Science.gov

Sample records for fusion-bonded epoxy coatings

  1. Laboratory evaluation of fusion-bonded epoxy coatings for civil works applications. Final report

    SciTech Connect

    Race, T.D.; Boy, J.H.

    1995-01-01

    This study investigates safer, more cost-effective alternatives to U.S. Army Corps of Engineers paint specification C-200A, Coal Tar Epoxy Coating, which is used to protect steel sheet piling. Fusion-bonded epoxy, a nonpolluting shop-applied coating, was evaluated in laboratory tests as a potential replacement for C-200A. Laboratory tests that included salt and fresh water immersion, cyclic salt fog/ultraviolet (UV) condensation, impact resistance, and cathodic disbondment were conducted on four fusion-bonded epoxy and two control coating systems. Fusion-bonded epoxy coatings have excellent resistance to impact and cathodic disbondment. Resistance to corrosion in fresh and salt water immersion and in cyclic salt fog/UV-condensation exposures was comparable to the control coating systems. Based on the results of the laboratory tests, a field evaluation of fusion-bonded epoxy is recommended.

  2. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    PubMed

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking. PMID:23790122

  3. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  4. Epoxy coatings over latex block fillers

    SciTech Connect

    Vincent, L.D.

    1997-12-01

    Failures of polymerized epoxy coatings applied over latex/acrylic block fillers continue to plague owners of commercial buildings, particularly those with high architectural content such as condominiums, high rise offices, etc. Water treatment facilities in paper mills are especially prone to this problem. The types of failures include delamination of the topcoats, blisters in both the block fillers and the topcoats and disintegration of the block filler itself. While the problem is well known, the approach to a solution is not. A study of several coatings manufacturer`s Product Data Sheets shows a wide variance in the recommendations for what are purportedly generically equivalent block fillers. While one manufacturer might take an essentially architectural approach, another will take a heavy-duty industrial approach. To the specifying architect or engineer who has little training in the complexities of protective coating systems, this presents a dilemma. Who does he believe? What does he specify? To whom can he turn for independent advice?

  5. Degradation of epoxy coatings on phosphatized zinc-electroplated steel

    SciTech Connect

    Deflorian, F.; Miskovic-Stankovic, V.B.; Bonora, P.L.; Fedrizzi, L. . Material Engineering Dept.)

    1994-06-01

    The corrosion behavior of phosphatized zinc (Zn)-electroplated steel coated with epoxy films of different thicknesses was studies using electrochemical impedance spectroscopy (EIS), the breakpoint frequency method, potentiodynamic measurements, and the faradaic distortion method. The trends with time of the coatings' electrical properties (resistance and capacitance) and of the corrosion current were recorded. Coated samples were immersed in 5% sodium chloride (NaCl) in distilled water. To study the delamination tendency of the epoxy coatings, a small hole of 0.1 mm diam was drilled through the coatings to the metal-polymer interface. Comparison of the methods to evaluate the area of the defect in the organic coating and to establish the substrate area in contact with the electrolyte showed the breakpoint method failed to provide accurate information during a long initial period.

  6. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  7. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  8. Phased-Array Focusing Potential in Pipe with Viscoelastic Coating

    NASA Astrophysics Data System (ADS)

    Van Velsor, J. K.; Zhang, L.; Breon, L. J.; Rose, J. L.

    2007-03-01

    This work investigates the effectiveness of traditional guided-wave focusing techniques in piping with viscoelastic coating. Focusing results for an uncoated pipe are compared to that of pipe with a fusion-bonded epoxy coating, a coal-tar mastic coating, a coal-tar epoxy coating, a coal-tar tape coating, a wax coating, and an enamel coating. Experimental results are compared to computationally derived models. Results show that, for most coating types, focusing can be achieved without special consideration of the coating. This is significant in that it demonstrates the immediate applicability of traditional focusing techniques to coated pipeline.

  9. Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings

    NASA Astrophysics Data System (ADS)

    Borsoi, C.; Zattera, A. J.; Ferreira, C. A.

    2016-02-01

    Functionalization of cellulose nanowhiskers (CNW) was performed by means of chemical synthesis involving polymerization of polyaniline in emeraldine salt form (PAni SE) in the presence of CNW. Thermal, chemical and morphological samples properties were evaluated. Polymeric coatings were obtained with epoxy, aminopropyltriethoxysilane (APS), CNW and CNW/PAni SE applied on carbon steel with a conversion coating of zirconia (Zr) and the mechanical properties were evaluated. With regard to CNW functionalization the sample was encapsulated with PAni SE as observed by FTIR and morphologic analysis, with decreased thermal stability. Regarding the mechanical properties of CNW and CNW/PAni SE polymeric coatings, improvements in flexibility and hardness properties using the APS and Zr layer were observed. The adherence of polymer coatings improved by the incorporation of CNW and CNW/PAni SE. Through morphological analysis it was observed that CNW shows good dispersion in the polymer matrix without agglomerates formation.

  10. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-03-01

    The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores.

  11. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  12. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  13. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  14. Applying of non-toxic oxide alloys and hybrid polianiline compounds as anticorrosive pigments in organic epoxy coatings

    NASA Astrophysics Data System (ADS)

    Szymański, W.; Halama, A.; Madaliński, J.

    2016-02-01

    The objective of this work was to study inorganic oxide pigments as well as polyaniline heptamolybdes anticorrosive efficiency in epoxy coating. Antycorrosion resistance of modified coatings was examined by accelerated corrosion test in comparison to coatings of the suitable commercial epoxy paint. The carried out investigations shoved much bigrs anticorrosion performance of coatings modified with elaborated, new pigments.

  15. Pretreatment of Kapton-coated cable for epoxy adhesion

    SciTech Connect

    Carley, J.F.

    1984-01-09

    Preliminary testing of a new system for protecting bonded strain gages that will be attached to the MFTF magnets indicated falling electrical resistance to ground, attributed to the infiltration of moisture. The most likely infiltration route seemed to be along the Kapton lead cable, which has an outer surface of FEP fluorocarbon resin. Samples of the cable were pretreated with a fluorocarbon etchant, Tetra-Etch, for periods of 10, 25, and 40 s at room temperature, followed by rinsing with demineralized water. The treated ends were embedded in the proposed epoxy sealant, Hysol EA 934, a compound containing 70 wt % of asbestos. The tensile-shear stresses required to pull the wires out of these embedments were measured. Results show that the three levels of treatment are equally effective in raising the bond strength from 377 psi for the untreated cable to about twice that, 763 psi. The 40-s exposure to Tetra-Etch appears to have penetrated the 0.5-mil fluorocarbon coating and attacked the Kapton film and the conductor coatings inside it.

  16. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    PubMed

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. PMID:27103492

  17. ETV Program Report: Coatings for Wastewater Collection Systems - Epoxy Tec International, Inc., CPP RC3

    EPA Science Inventory

    The Epoxytec, Inc. CPP™ epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the Uni...

