calculations based on reintegrated symplectite compositions from the ABR and WGR suggest that a minor Ca-Eskola (CaEs) component (XCaEs = 0.04-0.15) was present in precursor HP clinopyroxene. WGR symplectites consist of fine-grained (˜1 μm-scale), vermicular intergrowths of Pl + Cpx II ± Hbl that occur at grain boundaries or internally. ABR symplectites contain coarser (˜10 μm-scale) planar lamellae and rods of Pl + Cpx II + Qtz + Hbl within clinopyroxene cores. The contrasting textures correlate with decompression and cooling rate, and degree of overstepping of the retrograde reaction (lamellar: slow, erosionally controlled exhumation with slow/low overstepping; fine-grained, grainboundary symplectite: rapid, tectonic exhumation with rapid/high overstepping). Variations in XCaEs, Xjd, and XCaTs of precursor HP omphacite are related to the symplectic mineral assemblages that result from decompression. Quartz-normative symplectities indicate quartz-producing retrograde reactions (e.g., breakdown of precursor CaEs); quartz-free symplectities (e.g., diopside + plagioclase after omphacite) indicate quartz-consuming reactions (jd, CaTs breakdown) outpaced quartz-producing reactions.

  5. Hot fusion-evaporation cross sections of 45Sc -induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Bennett, M. E.; DeVanzo, M. J.; Frey, M. M.; Tereshatov, E. E.; Folden, C. M.

    2015-09-01

    Background: 45Sc has rarely been studied as a projectile in fusion-evaporation reactions. The synthesis of new superheavy elements with Z >118 will require projectiles with Z >20 , and 45Sc could potentially be used for this purpose. Purpose: Cross sections were measured for the x n and p x n exit channels in the reactions of 45Sc with lanthanide targets for comparison to previous measurements of 48Ca reacting with similar targets. These data provide insight on the survival of spherical, shell-stabilized nuclei against fission, and could have implications for the discovery of new superheavy elements. Methods: Beams of 45Sc6 + were delivered from the K500 superconducting cyclotron at Texas A&M University with an energy of ≈5 MeV /nucleon . Products were purified using the Momentum Achromat Recoil Spectrometer, and excitation functions were measured for reactions of 45Sc+156-158,160Gd, 159Tb , and 162Dy at five or more energies each. Evaporation residues were identified by their characteristic α -decay energies. Experimental data were compared to a simple theoretical model to study each step in the fusion-evaporation process. Results: The maximum measured 4 n cross sections for the reactions 45Sc+156-158,160Gd, 159Tb , and 162Dy are 5.8 ±1.7 , 25 ±5 , 39 ±7 , 150 ±20 , 2 .4-1.4+2.3 , and 1.8 ±0.6 μ b , respectively. Proton emission competes effectively with neutron emission from the excited compound nucleus in most cases. The α ,α n , and α 2 n products were also observed in the 45Sc+162Dy reaction. Conclusions: Excitation functions were reported for 45Sc -induced reactions on lanthanide targets for the first time, and these cross sections are much smaller than for 48Ca -induced reactions on the same targets. The relative neutron-deficiency of the compound nuclei leads to significantly increased fissility and large reductions in the survival probability. Little evidence for improved production cross sections due to shell-stabilization was observed.

  6. Product PCNPsurv or the "reduced" evaporation residue cross section σER/σfusion for "hot" fusion reactions studied with the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Hemdeep, Gupta, Raj K.

    2016-04-01

    The product PCNPsurv of compound nucleus (CN) fusion probability PCN and survival probability Psurv is calculated to determine the reduced evaporation residue cross section σER/σfusion , denoted σERreduced, with (total) fusion cross section σfusion given as a sum of CN-formation cross section σCN and non-CN cross section σnCN for each reaction, where σCN is the sum of evaporation residue cross section σER and fusion-fission cross section σff and σnCN, if not measured, is estimated empirically as the difference between measured and calculated σfusion. Our calculations of PCN and Psurv, based on the dynamical cluster-decay model, were successfully made for some 17 "hot" fusion reactions, forming different CN of mass numbers ACN˜100 -300 , with deformations of nuclei up to hexadecapole deformations and "compact" orientations for both coplanar (Φc=0∘ ) and noncoplanar (Φc≠0∘ ) configurations, using various different nuclear interaction potentials. Interesting variations of σERreduced with CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 show that, independent of entrance channel, different isotopes of CN, and nuclear interaction potentials used, the dominant quantity in the product is Psurv, which classifies all the studied CN into three groups of weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, with relative magnitudes of σERreduced˜1 , ˜10-6 , and ˜10-11 , which, like for PCN, get further grouped in two dependencies of (i) weakly fissioning and strongly fissioning superheavy nuclei decreasing with increasing E* and (ii) radioactive nuclei increasing with increasing E*.

  7. Increased D-D Fusion Reaction Boosted by Electron Screening at the Inner Shell of Metal Atoms

    NASA Astrophysics Data System (ADS)

    Luo, Nie; Miley, George

    2004-10-01

    Recent experiments indicate an abnormally high electron screening effect on the D-D fusion cross-section during low energy (< 10 keV) bombardment of select deuterated metals [1]. The authors attribute this effect to a contribution from core electrons ignored in normal screening calculations [2]. This research studies the contribution of the atomic potential distribution on the classical dynamics of keV deuterons in a host metal, taken here as Pd. A standard atomic code is used to obtain the atomic electron charge density and the potential profile in the metal atom. Using these results, the deuterons are found to spend most of their penetration time near the Pd M shell. This effect drastically increases the probability of a rendezvous between two deuterons in a rather confined area roughly 0.1 angstrom from the Pd nucleus. This mechanism, combined with the increased tunneling rate due to screening from the high electron density at M-shell, enhances the low energy D-D fusion cross-section for metal hydrides. Results from these calculations and comparisons with experimental data will be presented. [1] F. Strieder, C. Rolfs, C. Spitaleri, and P.Corvisiero, Naturwissenschaften, 88 (2001) 461. [2] G. H. Miley, H. Hora, N. Luo, ¡°Screening in Low Energy Nuclear Reactions of Importance to Nuclear Astrophysics¡±, APS April Mtg. (2004), Denver, CO.

  8. Detailed determination of the nuclear fusion radius by a simultaneous optical model calculation of elastic scattering and fusion cross sections in reactions involving weakly bound projectiles

    SciTech Connect

    Camacho, A. Gomez; Aguilera, E. F.; Gomes, P. R. S.; Lubian, J.

    2007-10-15

    Within the optical model for direct reactions, simultaneous calculations of elastic scattering, complete fusion, and total reaction cross sections for energies around the Coulomb barrier are presented for reactions involving the weakly bound projectile {sup 9}Be on {sup 64}Zn. Volume (W{sub F}) and surface (W{sub DR}) Woods-Saxon optical potentials are used such that the former is responsible only for complete fusion reactions while the latter for all direct reactions plus incomplete fusion. Simultaneous fits can be obtained with several sets of potential parameters, but if we impose the condition that the strength of W{sub F} is smaller than the strength of W{sub DR} at the tail region of the potential (this condition is discussed in detail), then values are required for r{sub F} and r{sub DR} of around 1.6 and 1.7-1.9 fm, respectively. These values are much larger than those frequently used in barrier penetration model calculations. Through the energy dependence of the real and imaginary parts of the polarization potentials, we show that the usual threshold anomaly does not show up for this system, but instead there is evidence of the presence of a breakup threshold anomaly.

  9. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.

    PubMed

    Cernat, Roxana A; Ciorecan, Silvia I; Ungureanu, Constantin; Arends, Johan; Strungaru, Rodica; Ungureanu, G Mihaela

    2015-08-01

    The respiratory rate is a vital parameter that can provide valuable information about the health condition of a patient. The extraction of respiratory information from photoplethysmographic signal (PPG) was actually encouraged by the reported results, our main goal being to obtain accurate respiratory rate estimation from the PPG signal. We developed a fusion algorithm that identifies the best derived respiratory signals, from which is possible to extract the respiratory rate; based on these, a global respiratory rate is computed using the proposed fusion algorithm. The algorithm is qualitatively tested on real PPG signals recorded by an acquisition system we implemented, using a reflection pulse oximeter sensor. Its performance is also statistically evaluated using benchmark dataset publically available from CapnoBase.Org. PMID:26737653

  10. Charge-exchange reaction by Reggeon exchange and W{sup +}W{sup −}-fusion

    SciTech Connect

    Schicker, R.

    2015-04-10

    Charge-exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp → n + Δ{sup ++} taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge-exchange reaction induced by W{sup ±}-fusion is presented, and the corresponding QCD-background is examined.

  11. Rate constant for the reaction of atomic chlorine with methane

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Leu, M. T.; Demore, W. B.

    1978-01-01

    The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.

  12. r-PROCESS Reaction Rates for the Actinides and Beyond

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Korneev, I. Yu.; Rauscher, T.; Thielemann, F.-K.

    2011-10-01

    We discuss the importance of different fission rates for the formation of heavy and superheavy nuclei in the astrophysical r-process. Neutron-induced reaction rates, including fission and neutron capture, are calculated in the temperature range 108 ≤ T(K) ≤ 1010 within the framework of the statistical model for targets with the atomic number 84 ≤ Z ≤ 118 (from Po to Uuo) from the neutron to the proton drip-line for different mass and fission barrier predictions based on Thomas-Fermi (TF), Extended Thomas-Fermi plus Strutinsky Integral (ETFSI), Finite-Range Droplet Model (FRDM) and Hartree-Fock-Bogolyubov (HFB) approaches. The contribution of spontaneous fission as well as beta-delayed fission to the recycling r-process is discussed. We also discuss the possibility of rate tests, based on mini r-processed yields in nuclear explosions.

  13. Low reoperation rate following 336 multilevel lumbar laminectomies with noninstrumented fusions

    PubMed Central

    Epstein, Nancy Ellen

    2016-01-01

    Background: Few reoperations are required in older patients undergoing multilevel lumbar laminectomy with noninstrumented fusions for spinal stenosis with/without spondylolisthesis/instability, and they rarely require instrumentation. Methods: We reviewed 336 patients averaging 66.5 years of age undergoing initial average 4.7 level lumbar laminectomies with average 1.4 level noninstrumented fusions over an average 7.1-year period (range 2.0–16.5 years). Patients uniformly exhibited spinal stenosis, instability (Grade I [195 patients] or Grade II spondylolisthesis [67 patients]), disc herniations (154 patients), and/or synovial cysts (66 patients). Reoperations, including for adjacent segment disease (ASD), addressed new/recurrent pathology. Results: Nine (2.7%) of 336 patients required reoperations, including for ASD, an average of 6.3 years (range 2–15 years) following initial 4.7 level laminectomies with 1.4 level noninstrumented fusions. Second operations warranted average 4.8 level (range 3–6) laminectomies and average 1.1 level non instrumented fusions addressing stenosis with instability (Grade I [7 patients] or Grade II [1 patient] spondylolisthesis), new disc herniations (2 patients), and/or a synovial cyst (1 patient). Conclusions: Only 9 (2.7%) of 336 patients required reoperations (including for ASD) consisting of multilevel laminectomies with noninstrumented fusions for recurrent/new stenosis even with instability; these older patients were not typically unstable, or were likely already fused, and did not require instrumentation. Alternatively, reoperation rates following instrumented fusions in other series approached 80% at 5 postoperative years. Therefore, we as spinal surgeons should realize that older patients even with instability rarely require instrumentation and that the practice of performing instrumented fusions in everyone, irrespective of age, needs to stop. PMID:27274407

  14. Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts.

    PubMed Central

    Krause, R M; Hamann, M; Bader, C R; Liu, J H; Baroffio, A; Bernheim, L

    1995-01-01

    1. Fusion of myogenic cells is important for muscle growth and repair. The aim of this study was to examine the possible involvement of nicotinic acetylcholine receptors (nAChR) in the fusion process of myoblasts derived from postnatal human satellite cells. 2. Acetylcholine-activated currents (ACh currents) were characterized in pure preparations of freshly isolated satellite cells, proliferating myoblasts, myoblasts triggered to fuse and myotubes, using whole-cell and single-channel voltage clamp recordings. Also, the effect of cholinergic agonists on myoblast fusion was tested. 3. No nAChR were observed in freshly isolated satellite cells. nAChR were first observed in proliferating myoblasts, but ACh current densities increased markedly only just before fusion. At that time most mononucleated myoblasts had ACh current densities similar to those of myotubes. ACh channels had similar properties at all stages of myoblast maturation. 4. The fraction of myoblasts that did not fuse under fusion-promoting conditions had no ACh current and thus resembled freshly isolated satellite cells. 5. The rate of myoblast fusion was increased by carbachol, an effect antagonized by alpha-bungarotoxin, curare and decamethonium, but not by atropine, indicating that nAChR were involved. Even though a prolonged exposure to carbachol led to desensitization, a residual ACh current persisted after several days of exposure to the nicotinic agonist. 6. Our observations suggest that nAChR play a role in myoblast fusion and that part of this role is mediated by the flow of ions through open ACh channels. Images Figure 1 Figure 2 Figure 3 PMID:8788942

  15. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  16. Capture and Fusion-Fission Processes in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogatchev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Gadea, A.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Lyapin, V. G.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Voskresenski, V. M.

    2005-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+204Pb, 48Ca+144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 58Fe+208Pb, 244Pu, 248Cm, and 64Ni+186W, 242Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  17. (γ,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-08-01

    In this study, the theoretical photo-neutron cross-sections produced by (γ,2n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been carried out for incident photon energies up to 40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf-Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are in good agreement with the experimental data for all reactions along the incident photon energy in this study. Pre-equilibrium option can be recommended, if experimental data are not available or are unlikely to be produced due to the experimental difficulty.

  18. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  19. Primordial lithium: New reaction rates, new abundances, new constraints

    SciTech Connect

    Kawano, L.; Schramm, D.; Steigman, G.

    1986-12-01

    Newly measured nuclear reaction rates for /sup 3/H(..cap alpha..,..gamma..)/sup 7/Li (higher than previous values) and /sup 7/Li(p,..cap alpha..)/sup 4/He (lower than previous values) are shown to increase the /sup 7/Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta less than or equal to 4 x 10/sup -10/); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of /sup 7/Li in big bang baryon density determinations. The new /sup 7/Li constraints imply a lower limit on eta of 2 x 10/sup -10/ and an upper limit of 5 x 10/sup -10/. This lower limit to eta is concordant with that obtained from considerations of D + /sup 3/He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10/sup -10/ would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,..gamma..)/sup 4/He reaction. 28 refs., 1 fig.

  20. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  1. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  2. Comparative analysis of anodized, implanted and sputtered tantalum oxide targets for the study of 16O+16O fusion reaction

    NASA Astrophysics Data System (ADS)

    Silva, H.; Cruz, J.; Redondo-Cubero, A.; Santos, C.; Fonseca, M.; Luis, H.; Jesus, A. P.

    2014-07-01

    Measuring the total cross section of a fusion reaction in the region of astrophysical interest, such as the 16O+16O fusion reaction, is a real challenge due the very small cross sections involved and the large number of possible exit channels. Taking into account these difficulties, the use of targets with known thickness, stoichiometry and minimal contamination that can withstand high beam currents is required. In this study, we report the comparison between three different types of targets for the study of this fusion reaction, such as anodized, implanted and sputtered tantalum oxide targets and the results show that the anodized and sputtered targets are more suitable for this study due to their higher oxygen density and to the formation of a stable oxide compound, tantalum pentoxide (Ta2O5).

  3. Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2016-06-01

    Within the framework of a dinuclear system model, the influence of projectile and target neutron number on capture cross section, fusion probability, and survival probability for the reactions S,3634+238U and 48Ca+Pu 239 ,240 ,242 ,244 are investigated. The calculated excitation functions are in good agreement with the experimental data. To synthesize more unknown neutron-deficient isotopes of already-known superheavy elements, the possibility of using lighter calcium isotopes to induce hot fusion reactions is investigated and the maximal evaporation residual cross sections for Ca 44 ,46 ,48 -induced hot fusion reactions to produce unknown neutron-deficient superheavy nuclei with Z =112 -116 are predicted.

  4. Do Trunk Muscles Affect the Lumbar Interbody Fusion Rate?: Correlation of Trunk Muscle Cross Sectional Area and Fusion Rates after Posterior Lumbar Interbody Fusion Using Stand-Alone Cage

    PubMed Central

    Choi, Man Kyu; Park, Bong Jin; Park, Chang Kyu; Kim, Sung Min

    2016-01-01

    Objective Although trunk muscles in the lumbar spine preserve spinal stability and motility, little is known about the relationship between trunk muscles and spinal fusion rate. The aim of the present study is to evaluate the correlation between trunk muscles cross sectional area (MCSA) and fusion rate after posterior lumbar interbody fusion (PLIF) using stand-alone cages. Methods A total of 89 adult patients with degenerative lumbar disease who were performed PLIF using stand-alone cages at L4–5 were included in this study. The cross-sectional area of the psoas major (PS), erector spinae (ES), and multifidus (MF) muscles were quantitatively evaluated by preoperative lumbar magnetic resonance imaging at the L3–4, L4–5, and L5–S1 segments, and bone union was evaluated by dynamic lumbar X-rays. Results Of the 89 patients, 68 had bone union and 21 did not. The MCSAs at all segments in both groups were significantly different (p<0.05) for the PS muscle, those at L3–4 and L4–5 segments between groups were significantly different (p=0.048, 0.021) for the ES and MF muscles. In the multivariate analysis, differences in the PS MCSA at the L4–5 and L5–S1 segments remained significant (p=0.048, 0.043 and odds ratio=1.098, 1.169). In comparison analysis between male and female patients, most MCSAs of male patients were larger than female's. Fusion rates of male patients (80.7%) were higher than female's (68.8%), too. Conclusion For PLIF surgery, PS muscle function appears to be an important factor for bone union and preventing back muscle injury is essential for better fusion rate. PMID:27226860

  5. Suppression of complete fusion due to breakup in the reactions {sup 10,11}B+{sup 209}Bi

    SciTech Connect

    Gasques, L. R.; Hinde, D. J.; Dasgupta, M.; Mukherjee, A.; Thomas, R. G.

    2009-03-15

    Above-barrier cross sections of fission and {alpha}-active heavy reaction products were measured for the reactions of {sup 10,11}B with {sup 209}Bi. Systematic analysis showed that the fission originates almost exclusively from complete fusion (CF). Existing measurements of above-barrier fusion products for the {sup 30}Si+{sup 186}W reaction, assumed to proceed exclusively through CF, were extrapolated to the current systems using statistical model calculations. This extrapolation showed that the heavy reaction products from the {sup 10,11}B+{sup 209}Bi reactions include substantial components from incomplete fusion as well as from CF. Compared with fusion calculations without breakup, the CF cross sections are suppressed by 15% for {sup 10}B and 7% for {sup 11}B. A consistent and systematic variation of the suppression of CF for reactions of the weakly bound nuclei {sup 6,7}Li, {sup 9}Be, and {sup 10,11}B on targets of {sup 208}Pb and {sup 209}Bi is found as a function of the breakup threshold energy.

  6. Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Keck, James C.

    2008-08-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method for simplifying the treatment of reactions in complex systems is summarized and the selection of constraints for both close-to and far-from equilibrium systems is discussed. Illustrative examples of RCCE calculations of carbon monoxide concentrations in the exhaust products of an internal combustion engine and ignition delays for methane-oxygen mixtures in a constant volume adiabatic chamber are given and compared with "detailed" calculations. The advantages of RCCE calculations over "detailed" calculations are discussed.

  7. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  8. Primordial lithium - New reaction rates, new abundances, new constraints

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence; Schramm, David; Steigman, Gary

    1988-01-01

    Newly measured nuclear reaction rates for H-3(alpha, gamma)Li-7 (higher than previous values) and Li-7(p, alpha)He-4 (lower than previous values) are shown to increase the Li-7 yield from big band nucleosynthesis for lower baryon-to-photon ratio (less than about 4 x 10 to the 10th). Recent revisions in the He-3(alpha, gamma)Be-7 and the D(p, gamma)He-3 rates enhance the high (greater than 4 x 10 to the 10th) Li-7(Be) production. New, independent determinations of Li abundances in extreme population II stars are in excellent agreement with the work of Spites and give continued confidence in the use of Li-7 in big bang baryon density determinations.

  9. Constraining kinetic rates of mineral reactions using reactive transport models

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.; Wang, Z.; Ague, J.; Bercovici, D.; Cai, Z.; Karato, S.; Oristaglio, M. L.; Qiu, L.

    2012-12-01

    We use a reactive transport model to better understand results of experiments to obtain kinetic rates of mineral reactions in closed systems. Closed system experiments pose special challenges in that secondary minerals may form that modify the fluid composition evolution and may grow on the dissolving minerals thus armoring the surface. Even so, such closed system experiments provide critical data for what minerals would actually form in field applications and how coupled dissolution and precipitation mineral reactions are strongly linked. Comparing to experimental observations can test the reactive transport model, and the experimental observations can be better understood by comparing the results to the modeling. We apply a 0D end member of the model to understand the dissolution of single crystals of forsterite in a variety of settings (low pH, high pH, or NaHCO3 initial fluids, at 100 C and 1 bar, or 200 C and 150 bar). Depending on the initial conditions, we observe the precipitation of talc, brucite, amorphous silica, chrysotile, or magnesite, in various combinations. We compare simulation results to fluid compositions and the presence of secondary minerals experimentally sampled at various times. Insight from the simulations helped create an inverse model to extract the rates of forsterite dissolution and to create a simple forward model useful for exploring the influence of system size, secondary mineral surface areas, etc. Our reactive transport model allows secondary minerals to armor the forsterite surface, which can strongly decrease the dissolution rate as the system evolves. Tuning our model with experimentally derived rates and assuring relevant processes are included so as to reproduce experimental observations is necessary before upscaling to heterogeneous field conditions. The reactive transport model will be used for field-scale sequestration simulations and coupled with a geomechanical model that includes the influence of deformation.

  10. Fusion, and advanced-fuel, reaction bibliography. Particle reactions from H1 to B11. Special report, 17 February-17 August 1987

    SciTech Connect

    Pass, H.H.

    1987-08-01

    The Air Force Astronautics Laboratory has an ongoing program of studying the feasibility of fusion powered propulsion. This study first examines nuclear fuels and their associated fuel cycles. The investigated fuels and fuel cycles will then be used to explore present and proposed fusion propulsion concepts. From this study, it will be determined which concepts, if any, will be able to produce fusion propulsion systems using present or near term technology. The objective of the work reported herein was to compile a comprehensive list of the experimentally measured nuclear reactions involving the nuclides up to and including B11 (Boron-11). This compilation was performed in order to identify any new fuels and/or fuel cycles that would be potential candidate to replace the presently utilized fuels deuterium and tritium. Also, the project is intended to provide a readily accessible source of information for individuals who are studying fuels, reactions, and fuel cycles.

  11. Nucleation and reaction rates controlled by local reaction volume and reaction-induced stress - spinel layer growth as an example

    NASA Astrophysics Data System (ADS)

    Götze, Lutz C.; Milke, Ralf; Dohmen, Ralf; Wirth, Richard

    2014-05-01

    We observed the growth of spinel sensu stricto (MgAl2O4) between periclase (MgO) and corundum (Al2O3) in thin films deposited by the pulsed laser deposition method on crystallographically oriented single crystal substrates. The starting samples consisted of cut and ultra polished single crystals of either corundum (parallel (0001)) or periclase (parallel (111)) and an amorphous source layer of the respective reactant that in the very first stages of the experiments became polycrystalline. The cutting direction in the substrate minerals ensures that the substrate phases start to react along their close-packed hexagonal oxygen layers which allows topotactical growth of the newly formed spinel. The entire layer setup on the substrate crystals was only a few 100 nm thick. The growth of these spinel product layers was monitored in-situ using a heating attachment and synchrotron X-ray diffraction. From the reacted samples we took electron transparent foils by the focused ion beam method and analysed them ex-situ by TEM. At 1000°C we found a difference in spinel growth rate between one and two orders of magnitude between the two substrates, all other parameters held constant. At 900 and 1000 °C spinel had formed after one hour by 0.004 nm/s (900°C) and 0.034 nm/s (1000°C) on corundum substrate, while on periclase substrate the reaction had gone completely through the Al2O3 source layer transforming it to spinel by at least 15-30 times higher reaction rates (boundary values) and probably even faster. At 800°C no reaction occurred between periclase layers and corundum single crystals, whereas spinel crystallized at a (linearized) rate of 46 nm/h on periclase single crystals. We explain our findings by the local reaction volume at the periclase-corundum interface. Many studies (including this one) have established that spinel grows by cation exchange in a rather immobile oxygen sublattice. This mechanism implies a negative volume change at the Sp-Per interface (by -13

  12. Reaction-Based SiC Materials for Joining Silicon Carbide Composites for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Singh, M.; Serizawa, H.; Katoh, Y.; Kohyama, A.