  18. ETV Program Report: Coatings for Wastewater Collection Systems - Protective Liner Systems, Inc., Epoxy Mastic, PLS-614

    EPA Science Inventory

    The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...

  19. Epoxy-coated rock anchors for upper Occoquan Dam

    SciTech Connect

    Bruen, M.P.; Pansic, N.; Schwartz, M.I.

    1995-12-31

    High-capacity, epoxy-coated anchors were installed at Upper Occoquan Dam to increase the stability of the 70-foot-high concrete gravity dam and powerhouse under revised Probable Maximum Flood (PMF) conditions. The post-tensioned anchorage system consisted of 56 multi-strand rock anchors with design loads of 700 to 1855 kips, averaging 1500 kips per tendon. A double corrosion protection system was specified to provide protection throughout the entire anchor length. During anchor stressing and testing, significant creep movement under constant loads equivalent to 133% of the design load was experienced and exceeded the requisite Post-Tensioning Institute (PTI) criteria. In addition to the creep phenomena, seating losses during transfer of the load to the end anchorage are at least 2 to 3 times greater than that which has been experienced with bare-wire strand tendons. On the basis of anchor test results, modifications were made to the anchor testing protocol, acceptance criteria, and the approach used for assessment of the long-term performance of the anchorage system.

  20. A positron annihilation lifetime spectroscopic study of the corrosion protective properties of epoxy coatings

    SciTech Connect

    MacQueen, R.C.

    1992-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) was used to measure the free volume cavity sizes and free volume fractions of crosslinked epoxy coatings on steel before and after saturation with liquid water at 23[degrees]C. A direct linear relationship between the equilibrium volume fraction of water absorbed and the dry relative free volume fraction of bisphenol A epoxy coatings was found. The free volume cavity sizes and the number of free volume cavities per unit volume of these epoxies were found to decrease after water saturation. These decreases are ascribed to the occupation of 13-17% of the free volume cavities by 2-4 water molecules per cavity. The free volume cavity size of polyglycol diepoxides was found to increase after water saturation. This increase is ascribed to the expansion of the free volume cavities by water, which is substantiated by the macroscopic swelling observed in these coatings. An inverse, linear relationship between the equilibrium water uptake and the relative free volume fraction of these coatings were observed. This result coupled with the fact that less than one molecule of nitrobenzene was determined to fit into an epoxy free volume cavity, and that nitrobenzene is quite soluble in most of the epoxides, indicates that other factors besides the magnitude of the free volume fraction affect the amount of solvent absorbed by epoxy coatings. The small percentage of free volume occupied by water and the small number of water molecules capable of filling each void of the bisphenol A epoxies after water saturation correlate to the high impedance values and the good corrosion protection of these coatings, suggesting that water passes through these coatings by slow diffusion through the connected free volume cavities in the coating. Increases in the free volume cavity sizes of the polyglycol diepoxides after water saturation correlate to the low impedance and the poor corrosion protection of these coatings.

  1. Cracking of high-solids epoxy coatings on steel structures in The Netherlands

    SciTech Connect

    Bijen, J. ); Montfort, J. van

    1999-05-01

    High-solids epoxy coatings on steel flood barriers in The Netherlands showed cracking shortly after application. An investigation revealed the cause of cracking. It appeared that shrinkage-induced stresses caused the coatings to fail. Two cracking phenomena are described and simulated by an accelerated test and computer modeling.

  2. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Zhu, Yanhao; Li, Chao; Song, Dalei; Zhang, Tao; Zheng, Xinran; Yan, Yongde; Zhang, Meng; Wang, Jun; Shchukin, Dmitry G.

    2016-04-01

    The epoxy coatings containing MCM-22 and Ce-MCM-22 zeolites were prepared by coating method on the Mg-Li alloy surface. The influence of MCM-22 and Ce-MCM-22 zeolites on corrosion protection of the epoxy coating was studied. The epoxy coating containing Ce-MCM-22 zeolites showed high corrosion resistance. Artificial defects in the epoxy coating containing Ce-MCM-22 zeolites on the Mg-Li surface were produced by the needle punching. The results show that the epoxy coating containing Ce-MCM-22 zeolites exhibits self-healing corrosion inhibition capabilities. It is ascribed to the fact that the Ce3+ ions are released from MCM-22 zeolites based on ion exchange of zeolite in the corrosion process of the Mg-Li alloy substrate. MCM-22 zeolites as reservoirs provided a prolonged release of cerium ions.

  3. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research

    NASA Astrophysics Data System (ADS)

    Ma, Yu; Di, Haihui; Yu, Zongxue; Liang, Ling; Lv, Liang; Pan, Yang; Zhang, Yangyong; Yin, Di

    2016-01-01

    With the purpose of preparing anticorrosive coatings, solvent-based epoxy resins often serve as raw material. Unfortunately, plentiful micro-pores are fabricated via solvent evaporation in the resin' curing process, which is an intrinsic shortcoming and it is thus necessary to obstacle their micro-pore for enhancing antiseptic property. To reduce the intrinsic defect and increase the corrosion resistance of coating, we synthesize a series of SiO2-GO hybrids through anchoring silica (SiO2) on graphene oxide (GO) sheets with the help of 3-aminopropyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane, and disperse the hybrids into epoxy resin at a low weight fraction of 2%. Furthermore, we investigate the appropriate preparation proportion of SiO2-GO hybrids (namely: SiO2-GO (1:5)). The electrochemical impedance spectroscopy (EIS) test and coatings' morphology monitoring in corrosion process reveal that the anticorrosive performance of epoxy coatings is significantly enhanced by incorporation of SiO2-GO (1:5) hybrids to epoxy compared with neat epoxy and other nanofillers including SiO2 or GO at the same contents. The superiority of the SiO2-GO (1:5) hybrids is related to their excellent dispersion in resin and sheet-like structure.

  4. Radiochemical ageing of epoxy coating for nuclear plants

    NASA Astrophysics Data System (ADS)

    Queiroz, D. P. R.; Fraïsse, F.; Fayolle, B.; Kuntz, M.; Verdu, J.

    2010-03-01

    The degradation of an epoxy-amine network exposed to gamma irradiation in oxygen atmosphere has been studied by using a variety of analytical methods, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and sol-gel analysis. Results show that the oxidation of epoxy systems grows with the irradiation dose. Hydroperoxides, which are species resulting from oxidation, were identified and quantified by DSC. As indicated by the sol-gel analysis, the mechanism of degradation of chain scission seems to be predominant over crosslinking. The modifications induced by irradiation reflect in a greater capacity of water absorption.