    2000-09-01

    The fabrication of large or complex silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) components for fusion energy systems requires a method to assemble smaller components that are limited in size by manufacturing constraints. Previous analysis indicates that silicon carbide should be considered as candidate joint materials. Two methods to obtain SiC joints rely on a reaction between silicon and carbon to produce silicon carbide. This report summarizes preliminary mechanical properties of joints formed by these two methods. The methods appear to provide similar mechanical properties. Both the test methods and materials are preliminary in design and require further optimization. In an effort to determine how the mechanical test data is influenced by the test methodology and specimen size, plans for detailed finite element modeling (FEM) are presented.

  13. Analytical criterion for shock ignition of fusion reaction in hot spot

    NASA Astrophysics Data System (ADS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Le Bel, E.

    2013-11-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations.

  14. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  15. Investigation of the role of break-up processes on the fusion of {sup 16}O induced reactions

    SciTech Connect

    Singh, Devendra P.; Unnati; Singh, Pushpendra P.; Yadav, Abhishek; Singh, B. P.; Prasad, R.; Sharma, Manoj Kumar; Golda, K. S.; Kumar, Rakesh; Sinha, A. K.

    2009-07-15

    An experiment was carried out to explore heavy ion incomplete fusion reaction dynamics, within the framework of the break-up fusion model, at energies near and above the Coulomb barrier. Excitation functions for several radionuclides produced via xn, pxn, and {alpha}xn channels were measured in the {sup 16}O+{sup 181}Ta system at energies of {approx_equal}76-100 MeV. The experimental excitation functions were compared with those calculated using the theoretical model code PACE4. It was observed that excitation functions of xn/pxn channels are in good agreement with theoretical predictions. However, a significant enhancement in the measured excitation functions of {alpha}-emitting channels was observed and attributed to the incomplete fusion processes. The incomplete fusion fraction (F{sub ICF}) that gives the relative importance of complete and incomplete fusion processes was found to increase with energy. The results are discussed in terms of {alpha}-cluster structure of the projectile on various fusion reactions.

  16. Rate Constant for the OH + CO Reaction at Low Temperatures.

    PubMed

    Liu, Yingdi; Sander, Stanley P

    2015-10-01

    Rate constants for the reaction of OH + CO → products (1) have been measured using laser photolysis/laser-induced fluorescence (LP/LIF) over the temperature range 193–296 K and at pressures of 50–700 Torr of Ar and N2. The reaction was studied under pseudo-first-order conditions, monitoring the decay of OH in the presence of a large excess of CO. The rate constants can be expressed as a combination of bimolecular and termolecular components. The bimolecular component was found to be temperature-independent with an expression given by kbi(T) = (1.54 ± 0.14) × 10(–13)[e(–(13±17)/T)] cm(3) molecule(–1) s(–1), with an error of one standard deviation. The termolecular component was fitted to the expression, kter = k0(T)[M]/[1 + (k0(T)[M]/k∞(T)] × 0.6({1+[log10(k0(T)[M]/k∞(T))]2}−1) where k0(T) = k0(300)(T/300)(−n) and k∞(T) = k∞(300)(T/300)(−m). The parameters for k0(T) were determined to be k0(300) = (6.0±0.5) × 10(−33) cm(6) molecule(–2) s(–1) in N2 and k0(300) = (3.4 ± 0.3) × 10(–33) cm(6) molecule(–2) s(–1) in Ar, with n = 1.9±0.5 and 2.0±0.4 in N2 and Ar, respectively. These parameters were determined using k0(T) and m from the NASA kinetics data evaluation (JPL Publication No. 10-6) since the experimental pressure range was far from the high-pressure limit. Addition of low concentrations of O2 had no discernible effect on the mechanism of the OH + CO reaction but resulted in secondary reactions which regenerated OH. PMID:26305192

  17. Incomplete-fusion reactions for {gamma}-ray spectroscopy: Application to the study of high-spin states in {sup 234}U

    SciTech Connect

    Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; McGoram, T. R.; Poletti, A. R.

    1999-09-02

    Incomplete-fusion reactions occur when breakup of the projectile results in only part of the beam particle fusing with the target, the remnant being emitted with an energy equivalent to the beam velocity. Such reactions have been demonstrated to populate slightly neutron-rich nuclei compared to conventional fusion-evaporation reactions, opening possibilities for the study of nuclei along the neutron-rich side of the line of stability. Results from a study of {sup 211}Po are presented to illustrate the use of incomplete-fusion reactions for {gamma}-ray spectroscopy. New results from a test-run which populated high-spin states in {sup 234}U via the {sup 232}Th({sup 9}Be,{alpha}3n) reaction are also presented. An interesting feature of the latter reaction is that the high fission probabilities for the compound nuclei which follow complete fusion, results in the residues from incomplete fusion forming the dominant residue channels.

  18. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Hayakawa, S.; Spitaleri, C.; Burtebayev, N.; Aimaganbetov, A.; Figuera, P.; Fisichella, M.; Guardo, G. L.; Igamov, S.; Indelicato, I.; Kiss, G.; Kliczewski, S.; La Cognata, M.; Lamia, L.; Lattuada, M.; Piasecki, E.; Rapisarda, G. G.; Romano, S.; Sakuta, S. B.; Siudak, R.; Trzcińska, A.; Tumino, A.; Urkinbayev, A.

    2016-05-01

    The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Si)α and 16O(20Ne, p31P)α three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  19. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  20. In Search of Reaction Rate Scaling Law for Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai

    2015-11-01

    As a way of employing the flamelet approach, which was developed essentially for incompressible flows, to model supersonic combustion, the role ascribed to pressure has not been very convincing. That is, the reaction rate is often scaled on the square of the pressure in the finite Mach number flow field relative to the usually atmospheric static pressure field used in the generation of the flamelet library. This scaling assumption is quite simple and will therefore be very attractive if it has a sound theoretical basis and it works for a large selection of high-speed combustion flows. We try to find some justifications for different scaling laws, with the hope of coming up with a more universally-acceptable flamelet procedure for supersonic combustion.

  1. Dynamical Dipole and Equation of State in N/Z Asymmetric Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Giaz, Agnese; Corsi, Anna; Camera, Franco; Wieland, Oliver; Kravchuk, Vladimir L.; Barlini, Sandro; Alba, Rosa; Bednarczyk, P.; Bracco, Angela; Baiocco, Giorgio; Bardelli, Luigi; Benzoni, Giovanna; Bini, M.; Blasi, Nives; Brambilla, Sergio; Bruno, Mauro; Casini, Giovanni; Ciemala, Michal; Cinausero, Marco; Chiari, M.; Colonna, Maria; Crespi, Fabio Celso Luigi; D'Agostino, Michela; Degerlier, Meltem; Di Toro, Massimo; Gramegna, Fabiana; Kmiecik, Maria; Leoni, Silvia; Maiolino, C.; Maj, Adam; Marchi, Tommaso; Mazurek, K.; Meczynski, W.; Million, Benedicte; Montanari, Daniele; Morelli, Luca; Nannini, Adriana; Nicolini, Roberto; Pasquali, G.; Piantelli, S.; Ordine, A.; Poggi, Giacomo; Rizzi, V.; Rizzo, Carmelo; Santonocito, Domenico; Vandone, Valeria; Vannini, G.

    2014-03-01

    In heavy ion reactions, in the case of N/Z asymmetry between projectile and target, the process leading to complete fusion is expected to produce pre-equilibrium dipole γ-ray emission. It is generated during the charge equilibration process and it is known as Dynamical Dipole. A new measurement of the dynamical dipole emission was performed by studying 16O + 116Sn at 12 MeV/u. These data, together with those measured at 8.1 MeV/u and 15.6 MeV/u for the same reaction, provide the dependence on the Dynamical Dipole total emission yield with beam energy and they can be compared with theoretical expectations. The experimental results show a weak increase of the Dynamical Dipole total yield with beam energies and are in agreement with the prediction of a theoretical model based on the Boltzmann-Nordheim-Vlasov (BNV) approach. The measured trend with beam energy does not confirm the rise and fall behavior previously reported for the same fused compound but with a much higher dipole moment.

  2. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.

    2016-06-01

    Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion

  3. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  4. Measurement of sulfur dioxide reaction rates in wintertime orographic clouds

    SciTech Connect

    Snider, J.R.

    1989-01-01

    Releases of SO2 into the wintertime orographic clouds at Elk Mountain in southeastern Wyoming were utilized to accelerate the rate of SO2 oxidation to cloud-water dissolved sulfate (SO4(-2)). Background SO2 mixing ratios were 0.6 parts-per-billion by volume (ppbv) and were consistent with the remote location of the experimental site and with supplemental cloud water, snow, and aerosol composition measurements. Background mixing ratios of hydrogen peroxide (H2O2) and the organohydroperoxides, expressed as methyl hydroperoxide (MHP), were 0.15 and 0.17 ppbv, respectively. The concentration of H2O2 in cloud water, obtained as rime, was also monitored. Analysis of these findings suggests that both reactive loss of H2O2 and volatilization during riming are mechanisms for H2O2 loss. The pseudo first-order SO2 depletion rates varied between 2 and 72 percent /hr (x=32 plus or minus 22 percent/hr, n=10). Observed depletions of H2O2 (x=0.030 ppbv) were consistent with observed yields of SO4(-2) (x=0.027 ppbv) and with model predictions. Observed depletions of MHP were not significantly different from 0.0 ppbv. This observation is both consistent with the much smaller solubility of MHP, compared with H2O2, and with the results of 16 model simulations. Reactions between dissolved SO2 and O3, between SO2 and O2, and between SO2 and HCHO were calculated to contribute less than 40 percent to the total amount of SO4(-2). These reactions were inferred to be inhibited by the low pH (less than 5) of the Elk Mountain cloud water. It is concluded that H2O2 is the dominant SO2 oxidant in these clouds, and that the laboratory measurements form an adequate basis for predicting the rate of in-cloud oxidation of SO2 by H2O2.

  5. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    NASA Astrophysics Data System (ADS)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V.

    2016-07-01

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200-300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  6. An Experiment To Demonstrate How a Catalyst Affects the Rate of a Reaction.

    ERIC Educational Resources Information Center

    Copper, Christine L.; Koubeck, Edward

    1999-01-01

    Describes a chemistry experiment that allows students to calculate rates of reaction, orders of reaction, and activation energies. The activity demonstrates that to increase a reaction's rate, a catalyst need only provide any additional pathway for the reaction, not necessarily a pathway having lower activation energy. (WRM)

  7. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    SciTech Connect

    Warshaw, S I

    2001-07-11

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity {sigma}v is calculated, where {sigma} is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the

  8. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  9. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  10. Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Lalousis, Paraskevas; Giuffrida, Lorenzo; Margarone, Daniele; Korn, Georg; Eliezer, Shalom; Miley, George H.; Moustaizis, Stavros; Mourou, Gérard

    2015-05-01

    An alternative way may be possible for igniting solid density hydrogen-11B (HB11) fuel. The use of >petawatt-ps laser pulses from the non-thermal ignition based on ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force, has to be combined with the measured ultrahigh magnetic fields in the 10 kilotesla range for cylindrical trapping. The evaluation of measured alpha particles from HB11 reactions arrives at the conclusion that apart from the usual binary nuclear reactions, secondary reactions by an avalanche multiplication may cause the high gains, even much higher than from deuterium tritium fusion. This may be leading to a concept of clean economic power generation.

  11. Attempt to produce the isotopes of element 108 in the fusion reaction {sup 136}Xe+{sup 136}Xe

    SciTech Connect

    Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; Aksenov, N. V.; Bozhikov, G. A.; Chepigin, V. I.; Chelnokov, M. L.; Lebedev, V. Ya.; Malyshev, O. N.; Petrushkin, O. V.; Shishkin, S. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.

    2009-02-15

    A setup of the experiment on the production of the isotopes with Z=108 in the fusion reaction {sup 136}Xe+{sup 136}Xe and the obtained results are presented. At the excitation energy 0{<=}E{sub x}{<=}30 MeV of the {sup 272}Hs* compound nucleus the upper limit of the cross section for evaporation residues {sigma}{sub (1-3)n}{<=}4 pb has been measured. The experimental results together with the data from asymmetric reactions point to a strong limitation of the Hs compound nucleus formation with increasing Coulomb forces in the entrance channel of the reaction.

  12. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  13. The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation

    PubMed Central

    Abbushi, Alexander; Čabraja, Mario; Thomale, Ulrich-Wilhelm; Woiciechowsky, Christian

    2009-01-01

    In posterior lumbar interbody fusion, cage migrations and lower fusion rates compared to autologous bone graft used in the anterior lumbar interbody fusion procedure are documented. Anatomical and biomechanical data have shown that the cage positioning and cage type seem to play an important role. Therefore, the aim of the present study was to evaluate the impact of cage positioning and cage type on cage migration and fusion. We created a grid system for the endplates to analyze different cage positions. To analyze the influence of the cage type, we compared “closed” box titanium cages with “open” box titanium cages. This study included 40 patients with 80 implanted cages. After pedicle screw fixation, 23 patients were treated with a “closed box” cage and 17 patients with an “open box” cage. The follow-up period averaged 25 months. Twenty cages (25%) showed a migration into one vertebral endplate of <3 mm and four cages (5%) showed a migration of ≥3 mm. Cage migration was highest in the medio-medial position (84.6%), followed by the postero-lateral (42.9%), and the postero-medial (16%) cage position. Closed box cages had a significantly higher migration rate than open box cages, but fusion rates did not differ. In conclusion, cage positioning and cage type influence cage migration. The medio-medial cage position showed the highest migration rate. Regarding the cage type, open box cages seem to be associated with lower migration rates compared to closed box cages. However, the cage type did not influence bone fusion. PMID:19475436

  14. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.; Krainov, V. P.; Zagreev, B. V.; Matafonov, A. P.

    2015-07-01

    Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+11B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from 11B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+11B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+11B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+11B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

  15. Photonuclear and radiative capture reaction rates for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Beard, Mary; Frauendorf, S.; Kaempfer, B.; Scwengner, R.; Wiescher, M.

    2011-10-01

    The vast majority of nuclei heavier than iron are synthesisized via the capture of neutrons. There are however 35 naturally occurring nuclei, including isotopes of Mo and La, located on the neutron-deficient size of the valley of stability. It has been proposed that these nuclei, referred to as p-nuclei, are produced via sequential photo-dissociation reactions in the oxygen-neon shell burning regions of a pre-supernova star. As such, cross sections for p-nuclei production are particularly sensitive to the gamma-ray strength function, which, though dominated by the giant dipole resonance, may contain extra strength contributions near to the neutron threshold. Recently new (γ, γ') cross section measurements have been performed at the ELBE facility at Helmholtz-Zentrum Dresden-Rossendorf for the nuclei ^92-100Mo, ^88Sr, ^90Zr and ^139La probing the photo-absorption cross section over an energy range 4.5 - 6 MeV, up to the neutron separation threshold. The use of these measurements as a test of existing gamma-ray strength function models, and the consequent impact on p-nuclei production rates, will be discussed.

  16. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  17. Novel Hybrid Monte Carlo/Deterministic Technique for Shutdown Dose Rate Analyses of Fusion Energy Systems

    SciTech Connect

    Ibrahim, Ahmad M; Peplow, Douglas E.; Peterson, Joshua L; Grove, Robert E

    2013-01-01

    The rigorous 2-step (R2S) method uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the neutron transport calculation of the R2S method. The prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their use in the accurate full-scale neutronics analyses of fusion reactors. This paper describes a novel hybrid Monte Carlo/deterministic technique that uses the Consistent Adjoint Driven Importance Sampling (CADIS) methodology but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) method speeds up the Monte Carlo neutron calculation of the R2S method using an importance function that represents the importance of the neutrons to the final SDDR. Using a simplified example, preliminarily results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the increase over analog Monte Carlo is higher than 10,000.

  18. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity.

    PubMed

    Ishihara, Naotada; Eura, Yuka; Mihara, Katsuyoshi

    2004-12-15

    The mammalian homologues of yeast and Drosophila Fzo, mitofusin (Mfn) 1 and 2, are both essential for mitochondrial fusion and maintenance of mitochondrial morphology. Though the GTPase domain is required for Mfn protein function, the molecular mechanisms of the GTPase-dependent reaction as well as the functional division of the two Mfn proteins are unknown. To examine the function of Mfn proteins, tethering of mitochondrial membranes was measured in vitro by fluorescence microscopy using green fluorescence protein- or red fluorescent protein-tagged and Mfn1-expressing mitochondria, or by immunoprecipitation using mitochondria harboring HA- or FLAG-tagged Mfn proteins. These experiments revealed that Mfn1-harboring mitochondria were efficiently tethered in a GTP-dependent manner, whereas Mfn2-harboring mitochondria were tethered with only low efficiency. Sucrose density gradient centrifugation followed by co-immunoprecipitation revealed that Mfn1 produced oligomerized approximately 250 kDa and approximately 450 kDa complexes in a GTP-dependent manner. The approximately 450 kDa complex contained oligomerized Mfn1 from distinct apposing membranes (docking complex), whereas the approximately 250 kDa complex was composed of Mfn1 present on the same membrane or in the membrane-solubilized state (cis complex). These results were also confirmed using blue-native PAGE. Mfn1 exhibited higher activity for this reaction than Mfn2. Purified recombinant Mfn1 exhibited approximately eightfold higher GTPase activity than Mfn2. These findings indicate that the two Mfn proteins have distinct activities, and suggest that Mfn1 is mainly responsible for GTP-dependent membrane tethering. PMID:15572413

  19. Reaction mechanism and rate constants of the CH+CH4 reaction: a theoretical study

    NASA Astrophysics Data System (ADS)

    Ribeiro, Joao Marcelo; Mebel, Alexander M.

    2015-07-01

    Ab initio and density functional calculations have been performed to elucidate the mechanism of CH radical insertion into methane. The results show that the reaction can be viewed to occur via two stages. On the first stage, the CH radical approaches methane without large structural changes to acquire proper positioning for the subsequent stage, where H-migration occurs from CH4 to CH, along with a C-C bond formation. Where the first stage ends and the second begins, a tight transition state was located using the B3LYP/6-311G(d,p) and MP4(SDQ)/6-311++G(d,p) methods. Using a rigid rotor - harmonic oscillator approach within transition state theory, we show that at the MP5/6-311++G(d,p)//MP4(SDQ)/6-311++G(d,p) level the calculated rate constants are in a reasonably good agreement with experiment in a broad temperature range of 145-581 K. Even at low temperatures, the insertion reaction bottleneck is found about the location of the tight transition state, rather than at long separations between the CH and CH4 reactants. In addition, high level CCSD(T)-F12/CBS calculations of the remainder of the C2H5 potential energy surface predict the CH+CH4 reaction to proceed via the initial insertion step to the ethyl radical which then can emit a hydrogen atom to form highly exothermic C2H4+H products.

  20. Dissipation strength of the tilting degree of freedom in fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Vanin, D. V.; Cheredov, A. V.; Fedorov, S. V.; Ryabov, E. G.; Adeev, G. D.

    2016-05-01

    The four-dimensional Langevin model was applied to calculate a wide set of experimental observables for compound nuclei, formed in heavy-ion fusion-fission reactions. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a "wall" formula was used for shapes parameters. Different possibilities of deformation-dependent dissipation coefficient for the K coordinate (γK) were investigated. Presented results demonstrate that the influence of the ks and γK parameters on the calculated quantities can be selectively probed. It was found that it is possible to describe experimental data with the deformation-dependent γK coefficient. One of the possibility is to use large values of γK ≃ 0.2 (MeV zs)-1/2 for compact shapes featuring no neck and small values of γK ≃ 0.0077 (MeV zs)-1/2 for elongated shapes.

  1. Effects of nuclear orientation on fusion and fission process for reactions using actinide target nuclei

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-04-30

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at A{sub L}/A{sub H}approx =90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. We also report the results on the fragment mass distributions for {sup 36,34}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  2. Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion.

    PubMed

    Wong, Ken C L; Summers, Ronald M; Kebebew, Electron; Yao, Jianhua

    2015-10-01

    The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from clinical measurements. Although image-driven frameworks have been proposed with promising results, several issues such as infinitesimal strain assumptions, complicated personalization procedures, and the lack of functional information, may limit their prediction accuracy. In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facilitate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we propose an objective function accounting for both the tumor volume difference and the root-mean-squared error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify the parameter estimation capability and the prediction performance. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results of eight patient data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted and measured tumor volumes were 84.5 ± 6.9%, 85.8 ± 8.2%, 84.6 ± 1.7%, and 14.2 ± 8.4%, respectively. PMID:25962846

  3. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  4. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. PMID:27237834

  5. Experiments on screening effect in deuteron fusion reactions at extremely low energies

    NASA Astrophysics Data System (ADS)

    Targosz-Ślȩczka, N.; Czerski, K.; Huke, A.; Ruprecht, G.; Weissbach, D.; Martin, L.; Kiliç, A. i.; Kaczmarski, M.; Winter, H.

    2013-10-01

    The enhanced electron screening effect in nuclear reactions taking place in dense astrophysical plasmas is extremely important for determination of stellar reaction rates in terrestrial laboratories as well as in prediction of cross sections enhancement in interiors of stars such as White and Brown Dwarfs or Giant Planets. This effect resulting in reduction of the nuclear Coulomb potential by the atomic electrons has been confirmed in many laboratory experiments. Unfortunately, experimental screening energies are much higher than the theoretical predictions and the reason for that remains unknown. Here, we present absorbing results of the experiment studying d + d nuclear reactions in different deuterized metallic targets under ultra high vacuum conditions. The total cross sections and angular distributions of the 2H( d, p)3H and 2H( d, n)3He reactions have been measured using a deuteron beam of energies between 8 and 30 keV provided by the electron cyclotron ion source. The atomic cleanness of the target surface has been secured by combining Ar sputtering of the target and Auger electrons spectroscopy. Due to application of an on-line analysis method, the homogeneity of the implanted deuteron densities could be continuously monitored. We will discuss probable causes of the large discrepancy between theoretical and experimental data.

  6. Optimal reconstruction of reaction rates from particle distributions

    NASA Astrophysics Data System (ADS)

    Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2010-05-01

    Random walk particle tracking methodologies to simulate solute transport of conservative species constitute an attractive alternative for their computational efficiency and absence of numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from particle distributions have typically prevented its use in reactive transport problems. The numerical problem mainly arises from the need to first reconstruct the concentrations of species/components from a discrete number of particles, which is an error prone process, and then computing a spatial functional of the concentrations and/or its derivatives (either spatial or temporal). Errors are then propagated, so that common strategies to reconstruct this functional require an unfeasible amount of particles when dealing with nonlinear reactive transport problems. In this context, this article presents a methodology to directly reconstruct this functional based on kernel density estimators. The methodology mitigates the error propagation in the evaluation of the functional by avoiding the prior estimation of the actual concentrations of species. The multivariate kernel associated with the corresponding functional depends on the size of the support volume, which defines the area over which a given particle can influence the functional. The shape of the kernel functions and the size of the support volume determines the degree of smoothing, which is optimized to obtain the best unbiased predictor of the functional using an iterative plug-in support volume selector. We applied the methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem involving the mixing of two different waters carrying two aqueous species in chemical equilibrium and moving through a randomly heterogeneous porous medium.

  7. Bayesian fusion of algorithms for the robust estimation of respiratory rate from the photoplethysmogram.

    PubMed

    Zhu, Tingting; Pimentel, Marco A F; Clifford, Gari D; Clifton, David A

    2015-08-01

    Respiratory rate (RR) is a key vital sign that is monitored to assess the health of patients. With the increase of the availability of wearable devices, it is important that RR is extracted in a robust and noninvasive manner from the photoplethysmogram (PPG) acquired from pulse oximeters and similar devices. However, existing methods of noninvasive RR estimation suffer from a lack of robustness, resulting in the fact that they are not used in clinical practice. We propose a Bayesian approach to fusing the outputs of many RR estimation algorithms to improve the overall robustness of the resulting estimates. Our method estimates the accuracy of each algorithm and jointly infers the fused RR estimate in an unsupervised manner, with aim of producing a fused estimate that is more accurate than any of the algorithms taken individually. This approach is novel in the literature, where the latter has so far concentrated on attempting to produce single algorithms for RR estimation, without resulting in systems that have penetrated into clinical practice. A publicly-available dataset, Capnobase, was used to validate the performance of our proposed model. Our proposed methodology was compared to the best-performing individual algorithm from the literature, as well as to the results of using common fusing methodologies such as averaging, median, and maximum likelihood (ML). Our proposed methodology resulted in a mean-absolute-error (MAE) of 1.98 breaths per minute (bpm), outperformed other fusing strategies (mean fusion: 2.95 bpm; median fusion: 2.33 bpm; ML: 2.30 bpm). It also outperformed the best single algorithm (2.39 bpm) and the benchmark algorithm proposed for use with Capnobase (2.22 bpm). We conclude that the proposed fusion methodology can be used to combine RR estimates from multiple sources derived from the PPG, to infer a reliable and robust estimation of the respiratory rate in an unsupervised manner. PMID:26737693

  8. Spectroscopy of A˜190 Ir-Pt-Au Nuclei Near Stability from Complete and Incomplete Fusion Reaction

    NASA Astrophysics Data System (ADS)

    Fang, Y. D.; Zhang, Y. H.; Zhou, X. H.; Liu, M. L.; Wang, J. G.; Guo, Y. X.; Lei, X. G.; Hua, W.; Ma, F.; Wang, S. C.; Gao, B. S.; Li, S. C.; Wu, X. G.; He, C. Y.; Zheng, Y.; Wang, Z. M.; Shi, Y.; Xu, F. R.

    2013-11-01

    High-spin states of 194, 195Au, 195Pt and 193Ir have been studied using an in-beam γ-ray spectroscopic technique following the reaction of 7Li on an 192Os target at 44 MeV. The emitted γ rays were observed using an array of 14 Compton-suppressed HPGe detectors. Several bands in these nuclei have been identified and extended up to high-spin states. The α and t emission channels leading to 193Ir and 195Pt, respectively, are strongly enhanced which may be explained by incomplete fusion reaction; the t and α fragments from the break-up of weakly bound 7Li nucleus fusion with 192Os target.

  9. X-ray ablation rates in inertial confinement fusion capsule materials

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Rochau, G. A.; Landen, O. L.; Leeper, R. J.

    2011-03-01

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm2/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm2/ns; and for HDC, the rates range from 2 to 9 mg/cm2/ns. The ablation rates follow an approximate T3 dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T3.5. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  10. A new measurement of the fusion reaction nitrogen- 14(proton,photon)oxygen-15 and its impact on hydrogen burning, globular clusters, and the age of the universe

    NASA Astrophysics Data System (ADS)

    Runkle, Robert Charles

    2003-10-01

    Stars create the light we observe from energy liberated by nuclear fusion reactions. For most of their lives, stars exist as main-sequence objects quiescently burning hydrogen. At temperatures present in stars slightly larger than the Sun, the CN cycle dominates hydrogen burning and thus a star's macroscopic properties such as luminosity and main sequence turnoff. Because it is the slowest step in the CN cycle, the 14N(p,γ)15O reaction dictates the rate of hydrogen burning. This fact mandates a good understanding of the 14N(p,γ)15O reaction rate. Although this reaction is well understood at high energies, there are large uncertainties at astrophysically relevant energies. We conducted a new measurement of the 14N(p,γ)15O low energy cross section that extends very close to temperatures present in massive stars. The previous uncertainty in the reaction rate resulted from the possible contribution of a subthreshold resonance in the ground state transition. Our measurement suggests that this resonance does not contribute significantly. We conclude that the 6793 keV state in 15O dominates the low energy cross section. Indirect measurements support our extrapolation of this state to very low energies, which results in a factor of two reduction in the reaction rate for temperature below 108 K. This new result has a significant impact on the theory of the evolution of massive stars. It significantly increases the predicted age of the oldest globular clusters and helps provide a better constraint on cosmological parameters that determine the present age of the Universe.

  11. Complete and Incomplete Fusion Competition in 11B-INDUCED Fission Reactions on 197Au at the Intermediate Energy

    NASA Astrophysics Data System (ADS)

    Demekhina, N. A.; Karapetyan, G. S.; Balabekyan, A. R.

    2015-06-01

    Above Coulomb barrier cross sections of fission fragment production were measured in reactions of 11B with 197Au target. Induced-activity method was used for measurement the fission decay channel of the composite nuclei. Systematic of the fission fragment charge and mass distributions was used for fission cross section calculation. Fission fraction of the composite nuclei decay was compared with PACE-4 mode calculations. Estimated suppression for fission fraction followed the complete fusion have been obtained 35%.

  12. Production of the doubly magic nucleus Sn100 in fusion and quasifission reactions via light particle and cluster emission channels

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2014-08-01

    The possibilities of production of the doubly magic nucleus Sn100 in complete fusion and quasifission reactions with stable and radioactive ion beams are investigated within a dinuclear system model. The excitation functions for production of the exotic nuclei 100-103Sn and 112,114Ba via xn, pxn, αxn, and 12,14Cxn emission channels are predicted for future experiments.

  13. Excitation functions for {sup 208-211}Fr produced in the {sup 18}O+{sup 197}Au fusion reaction

    SciTech Connect

    Corradi, L.; Behera, B.R.; Fioretto, E.; Gadea, A.; Latina, A.; Stefanini, A.M.; Szilner, S.; Trotta, M.; Wu, Y.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Sagaidak, R.N.; Atutov, S.N.; Mai, B.; Stancari, G.; Tomassetti, L.; Mariotti, E.; Khanbekyan, A.; Veronesi, S.

    2005-01-01

    Excitation functions for {sup 208-211}Fr isotopes produced in the {sup 18}O+{sup 197}Au fusion-evaporation reaction have been measured at E{sub lab}=75-130 MeV via characteristic {alpha} decays by means of an electrostatic deflector and a semiconductor detector. Data have been compared with calculations giving barrier-passing (capture) cross sections and probabilities of the compound nucleus decay into different channels according to the standard statistical model.

  14. Cross sections and reaction rates of relevance to aeronomy

    SciTech Connect

    Fox, J.L. )

    1991-01-01

    Experimental and theoretical data relevant to models and measurements of the chemical and thermal structures and luminosity of the thermospheres of the earth and planets published during the last four years are surveyed. Among chemical processes, attention is given to ion-molecule reactions, dissociative recombination of molecular ions, and reactions between neutral species. Both reactions between ground state species and species in excited states are considered, including energy transfer and quenching. Measured and calculated cross sections for interactions of solar radiation with atmospheric species, such as photoabsorption, photoionization, and photodissociation and related processes are surveyed.

  15. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  16. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  17. Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-01

    A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  18. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  19. Interactive Program System for Integration of Reaction Rate Equations.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1988-01-01

    Describes a Pascal-language based kinetics rate package for the microcomputer. Considers possible ecological uses for the program and illustrates results for several rate laws. Discusses hardware and software needs for adequate operation. (ML)

  20. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  1. Quick and Easy Rate Equations for Multistep Reactions

    ERIC Educational Resources Information Center

    Savage, Phillip E.

    2008-01-01

    Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…

  2. Women's Self-Disclosure of HIV Infection: Rates, Reasons, Reactions.

    ERIC Educational Resources Information Center

    Simoni, Jane M.; And Others

    1995-01-01

    A survey of 65 ethnically diverse women revealed relatively low rates of disclosure of HIV-positive serostatus to extended family members, somewhat higher rates for immediate family members, and highest rates for lovers or friends. Spanish-speaking Latinas were less likely to disclose their serostatus than English-speaking Latinas, African…

  3. Development of the new approach to the diffusion-limited reaction rate theory

    SciTech Connect

    Veshchunov, M. S.

    2012-04-15

    The new approach to the diffusion-limited reaction rate theory, recently proposed by the author, is further developed on the base of a similar approach to Brownian coagulation. The traditional diffusion approach to calculation of the reaction rate is critically analyzed. In particular, it is shown that the traditional approach is applicable only in the special case of reactions with a large reaction radius and the mean inter-particle distances, and become inappropriate in calculating the reaction rate in the case of a relatively small reaction radius. In the latter case, most important for chemical reactions, particle collisions occur not in the diffusion regime but mainly in the kinetic regime characterized by homogeneous (random) spatial distribution of particles on the length scale of the mean inter-particle distance. The calculated reaction rate for a small reaction radius in three dimensions formally (and fortuitously) coincides with the expression derived in the traditional approach for reactions with a large reaction radius, but notably deviates at large times from the traditional result in the planar two-dimensional geometry. In application to reactions on discrete lattice sites, new relations for the reaction rate constants are derived for both three-dimensional and two-dimensional lattices.

  4. Exploring contributions from incomplete fusion in Li,76+209Bi and Li,76+198Pt reactions

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Jha, V.; Kailas, S.

    2016-08-01

    We use the breakup absorption model to simultaneously describe the measured cross sections of complete fusion (CF), incomplete fusion (ICF), and total fusion (TF) in nuclear reactions induced by weakly bound nuclei Li,76 on 209Bi and 198Pt targets. The absorption cross sections are calculated using the continuum discretized coupled channels (CDCC) method with different choices of short-range imaginary potentials to get the ICF, CF, and TF cross sections. It is observed that the cross sections for deuteron ICF / deuteron capture and α ICF / α capture are of similar magnitude, in the case of the 6Li projectile, while the cross sections for the triton ICF / triton capture is more dominant than that of α ICF / α capture in the case of the 7Li projectile. Both these observations are also corroborated by the experimental data. The ratio of ICF to TF cross sections, which defines the value of fusion suppression factor, is found to be in agreement with the data available from the literature. The cross-section ratios of CF/TF and ICF/TF show opposite behavior at below-barrier energies the former decreases while the latter increases as the energy is lowered, which shows the dominance of ICF at below-barrier energies. We have also studied the correlation of the ICF cross sections with the noncapture breakup (NCBU) cross sections as a function of energy, which shows that the NCBU is more significant than ICF at below-barrier energies.

  5. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  6. Angular momentum effects and barrier modification in sub-barrier fusion reactions using the proximity potential in the Wong formula

    SciTech Connect

    Kumar, Raj; Bansal, Manie; Arun, Sham K.; Gupta, Raj K.

    2009-09-15

    Using the capture cross-section data from {sup 48}Ca+{sup 238}U, {sup 48}Ca+{sup 244}Pu, and {sup 48}Ca+{sup 248}Cm reactions in the superheavy mass region, and fusion-evaporation cross sections from {sup 58}Ni+{sup 58}Ni, {sup 64}Ni+{sup 64}Ni, and {sup 64}Ni+{sup 100}Mo reactions known for fusion hindrance phenomenon in coupled-channels calculations, the Wong formula is assessed for its angular momentum and barrier-modification effects at sub-barrier energies. The simple, l=0 barrier-based Wong formula is shown to ignore the modifications of the barrier due to its inbuilt l dependence via l summation, which is found to be adequate enough to explain the capture cross sections for all the three above-mentioned {sup 48}Ca-based reactions forming superheavy systems. For the capture (equivalently, quasifission) reactions, the complete l-summed Wong formula is shown to be the same as the dynamical cluster-decay model expression, of one of us (R.K.G.) and collaborators, with the condition of fragment preformation probability P{sub 0}{sup l}=1 for all the angular momentum l values. In the case of fusion-evaporation cross sections, however, a further modification of barriers is required for below-barrier energies, affected in terms of either the barrier 'lowering' or barrier 'narrowing' via the curvature constant. Calculations are made for use of nuclear proximity potential, with effects of multipole deformations included up to hexadecapole, and orientation degrees of freedom integrated for both the coplanar and noncoplanar configurations.

  7. Fluctuation enhanced electrochemical reaction rates at the nanoscale.

    PubMed

    García-Morales, Vladimir; Krischer, Katharina

    2010-03-01

    The electrode potential constitutes a dynamical variable whenever an electrode is resistively coupled to the electric circuit. We show that at the nanoscale, the discreteness and stochasticity of an electron transfer event causes fluctuations of the electrode potential that render all elementary electrochemical reactions to be faster on a nanoelectrode than predicted by the macroscopic (Butler-Volmer) electrochemical kinetics. This phenomenon is substantiated by means of a generalized (electro)chemical master equation. PMID:20176966

  8. Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    2014-05-01

    A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged

  9. Examination of the different roles of neutron transfer in the sub-barrier fusion reactions 32S+Zr,9694 and 40Ca +Zr,9694

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2015-01-01

    The sub-barrier capture (fusion) reactions 32S+90,94,96Zr, 36S+Zr,9690 , 40Ca +90,94,96Zr, and 48Ca +Zr,9690 with positive and negative Q values for neutron transfer are studied with the quantum diffusion approach and the universal fusion function representation. For these systems, the s -wave capture probabilities are extracted from the experimental excitation functions and are also analyzed. Different effects of the positive Qx n-value neutron transfer in the fusion enhancement are revealed in the relatively close reactions 32S+Zr,9694 and 40Ca +Zr,9694 .

  10. Measurements of fusion reactions of low-intensity radioactive carbon beams on 12C and their implications for the understanding of X-ray bursts.

    PubMed

    Carnelli, P F F; Almaraz-Calderon, S; Rehm, K E; Albers, M; Alcorta, M; Bertone, P F; Digiovine, B; Esbensen, H; Niello, J O Fernández; Henderson, D; Jiang, C L; Lai, J; Marley, S T; Nusair, O; Palchan-Hazan, T; Pardo, R C; Paul, M; Ugalde, C

    2014-05-16

    The interaction between neutron-rich nuclei plays an important role for understanding the reaction mechanism of the fusion process as well as for the energy production through pycnonuclear reactions in the crust of neutron stars. We have performed the first measurements of the total fusion cross sections in the systems (10,14,15)C+(12)C using a new active target-detector system. In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities. PMID:24877935

  11. Complete and incomplete fusion in the reaction {sup 35}Cl+{sup 12}C at the energy range 70{endash}154 MeV

    SciTech Connect

    Pirrone, S.; Aiello, S.; Arena, N.; Cavallaro, S.; Femino, S.; Lanzalone, G.; Politi, G.; Porto, F.; Romano, S.; Sambataro, S.

    1997-05-01

    Velocity spectra of evaporation residues produced in the {sup 35}Cl+{sup 12}C reaction have been measured at bombarding energies of 125, 140, and 154 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate complete fusion and incomplete fusion components. The results show the presence of small contributions of incomplete fusion components which appear to be due to a cluster transfer reaction mechanism. Angular distributions and total and complete fusion evaporation residue cross sections were extracted at 70, 90, 110, 125, 140, and 154 MeV. The complete fusion cross sections and the deduced critical angular momenta are compared with other experimental data and the predictions of existing models. {copyright} {ital 1997} {ital The American Physical Society}

  12. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  13. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase.

    PubMed

    McInerney, Peter; Adams, Paul; Hadi, Masood Z

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  14. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGESBeta

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Errormore » rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  15. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    PubMed Central

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  16. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  17. Effect of temperature oscillation on chemical reaction rates in the atmosphere

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.

    1974-01-01

    The effect of temperature fluctuations on atmospheric ozone chemistry is examined by considering the Chapman photochemical theory of ozone transport to calculate globally averaged ozone production rates from mean reaction rates, activation energies, and recombination processes.

  18. Upper atmosphere research: Reaction rate and optical measurements

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  19. Interlaboratory reaction rate program. 12th progress report, November 1976-October 1979

    SciTech Connect

    Lippincott, E.P.; McElroy, W.N.; Preston, C.C.

    1980-09-01

    The Interlaboratory Reaction Rate UILRR) program is establishing the capability to accurately measure neutron-induced reactions and reaction rates for reactor fuels and materials development programs. The goal for the principal fission reactions, /sup 235/U, /sup 238/U and /sup 239/Pu, is an accuracy to within +- 5% at the 95% confidence level. Accurate measurement of other fission and nonfission reactions is also required, but to a lesser accuracy, between +- 5% and 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in the standarization of fuels and materials dosimetry measurements of neutron flux, spectra, fluence and burnup.

  20. Photo-fusion reactions in a new compact device for ELI

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G.

    2012-07-01

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 109-1010 neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

  1. Photo-fusion reactions in a new compact device for ELI

    SciTech Connect

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G.

    2012-07-09

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 10{sup 9}-10{sup 10} neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

  2. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  3. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  4. Description of nucleon-transfer and fusion reactions within time-dependent approaches and coupled-channel method

    SciTech Connect

    Samarin, V. V.

    2015-01-15

    The time-dependent Schrödinger equation and the method of perturbed stationary states that is based on the expansion of the total wave function for the system of two nuclear cores and a nucleon in a set of nucleon two-center functions are used to describe nucleon transfers and fusion in low-energy nuclear reactions. A set of multichannel equations that couple the relative motion of nuclei to the motion of the nucleon is obtained. The kinetic-energy coupling matrix is similar to the coupling matrix for collective excitations of nuclei.

  5. Controlling the emotional heart: heart rate biofeedback improves cardiac control during emotional reactions.

    PubMed

    Peira, Nathalie; Fredrikson, Mats; Pourtois, Gilles

    2014-03-01

    When regulating negative emotional reactions, one goal is to reduce physiological reactions. However, not all regulation strategies succeed in doing that. We tested whether heart rate biofeedback helped participants reduce physiological reactions in response to negative and neutral pictures. When viewing neutral pictures, participants could regulate their heart rate whether the heart rate feedback was real or not. In contrast, when viewing negative pictures, participants could regulate heart rate only when feedback was real. Ratings of task success paralleled heart rate. Participants' general level of anxiety, emotion awareness, or cognitive emotion regulation strategies did not influence the results. Our findings show that accurate online heart rate biofeedback provides an efficient way to down-regulate autonomic physiological reactions when encountering negative stimuli. PMID:24373886

  6. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  7. Modification of a Hydrophobic Layer by a Point Mutation in Syntaxin 1A Regulates the Rate of Synaptic Vesicle Fusion

    PubMed Central

    Lagow, Robert D; Bao, Hong; Cohen, Evan N; Daniels, Richard W; Zuzek, Aleksej; Williams, Wade H; Macleod, Gregory T; Sutton, R. Bryan; Zhang, Bing

    2007-01-01

    Both constitutive secretion and Ca2+-regulated exocytosis require the assembly of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. At present, little is known about how the SNARE complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion. Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain. Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in syntaxins ascribed to the constitutive secretory pathway. Flies carrying the I254 mutant protein have increased levels of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast, overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the I254 mutant background. These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254 serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas I254 favors fusion by enhancing intermolecular interaction within the SNARE core complex. PMID:17341138

  8. Liquid metal reactions under postulated accident conditions for fission and fusion reactors

    SciTech Connect

    Muhlestein, L.D.

    1980-04-01

    Sodium and lithium reactions are considered in the context of a postulated breach of a coolant boundary. Specific topics addressed are coolant-atmosphere and coolant-material reactions which may contribute to the overall consequence of a postulated accident scenario, and coolant reaction extinguishment and effluent control which may be desirable for containment of the spilled coolant.

  9. Simulation of Transport and Reaction Using Random Walks: Reactions Without Concentrations and the Automatic Simulation of Drastically Different Thermodynamic--- Versus Diffusion---Limited Reaction Rates

    NASA Astrophysics Data System (ADS)

    Benson, D. A.; Meerschaert, M. M.

    2008-12-01

    We extend the advantages of Lagrangian random walk particle tracking (RWPT) methods that have long been used to simulate advection and dispersion in highly heterogeneous media. By formulating dissolution as a random, independent decay process, the classical continuum rate law is recovered. A novel formulation of the random precipitation process requires a consideration of the probability that two nearby particles will occupy the same differential volume in a given time period. This depends on local mixing (as by diffusion) and the total domain particle number density, which are fixed and therefore easy to calculate. The result is that the effective reaction rate follows two regimes. First, for high thermodynamic reaction probability and/or fast mixing, the classical continuum rate laws are reproduced. These are coded in the Gillespie method. This implies an exponentially fast approach to equilibrium. Second, for diffusion (mixing) limited reaction rates, equilibrium is approached much more slowly, following a power law that differs for 1-, 2-, or 3-d. At long enough times, the classical law of mass action for equilibrium reactions is reproduced, in an ensemble sense, for either rate regime. The same number of parameters for A+B ⇌ C are needed in a probabilistic versus continuum reaction simulation---one each for forward and backward probabilities that correspond to continuum thermodynamic rates. The random nature of the simulations allows for significant disequilibrium in any given region at any time that is independent of the numerical details such as time stepping or particle density. This is exemplified by nearby or intermingled groups of reactants and little or no product---a result that is often noted in the field that is difficult to reconcile with continuum methods or coarse-grained Eulerian models. Our results support both the recent experiments that show mixing-limited reactions and the results of perturbed advection-dispersion-reaction continuum models

  10. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    SciTech Connect

    Thanh, Vo Hong; Priami, Corrado

    2015-08-07

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

  11. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  12. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  13. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  14. Chiral polymerization in open systems from chiral-selective reaction rates.

    PubMed

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates. PMID:22610131

  15. A simple expression for the apparent reaction rate of large wood char gasification with steam.

    PubMed

    Umeki, Kentaro; Roh, Seon-Ah; Min, Tai-Jin; Namioka, Tomoaki; Yoshikawa, Kunio

    2010-06-01

    A simple expression for the apparent reaction rate of large wood char gasification with steam is proposed. Large char samples were gasified under steam atmosphere using a thermo-balance reactor. The apparent reaction rate was expressed as the product of the intrinsic rate and the effective factor. The effective factor was modified to include the effect of change in char diameter and intrinsic reaction rate during the reaction. Assuming uniform conversion ratio throughout a particle, the simplified reaction scheme was divided into three stages. In the initial stage, the local conversion ratio increases without particle shrinkage. In the middle stage, the particle shrinks following the shrinking core model without change in the local conversion ratio. In the final stage, the local conversion ratio increases without particle shrinkage. The validity of the modified effective value was confirmed by comparison with experimental results. PMID:20144863

  16. Competition between fusion-fission and quasifission processes in the {sup 32}S+{sup 184}W reaction

    SciTech Connect

    Zhang, H. Q.; Zhang, C. L.; Lin, C. J.; Liu, Z. H.; Yang, F.; Nasirov, A. K.; Mandaglio, G.; Manganaro, M.; Giardina, G.

    2010-03-15

    The angular distributions of fission fragments for the {sup 32}S+{sup 184}W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (A{sub exp}) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the {sup 32}S+{sup 182,184}W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K{sub 0}{sup 2}, , and A{sub exp}, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the {sup 32}S+{sup 184}W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about E{sub c.m.}approx =160 MeV. The underestimation of the experimental data at high excitation energies E{sub c.m.}>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  17. Fission-fragment angular distributions for the 19F + 208Pb near- and sub-barrier fusion-fission reaction

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Kan, Xu; Jun, Lu; Ming, Ruan

    1990-06-01

    Fission cross sections and angular distributions have been measured for the 19F + 208Pb reaction at bombarding energies from 83 to 105 MeV. The fission excitation function is well reproduced on the basis of the coupled-channels theory. The fission-fragment angular distributions are calculated in terms of the transition-state theory, with the transmission coefficients extracted from the excitation function calculation. It is found that a discrepancy between the observations and the predictions in angular anisotropy of fission fragments exists at near- and sub-barrier energies, except for lower and higher energy regions where the discrepancy tends to disappear. Moreover, the anisotropies as a function of the center-of-mass energy show a shoulder around 82 MeV. Our results clearly indicate the considerable effects of the coupling on the sub-barrier fusion cross section and on the near-barrier compound-nucleus spin distribution, and confirm the prediction of an approximately constant value for the mean square spin of a compound nucleus produced in a far sub-barrier fusion reaction.

  18. Determination of the Temperature Dependence of the Rate Constants for HO2/Acetonylperoxy Reaction and Acetonylperoxy Self-Reaction

    NASA Astrophysics Data System (ADS)

    Darby, E. C.; Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2014-12-01

    Reactions of hydroperoxy radical, HO2, with carbonyl containing RO2 can play an important role in the oxidation chemistry of the troposphere. Discovered radical product channels in addition to radical termination channels have resulted in increased study of these important reactions. In our continued study of HO2 reactions with acetonylperoxy and acetylperoxy radicals, we report here our first results on the kinetics of the acetonylperoxy system. Previous studies have resulted in conflicting results and no temperature dependence of the rate constants. Using the Infrared Kinetic Spectroscopy (IRKS) method in which a temperature-controlled slow-flow tube apparatus and laser flash photolysis of Cl2 are used to produce HO2 and CH3C(O)CH2O2 from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 295 to 240 K. Rates of chemical reaction were determined by monitoring the HO2 concentration as a function of time by sensitive near-IR diode laser wavelength modulation spectroscopy while simultaneously measuring the disappearance of [CH3C(O)CH2O2] in the ultraviolet at 300 nm. The simultaneous fits resulted in the determination of the temperature dependence of the rate constants for the HO2/acetonylperoxy reaction and the acetonylperoxy self-reaction. At the lower temperatures, the reactions of HO2 and CH3C(O)CH2O2 with the adducts HO2•CH3OH and HO2•CH3C(O)CH3 formed in significant concentrations needed to be included in the fitting models.