  5. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    NASA Astrophysics Data System (ADS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  6. Evaluation of the efficiency of radioactive decontamination for alkyd and epoxy-urethane coating systems

    NASA Astrophysics Data System (ADS)

    Jevremović, Milutin; Milošević, Bratislav; Lazarević, Nataša

    2010-01-01

    This article presents experimental results obtained by the investigation of the efficiency of radioactive decontamination of a metal surface with alkyd and epoxy-urethane coating systems, which are used for the painting of military equipment. During the evaluation of the efficiency of decontamination, the impact of contaminants on the coating was not examined but the amount of contaminants residual after decontamination was, and was determined by activity measurements of the surface. The samples for testing were painted aluminum plates contaminated by liquid solutions of radioactive isotopes 60Co, 133Ba, 152Eu and 241Am (A=12297.91 Bq/ml). Decontamination of contaminated samples was performed with 0.5% detergent solution on the basis of synthetic surfactants. The activity measurements of samples were conducted using gamma spectroscopy system with a high-resolution high-purity germanium (HPGe) detector of relative efficiency of 50% at 60Co (1.33 MeV). The degree of removal of the radioactivity on the samples was observed as an indicator of the efficiency of decontamination. A comparison of the results is presented in relation to the retention time of the contamination on the surface coating, which is an important factor for the efficiency of decontamination. The samples with an alkyd coating system showed better efficiency of decontamination than the samples with the epoxy-urethane coating system, although the coatings based on epoxy and urethane resin were superior in relation to the alkyd in terms of protection, decorative characteristics and chemical resistance. The difference in the efficiency of decontamination for the examined coatings increases almost linearly in relation to the retention time of the contaminants in the coating.

  7. Organic coatings in simulated flue gas desulfurization environments: Final report

    SciTech Connect

    Leidheiser, H. Jr.; White, M.L.; Mills, D.J.

    1987-10-01

    Coatings prepared from the following resin systems and applied to steel were evaluated in simulated flue gas desulfurization environments: nine combinations of epoxy resin and amine hardeners, three vinyl systems, a polyester, a fluoropolymer, a urethane/asphalt and an electrostatically sprayed, fusion-bonded epoxy. The evaluation techniques used on the coatings before and after environmental exposure included: corrosion potential, AC conductance at 2 kHz, DC resistance, weight gain and tensile adhesion. The results for the nine combinations of three epoxy resins and three hardeners exposed to 0.1M H/sub 2/SO/sub 4/, and to H/sub 2/SO/sub 4/ containing other salts and adjusted to pH 0.5, showed that the hardener had more effect on behavior than the resin; a bisphenol A and two novolac resins showed the poorest performance when hardened with a mixed aromatic/aliphatic amine, and the best performance when hardened with an aliphatic or cycloaliphatic amine. Two epoxy systems showed particularly good performance: a bisphenol A hardened with a cycloaliphatic amine and a novolac hardened with an aliphatic amine. The electrostatically applied, fusion-bonded epoxy coating showed no evidence of deterioration of the coating nor corrosion of the substrate after 5000 h exposure to 0.1M H/sub 2/SO/sub 4/. Epoxy and vinyl coatings exhibited no cracking and no corrosion in welded and non-welded areas after thermal cycling twelve times between room temperature and 100 to 120/sup 0/C followed by exposure to acid. The epoxy coatings had better impact resistance after thermal cycling than the vinyl coatings. 15 refs., 20 figs., 23 tabs.

  8. Evaluation of atomic oxygen resistant protective coatings for fiberglass-epoxy composites in LEO

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.

    1989-01-01

    Fiberglass-epoxy composite masts are the prime structural members for the Space Station Freedom solar array. At the altitude where Space Station Freedom will operate, atomic oxygen atoms are the most predominant species. Atomic oxygen is highly reactive and has been shown to oxidize organic and some metallic materials. Tests with random and directed atomic oxygen exposure have shown that the epoxy is removed from the composite exposing brittle glass fibers which could be easily removed from the surface where they could contaminate Space Station Freedom Systems. Protection or fiber containment systems; inorganic based paints, aluminum braid, and a metal coating; were evaluated for resistance to atomic oxygen, vacuum ultraviolet radiation, thermal cycling, and mechanical flexing. All appeared to protect well against atomic oxygen and provide fiber containment except for the single aluminum braid covering. UV radiation resistance was acceptable and in general, thermal cycling and flexure had little to no effect on the mass loss rate for most coatings.

  9. Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method

    PubMed Central

    Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing

    2015-01-01

    The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments. PMID:25608656

  10. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method.

    PubMed

    Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing

    2015-01-01

    The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments. PMID:25608656

  11. New epoxy/episulfide resin system for electronic and coating applications: Curing mechanisms and properties

    NASA Astrophysics Data System (ADS)

    Tsuchida, Katsuyuki

    This work involves research on a new resin system useful for printed circuit board and protective coating applications. The system provides excellent adhesion to copper and corrosion resistance for copper. The research involved detailed studies of the reaction mechanisms, and correlation of these mechanisms with the observed properties. The epoxy/episulfide system, when used with a dicyandiamide (DICY) curing agent, exhibits better adhesion to copper substrate, a better pot life and prepreg storage life, a lower thermal expansion coefficient, a lower heat of reaction, a lower degradation temperature, and higher water absorption as compared with the standard epoxy system. From model compound studies, the sulfur of the opened episulfide ring reacts with copper, resulting in a durable bond between the copper and matrix resin even after water boiling. Since the S- formed by the reaction of the episulfide with the curing agent easily reacts with both the episulfide and the epoxy, a C-S-C bond is formed and more unreacted curing agent remains as compared to the standard epoxy system. The new bond formation causes a lower thermal expansion coefficient and somewhat lower degradation temperature. The unreacted curing agent causes slightly higher water absorption. Since the episulfide ring has less stress than the epoxy ring the epoxy/episulfide system shows lower heat of reaction, i.e., a lower exotherm. and lower shrinkage. The epoxy/episuffide system, when used with a polyamide curing agent, exhibits better corrosion protection for copper substrates, a lower thermal expansion coefficient and a lower degradation temperature. From model compound studies, the curing reactions are changed by changing curing temperature and the presence of copper: the episulfide homopolymerization and the S--epoxy reactions increase in the case of room temperature curing or in the presence of copper. In the presence of copper, the sulfur of the episulfide also reacts with copper, although the

  12. Application of Epoxy Based Coating Instacote on Waste Tank Tops

    SciTech Connect

    Pike, J.A.

    1998-03-18

    This evaluation examines the compatibility of coating Instacote with existing High-Level Waste facilities and safety practices. No significant incompatibilities are identified. The following actions need to be completed as indicated when applying Instacote on waste tank tops:(1) Prior to application in ITP facilities, the final product should be tested for chemical resistance to sodium tetraphenylborate solutions or sodium titanate slurries.(2) Any waste contaminated with Part A or B that can not be removed by the vendor such as for radiological contamination, HLW must hold the waste until HLW completes a formal assessment of the waste, disposal criteria, and impact.(3) Prior to the start of any application of the coating, each riser needs to be evaluated for masking and masking applied if needed.(4) At the conclusion of an application actual total weight of material applied to a waste tank needs to documented and sent to the tank top loading files for reference purposes.(5) Verify that the final product contains less than 250 ppm chloride.