  19. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute. PMID:26135219

  20. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Klein, Frieder; Robbins, Mark; Moskowitz, Bruce; Berquó, Thelma S.; Jöns, Niels; Bach, Wolfgang; Templeton, Alexis

    2016-05-01

    A series of laboratory experiments were conducted to examine how partitioning of Fe among solid reaction products and rates of H2 generation vary as a function of temperature during serpentinization of olivine. Individual experiments were conducted at temperatures ranging from 200 to 320 °C, with reaction times spanning a few days to over a year. The extent of reaction ranged from <1% to ∼23%. Inferred rates for serpentinization of olivine during the experiments were 50-80 times slower than older studies had reported but are consistent with more recent results, indicating that serpentinization may proceed more slowly than previously thought. Reaction products were dominated by chrysotile, brucite, and magnetite, with minor amounts of magnesite, dolomite, and iowaite. The chrysotile contained only small amounts of Fe (XFe = 0.03-0.05, with ∼25% present as ferric Fe in octahedral sites), and displayed little variation in composition with reaction temperature. Conversely, the Fe contents of brucite (XFe = 0.01-0.09) increased steadily with decreasing reaction temperature. Analysis of the reaction products indicated that the stoichiometry of the serpentinization reactions varied with temperature, but remained constant with increasing reaction progress at a given temperature. The observed distribution of Fe among the reaction products does not appear to be entirely consistent with existing equilibrium models of Fe partitioning during serpentinization, suggesting improved models that include kinetic factors or multiple reaction steps need to be developed. Rates of H2 generation increased steeply from 200 to 300 °C, but dropped off at higher temperatures. This trend in H2 generation rates is attributable to a combination of the overall rate of serpentinization reactions and increased partitioning of Fe into brucite rather than magnetite at lower temperatures. The results suggest that millimolal concentration of H2 could be attained in moderately hot hydrothermal

  1. Estimation of the prevalence and rate of acute transfusion reactions occurring in Windhoek, Namibia

    PubMed Central

    Meza, Benjamin P.L.; Lohrke, Britta; Wilkinson, Robert; Pitman, John P.; Shiraishi, Ray W.; Bock, Naomi; Lowrance, David W.; Kuehnert, Matthew J.; Mataranyika, Mary; Basavaraju, Sridhar V.

    2014-01-01

    Background Acute transfusion reactions are probably common in sub-Saharan Africa, but transfusion reaction surveillance systems have not been widely established. In 2008, the Blood Transfusion Service of Namibia implemented a national acute transfusion reaction surveillance system, but substantial under-reporting was suspected. We estimated the actual prevalence and rate of acute transfusion reactions occurring in Windhoek, Namibia. Methods The percentage of transfusion events resulting in a reported acute transfusion reaction was calculated. Actual percentage and rates of acute transfusion reactions per 1,000 transfused units were estimated by reviewing patients’ records from six hospitals, which transfuse >99% of all blood in Windhoek. Patients’ records for 1,162 transfusion events occurring between 1st January – 31st December 2011 were randomly selected. Clinical and demographic information were abstracted and Centers for Disease Control and Prevention National Healthcare Safety Network criteria were applied to categorize acute transfusion reactions1. Results From January 1 – December 31, 2011, there were 3,697 transfusion events (involving 10,338 blood units) in the selected hospitals. Eight (0.2%) acute transfusion reactions were reported to the surveillance system. Of the 1,162 transfusion events selected, medical records for 785 transfusion events were analysed, and 28 acute transfusion reactions were detected, of which only one had also been reported to the surveillance system. An estimated 3.4% (95% confidence interval [CI]: 2.3–4.4) of transfusion events in Windhoek resulted in an acute transfusion reaction, with an estimated rate of 11.5 (95% CI: 7.6–14.5) acute transfusion reactions per 1,000 transfused units. Conclusion The estimated actual rate of acute transfusion reactions is higher than the rate reported to the national haemovigilance system. Improved surveillance and interventions to reduce transfusion-related morbidity and mortality

  2. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-01

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. PMID:27258213

  3. The sonochemical degradation of azobenzene and related azo dyes: Rate enhancements via Fenton's reactions

    SciTech Connect

    Joseph, J.M.; Destaillats, H.; Hung, H.M.; Hoffmann, M.R.

    2000-01-20

    The sonochemical degradation of aqueous solutions of azobenzene and related azo dyes (methyl orange, o-methyl red, and p-methyl red) was performed at 500 kHz and 50 W, under air, O{sub 2}, or Ar saturation at 288 K. Reaction products and intermediates were identified by HPLC-ES-MS. Total organic carbon (TOC) was also determined as a function of reaction time. The authors propose a reaction mechanism based on the observed species and the extent and rate of TOC depletion. The effects of the dye structures and of the background gas on the sonochemical bleaching rates were also investigated. The reaction rates for o-methyl red were approximately 30--40% faster than those for the other compounds. Saturating with Ar instead of air or O{sub 2} increased the pseudo first-order rate constants for the degradation by 10%. The acceleration of the sonochemical bleaching and the mineralization process upon addition of Fe(II) was also investigated in Ar-saturated methyl orange solutions. A 3-fold increase in the reaction rate was observed at optimal Fe(II) concentrations. This kinetic effect is quantitatively accounted for by a simple kinetic model based on the reaction of Fe(II) with sonochemically produced H{sub 2}O{sub 2} (Fenton's reaction). This latter effect illustrates a simple way of achieving a substantial improvement in the efficiency of sonochemical degradation reactions.

  4. Evidence of reaction rate influencing cubic and hexagonal phase formation process in CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Deka, Kuldeep; Kalita, M. P. C.

    2016-05-01

    CdS nanocrystals are synthesized by co-precipitation method using 2-mercaptoethanol (ME) as capping agent. Cubic, hexagonal and their mixture are obtained by varying the ME concentration. Lower (higher) ME concentration results in cubic (hexagonal) phase. The crystallite sizes are in the range 3-7 nm. Increase in ME concentration lead to lower reaction rate between Cd2+ and S2- of the precursors, and slower reaction rate is found to favor hexagonal phase formation over the cubic one in CdS nanocrystals. Role of reaction rate in the phase formation process provides a way to synthesize CdS nanocrystals in desired crystal phase.

  5. Thermonuclear reaction rate of 18Ne(α ,p ) 21Na from Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Mohr, P.; Longland, R.; Iliadis, C.

    2014-12-01

    The 18Ne(α ,p ) 21Na reaction impacts the break-out from the hot CNO cycles to the r p process in type-I x-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.

  6. Complete and incomplete fusion in the {sup 32}S+{sup 12}C reaction at E({sup 32}S)=20 MeV/A

    SciTech Connect

    Aiello, S.; Pirrone, S.; Politi, G.; Arena, N.; Cavallaro, Seb.; Sambataro, S.; Geraci, E.; Porto, F.; Lanzalone, G.

    1999-11-16

    Velocity distribution of mass identified evaporation residues produced in the {sup 32}S+{sup 12}C reaction at E({sup 32}S)=20 MeV/A have been measured using time-of-flight techniques. These distributions were used to separate the complete and incomplete fusion components. The complete fusion cross section and the deduced critical angular momenta are compared with other experimental data and the predictions of existing models.

  7. Complete and Incomplete fusion in the {sup 32}S+{sup 12}C reaction at E({sup 32}S)=20 MeV/A

    SciTech Connect

    S. Aiello; N. Arena; S. Cavallaro; E. Geraci; G. Lanzalone; S. Pirrone; G. Politi; F. Porto; S. Sambataro

    1999-12-31

    Velocity distribution of mass identified evaporation residues produced in the {sup 32}S+{sup 12}C reaction at E({sup 32}S)=20 MeV/A have been measured using time-of-flight techniques. These distributions were used to separate the complete and incomplete fusion components. The complete fusion cross section and the deduced critical angular momenta are compared with other experimental data and the predictions of existing models.

  8. Measurement of 55Fe(n ,p ) cross sections by the surrogate-reaction method for fusion technology applications

    NASA Astrophysics Data System (ADS)

    Pandey, Bhawna; Desai, V. V.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.; Mirgule, E. T.; Santra, S.; Mahata, K.; Makawana, R.; Abhangi, M.; Basu, T. K.; Rao, C. V. S.; Jakhar, S.; Vala, S.; Sarkar, B.; Agrawal, H. M.; Kaur, G.; Prajapati, P. M.; Pal, Asim; Sarkar, D.; Kundu, A.

    2016-02-01

    We have measured the proton decay probabilities of the *56Fe and *47Ti compound systems which are populated by the transfer reactions 52Cr(6Li,d ) *56Fe (surrogate of n +55Fe→*56Fe→p +55Mn ) and 45Sc(6Li,α ) *47Ti (surrogate of n +46Ti→47Ti*→p +46Sc ) reactions, respectively. The 55Fe(n ,p ) cross sections were then obtained in the equivalent neutron energy range of 7.9 to 20.1 MeV within the framework of the surrogate-reaction method. The measured results were compared with predictions of the empire-3.2.3 statistical model code and various recent evaluated data libraries. The experimental cross-section data on 55Fe(n ,p ) are in reasonable agreement with EAF-2010, while the TENDL-2014 and ROSFOND-2010 data show some discrepancies. This study demonstrates the possibility of determining neutron-induced charged particle emission cross sections for unstable radionuclides relevant to fusion technology applications by the surrogate-reaction method.

  9. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  10. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    NASA Technical Reports Server (NTRS)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  11. Comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    SciTech Connect

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  12. Astrophysical S-Factors and Reaction Rates of Threshold (p, n)-Reactions on {sup 99-102}Ru

    SciTech Connect

    Skakun, Ye.; Rauscher, T.

    2010-08-12

    Astrophysical S-factors of (p, n) reactions on {sup 99}Ru, {sup 100}Ru, {sup 101}Ru, and {sup 102}Ru were derived from the sum of experimental isomeric and ground states cross sections measured in the incident proton energy range of 5-9 MeV. They were compared with Hauser-Feshbach statistical model predictions of the NON-SMOKER code. Good agreement was found in the majority of cases. Reaction rates were derived up to 8.7 GK stellar temperature by combining experiment and theory.

  13. Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems

    DOE R&D Accomplishments Database

    Shizgal, B.; Karplus, M.

    1970-10-01

    The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.

  14. Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

    NASA Astrophysics Data System (ADS)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2016-04-01

    A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of B (E 1 ) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to 11Li (9Li+n +n ) and 6He (4He+n +n ) three-body systems for which some data exist.

  15. Anticipatory Heart Rate Deceleration and Reaction Time in Children with and without Referral for Learning Disability

    ERIC Educational Resources Information Center

    Sroufe, L. Alan; And Others

    1973-01-01

    The finding of major significance in this study concerns the effect of stimulant drug medication on the relationship between heart rate deceleration and reaction time with the clinic children. (Authors)

  16. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. PMID:24759644

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  18. Probing dynamics of fusion reactions through cross-section and spin distribution measurement

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Behera, B. R.; Singh, Gulzar; Singh, Varinderjit; Madhavan, N.; Muralithar, S.; Nath, S.; Gehlot, J.; Mohanto, G.; Mukul, Ish; Siwal, D.; Thakur, M.; Kapoor, K.; Sharma, P.; Banerjee, T.; Jhingan, A.; Varughese, T.; Bala, Indu; Nayak, B. K.; Saxena, A.; Chatterjee, M. B.; Stevenson, P. D.

    2016-05-01

    Present work aims to explicate the effect of entrance channel mass asymmetry on fusion dynamics for the Compound Nucleus 80Sr populated through two different channels, 16O+64Zn and 32S+48Ti, using cross-section and spin distribution measurements as probes. The evaporation spectra studies for these systems, reported earlier indicate the presence of dynamical effects for mass symmetric 32S+48Ti system.The CCDEF and TDHF calculations have been performed for both the systems and an attempt has been made to explain the reported deviations in the α-particle spectrum for the mass symmetric system.

  19. Controlling the rates of biochemical reactions and signaling networks by shape and volume changes.

    PubMed

    Lizana, L; Bauer, B; Orwar, O

    2008-03-18

    In biological systems, chemical activity takes place in micrometer- and nanometer-sized compartments that constantly change in shape and volume. These ever-changing cellular compartments embed chemical reactions, and we demonstrate that the rates of such incorporated reactions are directly affected by the ongoing shape reconfigurations. First, we show that the rate of product formation in an enzymatic reaction can be regulated by simple volume contraction-dilation transitions. The results suggest that mitochondria may regulate the dynamics of interior reaction pathways (e.g., the Krebs cycle) by volume changes. We then show the effect of shape changes on reactions occurring in more complex and structured systems by using biomimetic networks composed of micrometer-sized compartments joined together by nanotubes. Chemical activity was measured by implementing an enzymatic reaction-diffusion system. During ongoing reactions, the network connectivity is changed suddenly (similar to the dynamic tube formations found inside Golgi stacks, for example), and the effect on the reaction is registered. We show that spatiotemporal properties of the reaction-diffusion system are extremely sensitive to sudden changes in network topology and that chemical reactions can be initiated, or boosted, in certain nodes as a function of connectivity. PMID:18337513

  20. A Unified Equation for the Reaction Rate in Dense Matter Stars

    SciTech Connect

    Gasques, L. R.; Wiescher, M.; Yakovlev, D. G.

    2007-10-26

    We analyze thermonuclear and pycnonuclear reaction rates in multi-component dense stellar plasma. First we describe calculations of the astrophysical S-factor at low energies using the Sao Paulo potential on the basis of the barrier penetration model. Then we present a simple phenomenological expression for a reaction rate. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature.

  1. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Bruno, C. G.; Cavanna, F.; Cristallo, S.; Davinson, T.; Depalo, R.; deBoer, R. J.; Di Leva, A.; Ferraro, F.; Imbriani, G.; Marigo, P.; Terrasi, F.; Wiescher, M.

    2016-04-01

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions.

  2. Isospin Dependence of Incomplete Fusion Reactions at 25 MeV/Nucleon

    SciTech Connect

    Amorini, F.; Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Di Pietro, A.; Figuera, P.; Maiolino, C.; Santonocito, D.; Sapienza, P.; Cardella, G.; Papa, M.; De Filippo, E.; Pagano, A.; Pirrone, S.; Verde, G.; Giuliani, G.; Berceanu, I.; Pop, A.; Cavallaro, S.

    2009-03-20

    {sup 40}Ca+{sup 40,48}Ca,{sup 46}Ti reactions at 25 MeV/nucleon have been studied using the 4{pi} CHIMERA detector. An isospin effect on the competition between fusionlike and binarylike reaction mechanisms has been observed. The probability of producing a heavy residue is lower in the case of N{approx_equal}Z colliding systems as compared to the case of reactions induced on the neutron rich {sup 48}Ca target. Predictions based on constrained molecular dynamics II calculations show that the competition between fusionlike and binary reactions in the selected centrality bins can constrain the parametrization of the symmetry energy and its density dependence in the nuclear equation of state.

  3. Improvement of force-sensor-based heart rate estimation using multichannel data fusion.

    PubMed

    Bruser, Christoph; Kortelainen, Juha M; Winter, Stefan; Tenhunen, Mirja; Parkka, Juha; Leonhardt, Steffen

    2015-01-01

    The aim of this paper is to present and evaluate algorithms for heartbeat interval estimation from multiple spatially distributed force sensors integrated into a bed. Moreover, the benefit of using multichannel systems as opposed to a single sensor is investigated. While it might seem intuitive that multiple channels are superior to a single channel, the main challenge lies in finding suitable methods to actually leverage this potential. To this end, two algorithms for heart rate estimation from multichannel vibration signals are presented and compared against a single-channel sensing solution. The first method operates by analyzing the cepstrum computed from the average spectra of the individual channels, while the second method applies Bayesian fusion to three interval estimators, such as the autocorrelation, which are applied to each channel. This evaluation is based on 28 night-long sleep lab recordings during which an eight-channel polyvinylidene fluoride-based sensor array was used to acquire cardiac vibration signals. The recruited patients suffered from different sleep disorders of varying severity. From the sensor array data, a virtual single-channel signal was also derived for comparison by averaging the channels. The single-channel results achieved a beat-to-beat interval error of 2.2% with a coverage (i.e., percentage of the recording which could be analyzed) of 68.7%. In comparison, the best multichannel results attained a mean error and coverage of 1.0% and 81.0%, respectively. These results present statistically significant improvements of both metrics over the single-channel results (p < 0.05). PMID:25561445

  4. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Lindquist, W Brent

    2009-03-03

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  5. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    NASA Astrophysics Data System (ADS)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Carnelli, P. F. F.; DiGiovine, B.; Esbensen, H.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-05-01

    A highly efficient MUlti-Sampling Ionization Chamber (MUSIC) detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n)20Ne, 23Ne(α, p)26Mg and 23Ne(α, n)26Al reactions will be discussed.

  6. Dynamical Dipole mode in the 40,48 Ca +152,144Sm fusion reactions at 11 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Parascandolo, C.; Pierroutsakou, D.; Alba, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Agodi, C.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; La Commara, M.; Martin, B.; Mazzocchi, C.; Mazzocco, M.; Rizzo, C.; Romoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Torresi, D.; Trifirò, A.; Trimarchi, M.

    2016-05-01

    The excitation of the dynamical dipole mode along the fusion path was investigated in the formation of a heavy compound nucleus in the A=190 mass region. To form the compound nucleus, the 40Ca + 152Sm and 48Ca + 144Sm reactions were employed at Elab=11 and 10.1 MeV/nucleon, respectively. Both fusion-evaporation and fission events were studied simultaneously for the first time. Our results for evaporation and fission events (preliminary) show that the dynamical dipole mode survives in reactions involving heavier nuclei than those studied previously.

  7. Thick target measurement of the 40Ca(alpha,gamma)44Ti reaction rate

    SciTech Connect

    Sheets, S A; Burke, J T; Scielzo, N D; Phair, L; Bleuel, D; Norman, E B; Grant, P G; Hurst, A M; Tumey, S; Brown, T A; Stoyer, M

    2009-02-06

    The thick-target yield for the {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction has been measured for E{sub beam} = 4.13, 4.54, and 5.36 MeV using both an activation measurement and online {gamma}-ray spectroscopy. The results of the two measurements agree. From the measured yield a reaction rate is deduced that is smaller than statistical model calculations. This implies a smaller {sup 44}Ti production in supernova compared to recently measured {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction rates.

  8. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction

    NASA Astrophysics Data System (ADS)

    Jambrina, P. G.; Lara, Manuel; Menéndez, M.; Launay, J.-M.; Aoiz, F. J.

    2012-10-01

    Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S(1D) + H2 → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002), 10.1063/1.1431280] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009), 10.1021/jp903790h]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S(1D).

  9. High-precision (p,t) reaction to determine {sup 25}Al(p,{gamma}){sup 26}Si reaction rates

    SciTech Connect

    Matic, A.; Berg, A. M. van den; Harakeh, M. N.; Woertche, H. J.; Berg, G. P. A.; Couder, M.; Goerres, J.; LeBlanc, P.; O'Brien, S.; Wiescher, M.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Adachi, T.; Fujita, Y.; Shimbara, Y.

    2010-08-15

    Since the identification of ongoing {sup 26}Al production in the universe, the reaction sequence {sup 24}Mg(p,{gamma}){sup 25}Al({beta}{sup +{nu}}){sup 25}Mg(p,{gamma}){sup 26}Al has been studied intensively. At temperatures where the radiative capture on {sup 25}Al (t{sub 1/2}=7.2 s) becomes faster than the {beta}{sup +} decay, the production of {sup 26}Al can be reduced due to the depletion of {sup 25}Al. To determine the resonances relevant for the {sup 25}Al(p,{gamma}){sup 26}Si bypass reaction, we measured the {sup 28}Si(p,t){sup 26}Si reaction with high-energy precision using the Grand Raiden spectrometer at the Research Center for Nuclear Physics, Osaka. Several new energy levels were found above the p threshold and for known states excitation energies were determined with smaller uncertainties. The calculated stellar rates of the bypass reaction agree well with previous results, suggesting that these rates are well established.

  10. Cross section systematics for the lightest Bi and Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Andreyev, A.N.; Ackermann, D.; Muenzenberg, G.; Antalic, S.; Saro, S.; Streicher, B.; Darby, I.G.; Page, R.D.; Wiseman, D.R.; Franchoo, S.; Hessberger, F.P.; Kuusiniemi, P.; Lommel, B.; Kindler, B.; Mann, R.; Sulignano, B.; Hofmann, S.; Huyse, M.; Vel, K. van de; Duppen, P. van

    2005-07-01

    The production of the very neutron-deficient nuclides {sup 184-192}Bi and {sup 186-192}Po in the vicinity of the neutron midshell at N = 104 has been studied by using heavy-ion-induced complete fusion reactions in a series of experiments at the velocity filter SHIP. The cross sections for the xn and pxn evaporation channels of the {sup 46}Ti+{sup 144}Sm{yields}{sup 190}Po*,{sup 98}Mo+{sup 92}Mo{yields}{sup 190}Po*,{sup 50,52}Cr+{sup 142}Nd{yields}{sup 192,194}Po*, and {sup 94,95}Mo+{sup 93}Nb{yields}{sup 187,188}Bi* reactions were measured. The results obtained, together with the previously known cross section data for the heavier Bi and Po nuclides, are compared with the results of statistical model calculations carried out with the HIVAP code. It is shown that a satisfactory description of the experimental data requires a significant (up to 35%) reduction of the theoretical fission barriers. The optimal reactions for production of the lightest Bi and Po isotopes are discussed.

  11. Rate constants of reactions of bromine with phenols in aqueous solution.

    PubMed

    Gallard, Hervé; Pellizzari, Fabien; Croué, Jean Philippe; Legube, B

    2003-07-01

    The kinetics of bromination of six ortho- and para-substituted phenols was investigated between pH 5 and pH 12 in aqueous solution. Kinetics was followed with a continuous-flow reactor previously validated by studying the fast reaction between chlorine and ammonia. The overall reaction rate between bromine and phenols is controlled by the reaction of HOBr with the phenoxide ion between pH 6 and pH 10. The reaction of HOBr with the undissociated phenols and the reaction of BrO(-) with the phenoxide ions become only significant for pH<6 and pH>10, respectively. The second-order rate constants for the reaction of HOBr with phenoxide ions vary between 1.4(+/-0.1)x10(3) and 2.1(+/-0.5)x10(8)M(-1)s(-1) for 2,4,6-trichlorophenol and 4-methylphenol, respectively. Hammett-type correlation was obtained for the reaction of HOBr with the phenoxide ions (log(k)=8.0-3.33 x Sigmasigma) and was compared with Hammett-type correlations of HOCl and HOI. The reaction rate of bromine with phenol-like organic compounds was estimated to be about 10(3)-fold higher than with chlorine and 10(3)-fold lower than with ozone in drinking water treatment conditions. PMID:12767291

  12. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  13. Recent Augmentations of the Functionality of the Thermonuclear Reaction Rate Calculator (TReRaC)

    NASA Astrophysics Data System (ADS)

    Thomsen, Kyle; Smith, Michael

    2011-10-01

    The chemical variety of our universe can be explained by stellar nucleosynthesis. Many thermonuclear reactions are studied by reproducing them in accelerator experiments and determining their rates. Using the codes available through the Computational Infrastructure for Nuclear Astrophysics (CINA), researchers can process the results of these experiments. One such program is the Thermonuclear Reaction Rate Calculator (TReRaC), which uses various experimental inputs including resonant energies, strengths, channel widths, and information on non-resonant contributions to calculate reaction rates. Presently, TReRaC is capable of quickly generating accurate rates which closely match those given in a number of publications. This adds to CINA capabilities by enabling a wider variety of nuclear information to generate rates. The next step in TReRaC's evolution is integration into the existing CINA complex so that it can be used by researchers worldwide.

  14. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    SciTech Connect

    Kang, H.G.; Yun, S.H.; Chung, D.; Oh, Y.H.; Chang, M.H.; Cho, S.; Chung, H.; Song, K.M.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the delivery performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)

  15. Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements of Fusion-Reaction Protons

    SciTech Connect

    Szydlowski, A.; Malinowska, A.; Jaskola, M.; Korman, A.; Sadowski, M. J.; Wassenhove, G. van; Galkowski, A.