  13. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    NASA Astrophysics Data System (ADS)

    Sharifi Golru, S.; Attar, M. M.; Ramezanzadeh, B.

    2015-08-01

    The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  14. Spray-Coated Halloysite-Epoxy Composites: A Means To Create Mechanically Robust, Vertically Aligned Nanotube Composites.

    PubMed

    Song, Kenan; Polak, Roberta; Chen, Dayong; Rubner, Michael F; Cohen, Robert E; Askar, Khalid A

    2016-08-10

    Halloysite nanotube-filled epoxy composites were fabricated using spray-coating methods. The halloysite nanotubes (HNTs) were aligned by the hydrodynamic flow conditions at the spray nozzle, and the polymer viscosity helped to preserve this preferential orientation in the final coatings on the target substrates. Electron microscopy demonstrated a consistent trend of higher orientation degree in the nanocomposite coatings as viscosity increased. The nanoindentation mechanical performances of these coatings were studied using a Hysitron TriboIndenter device. Composites showed improvements up to ∼50% in modulus and ∼100% in hardness as compared to pure epoxy, and the largest improvements in mechanical performance correlated with higher alignment of HNTs along the plane-normal direction. Achieving this nanotube alignment using a simple spray-coating method suggests potential for large-scale production of multifunctional anisotropic nanocomposite coatings on a variety of rigid and deformable substrates. PMID:27428814

  15. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  16. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  17. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  18. Carbon Fiber—Vinyl Ester Interfacial Adhesion Improvement by the Use of an Epoxy Coating

    NASA Astrophysics Data System (ADS)

    Vautard, Frederic; Xu, Lanhong; Drzal, Lawrence T.

    With the use of composites expanding into larger structural applications, vinyl ester matrices which are not dependent on an autoclave cure and are more environmentally resistant to water absorption are being investigated. The degree of adhesion between the fiber and matrix has been recognized to be a critical factor in determining the performance of fiber-reinforced composites. The mechanical properties of carbon fiber-vinyl ester composites are low compared to carbon fiber-epoxy composites, partly because of lower interfacial adhesion. The origins of this limitation were investigated. The influence of preferential adsorption of the matrix constituents on the interfacial adhesion was not significant. However, the high cure volume shrinkage was found to be an important factor. An engineered interphase consisting of a partially cross-linked epoxy sizing that could chemically bond to the carbon fiber and form an interpenetrating network with the vinyl ester matrix was found to sharply improve the interfacial adhesion. The mechanisms involved in that improvement were investigated. The diffusion of styrene in the epoxy coating decreased the residual stress induced by the volume shrinkage of the vinyl ester matrix. The optimal value of the thickness was found to be a dominant factor in increasing the value of the interfacial shear strength according to a 2D non-linear finite element model.

  19. Sticky superhydrophobic filter paper developed by dip-coating of fluorinated waterborne epoxy emulsion

    NASA Astrophysics Data System (ADS)

    Huang, Xiangxuan; Wen, Xiufang; Cheng, Jiang; Yang, Zhuoru

    2012-09-01

    A superhydrophobic and superoleophilic coating for oil filter paper was synthesized based on waterborne bisphenol-A novolac epoxy emulsion. The benzoic acid (BA) and maleic anhydride (MA) were used as modification agents to give the epoxy resin hydrophilic groups (carboxyl) and Cdbnd C double bonds. And the fluorinated waterborne epoxy emulsion was prepared by free radical solution polymerization of dodecafluoroheptyl methacrylate (DFMA) monomer. The covalent bound low free energy fluorinated chains in the monomer reduce the surface energy of solidification polymers sufficiently to give rise to superhydrophobic behavior while conserving superoleophilicity. Surfaces prepared show a sticky property, which exhibits a static water contact angle of 152° for a 5 μL droplet that does not slid off even when the sample is held upside down. This synthetic emulsion is simple and convenient as impregnating agent for filter paper, which can be considered as a suitable candidate for various substrates such as cotton textiles, E-glass and artificial fiber, and so on.

  20. Vacuum fusion bonded glass plates having microstructures thereon

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  1. Space environmental effects on LDEF composites: A leading edge coated graphite epoxy panel

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Hill, Sylvester G.

    1993-01-01

    The electronics module cover for the leading edge (Row D 9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a (O(sub 2), +/- 45, O(sub 2), +/- 45, 90, 0)(sub s) layup. This 11.75 in x 16.75 in panel was covered with thermal control coatings in three of the four quadrants with the fourth quadrant uncoated. The composite panel experienced different thermal cycling extremes in each quadrant due to the different optical properties of the coatings and bare composite. The panel also experienced ultraviolet (UV) and atomic oxygen (AO) attack as well as micrometeoroid and space debris impacts. An AO reactivity of 0.99 x 10(exp -24) cm(sup 3)/atom was calculated for the bare composite based on thickness loss. The white urethane thermal control coatings (A276 and BMS 1060) prevented AO attack of the composite substrate. However, the black urethane thermal control coating (Z306) was severely eroded by AO, allowing some AO attack of the composite substrate. An interesting banding pattern on the AO eroded bare composite surface was investigated and found to match the dimensions of the graphite fiber tow widths as prepregged. Also, erosion depths were greater in the darker bands. Five micrometeoroid/space debris impacts were cross sectioned to investigate possible structural damage as well as impact/AO interactions. Local crushing and delaminations were found to some extent in all of the impacts. No signs of coating undercutting were observed despite the extensive AO erosion patterns seen in the exposed composite material at the impact sites. An extensive microcrack study was performed on the panel along with modeling of the thermal environment to estimate temperature extremes and thermal shock. The white coated composite substrate displayed almost no microcracking while the black coated and bare composite showed extensive microcracking. Significant AO erosion was seen in many of the cracks in the bare composite.

  2. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    SciTech Connect

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  3. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    NASA Astrophysics Data System (ADS)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  4. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    NASA Astrophysics Data System (ADS)

    Xu, J. L.; Huang, Z. X.; Luo, J. M.; Zhong, Z. C.

    2014-04-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H2SO4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H2SO4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings.