    2008-03-19

    The paper reports on measurements of the space distribution of fusion protons of energy equal to about 3-MeV, originating from the D(d, p)T reactions. The measurements were carried out on the TEXTOR facility by means of a small ion pinhole camera, which was equipped with a solid-state nuclear track detector of the PM-355 type. The results obtained in two series of successive discharges are compared. The first series was performed with an additional heating of TEXTOR plasmas with NBI of fast deuterons, whereas in the second series plasma was heated by ICRF and NBI of hydrogen neutrals. Computer simulations of different trajectories of charged particles have been performed with the Gourdon code and the detection efficiency has been calculated for various orientations of the measuring assembly.

  16. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    SciTech Connect

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrum to order ten are calculated both with respect to the origin and with respect to the mean.

  17. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  18. Reaction Rates of Semi-Volatile Organic Compounds with the Hydroxyl Radical.

    NASA Astrophysics Data System (ADS)

    Anderson, Philip Neal

    1995-01-01

    The atmosphere is the primary route of global dispersion of many semi-volatile organic compounds (SOCs), including polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans. While the long-distance atmospheric transport of these compounds has been well established, the importance of chemical reactions that may occur while SOCs are in the atmosphere is largely unknown. For most semi-volatile organic compounds in the vapor phase, the most significant atmospheric reaction is likely to be attack by the hydroxyl radical (OH). The importance of this removal pathway, relative to other loss mechanisms from the atmosphere, is dependent on the reaction rate of a given semi-volatile organic compound with OH. A system was constructed and validated to measure the reaction rate of OH with semi-volatile organic compounds in the laboratory. The system featured a small, heated, quartz chamber with on-line detection of reactants by mass spectrometry. OH radicals were generated by the 254 nm photolysis of O _3 in the presence of H_2 O. The temperature dependent reaction rates of OH with 15 polychlorinated biphenyl congeners (PCBs), containing 0-5 chlorines, were measured. Calculated atmospheric lifetimes of PCBs due to OH-initiated reactions ranged from 2 days for biphenyl to 34 days for a pentachlorobiphenyl. Using an average of reaction rates extrapolated to atmospheric temperatures, the lifetime in the atmosphere for total PCBs due to OH reaction was calculated. A model for the vertical concentration gradient of PCBs in the troposphere was developed and used to calculate the flux (16 mug m^{-2} yr^{-1}) and total global flow (8,300 tonnes yr^{-1}) of PCBs removed from the atmosphere by OH-PCB reaction. This pathway is very large in comparison to any other known permanent PCB loss processes from the environment, such as deep ocean sediment burial (240 tonnes yr^ {-1}). The reaction of PCBs with OH may be the dominant removal mechanism of PCBs from the natural environment.

  19. STARLIB: A Next-generation Reaction-rate Library for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, γ), (p, α), (α, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  20. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-06-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions {sup 15}O(α, γ){sup 19}Ne and {sup 18}Ne(α, p){sup 21}Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the {sup 15}O(α, γ){sup 19}Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true {sup 15}O(α, γ){sup 19}Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  1. Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei

    SciTech Connect

    Huang Minghui; Gan Zaiguo; Zhou Xiaohong; Li Junqing; Scheid, W.

    2010-10-15

    Within the framework of a dinuclear system model, a new master equation is constructed and solved, which includes the relative distance of nuclei as a new dynamical variable in addition to the mass asymmetry variable so that the nucleon transfer, which leads to fusion and the evolution of the relative distance, which leads to quasifission (QF) are treated simultaneously in a consistent way. The QF mass yields and evaporation residual cross sections to produce superheavy nuclei are systematically investigated under this framework. The results fit the experimental data well. It is shown that the Kramers formula gives results of QF, which agree with those by our diffusion treatment, only if the QF barrier is high enough. Otherwise some large discrepancies occur.

  2. Temperature-dependent reaction-rate expression for oxygen recombination at Shuttle entry conditions

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Simmonds, A. L.; Gupta, R. N.

    1984-01-01

    A temperature-dependent oxygen surface reaction-rate coefficient has been determined from experimental STS-2 heating and wall temperature data at altitudes of 77.91 km, 74.98 km, and 71.29 km. The coefficient is presented in an Arrhenius form and is shown to be less temperature dependent than previous results. Finite-rate viscous-shock-layer heating rates based on this present expression have been compared with predicted heating rates using the previous rate coefficients and with experimental heating data obtained over an extensive range of STS-2 and STS-3 entry conditions. A substantial improvement is obtained in comparison of experimental data and predicted heating rates using the present oxygen reaction-rate expression.

  3. Estimation of the reaction rate constant of HOCl by SMILES observation

    NASA Astrophysics Data System (ADS)

    Kuribayashi, Kouta; Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo

    2012-07-01

    Hypochlorous acid, HOCl plays an important role to link the odd ClOx and the odd HOx in the atmospheric chemistry with the reaction: {ClO} + {HO_{2}} \\longrightarrow {HOCl} + {O_{2}} Quantitative understanding of the rate constant of the reaction (1.1) is essential for understanding the ozone loss in the mid-latitude region because of a view point of its rate controlling role in the ozone depletion chemistry. Reassessment of the reaction rate constant was pointed out from MIPAS/Envisat observations (von Clarmann et al., 2011) and balloon-borne observations (Kovalenko et al., 2007). Several laboratory studies had been reported, although the reaction rate constants have large uncertainties, as k{_{HOCl}} = (1.75 ± 0.52) × 10^{-12} exp[(368 ± 78)/T] (Hickson et al., 2007), and large discrepancies (Hickson et al., 2007;Stimpfle et al., 1979). Moreover, theoretical ab initio studies pointed out the pressure dependence of the reaction (1.1) (Xu et al., 2003). A new high-sensitive remote sensing technology named Superconducting SubMillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS) had observed diurnal variations of HOCl in the upper stratosphere/lower mesosphere (US/LM) region for the first time. ClO and HO_{2} were slso observed simultaneously with HOCl. SMILES performed the observations between 12^{{th}} October 2009 and 21^{{th}} April 2010. The latitude coverage of SMILES observation is normally 38°S-65°N. The altitude region of HOCl observation is about 28-70 km. We estimated the time period in which the reaction (1.1) becomes dominant in the ClO_{y} diurnal chemistry in US/LM. The reaction rate constant was directly estimated by decay of [ClO] and [HO_{2}] amounts in that period. The derived reaction rate constant represented well the increase of [HOCl] amount.

  4. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  5. Union Rate and Complications in Spine Fusion with Recombinant Human Bone Morphogenetic Protein-7: Systematic Review and Meta-Analysis.

    PubMed

    Vavken, Julia; Vavken, Patrick; Mameghani, Alexander; Schaeren, Stefan

    2016-03-01

    Study Design Systematic review and meta-analysis. Objective The objective of this meta-analysis was to evaluate the current best evidence to assess effectiveness and safety of recombinant human bone morphogenetic protein-7 (rhBMP-7) as a biological stimulant in spine fusion. Methods Studies were included if they reported on outcomes after spine fusion with rhBMP-7. The data was synthesized using Mantel-Haenszel pooled risk ratios (RRs) with 95% confidence intervals (CIs). Main end points were union rate, overall complications, postoperative back and leg pain, revision rates, and new-onset cancer. Results Our search produced 796 studies, 6 of which were eligible for inclusion. These studies report on a total of 442 patients (328 experimental, 114 controls) with a mean age of 59 ± 11 years. Our analysis showed no statistically significant differences in union rates (RR 0.97, 95% CI 0.84 to 1.11, p = 0.247), overall complications (RR 0.92, 95% CI 0.71 to 1.20, p = 0.545), postoperative back and leg pain (RR 1.03, 95% CI 0.48 to 2.19, p = 0.941), or revision rate (RR 0.81, 95% CI 0.47 to 1.40, p = 0.449). There was a mathematical indicator of increased tumor rates, but with only one case, the clinical meaningfulness of this finding is questionable. Conclusion We were not able to find data in support of the use of rhBMP-7 for spine fusion. We found no evidence for increased complication or revision rates with rhBMP-7. On the other hand, we also found no evidence in support of improved union rates. PMID:26933613

  6. Theoretical study of fusion reactions 32S + 94,96Zr and 40Ca + 94,96Zr and quadrupole deformation of 94Zr

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, WeiJuan; Zhao, EnGuang; Zhou, ShanGui

    2016-04-01

    The dynamic coupling effects on fusion cross sections for reactions 32S + 94,96Zr and 40Ca + 94,96Zr are studied with the universal fusion function formalism and an empirical coupled channel (ECC) model. An examination of the reduced fusion functions shows that the total effect of couplings to inelastic excitations and neutron transfer channels on fusion in 32S + 94Zr (40Ca + 94Zr) is almost the same as that in 32S + 96Zr (40Ca + 96Zr). The enhancements of the fusion cross section at sub-barrier energies due to inelastic channel coupling and neutron transfer channel coupling are evaluated separately by using the ECC model. The results show that effect of couplings to inelastic excitations channels in the reactions with 94Zr as target should be similar as that in the reactions with 96Zr as target. This implies that the quadrupole deformation parameters β 2 of 94Zr and 96Zr should be similar to each other. However, β 2's predicted from the finite-range droplet model, which are used in the ECC model, are quite different. Experiments on 48Ca + 94Zr or 36S + 94Zr are suggested to solve the puzzling issue concerning β 2 for 94Zr.

  7. [Incidence rate of adverse reaction/event by Qingkailing injection: a Meta-analysis of single rate].

    PubMed

    Ai, Chun-ling; Xie, Yan-ming; Li, Ming-quan; Wang, Lian-xin; Liao, Xing

    2015-12-01

    To systematically review the incidence rate of adverse drug reaction/event by Qingkailing injection. Such databases as the PubMed, EMbase, the Cochrane library, CNKI, VIP WanFang data and CBM were searched by computer from foundation to July 30, 2015. Two reviewers independently screened literature according to the inclusion and exclusion criteria, extracted data and cross check data. Then, Meta-analysis was performed by using the R 3.2.0 software, subgroup sensitivity analysis was performed based on age, mode of medicine, observation time and research quality. Sixty-three studies involving 9,793 patients with Qingkailing injection were included, 367 cases of adverse reactions/events were reported in total. The incidence rate of adverse reaction in skin and mucosa group was 2% [95% CI (0.02; 0.03)]; the digestive system adverse reaction was 6% [95% CI(0.05; 0.07); the injection site adverse reaction was 4% [95% CI (0.02; 0.07)]. In the digestive system as the main types of adverse reactions/events, incidence of children and adults were 4.6% [0.021 1; 0.097 7] and 6.9% [0.053 5; 0.089 8], respectively. Adverse reactions to skin and mucous membrane damage as the main performance/event type, the observation time > 7 days and ≤ 7 days incidence of 3% [0.012 9; 0.068 3] and 1.9% [0.007 8; 0.046 1], respectively. Subgroup analysis showed that different types of adverse reactions, combination in the incidence of adverse reactions/events were higher than that of single drug, the difference was statistically significant (P < 0.05). This study suggested the influence factors of adverse reactions occur, and clinical rational drug use, such as combination, age and other fators, and the influence factors vary in different populations. Therefore, clinical doctors for children and the elderly use special care was required for a clear and open spirit injection, the implementation of individualized medication. PMID:27245021

  8. REACLIB: A Reaction Rate Library for the Era of Collaborative Science

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary

    2008-10-01

    Thermonuclear reaction rates and weak decay rates are of great importance to modern nuclear astrophysics. They are critical in the study of many topics such as Big Bang Nucleosynthesis, X-ray bursts, Supernovae, and S-process element formation, among others. The Joint Institute for Nuclear Astrophysics (JINA) has been created to increase connectivity amongst nuclear astrophysicists in our modern age of highly collaborative science. Within JINA there has been an effort to create a frequently updated and readily accessible database of thermonuclear reactions and weak decay rates. This database is the REACLIB library, which can be accessed at the web address: http://www.nscl.msu.edu/˜nero/db/. Here I will discuss the JINA REACLIB Project, including a new procedure to fit reaction rates as a function of temperature that takes full advantage of physicality. With these updated reaction rates, astrophysical modelers will no longer have to worry about the adverse effects of using obsolete reaction rate libraries lacking physical behavior.

  9. EFFECTS OF RING STRAIN ON GAS-PHASE RATE CONSTANTS. 2. OH RADICAL REACTIONS WITH CYCLOALKENES

    EPA Science Inventory

    Relative rate constants for the gas phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 + or - 2 K, using methyl nitrite photolysis in air as a source of OH radicals. The data show that the rate constants for the nonconjugated cycloalkenes stu...

  10. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  11. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  12. Sensitivity of fusion and quasi-elastic barrier distributions of {sub 16}O+{sub 144}Sm reaction on the coupling radius parameter

    SciTech Connect

    Zamrun, Muhammad; Usman, Ida; Variani, Viska Inda; Kassim, Hasan Abu

    2014-03-05

    We study the heavy-ion collision at sub-barrier energies of {sub 16}O+{sub 144}Sm system using full order coupled-channels formalism. We especially investigate the sensitivity of fusion and quasi-elastic barrier distributions for this system on the coupling radius parameter. We found that the coupled-channels calculations of the fusion and the quasi-elastic barrier distributions are sensitive to the coupling radius for this reaction in contrast to the fusion and quasi-elastic cross section. Our study indicates that the larger coupling radius, i.e., r{sub coup}=1.20, is required by the experimental quasi-elastic barrier distribution. However, the experimental fusion barrier distribution compulsory the small value, i.e., r{sub coup}=1.06.

  13. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Prada Moroni, P. G.

    2016-05-01

    The Trojan Horse Method (THM) has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  14. Field measurement of slow metamorphic reaction rates at temperatures of 500 degrees to 600 degrees C

    PubMed

    Baxter; DePaolo

    2000-05-26

    High-temperature metamorphic reaction rates were measured using strontium isotopic ratios of garnet and whole rock from a field site near Simplon Pass, Switzerland. For metamorphic conditions of cooling from 612 degrees +/- 17 degrees C to 505 degrees +/- 15 degrees C at pressures up to 9.1 kilobars, the inferred bulk fluid-rock exchange rate is 1.3(-0.4)(+1.1) x 10(-7) grams of solid reacted per gram of solid per year, several orders of magnitude lower than laboratory-based estimates. The inferred reaction rate suggests that mineral chemistry may lag the evolving conditions in Earth's crust during mountain building. PMID:10827949

  15. Autocatalytic fission-fusion microexplosions for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2000-12-01

    Autocatalytic fission-fusion microexplosions, mutually amplifying fission and fusion reactions, are proposed for propulsion. Autocatalytic fission-fusion microexplosions can be realized by imploding a shell of uranium 235 (or plutonium) onto a magnetized deuterium-tritium (DT) plasma. After having reached a high temperature, the DT plasma releases fusion neutrons making fission reactions in the fissile shell increasing the implosion velocity which in turn increases the fusion reaction rate until full ignition of the DT plasma. To implode the fissile shell a small amount of high explosive and to magnetize the DT plasma a small auxiliary electric discharge are required. In comparison to nuclear bomb pulse propulsion, the energy released per pulse is much smaller and the efficiency higher. And in comparison to laser- or particle-beam-ignited fusion microexplosions, there is no need for a massive fusion ignition driver.

  16. Venus volcanism: Rate estimates from laboratory studies of sulfur gas-solid reactions

    NASA Technical Reports Server (NTRS)

    Ehlers, K.; Fegley, B., Jr.; Prinn, R. G.

    1989-01-01

    Thermochemical reactions between sulfur-bearing gases in the atmosphere of Venus and calcium-, iron-, magnesium-, and sulfur-bearing minerals on the surface of Venus are an integral part of a hypothesized cycle of thermochemical and photochemical reactions responsible for the maintenance of the global sulfuric acid cloud cover on Venus. SO2 is continually removed from the Venus atmosphere by reaction with calcium bearing minerals on the planet's surface. The rate of volcanism required to balance SO2 depletion by reactions with calcium bearing minerals on the Venus surface can therefore be deduced from a knowledge of the relevant gas-solid reaction rates combined with reasonable assumptions about the sulfur content of the erupted material (gas + magma). A laboratory program was carried out to measure the rates of reaction between SO2 and possible crustal minerals on Venus. The reaction of CaCO3(calcite) + SO2 yields CaSO4 (anhydrite) + CO was studied. Brief results are given.

  17. Ab initio many-body calculations of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions.

    PubMed

    Navrátil, Petr; Quaglioni, Sofia

    2012-01-27

    We apply the ab initio no-core shell model combined with the resonating-group method approach to calculate the cross sections of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions. These are important reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed many-body calculations that predict the S factor of both reactions. Virtual three-body breakup effects are obtained by including excited pseudostates of the deuteron in the calculation. Our results are in satisfactory agreement with experimental data and pave the way for microscopic investigations of polarization and electron-screening effects, of the (3)H(d,γn)(4)He bremsstrahlung and other reactions relevant to fusion research. PMID:22400830

  18. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  19. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  20. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  1. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles

    NASA Astrophysics Data System (ADS)

    Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-02-01

    We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.

  2. Effect of breakup and transfer on complete and incomplete fusion in 6Li+209Bi reaction in multi-body classical molecular dynamics calculation

    NASA Astrophysics Data System (ADS)

    Morker, Mitul R.; Godre, Subodh S.

    2016-05-01

    The effect of breakup and transfer in 6Li+209Bi reaction is studied in a multi-body classical molecular dynamics approach in which the weakly-bound projectile 6Li is constructed as a 2-body cluster of 4He and 2H in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved with given initial conditions using Classical Rigid Body Dynamics (CRBD) approach up to distances close to the barrier when the rigid-body constraint on the target, inter-fragment distance, and 2H itself are relaxed, allowing for possible breakup of 2H which may result in incomplete fusion following the transfer of the n or p. Relative probabilities of the possible events such as scattering with and without breakup, DCF, SCF, ICF(x) where x may be 4He, 2H, 4He+n, 4He+p, n, p are calculated. Comparison of the calculated event-probabilities, complete, and incomplete fusion cross sections with the calculation in which 2H is kept rigid demonstrates the effect of the transfer reactions on complete and incomplete fusion in the 4-body reaction. Events ICF(4He+n) corresponding to nstripping followed by breakup of the resultant 5Li to 4He+p are found to contribute significantly in the fusion process in agreement with a recent experimental observation of direct reaction processes in breakup of weakly-bound projectiles.

  3. Comment on "Observation of neutronless fusion reactions in picosecond laser plasmas".

    PubMed

    Kimura, S; Anzalone, A; Bonasera, A

    2009-03-01

    The paper by Belyaev [Phys. Rev. E 72, 026406 (2005)] reported the first experimental observation of alpha particles produced in the thermonuclear reaction 11B(p,alpha)8Be induced by laser irradiation on a 11B polyethylene (CH2) composite target. The laser used in the experiment is characterized by a picosecond pulse duration and a peak of intensity of 2x10(18) W/cm(2). We suggest that both the background-reduction method adopted in their detection system and the choice of the detection energy region of the reaction products are possibly inadequate. Consequently the total yield reported underestimates the true yield. Based on their observation, we give an estimation of the total yield to be higher than their conclusion, i.e., of the order of 10(5)alpha per shot. PMID:19392090

  4. Investigation of Some Stellar Iron Group Fusion Materials for ( n, p) Reactions

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Tel, E.; Aydin, A.; Yegingil, Ilhami

    2012-02-01

    In this study, we present the results of a careful analysis of cross sections of some important iron (Fe) group target elements (20 ≤ Z≤28) for astrophysical ( n, p) reactions such as Si, Ca, Sc, Ti, V, Cr, Fe, Co and Ni used in neutron activation analysis have been investigated. The new calculations on the excitation functions of 28 Si(n, p) 28 Al, 29 Si(n, p) 29 Al, 42 Ca(n, p) 42 K, 45 Sc(n, p) 45 Ca, 46 Ti(n, p) 46 Sc, 51 V(n, p) 51 Ti, 52 Cr(n, p) 52 V, 53 Cr(n, p) 53 V, 54 Fe(n, p) 54 Mn, 57 Fe(n, p) 57 Mn, 59 Co(n, p) 59 Fe, 58 Ni(n, p) 58 Co and 60 Ni(n, p) 60 Co reactions have been carried out up to 25 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. Equilibrium effects are calculated according to the Weisskopf-Ewing model. The pre-equilibrium calculations involve the geometry dependent hybrid model, hybrid model and equilibrium model. Also in the present work, these reaction cross-sections have been calculated by using evaluated empirical formulas developed by Tel et al. at 14.7 MeV energy. The calculations are compared with existing experimental data as well as with evaluated data files (Experimental Nuclear Reaction Data (EXFOR). According to these calculations, we assume that these model calculations can be applied to some heavy elements, ejected into interstellar medium by dramatic supernova events.

  5. Unbound states of (32)Cl andthe (31)S(p,gamma)(32)Cl reaction rate

    SciTech Connect

    Matos, M.; Blackmon, Jeff C; Linhardt, Laura; Bardayan, Daniel W; Nesaraja, Caroline D; Clark, Jason; Diebel, C.; O'Malley, Patrick; Parker, P.D.

    2011-01-01

    The {sup 31}S(p,{gamma}){sup 32}Cl reaction is expected to provide the dominant break-out path from the SiP cycle in novae and is important for understanding enrichments of sulfur observed in some nova ejecta. We studied the {sup 32}S(3He,t){sup 32}Cl charge-exchange reaction to determine properties of proton-unbound levels in {sup 32}Cl that have previously contributed significant uncertainties to the {sup 31}S(p,{gamma}){sup 32}Cl reaction rate. Measured triton magnetic rigidities were used to determine excitation energies in {sup 32}Cl. Proton-branching ratios were obtained by detecting decay protons from unbound {sup 32}Cl states in coincidence with tritons. An improved {sup 31}S(p,{gamma}){sup 32}Cl reaction rate was calculated including robust statistical and systematic uncertainties.

  6. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.

    PubMed

    Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim

    2016-04-18

    The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  7. Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy

    PubMed Central

    Piccini, GiovanniMaria; Alessio, Maristella

    2016-01-01

    Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  8. An overview on incomplete fusion reaction dynamics at energy range ∼ 3-8 MeV/A

    SciTech Connect

    Ali, Rahbar; Singh, D.; Ansari, M. Afzal; Kumar, Rakesh; Muralithar, S.; Golda, K. S.; Singh, R. P.; Bhowmik, R. K.; Rashid, M. H.; Guin, R.; Das, S. K.

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in α-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ∼165MeV) and {sup 16}O+{sup 156}Gd (E ∼ 72, 82 and 93MeV) systems, have been measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ∼ 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.

  9. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  10. Exploiting time-resolved magnetic field effects for determining radical ion reaction rates

    NASA Astrophysics Data System (ADS)

    Bessmertnykh, A. O.; Borovkov, V. I.; Bagryansky, V. A.; Molin, Yu N.

    2016-07-01

    The capabilities of the method of time-resolved magnetic field effect in determining the rates of charge transfer reactions between radical ions and molecules on a nanosecond time scale have been investigated. The approach relies on the electron spin coherence in radical pair's partners generated by ionizing radiation. The spin evolution of the pair is sensitive to the reaction since the latter results in changing magnetic interactions of the unpaired electron. This process can be monitored by magnetic-field-sensitive fluorescence from an irradiated sample that is illustrated using reactions involving alkane radical cations. The accuracy and limitations of the approach are discussed.

  11. Absolute rate parameters for the reaction of ground state atomic oxygen with dimethyl sulfide and episulfide

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Timmons, R. B.; Stief, L. J.

    1976-01-01

    It is pointed out that the investigated reaction of oxygen with dimethyl sulfide may play an important role in photochemical smog formation and in the chemical evolution of dense interstellar clouds. Kinetic data were obtained with the aid of the flash photolysis-resonance fluorescence method. The photodecomposition of molecular oxygen provided the oxygen atoms for the experiments. The decay of atomic oxygen was studied on the basis of resonance fluorescence observations. Both reactions investigated were found to be fast processes. A negative temperature dependence of the rate constants for reactions with dimethyl sulfide was observed.

  12. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  13. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  14. Reaction Rates for the Formation of Deuterium Tritide from Deuterium and Tritium

    SciTech Connect

    McConville, G. T.; Menke, D. A.; Ellefson, R. E.

    1985-04-01

    The rates of formation of DT in a mixture of D2 and T2 have been measured as a function of initial T2 concentration, pressure, temperature,and methane concentration in a stainless steel reaction container which had been treated to inhibit protium ingrowth. An attempt has been made to explain the experimental resuts on the basis of ion-molecule chain reactions. Some of the observations are consistent with a gas-phase ion, ground-state molecule reaction, but some of the more interesting observations require more complicated models. The addition of excited state molecules or heterogeneous catalytic effects are possibilities that will need further experiments for confirmation.