  5. Size and core content optimization of epoxy nanocapsules by response surface methodology for use in self-healing coatings

    NASA Astrophysics Data System (ADS)

    Khoee, Sepideh; Hosein Payandeh, Seyed; Jafarzadeh, Parinaz; Asadi, Hamed

    2016-08-01

    A model is provided to estimate the effect of different factors on the synthesis of nanocapsules containing epoxy resin. Producing nanocapsules with different sizes and core-contents for different applications is made possible by using this model. The three parameters that have the most important effect on the properties of the nanocapsules: the surfactant concentration, agitation rate and sonication time are selected and the response surface methodology is used to determine the effect of these parameters on the nanocapsule size and core content. These parameters are modified to prepare nanoparticles with a high core content (68.7%) and small size (165 nm). The nanocapsules were stable up to 150 °C and these properties have made them applicable for future use in self-healing coatings and composites. The modified epoxy nanocapsules were mixed with amine-filled nanocapsules and were incorporated in an epoxy coating. This coating was scratched and kept in a corrosive environment and even after 30 days it still showed a high corrosion resistance, proving that the nanocapsules were able to successfully heal the scratches in the coating. After 30 days of immersion in 3.5 wt% NaCl environment, the corrosion resistance of the coating with healing particles was 38 times higher than the pure coating.

  6. Corrosion Protection Performance of Nano-SiO2/Epoxy Composite Coatings in Acidic Desulfurized Flue Gas Condensates

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Wang, Z. Y.; Hu, H. X.; Liu, C. B.; Zheng, Y. G.

    2016-07-01

    Five kinds of nano-SiO2/epoxy composite coatings were prepared on mild steels, and their corrosion protection performance was evaluated at room temperature (RT) and 50 °C (HT) using electrochemical methods combined with scanning electron microscopy (SEM). The effects of preparation and sealing processes on the corrosion protection performance of epoxy coatings were specially focused on. The results showed that it was favorable for the corrosion protection and durable performance to add the modified nano-SiO2 during rather than after the synthesis of epoxy coatings. Furthermore, the employment of sealer varnish also had beneficial effects. The two better coatings still exhibited higher impedance values even after immersion tests for up to 1000 h at RT and 500 h at HT. SEM revealed that the improvement of corrosion protection performance mainly resulted from the enhancement of coating density. Moreover, the evolution of electrochemical behavior of the two better coatings with immersion time was also discussed by means of fitting the electrochemical impedance spectroscopy results using equivalent circuits with different physical meanings.

  7. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  8. Color Schemes and Biocompatibility of Epoxy Resin/polytetrafluorethylene Coat on the Surface of Tini Arth Wires

    NASA Astrophysics Data System (ADS)

    Shao, Ping; Feng, Xue; Sui, Jie He; Cai, Wei; Wang, Tao; Ma, Wei

    In order to avoid the "metallic smile" appearance of metal wires when undergoing orthodontic treatment, epoxy resin/polytetrafluorethylene coating TiNi arch wires were made by dipping method. TiO2 and FeFe2O4 were chosen as dyes in order to match the color of teeth and the color schemes were fixed by spectrophotometer method. The biocompatibility of coating was also examined. The results showed that the cytotoxicity of the coating was grade I, and without mutagenesis and carcinogenesis. Skin sensitization assay showed no erythema or oedema response and epithelial was integrated according to mucous membrane irritation. Thus, good behavior in clinic can be anticipated.

  9. Assessment of the effects of surface preparation and coatings on the susceptibility of line pipe to stress-corrosion cracking

    SciTech Connect

    Beavers, J.A. )

    1992-02-24

    Objectives were to evaluate susceptibility of pipeline steel to SCC when coated with coal-tar enamel, fusion-bonded epoxy (FBE), and polyethylene tape coatings. The tests included standard cathodic disbondment tests, potential gradients beneath disbonded coatings, electrochemical measurements, and SCC tests. It was concluded that factors affecting relative SCC susceptibility of pipelines with different coatings are the disbonding resistance of the coating and the ability of the coating to pass cathodic protection (CP) current. FBE coated pipelines would be expected to exhibit good SCC resistance, since the FBE coating had high cathodic disbonding resistance and could pass CP current. Grit blasting at levels used at coating mills may be beneficial or detrimental to SCC susceptibility. Excellent correlation was found between th Almen strip deflection and change in SCC threshold stress. It appears to be beneficial to remove as much mill scale as possible, and a white surface finish probably should also be specified. 50 figs, 10 tabs.

  10. Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch

  11. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    PubMed

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects. PMID:27265834

  12. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    PubMed

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-01

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed. PMID:27062720

  13. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  14. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  15. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    NASA Astrophysics Data System (ADS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  16. Synergistic Inhibition Effect of Zinc Acetylacetonate and Benzothiazole in Epoxy Coating on the Corrosion of Mild Steel

    NASA Astrophysics Data System (ADS)

    Amoozadeh, S. M.; Mahdavian, M.

    2015-06-01

    The corrosion inhibition effect of zinc acetylacetonate (ZAA) and benzothiazole (BTH) mixture was evaluated for mild steel in 3.5% NaCl solution. To this end, ZAA:BTH mixtures ranged from 6:1 to 1:6 mol ratios were examined by weight loss and open circuit potential to obtain optimal mole ratio. The optimal mixture of ZAA:BTH at 1:5 mol ratio showed a significant corrosion inhibition efficiency proved by electrochemical impedance spectroscopy and polarization studies. The addition of the optimal mixture of ZAA:BTH to epoxy coating showed a considerable increase of corrosion protection evaluated by salt spray exposure.

  17. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  18. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  19. Drinking water contaminants from epoxy resin-coated pipes: A field study.

    PubMed

    Rajasärkkä, Johanna; Pernica, Marek; Kuta, Jan; Lašňák, Jonáš; Šimek, Zdenĕk; Bláha, Luděk

    2016-10-15

    Rehabilitation of aged drinking water pipes is an extensive renovation and increasingly topical in many European cities. Spray-on-lining of drinking water pipes is an alternative cost-effective rehabilitation technology in which the insides of pipes are relined with organic polymer. A commonly used polymer is epoxy resin consisting of monomer bisphenol A (BPA). Leaching of BPA from epoxy lining to drinking water has been a concern among public and authorities. Currently epoxy lining is not recommended in some countries. BPA leaching has been demonstrated in laboratory studies but the behavior and ageing process of epoxy lining in situ is not well known. In this study 6 locations with different age epoxy linings of drinking water pipes done using two distinct technologies were studied. While bisphenol F, 4-n-nonylphenol, and 4-t-octylphenol were rarely found and in trace concentrations, BPA was detected in majority of samples. Pipes lined with the older technology (LSE) leached more BPA than those with more recent technology (DonPro): maxima in cold water were 0.25 μg/L and 10 ng/L, respectively. Incubation of water in pipes 8-10 h prior to sampling increased BPA concentration in cold water 1.1-43-fold. Hot water temperature caused even more BPA leaching - at maximum 23.5 μg/L. The influence of ageing of epoxy lining on BPA leaching on could be shown in case of LSE technology: locations with 8-9 years old lining leached 4-20-fold more BPA compared to a location with 2-year-old lining. Analysis of metals showed that epoxy lining can reduce especially iron concentration in water. No significant burden to water could be shown by the analyzed 72 volatile organic compounds, including epichlorhydrin, precursor used in epoxy resin. Estrogenicity was detected in water samples with the highest BPA loads. Comparable responses of two yeast bioreporters (estrogen receptor α and BPA-targeted) indicated that bisphenol-like compounds were the main cause of estrogenicity

  20. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    NASA Astrophysics Data System (ADS)

    Aziz, Hammad; Ahmad, Faiz; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-01

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC's were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  1. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    SciTech Connect

    Aziz, Hammad Ahmad, Faiz Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-22

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  2. Development of a removable conformal coating through the synthetic incorporation of Diels-Adler thermally reversible adducts into an epoxy resin.