  15. Matching of experimental and statistical-model thermonuclear reaction rates at high temperatures

    NASA Astrophysics Data System (ADS)

    Newton, Joseph; Longland, Richard; Iliadis, Christian

    2009-05-01

    Reliable reaction rates at high stellar temperatures are necessary for the study of advanced stellar burning stages, supernovae and x-ray bursts. We suggest a new procedure for extrapolating experimental thermonuclear reaction rates to these higher temperatures (T > 1 GK) using statistical model (Hauser-Feshbach) results. Current, generally accepted, procedures involve the use of the Gamow peak, which has been shown to be unreliable for narrow resonances at high stellar temperatures [1]. Our new approach defines the effective thermonuclear energy range (ETER) by using the 8^th, 50^th and 92^nd percentiles of the cumulative distribution of fractional resonant reaction contributions. The ETER is then used to define a reliable temperature for matching experimental rates to Hauser-Feshbach rates. The resulting matching temperature is often well above the previous result using the Gamow peak concept. Our new method should provide more accurate extrapolated rates since Hauser-Feshbach rates are more reliable at higher temperatures. These ideas are applied to 21 (p,γ), (p,α) and (α,γ) reactions on a range of A = 20-40 target nuclei and results will be presented. [0pt] [1] J. R. Newton, C. Iliadis, A. E. Champagne, A. Coc, Y. Parpottas and R. Ugalde, Phys. Rev. C 75, 045801 (2007).

  16. Determination of the rate constant of hydroperoxyl radical reaction with phenol

    NASA Astrophysics Data System (ADS)

    Kozmér, Zsuzsanna; Arany, Eszter; Alapi, Tünde; Takács, Erzsébet; Wojnárovits, László; Dombi, András

    2014-09-01

    The rate constant of HO2rad reaction with phenol (kHO2rad +phenol) was investigated. The primary radical set produced in water γ radiolysis (rad OH, eaq- and Hrad ) was transformed to HO2rad /O2rad - by using dissolved oxygen and formate anion (in the form of either formic acid or sodium formate). The concentration ratio of HO2rad /O2rad - was affected by the pH value of the solution: under acidic conditions (using HCOOH) almost all radicals were converted to HO2rad , while under alkaline conditions (using HCOONa) to O2rad -. The degradation rate of phenol was significantly higher using HCOOH. From the ratio of reaction rates under the two reaction conditions kHO2rad +phenol was estimated to be (2.7±1.2)×103 L mol-1 s-1.

  17. Entrance channel dynamics of hot and cold fusion reactions leading to superheavy elements

    SciTech Connect

    Umar, A. S.; Oberacker, V. E.; Maruhn, J. A.; Reinhard, P.-G.

    2010-06-15

    We investigate the entrance channel dynamics for the reactions {sup 70}Zn+{sup 208}Pb and {sup 48}Ca+{sup 238}U by using the fully microscopic time-dependent Hartree-Fock theory coupled with a density constraint. We calculate excitation energies and capture cross sections relevant for the study of superheavy formations. We discuss the deformation dependence of the ion-ion potential for the {sup 48}Ca+{sup 238}U system and perform an alignment angle averaging for the calculation of the capture cross section. The results show that this approach can generate results in good agreement with experiments and other theories.

  18. Triple-alpha reaction rate studied with the Faddeev three-body formalism

    SciTech Connect

    Ishikawa, Souichi

    2012-11-12

    The triple-alpha (3{alpha}) reaction, {sup 4}He+{sup 4}He+{sup 4}He{yields}{sup 12}C+{gamma}, which plays a significant role in the stellar evolution scenarios, is studied in terms of a three-alpha (3-{alpha}) model. The reaction rate of the process is calculated via an inverse process, 3-{alpha} photodisintegration of a {sup 12}C nucleus. Both of 3-{alpha} bound and-continuum states are calculated by a Faddeev method with accommodating the long range Coulomb interaction. With being adjusted to the empirical E2-strength for {sup 12}C(0{sub 2}{sup +}){yields}{sup 12}C(2{sub 1}{sup +}) transition, results of the 3{alpha} reaction rate <{alpha}{alpha}{alpha}> at higher temperature (T > 10{sup 8} K), where the reaction proceeds mainly through the {sup 8}Be and {sup 12}C(0{sub 2}{sup +}) resonant states, almost agree with those of the Nuclear Astrophysics Compilation of Reaction Rates (NACRE). On the other hand, calculated values of <{alpha}{alpha}{alpha}> are about 10{sup 3} times larger than the NACRE rate at a low temperature (T= 10{sup 7} K), which means our results are remarkably smaller than recent CDCC results.

  19. Determination of Global Reaction Rate During Laser-Induced Decomposition at Static High Pressures

    NASA Astrophysics Data System (ADS)

    Russell, Thomas. P.; Pangilinan, Gerardo I.

    1998-03-01

    The laser induced decomposition of hexahydro-1,3,5-trinitro-1,3,5 triazine (C_3H_6N_6O_6, RDX), trinitro azetidine (C_3H_4N_3O_6, TNAZ) and ammonium perchlorate (NH_4ClO_4, AP) at static high pressure in the range of 0.6 - 2.0 GPa is presented. The samples are loaded in a gem anvil cell and the reaction is induced with a single laser pulse (514 nm, 6 μs duration, 3-22 J/cm^2). The dynamic chemical processes are probed using time resolved uv-Vis absorption spectroscopy, during and up to 20 μs after the laser pulse. In all three materials, decomposition is characterized by a time-dependent increase in absorbance from 300-500 nm. This absorption change is directly proportional to the mole fraction of reaction and provides a measurement of the global reaction rate. The reaction rate is determined to be dependent on the sample, the initial pressure, and the laser fluence. The chemical decomposition is modeled using a three term reaction rate equation encompassing initiation, growth, and coalescence. A description of the differences in the decomposition kinetics for each material will be provided. Finally, the implications of these measurements to models of macroscopic energy release rates will be addressed.

  20. The 25Al(p,g)26Si Reaction Rate in Novae

    NASA Astrophysics Data System (ADS)

    Bardayan, Dan; Blackmon, J. C.; Hix, W. R.; Liang, J. F.; Smith, M. S.; Howard, J. A.; Kozub, R. L.; Brune, C. R.; Chae, K. Y.; Lingerfelt, E. J.; Scott, J. P.; Johnson, M. S.; Jones, K. L.; Pain, S. D.; Thomas, J. S.; Livesay, R. J.; Wisser, D. W.

    The production of 26Al in novae is uncertain, in part, because of the uncertain rate of the 25 Al(p,γ)26Si reaction at novae temperatures. This reaction is thought to be dominated by a long- sought 3+ level in 26Si, and the calculated reaction rate varies by orders of magnitude depending on the energy of this resonance. We present evidence concerning the spin of a level at 5.914 MeV in 26Si from the 28Si(p,t)26Si reaction studied at the Holifield Radioactive Beam Facility at ORNL. We find that the angular distribution for this level implies either a 2+ or 3+ assignment, with only a 3+ being consistent with the mirror nucleus, 26Mg. Additionally, we have used the updated 25Al(p,γ)26Si reaction rate in a nova nucleosynthesis calculation and have addressed the effects of the remaining uncertainties in the rate on 26Al production.

  1. Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis

    SciTech Connect

    Berkich, D.A.; Williams, G.D.; Masiakos, P.T.; Smith, M.B.; Boyer, P.D.; LaNoue, K.F. )

    1991-01-05

    The forward and reverse rates of the overall reaction catalyzed by the ATP synthase in intact rat heart mitochondria, as measured with 32P, were compared with the rates of two partial steps, as measured with 18O. Such rates have been measured previously, but their relationship to one another has not been determined, nor have the partial reactions been measured in intact mitochondria. The partial steps measured were the rate of medium Pi formation from bound ATP (in state 4 this also equals the rate of medium Pi into bound ATP) and the rate of formation of bound ATP from bound Pi within the catalytic site. The rates of both partial reactions can be measured by 31P NMR analysis of the 18O distribution in Pi and ATP released from the enzyme during incubation of intact mitochondria with highly labeled (18O)Pi. Data were obtained in state 3 and 4 conditions with variation in substrate concentrations, temperature, and mitochondrial membrane electrical potential gradient (delta psi m). Although neither binding nor release of ATP is necessary for phosphate/H2O exchange, in state 4 the rate of incorporation of at least one water oxygen atom into phosphate is approximately twice the rate of the overall reaction rate under a variety of conditions. This can be explained if the release of Pi or ATP at one catalytic site does not occur, unless ATP or Pi is bound at another catalytic site. Such coupling provides strong support for the previously proposed alternating site mechanism. In state 3 slow reversal of ATP synthesis occurs within the mitochondrial matrix and can be detected as incorporation of water oxygen atoms into medium Pi even though medium (32P)ATP does not give rise to 32Pi in state 3. These data can be explained by lack of translocation of ATP from the medium to the mitochondrial matrix.

  2. Complete and incomplete fusion reactions in the {sup 16}O+{sup 169}Tm system: Excitation functions and recoil range distributions

    SciTech Connect

    Sharma, Manoj Kumar; Unnati,; Sharma, B.K.; Singh, B.P.; Prasad, R.; Bhardwaj, H.D.; Kumar, Rakesh; Golda, K.S.

    2004-10-01

    With the view to study complete and incomplete fusion in heavy ion induced reactions, experiments have been carried out for measuring excitation functions for several reactions in the system {sup 16}O+{sup 169}Tm at energies near the Coulomb barrier to well above it, using an activation technique. The measured excitation functions have been compared with those calculated theoretically using three different computer codes viz., ALICE-91, CASCADE and PACE2. The enhancement of experimentally measured cross sections for alpha emission channels over their theoretical prediction has been attributed to the fact that these residues are formed not only by complete fusion but also through incomplete fusion. In order to separate out the relative contributions of complete and incomplete fusion, the recoil range distributions of eight residues produced in the interaction of {sup 16}O with {sup 169}Tm at {approx_equal}87 MeV have been measured. The recoil range distributions indicate significant contributions from incomplete fusion at {approx_equal}87 MeV for some of the channels.

  3. Thermonuclear Reaction Rate of T(t,2n) α Measured in ICF Plasmas

    NASA Astrophysics Data System (ADS)

    Brune, C. R.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; McNabb, D. P.; Sayre, D. B.; Smalyuk, V. A.; Bacher, A. D.; Frenje, J. A.; Gatu-Johnson, M.; Zylstra, A. B.; Couder, M.

    2014-09-01

    Measurements of charged-particle reactivity have been performed in inertial confinement fusion experiments at the National Ignition Facility. Time-of-flight detectors were used to measure neutrons from the T(t,2n) and T(d,n) reactions produced by implosions with tritium-filled targets (0.1% deuterium). Along with the measured target fuel composition and reactant ion temperature, the well-known T(d,n) reactivity was used to convert the measured neutron yields into a T(t,2n) reactivity. The ion temperature was determined to be 3.3(3) keV, corresponding to an effective energy of 16 keV. In comparison to accelerator measurements of the low-energy T(t,2n) cross section, the source of all previous data, our experiment has resulted in T(t,2n) data with better statistics and lower backgrounds.

  4. Astrophysical reaction rate for Be9 formation within a three-body approach

    NASA Astrophysics Data System (ADS)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Thompson, I. J.

    2014-10-01

    The structure of the Borromean nucleus Be9 (α+α+n) is addressed within a three-body approach using the analytical transformed harmonic oscillator method. The three-body formalism provides an accurate description of the radiative capture reaction rate for the entire temperature range relevant in astrophysics. At high temperatures, results match the calculations based on two-step sequential processes. At low temperatures, where the particles have no access to intermediate two-body resonances, the three-body direct capture leads to reaction rates larger than the sequential processes. These results support the reliability of the method for systems with several charged particles.

  5. Association of EWS-FLI1 Type 1 Fusion with Lower Proliferative Rate in Ewing’s Sarcoma

    PubMed Central

    de Alava, Enrique; Panizo, Angel; Antonescu, Cristina R.; Huvos, Andrew G.; Pardo-Mindán, F. Javier; Barr, Frederic G.; Ladanyi, Marc

    2000-01-01

    The Ewing’s sarcoma (ES) family of tumors, including peripheral neuroectodermal tumor (PNET), is defined genetically by specific chromosomal translocations resulting in fusion of the EWS gene with a member of the ETS family of transcription factors, either FLI1 (90–95%) or ERG (5–10%). A second level of molecular genetic heterogeneity stems from the variation in the location of the translocation breakpoints, resulting in the inclusion of different combinations of exons from EWS and FLI1 (or ERG) in the fusion products. The most common type of EWS-FLI1 fusion transcript, type 1, is associated with a favorable prognosis and appears to encode a functionally weaker transactivator, compared to other fusion types. We sought to determine whether the observed covariation of structure, function, and clinical course correlates with tumor cell kinetic parameters such as proliferative rate and apoptosis, and with expression of the receptor for insulin-like growth factor I (IGF-1R). In a group of 86 ES/PNET with defined EWS-ETS fusions (45 EWS-FLI1 type 1, 27 EWS-FLI1 non-type 1, 14 EWS-ERG), we assessed proliferation rate by immunostaining for Ki-67 using MIB1 antibody (n = 85), apoptosis by TUNEL assay (n = 66), and IGF-1R expression by immunostaining with antibody 1H7 (n = 78). Ki-67 proliferative index was lower in tumors with EWS-FLI1 type 1 than those with non-type 1 EWS-FLI1, whether analyzed as a continuous (P = 0.049) or categorical (P = 0.047) variable. Logistic regression analysis suggests that this association was secondary to the association of type 1 EWS-FLI1 and lower IGF-1R expression (P = 0.04). Comparing EWS-FLI1 to EWS-ERG cases, Ki-67 proliferative index was higher in the latter (P = 0.01, Mann-Whitney test; P = 0.02, Fisher’s exact test), but there was no significant difference in IGF-1R. TUNEL results showed no significant differences between groups. Our results suggest that clinical and functional differences between alternative forms of EWS-FLI1

  6. Munc18a Does Not Alter Fusion Rates Mediated by Neuronal SNAREs, Synaptotagmin, and Complexin*

    PubMed Central

    Zhang, Yunxiang; Diao, Jiajie; Colbert, Karen N.; Lai, Ying; Pfuetzner, Richard A.; Padolina, Mark S.; Vivona, Sandro; Ressl, Susanne; Cipriano, Daniel J.; Choi, Ucheor B.; Shah, Niket; Weis, William I.; Brunger, Axel T.

    2015-01-01

    Sec1/Munc18 (SM) proteins are essential for membrane trafficking, but their molecular mechanism remains unclear. Using a single vesicle-vesicle content-mixing assay with reconstituted neuronal SNAREs, synaptotagmin-1, and complexin-1, we show that the neuronal SM protein Munc18a/nSec1 has no effect on the intrinsic kinetics of both spontaneous fusion and Ca2+-triggered fusion between vesicles that mimic synaptic vesicles and the plasma membrane. However, wild type Munc18a reduced vesicle association ∼50% when the vesicles bearing the t-SNAREs syntaxin-1A and SNAP-25 were preincubated with Munc18 for 30 min. Single molecule experiments with labeled SNAP-25 indicate that the reduction of vesicle association is a consequence of sequestration of syntaxin-1A by Munc18a and subsequent release of SNAP-25 (i.e. Munc18a captures syntaxin-1A via its high affinity interaction). Moreover, a phosphorylation mimic mutant of Munc18a with reduced affinity to syntaxin-1A results in less reduction of vesicle association. In summary, Munc18a does not directly affect fusion, although it has an effect on the t-SNARE complex, depending on the presence of other factors and experimental conditions. Our results suggest that Munc18a primarily acts at the prefusion stage. PMID:25716318

  7. Photochemistry of solutes in/on ice: reaction rate dependence on sample orientation and photon flux

    NASA Astrophysics Data System (ADS)

    Hullar, T.; Anastasio, C.

    2015-12-01

    Particularly in polar regions, photochemical reactions in snowpacks can be an important mechanism for transforming organic and inorganic compounds. Chemicals within snow and ice are found in three different compartments: distributed in the bulk ice, concentrated in liquid-like regions (LLRs) within the ice matrix (such as at grain boundaries), or present in quasi-liquid layers (QLLs) at the air-ice interface. While some previous work suggested reaction rates may vary in these different compartments, our preliminary experiments found similar reaction rates in all three compartments, as well as in aqueous solution. Previous work also suggested reaction rate constants may be independent of photon flux under certain illumination conditions. Here, we extend our investigations to measure reaction rate constants in ice samples with different orientations to the illumination source, which our work thus far suggests may impact the measured rate constants. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants in snow and ice. We first prepared aqueous solutions of a single PAH. We then froze these samples using various methods previously shown to segregate the solute into known locations in the ice matrix. With simulated polar sunlight, we illuminated these samples and measured photon flux (using 2-nitrobenzaldehyde as a chemical actinometer) and photodecay of the PAH. Using this information, we normalized the rate of PAH loss to the photon flux and calculated the rate constants for PAH photodegradation under various freezing conditions, photon fluxes, and sample orientations. We will report on the impact of these variables on PAH photodegradation as well as the effect of varying the photon flux.

  8. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  9. New recoil transfer chamber for thermalization of heavy ions produced in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Alfonso, M. C.; Tereshatov, E. E.; DeVanzo, M. J.; Sefcik, J. A.; Bennett, M. E.; Mayorov, D. A.; Werke, T. A.; Folden, C. M.

    2015-10-01

    A new Recoil Transfer Chamber (RTC) has been designed, fabricated, and characterized at the Cyclotron Institute at Texas A&M University. The design is based on a gas stopper that was previously in routine use at the National Superconducting Cyclotron Laboratory. This new RTC uses He gas to stop ions, and a combination of a static electric field and gas flow to maximize the extraction efficiency. In offline experiments, a 228Th source was used to produce 216Po which was successfully extracted even though it has a short half-life. In online experiments using the products of the 118Sn(40Ar, 6n)152Er reaction, an efficiency of several tens of percent was measured.

  10. Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions

    NASA Astrophysics Data System (ADS)

    Diánez, M. J.; Pérez Maqueda, L. A.; Criado, J. M.

    2004-08-01

    Sample controlled thermal analysis equipment has been developed constituted by an electrobalance in which the mass output (TG signal) is directly used for monitoring the temperature of thermal decomposition reactions under constant rate thermal analysis (CRTA) or stepwise isothermal analysis (SIA) control. The sample weight is programmed to follow a preset linear decrease as a function of the time by means of a conventional controller, that at the time control a second conventional temperature programmer. The CRTA control is achieved by controlling the temperature is such a way that if the mass input is higher than the setpoint, the temperature increases at a predefined heating rate; while if the mass input is lower than the setpoint, the temperature decreases at a predefined cooling rate. The SIA control is achieved by selecting the run-hold command from the menu of the digital input of the temperature programmer. In such a case, the programmed linear heating schedule is in progress while the sample weight is higher than the setpoint and an isothermal dwell is maintained as soon as the weight becomes lower than the setpoint. The direct use of the mass output for the control provides a higher sensitivity for selecting very low values of constant reaction rates than the more conventional methods using the DTG output as control parameter. The thermal degradation of polyvinye chloride (PVC) has been used for checking the behavior of the equipment here developed, showing that the dehydrochlorination of PVC is controlled either by a nucleation and growth of nuclei or by a random scission of the main chain of the polymer.

  11. Degradation of (14)C-labeled few layer graphene via Fenton reaction: Reaction rates, characterization of reaction products, and potential ecological effects.

    PubMed

    Feng, Yiping; Lu, Kun; Mao, Liang; Guo, Xiangke; Gao, Shixiang; Petersen, Elijah J

    2015-11-01

    Graphene has attracted considerable commercial interest due to its numerous potential applications. It is inevitable that graphene will be released into the environment during the production and usage of graphene-enabled consumer products, but the potential transformations of graphene in the environment are not well understood. In this study, (14)C-labeled few layer graphene (FLG) enabled quantitative measurements of FLG degradation rates induced by the iron/hydrogen peroxide induced Fenton reaction. Quantification of (14)CO2 production from (14)C-labeled FLG revealed significant degradation of FLG after 3 days with high H2O2 (200 mmol L(-1)) and iron (100 μmol L(-1)) concentrations but substantially lower rates under environmentally relevant conditions (0.2-20 mmol L(-1) H2O2 and 4 μmol L(-1) Fe(3+)). Importantly, the carbon-14 labeling technique allowed for quantification of the FLG degradation rate at concentrations nearly four orders of magnitude lower than those typically used in other studies. These measurements revealed substantially faster degradation rates at lower FLG concentrations and thus studies with higher FLG concentrations may underestimate the degradation rates. Analysis of structural changes to FLG using multiple orthogonal methods revealed significant FLG oxidation and multiple reaction byproducts. Lastly, assessment of accumulation of the degraded FLG and intermediates using aquatic organism Daphnia magna revealed substantially decreased body burdens, which implied that the changes to FLG caused by the Fenton reaction may dramatically impact its potential ecological effects. PMID:26210029

  12. Stability of superheavy nuclei produced in actinide-based complete fusion reactions: Evidence for the next magic proton number at Z{>=}120

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.

    2009-05-15

    Using the experimental evaporation residue cross sections in the {sup 48}Ca-induced complete fusion reactions and the complete fusion cross sections calculated within the dinuclear system model, the survival probabilities of superheavy nuclei with charge numbers Z=112-116 and 118 in the xn-evaporation channels are extracted. The effects of angular momentum and deformations of colliding nuclei are taken into account. The obtained dependence of the survival probability on Z indicates the next doubly magic nucleus beyond {sup 208}Pb at Z{>=}120.

  13. Reaction rate modeling in the deflagration to detonation transition of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.; Kober, E.M.

    1996-07-01

    The problem of accidental initiation of detonation in granular material has been the initial focus of the Los Alamos explosives safety program. Preexisting models of deflagration-to-detonation transition (DDT) in granular explosives, especially the Baer and Nunziato (BN) model, have been examined. The main focus of this paper is the reaction rate model. Comparison with experiments are made using the BN rate model. Many features are replicated by the simulations. However, some qualitative features, such as inert plug formation in DDT tube-test experiments and other trends, are not produced in the simulations. By modifying the reaction rate model the authors show inert plug formation that more closely replicates the qualitative features of experimental observations. Additional improvements to the rate modeling are suggested.

  14. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.; Zachara, John M.; Zhu, Weihuang

    2013-03-15

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on the temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.

  15. Rate constant calculations of H-atom abstraction reactions from ethers by HȮ2 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2014-02-27

    In this work, we detail hydrogen atom abstraction reactions from six ethers by the hydroperoxyl radical, including dimethyl ether, ethyl methyl ether, propyl methyl ether, isopropyl methyl ether, butyl methyl ether, and isobutyl methyl ether, in order to test the effect of the functional group on the rate constant calculations. The Møller-Plesset (MP2) method with the 6-311G(d,p) basis set has been employed in the geometry optimizations and frequency calculations of all of the species involved in the above reaction systems. The connections between each transition state and the corresponding local minima have been determined by intrinsic reaction coordinate calculations. Energies are reported at the CCSD(T)/cc-pVTZ level of theory and include the zero-point energy corrections. As a benchmark in the electronic energy calculations, the CCSD(T)/CBS extrapolation was used for the reactions of dimethyl ether + HȮ2 radicals. A systematic calculation of the high-pressure limit rate constants has been performed using conventional transition-state theory, including asymmetric Eckart tunneling corrections, in the temperature range of 500-2000 K. The one dimensional hindrance potentials obtained at MP2/6-311G(d,p) for the reactants and transition states have been used to describe the low frequency torsional modes. Herein, we report the calculated individual, average, and total rate constants. A branching ratio analysis for every reaction site has also been performed. PMID:24483837

  16. Evaluation of reaction rates in streambed sediments with seepage flow: a novel code

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2015-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species which perform many heterotrophic and autotrophic reactions. The evaluation of these reaction rates is crucial to assess the fate of nutrients in riverine environments, and it is often performed through the analysis of concentrations from water samples collected along vertical profiles. The most commonly employed evaluation tool is the Profile code developed by Berg et al. (1998), which determines reaction rates by fitting observed concentrations to a diffusion-reaction equation that neglects the presence of water flow within sediments. However, hyporheic flow is extremely common in streambeds, where solute transport is often controlled by advection rather than diffusion. There is hence a pressing need to develop new methods that can be applied even to advection-dominated sediments. This contribution fills this gap by presenting a novel approach that extends the method proposed by Berg et al. (1998). This new approach includes the influence of vertical solute transport by upwelling or downwelling water, and it is this suited to the typical flow conditions of stream sediments. The code is applied to vertical profiles of dissolved oxygen from a laboratory flume designed to mimic the complex flow conditions of real streams. The results show that it is fundamental to consider water flow to obtain reliable estimates of reaction rates in streambeds. Berg, P., N. Risgaard-Petersen, and S. Rysgaard, 1998, Interpretation of measured concentration profiles in the sediment porewater, Limnology and Oceanography, 43:1500-1510.