    SciTech Connect

    Aubert, James Henry; Sawyer, Patricia Sue; Tallant, David Robert; Garcia, Manuel Joseph

    2005-02-01

    An epoxy-based conformal coating with a very low modulus has been developed for the environmental protection of electronic devices and for stress relief of those devices. The coating was designed to be removable by incorporating thermally-reversible Diels-Alder (D-A) adducts into the epoxy resin utilized in the formulation. The removability of the coating allows us to recover expensive components during development, to rebuild during production, to upgrade the components during their lifetime, to perform surveillance after deployment, and it aids in dismantlement of the components after their lifetime. The removability is the unique feature of this coating and was characterized by modulus versus temperature measurements, dissolution experiments, viscosity quench experiments, and FTIR. Both the viscosity quench experiments and the FTIR measurements allowed us to estimate the equilibrium constant of the D-A adducts in a temperature range from room temperature to 90 C.

  3. Food contamination from epoxy resins and organosols used as can coatings: analysis by gradient NPLC.

    PubMed

    Biedermann, M; Grob, K

    1998-07-01

    Normal phase LC with gradient elution enabled the analysis of a broadened range of oligomers of BADGE (Bisphenol-A diglycidyl ether) and Novolak compounds in canned foods, such as sea foods in oil, meat products and soups. A major component released from Bisphenol-A resins was identified as the cyclo-(Bisphenol-A monoglycidyl ether) dimer and was commonly present in foods at concentrations of around 1 mg/kg. For the epoxy Novolaks, concentrations of the three- to six-ring compounds often far exceeded those of BFDGE (Bisphenol-F diglycidyl ether) and reached 20 mg/kg in foods. A two-step acylation is proposed for the detection of epoxy components. PMID:9829047

  4. Thermally-induced stresses in graphite-epoxy tubes coated with aluminum foil

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Hyer, M. W.

    1989-01-01

    Thermally-induced stresses in the foil, adhesive, and graphite-epoxy layers of composite tubes with aluminum foil bonded to the inner and outer surface are computed. The thermal effects are due to a temperature decrease from the processing temperature of the material to a temperature felt to represent the space environment, the intended operating environment of the tubes. Tubes fabricated from T300/934 and P75s/934 material systems are considered. The results indicate that the presence of the foil and adhesive have no detrimental effect on the stresses in the tube.

  5. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  6. Facile preparation of superamphiphobic epoxy resin/modified poly(vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance

    NASA Astrophysics Data System (ADS)

    Wang, Huaiyuan; Liu, Zhanjian; Wang, Enqun; Zhang, Xiguang; Yuan, Ruixia; Wu, Shiqi; Zhu, Yanji

    2015-12-01

    A robust superamphiphobic epoxy resin (EP)/modified poly(vinylidene fluoride) (MPVDF)/fluorinated ethylene propylene (FEP) composite coating has been prepared through the combination of chemical modification and spraying technique. Nanometer silica (SiO2, 2.5 wt.%) and carbon nanotubes (CNTs, 2.5 wt.%) were added in the coating to construct the necessary reticulate papillae structures for superamphiphobic surface. The prepared EP composite coating demonstrated high static contact angles (166°, 155°) and low sliding angles (3°, 5°) to water and glycerol, respectively. Moreover, the prepared coating can also retain superhydrophobicity under strongly acidic and alkaline conditions. The brittleness of EP can be avoided by introducing the malleable MPVDF. The wear life of the EP composite coating with 25 wt.% FEP was improved to 18 times of the pure EP coating. The increased wear life of the coating can be attributed to the designed nano/micro structures, the self-lubrication of FEP and the chemical reaction between EP and MPVDF. The anti-corrosion performance of the coatings was investigated in 3.5% NaCl solution using potentiodynamic polarization. The results showed that the prepared superamphiphobic composite coating was most effective in corrosion resistance, primarily due to the barrier effect for the diffusion of O2 and H2O molecules. It is believed that this robust superamphiphobic EP/MPVDF/FEP composite coating prepared by the facile spray method can pave a way for the large-scale application in pipeline transport.

  7. Electrosprayed core–shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head

    PubMed Central

    Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan

    2014-01-01

    A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437

  8. Migration of bisphenol A (BPA) from epoxy can coatings to jalapeño peppers and an acid food simulant.

    PubMed

    Munguia-Lopez, Elvia M; Peralta, Elizabeth; Gonzalez-Leon, Alberto; Vargas-Requena, Claudia; Soto-Valdez, Herlinda

    2002-12-01

    Effects of heat processing, storage time, and temperature on migration of bisphenol A (BPA) from an epoxy type can coating to an acid food simulant and jalapeño peppers were determined. Commercial jalapeño pepper cans (8 oz, dimensions 211 x 300) were stored at 25 degrees C for 40, 70, and 160 days. A solution of 3% acetic acid was canned in 211 x 300 cans from the same batch used for jalapeño peppers. Heat processing was applied to two-thirds of the cans, and the remaining cans were not heat processed. Cans were stored at 25 and 35 degrees C for 0, 40, 70, and 160 days. Results showed that there is a minimal effect of heat treatment. An effect of storage time on migration of BPA during the first 40 days at 25 degrees C was observed. An increase on migration of BPA was observed with storage time at 35 degrees C. The highest level of migration was 15.33 microg/kg of BPA at 160 days at 35 degrees C. A correction factor of approximately 0.4 was calculated for migration under simulating conditions of storage compared to the real ones. The highest level of BPA found in jalapeño peppers cans, surveyed from three supermarkets, was 5.59 +/- 2.43 microg/kg. Migration of BPA, performed according to the European and Mercosur conditions, was 65.45 +/- 5.29 microg/kg. All the migration values found in this study were below those legislation limits (3 mg/kg). PMID:12452648

  9. Nonmetallic materials handbook. Volume 1: Epoxy materials

    NASA Technical Reports Server (NTRS)

    Podlaseck, S. E.

    1979-01-01

    Thermochemical and other properties data is presented for the following types of epoxy materials: adhesives, coatings finishes, inks, electrical insulation, encapsulants, sealants, composite laminates, tapes, and thermal insulators.