  17. Modeling of atmospheric OH reaction rates using newly developed variable distance weighted zero order connectivity index

    NASA Astrophysics Data System (ADS)

    Markelj, Jernej; Pompe, Matevž

    2016-04-01

    A new variable distance weighted zero order connectivity index was used for development of structure-activity relationship for modeling reactivity of OH radical with alkanes and non-conjugated alkenes in the atmosphere. The proposed model is based on the assumptions that the total reaction rate can be obtained by summing all partial reaction rates and that all reaction sites are interrelated by influencing each other. The results suggest that these assumptions are justified. The model was compared with the EPA implemented model in the studied application domain and showed superior prediction capabilities. Further, optimized values of the weights that were used in our model permit some insight into mechanisms that govern the reaction OH + alkane/alkene. The most important conclusion is that the branching degree of the forming radical seems to play a major role in site specific reaction rates. Relative qualitative structural interpretation is possible, e.g. allylic site is suggested to be much more reactive than even tertiary sp3 carbon. Novel modeling software MACI, which was developed in our lab and is now available for research purposes, was used for calculations. Various variable topological indices that are again starting to be recognized because of their great potentials in simplicity, fast calculations, very good correlations and structural information, were implemented in the program.

  18. Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    PubMed Central

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2012-01-01

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid–base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  19. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    PubMed

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group): PMID:24817270

  20. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  1. The influence of transfer reactions on the sub-barrier fusion enhancement in the systems {sup 58.64}Ni +, {sup 92,100}Mo

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    High resolution experiments performed during the past few years demonstrated that the various reaction modes occurring in heavy ion collisions can strongly influence each other. This interrelation of the different reaction modes brings a nuclear structure dependence to the fusion and deep-inelastic channels that were previously described in the framework of pure statistical models. In order to fully understand the interrelation between these reaction channels, a complete set of measurements including elastic and inelastic scattering, few-nucleon transfer and fusion is required. In continuation of our earlier measurements of the fusion cross sections in the system {sup 58,64}Ni + {sup 92,100}Mo we finished the studies of the quasielastic process in these systems. The experiments were done in inverse reaction kinematics using the split-pole spectrograph with its hybrid focal-plane detector for particle identification. The experiments with {sup 100}Mo beams were performed previously. First test runs with {sup 92}Mo showed the possible interference with {sup 98}Mo ions which could be eliminated by using the 13{sup +} charge state from the ECR source. The data from these experiments were completely analyzed. The smallest transfer cross sections are observed for the systems {sup 64}Ni + {sup 100}Mo and {sup 58}Ni + {sup 92}Mo, i.e., the most neutron-rich and neutron-deficient systems, respectively. For the other systems, {sup 64}Ni + {sup 92}Mo and {sup 58}Ni + {sup 100}Mo, the transfer cross sections at energies close to the barrier are about of equal magnitude. This observation does not correlate with the deviation of the experimental fusion cross sections from the coupled-channels predictions. While for {sup 58}Ni + {sup 100}Mo discrepancies between the experimental and theoretical fusion cross sections are observed, the system {sup 64}Ni + {sup 92}Mo which shows about the same transfer yields, is quite well described by the coupled-channels calculations.

  2. Solid-gas reaction with adsorption as the rate limiting step.

    PubMed

    Wróbel, Rafał; Arabczyk, Walerian

    2006-07-27

    The model of nucleation where adsorption of reactant is a rate-limiting step has been considered. Assuming the adsorption range model, a numerical simulation has been made. The dependency of bulk concentration and surface coverage versus time and thermogravimetric curves are presented. The crystallite size is suggested to be the key factor of the nucleation rate. Theoretical considerations have been compared with the experimental results of the iron nitriding reaction. PMID:16854036

  3. Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants

    SciTech Connect

    Vorotilin, V. P. Yanovskii, Yu. G.

    2015-07-15

    On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities–the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.

  4. Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants

    NASA Astrophysics Data System (ADS)

    Vorotilin, V. P.; Yanovskii, Yu. G.

    2015-07-01

    On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities-the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.

  5. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.

    PubMed

    Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim

    2016-01-21

    Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology. PMID:26690335

  6. Rate constant for the reaction Cl + HO2NO2 yielding products. [in stratospheric chemistry

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Leu, M. T.

    1985-01-01

    The rates for the reaction of Cl atoms iwth HO2NO2 were calculated from data obtained by the use of the discharge flow/resonance fluorescence (DF/RF) and the discharge flow/mass spectrometric (DF/MS) techniques. The total rate constant, k1, for the overall reaction: 1a (Cl + HO2NO2 yielding HCl + NO2 +O2), 1b (yielding HO2 + ClNO2), and the two possible additional channels was found to be less than 1.0 x 10 to the -13th cu cm/s at 296 K. The value of (k1a + k1b) was found to be 3.4 + or - 1.4) x 10 to the -14th cu cm/s. Thus, the reaction of Cl with peroxynitric acid is too slow, by a factor of 100, to contribute significantly to the hydrogen abstraction by Cl in the stratosphere.

  7. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  8. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H.

    PubMed

    Meisner, Jan; Kästner, Johannes

    2016-05-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ⋅ 10(-20) to 4 ⋅ 10(-17) cm(3) s(-1), demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures. PMID:27155636

  9. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H

    NASA Astrophysics Data System (ADS)

    Meisner, Jan; Kästner, Johannes

    2016-05-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ṡ 10-20 to 4 ṡ 10-17 cm3 s-1, demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  10. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  11. Thermonuclear Reaction Rate Libraries and Software Tools for Nuclear Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Cyburt, Richard; Schatz, Hendrik; Wiescher, Michael; Smith, Karl; Warren, Scott; Ferguson, Ryan; Lingerfelt, Eric; Buckner, Kim; Nesaraja, Caroline D.

    2008-05-01

    Thermonuclear reaction rates are a crucial input for simulating a wide variety of astrophysical environments. A new collaboration has been formed to ensure that astrophysical modelers have access to reaction rates based on the most recent experimental and theoretical nuclear physics information. To reach this goal, a new version of the REACLIB library has been created by the Joint Institute for Nuclear Astrophysics (JINA), now available online at http://www.nscl.msu.edu/~nero/db. A complementary effort is the development of software tools in the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to streamline, manage, and access the workflow of the reaction evaluations from their initiation to peer review to incorporation into the library. Details of these new projects will be described.

  12. Reaction Rate Acceleration and Tg Depression of Polycyanurate Under Nanopore Confinement

    NASA Astrophysics Data System (ADS)

    Lopez, Evelyn; Simon, Sindee L.

    2015-03-01

    Material properties such as Tg and the reaction kinetics are known to deviate from the bulk when subjected to nano-sized confinement. Previous work from our laboratory on the trimerization of cyanate esters found that the reaction kinetics were faster for a monofunctional reactant compared to a difunctional monomer, whereas the Tg depression was greater for the crosslinked product of the latter compared to the low molecular weight trimer of the former. The origin of the changes in nanoconfined reaction rates differs from those that govern changes in the Tg. The research objective is to further explore the effect that confinement has on reaction kinetics and Tg using a mixture consisting of mono- and di- cyanate ester monomers. The product is an uncrosslinked polycyanurate with Mn = 5240 g/mol and PDI = 1.78. The confinement mediums are controlled pore glasses with diameters ranging from 8.1 to 111.1 nm. The nanopore-confined material was synthesized in-situ and the reaction kinetics are followed by DSC; after the reaction, the Tg values of the nanoconfined polymer where also measured by DSC. An acceleration factor of 13 and a Tg depression of 38 °C are observed for the material confined in the smallest 8.1 nm-diameter pores. The Tg depression is between those of the trimer and network previously studied, while the acceleration of the reaction rate is lower. Our results are consistent with the reaction acceleration arising from packing effects at the pore wall and the Tg depression arising from intrinsic size effects.

  13. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+{sup 11}B process

    SciTech Connect

    Belyaev, V. S.; Krainov, V. P.; Zagreev, B. V.; Matafonov, A. P.

    2015-07-15

    Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+{sup 11}B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from {sup 11}B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+{sup 11}B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+{sup 11}B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+{sup 11}B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

  14. Oscillations in the reaction rate of nitric oxide reduction by ammonia over polycrystalline platinum foil catalysts

    SciTech Connect

    Katona, T. |; Somorjai, G.A.

    1992-06-25

    Self-sustained oscillations were obtained in the No + NH{sub 3} reaction at atmospheric pressure with reactant partial pressures of 133-600 Pa (1-4.5 Torr), in the temperature range of 603-673 K. The effects of reaction parameters, temperature, partial pressure, and reactant gas velocity were studied. The onset temperature of the oscillations (603 K) was slightly dependent on the partial pressure of nitric oxide in the feed gas. Near this temperature the oscillations were uncontrolled (chaotic), while increasing the temperature resulted in periodic oscillations in the reaction rates. The oscillation phenomena were studied in both isothermic and adiabatic modes. The oscillations, when initiated by a temperature increase, start up only after an induction period during which the rates of NO consumption and N{sub 2} formation sharply increase as opposed to the slow enhancement of the rate of N{sub 2}O formation. The two reaction branches found at the high- and low-temperature regimes in the batch mode have product distributions which are similar to those found at the extremes of the amplitudes of rate oscillations. 36 refs., 13 figs.

  15. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  16. Calibration of reaction rates for the CREST reactive-burn model

    NASA Astrophysics Data System (ADS)

    Handley, Caroline

    2015-06-01

    In recent years, the hydrocode-based CREST reactive-burn model has had success in modelling a range of shock initiation and detonation propagation phenomena in polymer bonded explosives. CREST uses empirical reaction rates that depend on a function of the entropy of the non-reacted explosive, allowing the effects of initial temperature, porosity and double-shock desensitisation to be simulated without any modifications to the model. Until now, the sixteen reaction-rate coefficients have been manually calibrated by trial and error, using hydrocode simulations of a subset of sustained-shock initiation gas-gun experiments and the detonation size-effect curve for the explosive. This paper will describe the initial development of an automatic method for calibrating CREST reaction-rate coefficients, using the well-established Particle Swarm Optimisation (PSO) technique. The automatic method submits multiple hydrocode simulations for each ``particle'' and analyses the results to determine the ``misfit'' to gas-gun and size-effect data. Over ~40 ``generations,'' the PSO code finds a best set of reaction-rate coefficients that minimises the misfit. The method will be demonstrated by developing a new CREST model for EDC32, a conventional high explosive.

  17. Measurement of proton transfer reaction rates in a microwave cavity discharge flowing afterglow

    NASA Astrophysics Data System (ADS)

    Brooke, George M., IV

    The reaction rate coefficients between the hydronium ion and the molecules ethene (C2H4), propene (C 3H6), 1-butene (C4H8) and hydrogen sulfide (H2S) were measured at 296 K. The measured reaction rates were compared to collision rates calculated using average dipole orientation (ADO) theory. Reaction efficiency depends primarily upon the proton affinity of the molecules. All the measurements were obtained using the newly developed microwave cavity discharge flowing afterglow (MCD-FA) apparatus. This device uses an Asmussen-type microwave cavity discharge ion source that is spatially separated from the flow tube, eliminating many of the problems inherent with the original FA devices. In addition to measuring reaction rate coefficients, the MCD-FA was shown to be an effective tool for measuring trace compounds in atmospheric air. This method has many advantages over current detection techniques since compounds can be detected in almost real time, large mass ranges can be scanned quickly, and repeated calibration is not required. Preliminary measurements were made of car exhaust and exhaled alveolar air. Car exhaust showed the presence of numerous hydrocarbons, such as butene, benzene and toluene while the exhaled alveolar air showed the presence of various volatile organic compounds such as methanol and acetone.

  18. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  19. Relative Reaction Rates of Sulfamic Acid and Hydroxylamine with Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-03-28

    This report describes a study of comparative reaction rates where the reductant is in excess, as in the 1B bank in the Purex process. The results of this work apply to planned plant tests to partially substitute HAN for the ferrous sulfamate reductant in the Purex 1B bank.

  20. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    ERIC Educational Resources Information Center

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  1. Rate of reaction of superoxide radical with chloride-containing species

    SciTech Connect

    Long, C.A.; Bielski, B.H.J.

    1980-01-01

    This paper evaluates the rate constants for the reaction of superoxide radical with five common chloride-containing species (Cl/sup -/, ClO/sup -/, ClO/sub 2//sup -/, ClO/sub 3//sup -/, and ClO/sub 4//sup -/ and proposes a mechanism for those which react.

  2. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    SciTech Connect

    Hele, Timothy J. H.; Suleimanov, Yury V.

    2015-08-21

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.

  3. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    NASA Astrophysics Data System (ADS)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  4. Revisiting reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material for fusion applications

    NASA Astrophysics Data System (ADS)

    Guterl, Jerome; Smirnov, Roman; Krasheninnikov, Sergei

    2015-11-01

    Plasma-material interactions may strongly influence plasma performance and life-time of future magnetic fusion devices. Understanding the multifaceted physics of hydrogen retention in plasma-facing components (PFC) is thus crucial, but remains challenging due to the wide spectrum of retention processes on PFC surface and in PFC bulk induced by long-time exposure of PFC to high flux of energy and particles. We revisit here some aspects of reaction-diffusion models used to investigate hydrogen retention in material. We focus on analysis of thermal desorption spectroscopy (TDS) experiment considering only one type of traps in material and first neglecting surface effects. We show that solute hydrogen concentration in retention region usually remains in equilibrium during TDS experiments. In this regime, analytic description of thermal desorption spectra indicates that trapping of solute hydrogen during TDS cannot be ignored. Main features of thermal desorption are then analytically described and refined interpretation of Arrhenius plots is proposed. Effects of surface processes on hydrogen outgassing during TDS experiments are then introduced and surface-limited outgassing regimes are discussed.

  5. Effects of nuclear orientation on fusion and fission process for reactions using {sup 238}U target nucleus

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-06-01

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, asymmetric fission mode peaked at A{sub L}/A{sub H}approx =90/178 was observed. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. The fragment mass distributions are compared to those for {sup 36}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  6. Simulation and Experimental Study on the Efficiency of Traveling Wave Direct Energy Conversion for Application to Aneutronic Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso; Chap, Andrew; Miley, George; Scott, John

    2013-10-01

    A study based on both Particle-in-cell (PIC) simulation and experiments is being developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC,) with the perspective of application to aneutronic fusion reaction products and space propulsion. The PIC model is investigating in detail the key TWDEC physics process by simulating the time-dependent transfer of energy from the ion beam to an electric load connected to ring-type electrodes in cylindrical symmetry. An experimental effort is in progress on a TWDEC test article at NASA, Johnson Space Center with the purpose of studying the conditions for improving the efficiency of the direct energy conversion process. Using a scaled-down ion energy source, the experiment is primarily focused on the effect of the (bunched) beam density on the efficiency and on the optimization of the electrode design. The simulation model is guiding the development of the experimental configuration and will provide details of the beam dynamics for direct comparison with experimental diagnostics. Work supported by NASA, Johnson Space Center.

  7. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  8. Product distributions, rate constants, and mechanisms of LiH +H reactions

    NASA Astrophysics Data System (ADS)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  9. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    PubMed

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles. PMID:26938837

  10. Reactions with Weakly Bound Nuclei, at near Barrier Energies, and the Breakup and Transfer Influences on the Fusion and Elastic Scattering

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Lubian, J.; Canto, L. F.; Otomar, D. R.; Junior, D. R. Mendes; de Faria, P. N.; Linares, R.; Sigaud, L.; Rangel, J.; Ferreira, J. L.; Ferioli, E.; Paes, B.; Cardozo, E. N.; Cortes, M. R.; Ermamatov, M. J.; Lotti, P.; Hussein, M. S.

    2016-03-01

    We present a brief review of the reaction mechanisms involved in collisions of weakly bound projectiles with tightly bound targets, at near-barrier energies. We discuss systematic behaviors of the data, with emphasis in fusion, breakup, nucleon transfer and elastic scattering. The dependence of the breakup cross section on the charge and mass of the target is discussed, and the influence of the breakup channel on complete fusion is investigated. For this purpose, we compare reduced fusion cross sections with a benchmark universal curve. The behaviors observed in the comparisons are explained in terms of polarization potentials and of nucleon transfer followed by breakup. The influence of the breakup process on elastic scattering is also discussed. Some apparent contradictions between results of different authors are explained and some perspectives of the field are presented.

  11. Fusion and binary reactions in the collision of /sup 32/S on /sup 26/Mg at /ital E//sub lab/=163. 5 MeV

    SciTech Connect

    Cavallaro, S.; Zhi, Y. S.; Prete, G.; Viesti, G.

    1989-07-01

    Measurements of heavy fragments produced in the interaction of /sup 32/S with /sup 26/Mg at /ital E//sub lab/=163.5 MeV have been performed to study the interplay of the fusion reaction and binary processes. Experimental angular distributions, velocity spectra, and angle-integrated cross sections of detected heavy fragments have been compared with predictions of statistical models. The comparison shows that complete fusion exhausts the production of residues in the range /ital Z/=26--22. For fragments with atomic number /ital Z/=21 and /ital Z/=20 some other mechanism is also present. The analysis of energy spectra, angular distributions, and total kinetic energy of projectile-like fragments (/ital Z/=19--6) shows that the main process to limit fusion is an inelastic mechanism with large energy damping.

  12. Refinement of the aeronomically determined rate coefficient for the reaction of N2/+/ with O

    NASA Technical Reports Server (NTRS)

    Torr, D. G.

    1979-01-01

    An earlier aeronomic determination of the rate coefficient for the reaction N2(+) + O yields NO(+) + N using Atmosphere Explorer data indicated a small increase in the rate coefficient with ion temperature, contrary to laboratory observations. This was incorrectly attributed to neglect of an increase in the N2(+) recombination rate with vibrational excitation. Recent aeronomical results have shown that the rate coefficient for charge exchange of O(+)(2D) with N2 is about an order of magnitude smaller at thermal temperatures than at energies greater than 0.5 eV (i.e., energies at which laboratory measurements have been made). It is shown that the use of the smaller charge exchange rate coefficient coupled with recent results on N2 quenching of O(+)(2D) yields a temperature dependence in excellent agreement with the laboratory results for the rate coefficient.

  13. Fusion and quasifission dynamics in the reactions 48Ca+249Bk and 50Ti+249Bk using a time-dependent Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Simenel, C.

    2016-08-01

    Background: Synthesis of superheavy elements (SHEs) with fusion-evaporation reactions is strongly hindered by the quasifission (QF) mechanism which prevents the formation of an equilibrated compound nucleus and which depends on the structure of the reactants. New SHEs have been recently produced with doubly-magic 48Ca beams. However, SHE synthesis experiments with single-magic 50Ti beams have so far been unsuccessful. Purpose: In connection with experimental searches for Z =117 ,119 superheavy elements, we perform a theoretical study of fusion and quasifission mechanisms in 48Ca,50Ti+249Bk reactions in order to investigate possible differences in reaction mechanisms induced by these two projectiles. Methods: The collision dynamics and the outcome of the reactions are studied using unrestricted time-dependent Hartree-Fock (TDHF) calculations as well as the density-constrained TDHF method to extract the nucleus-nucleus potentials and the excitation energy in each fragment. Results: Nucleus-nucleus potentials, nuclear contact times, masses and charges of the fragments, as well as their kinetic and excitation energies strongly depend on the orientation of the prolate 249Bk nucleus. Long contact times associated with fusion are observed in collisions of both projectiles with the side of the 249Bk nucleus, but not on collisions with its tip. The energy and impact parameter dependencies of the fragment properties, as well as their mass-angle and mass-total kinetic energy correlations are investigated. Conclusions: Entrance channel reaction dynamics are similar with both 48Ca and 50Ti projectiles. Both are expected to lead to the formation of a compound nucleus by fusion if they have enough energy to get in contact with the side of the 249Bk target.

  14. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  15. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    SciTech Connect

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-15

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N{sub 2} viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated.

  16. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  17. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    SciTech Connect

    Gong, R; Lu, C; Luo, Jian; Wu, Wei-min; Cheng, H.; Criddle, Craig; Kitanidis, Peter K.; Gu, Baohua; Watson, David B; Jardine, Philip M; Brooks, Scott C

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  18. Rate constant for the reaction of atomic chlorine with formaldehyde from 200 to 500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.

    1979-01-01

    The absolute rate constant for the reaction of atomic chlorine with formaldehyde has been measured from 200 to 500 K using the flash photolysis-resonance fluorescence technique. The results were independent of substantial variations in (H2CO), total pressure (Ar), and flash intensity (i.e., initial (Cl)). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being k-sub-1 = (7.48 + or - 0.50) times 10 to the -11 cu cm/molecule sec, where the error is one standard deviation. This result is compared with the only previous determination of k-sub-1, which was a relative value obtained at 298 K. The rate constant is theoretically discussed, and the potential importance of the reaction in stratospheric chemistry is considered.

  19. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  20. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    PubMed

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect. PMID:26165545

  1. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model. PMID:18476403

  2. Solvation effect on kinetic rate constant of reactions in supercritical solvents

    SciTech Connect

    Chialvo, A.A.; Cummings, P.T. |; Kalyuzhnyi, Yu.V.

    1998-03-01

    A statistical mechanical analysis of the solvation effects on the kinetic rate constants of reactions in near and supercritical solvents is presented to understand the experimental findings regarding the thermodynamic pressure effects. This is an extension of the solvation formalism of Chialvo and Cummings to the analysis of the microscopic basis for the macroscopic pressure and temperature effects on the kinetic rate constants of reactions conducted in the compressible region of the solvent phase diagram. This analysis is illustrated with integral equations calculations involving Lennard-Jones infinitely dilute quaternary systems to describe the species in solution during the reaction of triplet benzophenone ({sup 3}BP) with a cosolvent (either O{sub 2} or 1,4-cyclohexadiene) in supercritical CO{sub 2} along the supercritical isotherms T{sub r} = 1.01 and 1.06. The role of the species molecular asymmetries and consequently their solvation behavior in determining the thermodynamic pressure and temperature effects on the kinetic rate constant of reactions at near-critical conditions are discussed.

  3. Benchmark experiments for validation of reaction rates determination in reactor dosimetry

    NASA Astrophysics Data System (ADS)

    Rataj, J.; Huml, O.; Heraltova, L.; Bily, T.

    2014-11-01

    The precision of Monte Carlo calculations of quantities of neutron dosimetry strongly depends on precision of reaction rates prediction. Research reactor represents a very useful tool for validation of the ability of a code to calculate such quantities as it can provide environments with various types of neutron energy spectra. Especially, a zero power research reactor with well-defined core geometry and neutronic properties enables precise comparison between experimental and calculated data. Thus, at the VR-1 zero power research reactor, a set of benchmark experiments were proposed and carried out to verify the MCNP Monte Carlo code ability to predict correctly the reaction rates. For that purpose two frequently used reactions were chosen: He-3(n,p)H-3 and Au-197(n,γ)Au-198. The benchmark consists of response measurement of small He-3 gas filled detector in various positions of reactor core and of activated gold wires placed inside the core or to its vicinity. The reaction rates were calculated in MCNP5 code utilizing a detailed model of VR-1 reactor which was validated for neutronic calculations at the reactor. The paper describes in detail the experimental set-up of the benchmark, the MCNP model of the VR-1 reactor and provides a comparison between experimental and calculated data.

  4. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  5. Theoretical investigation on H abstraction reaction mechanisms and rate constants of Isoflurane with the OH radical

    NASA Astrophysics Data System (ADS)

    Ren, Hongjiang; Li, Xiaojun

    2015-12-01

    The mechanism of H abstraction reactions for Isoflurane with the OH radical was investigated using density functional theory and G3(MP2) duel theory methods. The geometrical structures of all the species were fully optimised at B3LYP/6-311++G** level of theory. Thermochemistry data were obtained by utilising the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for the reaction channels analysis. All the reaction channels were confirmed throughout the intrinsic reaction coordinate analysis. The results show that two channels were obtained, which correspond to P(1) and P(2) with the respective activation barriers of 63.03 and 54.82 kJ/mol. The rate constants for the two channels over a wide temperature range of 298.15-2000 K were predicted and the calculated data are in agreement with the experimental one. The results show that P(2) is the dominant reaction channel under 800 K and above 800 K, it can be found that P(1) will be more preferable reaction channel.