  10. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  11. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    NASA Astrophysics Data System (ADS)

    Jimenez-Garate, Mario A.; Craig, William W.; Hailey, Charles J.; Christensen, Finn E.; Hussain, Ahsen M.

    2000-11-01

    We fabricated x-ray mirrors for hard x-ray (>= 10 keV) telescopes using multilayer coatings and an improved epoxy- replicated aluminum foil (ERAF) nonvacuum technology. The ERAF optics have approximately 1 arcmin axial figure half- power diameter (HPD) and passed environmental testing. Reflectivity measurements at 8 keV on ERAFs with and without multilayer coatings show a 4.4 to 4.8 angstroms room mean square microroughness for correlation lengths

  12. Fusion bonding of non-pressurized process piping: A new technology and a new approach

    SciTech Connect

    Cooper, R.J.; Pinder, R.

    1996-07-01

    Perhaps the best-known method of thermoplastic fusion bonding for process piping is hot-plate or heated-tool butt welding. Despite the age of this method and the considerable research available on the subject, in practice, this method of heat fusion relies largely on the skill and knowledge of the machine operator. Hence, the quality of the completed fusion bond is largely dependent on human factors. Another method for joining thermoplastic process piping with heat fusion has been through the use of electrofusion fittings or couplings. A sleeve with an embedded resistance wire is slipped onto mating pipe ends, and welding takes place by electrically heating the resistance wire and forming a molecular bond on the outside surface of the mated pipes. While butt welding tends to rely heavily on the knowledge and experience of the machine operator, electrofusion fittings tend to rely more on automated mechanisms such as the software in the computerized fusion box. An alternative form of thermoplastic welding that employs the features of both butt welding and electrofusion couplings has recently been developed. This unique method employs the principles of electrofusion for performing butt welding. The authors have successfully demonstrated this technology at a major US chemical manufacturer`s facility to produce reliable, leak-tight fusion joints in non-pressurized, process piping applications. Research and practical experience were blended to provide consistent fusion quality based on monitoring key fusion parameters, while still relying on the experience and training of a fusion operator.

  13. Thermoplastic fusion bonding using a pressure-assisted boiling point control system.

    PubMed

    Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C

    2012-08-21

    A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully. PMID:22728966

  14. Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption

    NASA Astrophysics Data System (ADS)

    Wang, Junpeng; Wang, Jun; Zhang, Bin; Sun, Yu; Chen, Wei; Wang, Tao

    2016-03-01

    Epoxy resin based lightweight composites comprising Fe3O4-coated hollow glass spheres (HGS@Fe3O4) and reduced graphene oxide (RGO) were prepared. Impedance matching condition and electromagnetic wave attenuation characteristic are used for analysis of the reflection loss (RL) performance of the composites. Compared with pure HGS@Fe3O4 and RGO composite, the -10 dB absorption bandwidth and the minimum RL of the hybrid composites are enhanced. RL values less than -10 dB are obtained in a wide frequency range and the corresponding bandwidth can reach up to 3.6 GHz when an appropriate absorber thickness is chosen. The density of the hybrid composite is in the range of 0.57-0.72 g/cm3, which is attractive candidate for a new type of lightweight microwave absorber.

  15. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite

    SciTech Connect

    Wang, Junpeng; Sun, Yu; Chen, Wei; Wang, Tao; Xu, Renxin; Wang, Jun

    2015-04-21

    Using a combination of Ag-coated hollow glass spheres (HGS@Ag) and a small quantity of graphene sheets within the epoxy matrix, we have prepared a novel lightweight high efficiency microwave absorption composite. Compared with pure HGS@Ag and graphene composite, the −10 dB absorption bandwidth and the minimum reflection loss of the novel composite are improved. Reflection loss exceeding −20 dB is obtained for composites in a wide frequency range and the minimum reflection loss reaches −46 dB while bandwidth less than −10 dB can reach up to 4.1 GHz when an appropriate absorber thickness between 2 and 3.5 mm is chosen. The enhanced microwave absorption performance of the novel composite is due to the enhanced dielectric response, enhanced conductivity, and the trap of electromagnetic radiation with increased propagation paths by multiple reflections.

  16. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite

    NASA Astrophysics Data System (ADS)

    Wang, Junpeng; Sun, Yu; Chen, Wei; Wang, Tao; Xu, Renxin; Wang, Jun

    2015-04-01

    Using a combination of Ag-coated hollow glass spheres (HGS@Ag) and a small quantity of graphene sheets within the epoxy matrix, we have prepared a novel lightweight high efficiency microwave absorption composite. Compared with pure HGS@Ag and graphene composite, the -10 dB absorption bandwidth and the minimum reflection loss of the novel composite are improved. Reflection loss exceeding -20 dB is obtained for composites in a wide frequency range and the minimum reflection loss reaches -46 dB while bandwidth less than -10 dB can reach up to 4.1 GHz when an appropriate absorber thickness between 2 and 3.5 mm is chosen. The enhanced microwave absorption performance of the novel composite is due to the enhanced dielectric response, enhanced conductivity, and the trap of electromagnetic radiation with increased propagation paths by multiple reflections.

  17. A novel approach for purification and selective capture of membrane vesicles of the periodontopathic bacterium, Porphyromonas gingivalis: membrane vesicles bind to magnetic beads coated with epoxy groups in a noncovalent, species-specific manner.

    PubMed

    Nakao, Ryoma; Kikushima, Kenji; Higuchi, Hideo; Obana, Nozomu; Nomura, Nobuhiko; Bai, Dongying; Ohnishi, Makoto; Senpuku, Hidenobu

    2014-01-01

    Membrane vesicles (MVs) of Porphyromonas gingivalis are regarded as an offensive weapon of the bacterium, leading to tissue deterioration in periodontal disease. Therefore, isolation of highly purified MVs is indispensable to better understand the pathophysiological role of MVs in the progression of periodontitis. MVs are generally isolated by a conventional method based on ultracentrifugation of the bacterial culture supernatant. However, the resulting MVs are often contaminated with co-precipitating bacterial appendages sheared from the live bacteria. Here, we report an intriguing property of P. gingivalis MVs--their ability to bind superparamagnetic beads coated with epoxy groups (SB-Epoxy). Analysis of fractions collected during the purification revealed that all MVs of five tested P. gingivalis stains bound to SB-Epoxy. In contrast, free fimbriae in the crude MV preparation did not bind to the SB-Epoxy. The SB-Epoxy-bound MVs were easily dissociated from the SB-Epoxy using a mild denaturation buffer. These results suggest that the surface chemistry conferred by epoxy on the beads is responsible for the binding, which is mediated by noncovalent bonds. Both the structural integrity and purity of the isolated MVs were confirmed by electron microscopy. The isolated MVs also caused cell detachment from culture dishes at a physiologically relevant concentration. Assays of competitive binding between the SB-Epoxy and mixtures of MVs from five bacterial species demonstrated that only P. gingivalis MVs could be selectively eliminated from the mixtures. We suggest that this novel approach enables efficient purification and selective elimination of P. gingivalis MVs. PMID:24830438

  18. Compliance work for food contact materials: feasibility of the legally required safety assessment of an epoxy/amine-based coating for domestic water pipe restoration.