  6. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  7. A new theoretical approach to thermonuclear radiative-capture reaction rate

    SciTech Connect

    Funaki, Yasuro; Yabana, Kazuhiro; Akahori, Takahiko

    2012-11-12

    We propose a new computational method for astrophysical reaction rate of radiative capture process, which does not require any solution of scattering problem. It is tested for twobody radiative caputure reaction {sup 16}O({alpha},{gamma}){sup 20}Ne and a comparison is made with an ordinary method solving two-body scattering problem. The method is shown to work well in practice and thus will be useful for problems in which an explicit construction of scattering solution is difficult such as the triple-alpha capture process.

  8. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  9. Distortion of bulk-ion distribution function due to nuclear elastic scattering and its effect on T(d,n){sup 4}He reaction rate coefficient in neutral-beam-injected deuterium-tritium plasmas

    SciTech Connect

    Matsuura, H.; Nakao, Y.

    2007-05-15

    An effect of nuclear elastic scattering on the rate coefficient of fusion reaction between field deuteron and triton in the presence of neutral beam injection heating is studied. Without assuming a Maxwellian for bulk-ion distribution function, the Boltzmann-Fokker-Planck (BFP) equations for field (bulk) deuteron, field (bulk) triton, {alpha}-particle, and beam deuteron are simultaneously solved in an ITER-like deuterium-tritium thermonuclear plasma [R. Aymar, Fusion Eng. Des. 55, 107 (2001)]. The BFP calculation shows that enhancement of the reaction rate coefficient due to knock-on tail formation in fuel-ion distribution functions becomes appreciable, especially in the case of low-density operations.

  10. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    NASA Technical Reports Server (NTRS)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  11. Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs.

    PubMed

    Dvorak, J; Brüchle, W; Chelnokov, M; Düllmann, Ch E; Dvorakova, Z; Eberhardt, K; Jäger, E; Krücken, R; Kuznetsov, A; Nagame, Y; Nebel, F; Nishio, K; Perego, R; Qin, Z; Schädel, M; Schausten, B; Schimpf, E; Schuber, R; Semchenkov, A; Thörle, P; Türler, A; Wegrzecki, M; Wierczinski, B; Yakushev, A; Yeremin, A

    2008-04-01

    The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6 < or = Z < or = 18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction (248)Cm ((26)Mg,xn)(274-x)Hs and the observation of the new nuclide (271)Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets. PMID:18517941

  12. Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition

    SciTech Connect

    Zhang, X. E-mail: jnke1@icloud.com Fan, T.; Yuan, X.; Xie, X.; Chen, Z.; Källne, J.; Gorini, G.; Nocente, M.

    2014-04-15

    The progress on high-rate event recording of data is taken as starting point to revisit the design of fusion neutron spectrometers based on the TOF (time-of-flight) technique. The study performed was aimed at how such instruments for optimized rate (TOFOR) can be further developed to enhance the plasma diagnostic capabilities based on measurement of the 2.5 MeV dd neutron emission from D plasmas, especially the weak spectral components that depend on discrimination of extraneous events. This paper describes a design (TOFOR II) adapted for use with digital wave form recording of all detector pulses providing information on both amplitude (pulse height) and timing. The results of simulations are presented and the performance enhancement is assessed in comparison to the present.

  13. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  14. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers

    SciTech Connect

    Beste, Ariana; Buchanan III, A C

    2010-01-01

    We report reaction profiles and forward rate constants for hydrogen abstraction reactions occurring in the pyrolysis of methoxy-substituted derivatives of phenethyl phenyl ether (PhCH{sub 2}CH{sub 2}OPh, PPE), where the substituents are located on the aryl ether ring (PhCH{sub 2}CH{sub 2}OPh-X). We use density functional theory in combination with transition-state theory, and anharmonic corrections are included within the independent mode approximation. PPE is the simplest model of the abundant {beta}-O-4 linkage in lignin. The mechanism of PPE pyrolysis and overall product selectivities have been studied experimentally by one of us, which was followed by computational analysis of key individual hydrogen-transfer reaction steps. In the previous work, we have been able to use a simplified kinetic model based on quasi-steady-state conditions to reproduce experimental {alpha}/{beta} selectivities for PPE and PPEs with substituents on the phenethyl ring (X-PhCH{sub 2}CH{sub 2}OPh). This model is not applicable to PPE derivatives where methoxy substituents are located on the phenyl ring adjacent to the ether oxygen because of the strongly endothermic character of the hydrogen abstraction by substituted phenoxy radicals as well as the decreased kinetic chain lengths resulting from enhanced rates of the initial C?O homolysis step. Substituents decelerate the hydrogen abstraction by the phenoxy radical, while the influence on the benzyl abstraction is less homogeneous. The calculations provide insight into the contributions of steric and polar effects in these important hydrogen-transfer steps. We emphasize the importance of an exhaustive conformational space search to calculate rate constants and product selectivities. The computed rate constants will be used in future work to numerically simulate the pyrolysis mechanism, pending the calculation of the rate constants of all participating reactions.

  15. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    SciTech Connect

    Lamia, L.; Spitaleri, C.; La Cognata, M.; Palmerini, S.; Sergi, M. L.; Puglia, S. M. R.

    2015-02-24

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium ({sup 2}H), for the two lithium {sup 6,7}Li isotopes, for the {sup 9}Be and the one for the two boron {sup 10,11}B isotopes will be discussed.

  16. On the Rate and Mechanism of Proton Transfer Reactions in Proteins

    NASA Astrophysics Data System (ADS)

    Xie, Aihua; Li, Yunxing; Manda, Edward; Nie, Beining; Hoff, Wouter; Martin, Richard

    2009-03-01

    One of the fundamental processes in molecular biology is proton transfer reactions in proteins. Proton transfer is essential for the biological functions of proteins responsible in bioenergetics, biological signaling, and enzymatic catalysis. The mechanism of proton transfer is of great interests in order to understand the structural basis of biological functions. Despite of extensive experimental and computational efforts, it remains elusive what causes a proton to move from the proton donor to the proton acceptor. We will report a proof of concept study regarding a general mechanism of internal proton transfer reactions in proteins. Density functional theory, B3LYP/6-311+G(2d,p), is employed in this study. The results of our study provide deep insights into the structural basis to the rate and mechanism of proton transfer reactions in proteins, such as bacteriorhodopsin and green fluorescence protein.

  17. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; La Cognata, M.; Palmerini, S.; Puglia, S. M. R.; Sergi, M. L.

    2015-02-01

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium (2H ), for the two lithium 6,7Li isotopes, for the 9Be and the one for the two boron 10,11B isotopes will be discussed.

  18. A study of 239Pu production rate in a water cooled natural uranium blanket mock-up of a fusion-fission hybrid reactor

    NASA Astrophysics Data System (ADS)

    Feng, Song; Liu, Rong; Lu, Xinxin; Yang, Yiwei; Xu, Kun; Wang, Mei; Zhu, Tonghua; Jiang, Li; Qin, Jianguo; Jiang, Jieqiong; Han, Zijie; Lai, Caifeng; Wen, Zhongwei

    2016-03-01

    The 239Pu production rate is important data in neutronics design for a natural uranium blanket of a fusion-fission hybrid reactor, and the accuracy and reliability should be validated by integral experiments. The distribution of 239Pu production rates in a subcritical natural uranium blanket mock-up was obtained for the first time with a D-T neutron generator by using an activation technique. Natural uranium foils were placed in different spatial locations of the mock-up, the counts of 277.6 keV γ-rays emitted from 239Np generated by 238U capture reaction were measured by an HPGe γ spectrometer, and the self-absorption of natural uranium foils was corrected. The experiment was analyzed using the Super Monte Carlo neutron transport code SuperMC2.0 with recent nuclear data of 238U from the ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0u2, JEFF-3.2 and CENDL-3.1 libraries. Calculation results with the JEFF-3.2 library agree with the experimental ones best, and they agree within the experimental uncertainty in general with the average ratios of calculation results to experimental results (C/E) in the range of 0.93 to 1.01.

  19. Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: A review

    NASA Astrophysics Data System (ADS)

    Wojnárovits, László; Takács, Erzsébet

    2014-03-01

    Rate coefficients published in the literature on hydroxyl radical reactions with pesticides and related compounds are discussed together with the experimental methods and the basic reaction mechanisms. Recommendations are made for the most probable values. Most of the molecules whose rate coefficients are discussed have aromatic ring: their rate coefficients are in the range of 2×109-1×1010 mol-1 dm3 s-1. The rate coefficients show some variation with the electron withdrawing-donating nature of the substituent on the ring. The rate coefficients for triazine pesticides (simazine, atrazine, prometon) are all around 2.5×109 mol-1 dm3 s-1. The values do not show variation with the substituent on the s-triazine ring. The rate coefficients for the non-aromatic molecules which have C=C double bonds or several C-H bonds may also be above 1×109 mol-1 dm3 s-1. However, the values for molecules without C=C double bonds or several C-H bonds are in the 1×107-1×109 mol-1 dm3 s-1 range.

  20. Rate constants for reactions between atmospheric reservoir species. 2. H sub 2 O

    SciTech Connect

    Hatakeyama, Shiro; Leu, Mingtaun )

    1989-07-27

    The kinetics of the reactions of H{sub 2}O with ClONO{sub 2}, N{sub 2}O{sub 5}, O{sub 3}, and COCl{sub 2} have been investigated by using a large-volume static cell and a Fourier transform infrared spectrometer at 296 K. Upper limits for the homogeneous gas-phase reaction rate constants of the ClONO{sub 2} + H{sub 2}O, N{sub 2}O{sub 5} + H{sub 2}O, O{sub 3} + H{sub 2}O, and COCl{sub 2} + H{sub 2}O reactions were found to be 3.4 {times} 10{sup {minus}21}, 2.8 {times} 10{sup {minus}21}, 1.1 {times} 10{sup {minus}22}, and 1.2 {times} 10{sup {minus}23}, respectively (all in units of cm{sup 3} s{sup {minus}1}), based on the observed decay rates of ClONO{sub 2}, N{sub 2}O{sub 5}, O{sub 3}, and COCl{sub 2}. Product analyses gave 0.82 {plus minus} 0.07 for the yield of HNO{sub 3} in the ClONO{sub 2} + H{sub 2}O {yields} HOCl + HNO{sub 3} reaction and 1.1 {plus minus} 0.3 for the yield of HNO{sub 3} from the N{sub 2}O{sub 5} + H{sub 2}O {yields} 2HNO{sub 3} reaction. The quoted error represents one standard deviation of the measurement. An attempt was also made to monitor possible reaction products such as H{sub 2}O{sub 2} for the O{sub 3} + H{sub 2}O reaction, and CO{sub 2} or HCl for the COCl{sub 2} + H{sub 2}O reaction. These results may be important in the elucidation of the springtime Antarctic ozone depletion over the past decade. The implication for NO{sub x} chemistry in the nighttime troposphere based on their results of the N{sub 2}O{sub 5} + H{sub 2}O reaction will be discussed.

  1. Astrophysical Impact of the Updated 9Be(p,α)6Li and 10B(p,α)7Be Reaction Rates As Deduced By THM

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Prada Moroni, P. G.

    2015-10-01

    The complete understanding of the stellar abundances of lithium, beryllium, and boron represents one of the most interesting open problems in astrophysics. These elements are largely used to probe stellar structure and mixing phenomena in different astrophysical scenarios, such as pre-main-sequence or main-sequence stars. Their different fragility against (p,α) burning reactions allows one to investigate different depths of the stellar interior. Such fusion mechanisms are triggered at temperatures between T ≈ (2-5) × {10}6 K, thus defining a corresponding Gamow energy between ≈ 3-10 keV, where S(E)-factor measurements need to be performed to get reliable reaction rate evaluations. The Trojan Horse Method is a well defined procedure to measure cross sections at Gamow energies overcoming the uncertainties due to low-energy S(E)-factor extrapolation as well as electron screening effects. Taking advantage of the {\\mathtt{THM}} measure of the 9Be(p,α)6Li and 10B(p,α)7Be cross sections, the corresponding reaction rates have been calculated and compared with the evaluations by the NACRE collaboration, widely used in the literature. The impact on surface abundances of the updated 9Be and 10B (p,α) burning rates is discussed for pre-MS stars.

  2. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  3. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.

    PubMed

    Atchley, Adam L; Navarre-Sitchler, Alexis K; Maxwell, Reed M

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all

  4. Role of Barrier Modification and Inelastic Surface Excitations in Sub-Barrier Fusion of 16 32 S + 40 94 Zr Reaction

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh; Rajni; Sharma, Manoj K.

    2016-04-01

    The fusion dynamics of 16 32 S + 40 94 Zr reaction at near and sub-barrier energies is investigated within the context of different theoretical approaches. The various theoretical models like one-dimensional Wong formula, ℓ-summed extended Wong formula, the energy-dependent Woods-Saxon potential model (EDWSP model), and coupled channel formulation have been used to address the impacts of nuclear structure degrees of freedom of the colliding pairs. The roles of different Skyrme forces along with Wong formalism are also tested in the analysis of the sub-barrier fusion dynamics of the 16 32 S + 40 94 Zr reaction. The influence of the low-lying surface vibrational states of the collision partners is investigated within the framework of coupled channel calculations performed by the code CCFULL. In the present work, it has been observed that the EDWSP model introduces barrier modification effects somewhat similar to those of the coupled channel approach, as well as those of using different Skyrme forces and hence it reasonably addresses the observed fusion data of 16 32 S + 40 94 Zr reaction in the close vicinity of the Coulomb barrier.

  5. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    NASA Astrophysics Data System (ADS)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-06-01

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  6. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods. PMID:27369506

  7. Investigation of Mixing and Chemical Reaction Interactions Using Rate-Controlled Constrained-Equilibrium

    NASA Astrophysics Data System (ADS)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, Reza H.; Metghalchi, Hameed

    2014-11-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method is applied to study the interaction between mixing and chemical reaction in a constant pressure Partially-Stirred Reactor (PaSR). The objective is to understand the influence of mixing on RCCE predictions. The RCCE is a computationally efficient method based on thermodynamics to implement the combustion chemistry. In the RCCE the dynamics of reacting systems is described by a small number of rate-controlling reactions and slowly-varying constraints. The method is applied to study methane combustion via 12 constraints and 133 reaction steps. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The RCCE predictions are assessed by comparing with those of detailed kinetics model, in which the same kinetics, involving 29 species and 133 reaction steps, is integrated directly. Chemical kinetics and mixing interactions are studied for different residence and mixing time scales. Results show that the RCCE accurately represents the effect of mixing with different mixing strengths. An assessment of numerical performance of the RCCE is also performed. It is shown that the method is effective to reduce the stiffness of the kinetics and thus allows simulations with much lower computation costs.

  8. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  9. Quasifission and fusion-fission processes in the reactions 78Kr+40Ca and 86Kr+48Ca at 10 MeV/nucleon bombarding energy

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Lacroix, D.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.; Pirrone, S.; Politi, G.

    2016-02-01

    Within the dinuclear system model the charge, mass, and isotopic distributions of the products in the reactions 78Kr+40Ca and 86Kr+48Ca are predicted at bombarding energy 10 MeV/nucleon. The heavy-ion phase-space exploration code is applied to take into consideration the pre-equilibrium emission of light particles. The competition is treated between complete fusion followed by the decay of compound nucleus and quasifission channels. The possible explanation of the odd-even staggering in the yield of the final reaction products at high excitation energies is discussed.

  10. Rate of reactions between D 2O and Ca xAl yO z

    NASA Astrophysics Data System (ADS)

    Christensen, A. Nørlund; Lehmann, M. S.

    1984-02-01

    The rate of the reaction between D 2O and the calcium aluminum oxides Ca 3Al 2O 6, Ca 5Al 6O 14, CaAl 2O 4, and CaAl 4O 7 was investigated by on-line neutron diffraction powder methods at temperatures from room temperature to 100°C. The rate of the reaction increases with increasing calcium content of the compounds and with increasing temperature for each of the compounds. The crystallographic stable hydrate Ca 3Al 2(OD) 12 is obtained from CaAl 4O 7 and CaAl 2O 4 at temperatures above 63°C, from Ca 5Al 6O 14 at temperatures above 49°C, and from Ca 3Al 2O 6 at temperatures as low as 7°C.

  11. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  12. Absolute rate of the reaction of bromine atoms with ozone from 200-360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 was measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at lambda 165nm.O3 was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3, total pressure and limited variations in flash intensity. The measured rate constants obeyed the Arrhenius expression, where the error quoted is two standard deviations. Results are compared with previous determinations which employed the discharge flow-mass spectrometric technique.

  13. Absolute rate of the reaction of bromine atoms with ozone from 200 to 360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 has been measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at a wavelength of 165 nm. O3 concentration was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3 concentration, total pressure (Ar), and limited variations in flash intensity (i.e., initial Br concentration). The measured rate constants obey the Arrhenius expression, k = (7.74 plus or minus 0.50) x 10 to the -12th exp(-603 plus or minus 16/T) cu cm/molecule/sec, where the error quoted is two standard deviations.

  14. Absolute rate parameters for the reaction of atomic hydrogen with hydrazine

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.

    1976-01-01

    Absolute rate parameters for the reaction of atomic hydrogen with hydrazine H + N2H4 yields H2 + N2H3 have been determined in a direct manner using flash photolysis of dilute mixtures of hydrazine in helium and time dependent observation of H via resonance fluorescence. By measuring the H-atom decay under pseudo-first-order conditions, the bimolecular rate constant K sub 1 was obtained over the temperature range 228-400 K. The data were fitted with good linearity to the Arrhenius expression K sub 1 = (9.87 plus or minus 1.17) x 10 to the -12th exp(-2380 plus or minus 100/RT) cu cm/molecule/s. The data were shown to be free of any contributions from secondary reactions involving H as a reactant or product.

  15. 23Na (α,p )26Mg Reaction Rate at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Munch, M.; Fynbo, H. O. U.; Kirsebom, O. S.; Laursen, K. L.; Diget, C. Aa.; Hubbard, N. J.

    2015-07-01

    The production of 26Al in massive stars is sensitive to the 23Na (α,p )26Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of ˜40 . We present here differential cross sections for the 23Na (α,p )26Mg reaction measured in the energy range Ec .m .=1.7 - 2.5 MeV . Concurrent measurements of Rutherford scattering provide absolute normalizations that are independent of variations in target properties. Angular distributions are measured for both p0 and p1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates by a factor of 40, impacting the 26Al yield from massive stars by more than a factor of 3.

  16. Computational Approach for Ranking Mutant Enzymes According to Catalytic Reaction Rates

    PubMed Central

    Kumarasiri, Malika; Baker, Gregory A.; Soudackov, Alexander V.

    2009-01-01

    A computationally efficient approach for ranking mutant enzymes according to the catalytic reaction rates is presented. This procedure requires the generation and equilibration of the mutant structures, followed by the calculation of partial free energy curves using an empirical valence bond potential in conjunction with biased molecular dynamics simulations and umbrella integration. The individual steps are automated and optimized for computational efficiency. This approach is used to rank a series of 15 dihydrofolate reductase mutants according to the hydride transfer reaction rate. The agreement between the calculated and experimental changes in the free energy barrier upon mutation is encouraging. The computational approach predicts the correct direction of the change in free energy barrier for all mutants, and the correlation coefficient between the calculated and experimental data is 0.82. This general approach for ranking protein designs has implications for protein engineering and drug design. PMID:19235997

  17. Hydrolysis of lanthanide dicarbides: Rates of reaction of cubic and tetragonal solid solutions with water

    SciTech Connect

    McColm, I.J. )

    1993-05-01

    Two series of solid solutions, Ho[sub 1[minus]x]La[sub x]C[sub 2] and Nd[sub 1[minus]x]LaC[sub 2], have been made and their X-ray unit cell parameters measured. The Ho[sub 1[minus]x]La[sub x]C[sub 2] series contains two tetragonal phases and a cubic solid solution series which has enabled the reaction rate constants for the water hydrolysis reaction of a cubic dicarbide phase to be determined for the first time. By comparing the linear rate constants and the activation energies across the two series the nature of bonding in general and the structure of the cubic phase are elucidated. A comparison with microhardness data is made and the change in M-C[sub 2] bonding as a function of composition is considered. 10 refs., 9 figs., 3 tabs.

  18. Rate constant for formation of chlorine nitrate by the reaction ClO + NO2 + M

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Lin, C. L.; Demore, W. B.

    1977-01-01

    The pseudo-first-order decay of ClO in a large excess of NO2 was monitored in a discharge flow/mass-spectrometer apparatus in order to measure the rate constant of the reaction ClO + NO2 + M yields ClONO2 + M for M = He, Ar, and N2 over the temperature range from 248 to 417 K. Numerical results are given for He at 248, 299, 360, and 417 K (1 to 9 torr); for Ar at 298 K (1 to 4 torr); and for N2 at 299, 360, and 417 K (1 to 6 torr). Systematic errors are estimated, and identification of the reaction product is discussed. The results obtained are shown to be in excellent agreement with other recent measurements of the same rate constant.

  19. Quantitative determination of the steady-state kinetics of multienzyme reactions using the algebraic rate equations for the component single-enzyme reactions.

    PubMed Central

    Stoner, C D

    1993-01-01

    Methods are given whereby the steady-state kinetic characteristics of multienzyme reactions consisting of individual single-enzyme reactions linked by freely diffusible intermediates can be determined quantitatively from the experimentally determined complete algebraic rate equations for the individual reactions. The approach is based on the fact that a valid steady-state rate equation for such a multienzyme reaction, in terms of the rate equations for the individual reactions, can be obtained simply from knowledge of the relative rates of the individual reactions when the multienzyme reaction is in the steady state. A number of model multienzyme reactions, which differ as to structural arrangement of the individual reactions, are examined by this approach. Simple mathematical methods which are applicable to most of these models are given for direct calculation of dependent variables. It is either pointed out or demonstrated with Mathematica that the rate equations for all of these models can be handled very easily with the aid of a personal computer equipped with appropriate equation-solving software. Since the approach permits evaluation of all dependent variables for any specific combination of values for the kinetic parameters and independent variables, numerical values for the flux control coefficients of the individual enzymes can be obtained by direct calculation for a wide variety of conditions and can be compared with those obtained according to the methods of Metabolic Control Analysis. Several such comparisons have been made and in all cases identical results were obtained. The intuitive notion that the individual enzymes of a multienzyme reaction would be equally rate limiting if the total amount of enzyme were being used with maximum efficiency is tested and shown to be incorrect. In the course of this test the flux control coefficient for the individual enzymes were found to be appropriate indicators of relative rate limitation or control by the

  20. Turnover rate, reaction order, and elementary steps for the hydrodechlorination of chlorofluorocarbon compounds on palladium catalysts

    SciTech Connect

    Thompson, C.D.; Rioux, R.M.; Chen, N.; Ribeiro, F.H.

    2000-04-13

    The rates of hydrodechlorination catalyzed by Pd supported on carbon for four chlorofluorocarbons spanned a range of 7 orders of magnitude. The rates scaled up to the bond strength of the carbon-chlorine bond for the gas-phase reactant. This finding demonstrates that the rate-determining step involves the scission of the C-Cl bond and suggests, through Polanyi and linear free-energy relationships, that rates for other compounds can be estimated if the C-Cl bond strength is known. The reaction orders for the most abundant products are approximately first-order for the chlorine-containing compound, half-order in H{sub 2}, and inverse first-order in HCl. The reaction steps consistent with these orders include a rate-determining step involving the adsorption of the chlorofluorocarbon to a single site (which could be a single surface palladium atom) and equilibrated steps between gas-phase H{sub 2}, gas-phase HCl, and adsorbed hydrogen and chlorine atoms. The rates on the supported catalysts are comparable to the ones reported before on a Pd foil, indicating that the support does not play a role in the reaction. The product distribution is independent of conversion, implying that the various products are formed from a single visit of the reactant on the surface and not from readsorption of gas-phase products. The four compounds studied were chloropentafluoroethane (CF{sub 3}-CF{sub 2}Cl), 2-chloro-1,1,1,2-tetrafluoroethane (CF{sub 3}-CFClH), 1,1-dichlorotetrafluoroethane (CF{sub 3}-CFCl{sub 2}), and 1,1,1-trichloro-2,2,2-trifluoroethane (CF{sub 3}-CCl{sub 3}).