    PubMed

    Tillner, Jocelyn; Grob, Koni

    2014-01-01

    Options were explored for fulfilling the legally required safety assessment for a widely applied epoxy/amine coating used for restoring corroded domestic drinking water supply systems. The coating was made up of two components mixed shortly before application, the first mainly consisting of bisphenol A diglycidyl ether (BADGE), the second of various amines. The analytically identified starting substances were all authorised, but only constituted a small proportion of the low molecular mass material left after curing and potentially migrating into water. Reaction products synthesised from constituents of the starting components (expected oligomers) could not be eluted from GC even after derivatisation, indicating that standard GC-MS screening would miss most potential migrants. They were detectable by size exclusion chromatography (SEC) after acetylation. HPLC with MS or fluorescence detection was possible for constituents including a BADGE moiety, but phenalkamines could not be detected with adequate sensitivity. Possibilities for determining long-term migration relevant for chronic toxicity are discussed. Analysis in water shortly after application of the coating overestimates migration if migration decreases over time and requires detection limits far out of reach. Analysis of a solvent extract of the coating is easier and provides an upper estimate of what could migrate into the drinking water over the years. However, to satisfy the regulatory requirements, components of the complex mixture need to be identified at lower proportions than those accessible. In vitro testing of the whole mixture for genotoxicity is expected to fail because of the required sensitivity and the glycidyl functions probably wrongly resulting in positive tests. The difficulties in dealing with this situation are discussed. PMID:24761990

  19. Effect of temperature and fiber coating on the strength of E-glass fibers and the E-glass/epoxy interface for single-fiber fragmentation samples immersed in water

    SciTech Connect

    Schultheisz, C.R.; Schutte, C.L.; McDonough, W.G.; Macturk, K.S.; McAuliffe, M.; Kondagunta, S.; Huntson, D.L.

    1996-12-31

    The effect of absorbed moisture on the strengths of fibers and the fiber/matrix interface for an epoxy reinforced with continuous fibers of E-glass is under investigation. Single-fiber fragmentation tests of glass/epoxy model composites have shown degradation of the strengths of both the fiber and the interface after immersion in water. The fragmentation specimens were tested as-fabricated and after immersion in distilled water at 25 and 75 C for more than 4000 h. Two coatings were applied to the fibers, one epoxy-compatible and the other vinylester-compatible, in an effort to include the initial interfacial shear strength as a variable. Analyses of the fragmentation test results adapting the approach of Wagner and coworkers were used to determine moisture-induced changes in the fiber strength, making it possible to also evaluate changes in the interfacial strength.

  20. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    PubMed

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage. PMID:25822911

  1. III-V/Si hybrid photonic devices by direct fusion bonding.

    PubMed

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  2. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  3. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    NASA Astrophysics Data System (ADS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-07-01

    This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe2O4-SiO2) on the corrosion protection properties of steel substrate. NiFe2O4 and NiFe2O4-SiO2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe2O4-SiO2) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe2O4-SiO2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  4. Epoxy resins in the construction industry.

    PubMed

    Spee, Ton; Van Duivenbooden, Cor; Terwoert, Jeroen

    2006-09-01

    Epoxy resins are used as coatings, adhesives, and in wood and concrete repair. However, epoxy resins can be highly irritating to the skin and are strong sensitizers. Some hardeners are carcinogenic. Based on the results of earlier Dutch studies, an international project on "best practices,"--Epoxy Code--with epoxy products was started. Partners were from Denmark, Germany, the Netherlands, and the UK. The "Code" deals with substitution, safe working procedures, safer tools, and skin protection. The feasibility of an internationally agreed "ranking system" for the health risks of epoxy products was studied. Such a ranking system should inform the user of the harmfulness of different epoxies and stimulate research on less harmful products by product developers. PMID:17119222

  5. Interphase tailoring in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Subramanian, R. V.; Sanadi, A. R.; Crasto, A. S.

    1988-01-01

    The fiber-matrix interphase in graphite fiber-epoxy matrix composites is presently modified through the electrodeposition of a coating of the polymer poly(styrene-comaleic anhydride), or 'SMA' on the graphite fibers; optimum conditions have been established for the achievement of the requisite thin, uniform coatings, as verified by SEM. A single-fiber composite test has shown the SMA coating to result in an interfacial shear strength to improve by 50 percent over commercially treated fibers without sacrifice in impact strength. It is suggested that the epoxy resin's superior penetration into the SMA interphase results in a tougher fiber/matrix interface which possesses intrinsic energy-absorbing mechanisms.

  6. Polyaniline coated carbon nanotube/graphene "sandwich" hybrid and its high-k epoxy composites with low dielectric loss and percolation threshold

    NASA Astrophysics Data System (ADS)

    Wang, Tongxing; Yuan, Li; Liang, Guozheng; Gu, Aijuan

    2015-12-01

    Fabricating high-k conductor/polymer composites with low dielectric loss and percolation threshold is still a challenge, while the electric conductor is the key factor of determining the dielectric behavior of composites. A novel hybridized conductor with "sandwich" structure (rPANI@CNT-rGO) and active groups was prepared by introducing polyaniline coated carbon nanotube (rPANI@CNT) on the surface of reduced graphene oxide (rGO) through electrostatic and π-π conjugate forces. And the rPANI@CNT-rGO hybrids with different loadings of rPANI@CNT were introduced into epoxy resin (EP) to prepare a series of rPANI@CNT-0.75rGO/EP composites; meanwhile rPANI@CNT and rGO were mechanically blended with EP to prepare rPANI@CNT/0.75rGO/EP composites for comparison. rPANI@CNT/0.75rGO/EP composites have low dielectric constant (10-20), whereas the dielectric constant at 100 Hz of the 7rPANI@CNT-0.75rGO/EP composite with 0.75 wt% rPANI@CNT is as high as 210, much larger than those of rPANI@CNT/EP, 0.75rGO/EP and rPANI@CNT/0.75rGO/EP composites. Meanwhile, the dielectric loss at 100 Hz of 7rPANI@CNT-0.75rGO/EP composite is only 17% of that of 0.75rGO/EP, indicating that the dielectric behavior of rPANI@CNT-0.75rGO/EP composites is not originated from a simple addition of basic components, but has an obvious synergistic effect. The percolation threshold of rPANI@CNT-0.75rGO/EP composites is only 1.1 wt%. The origin of these attractive dielectric properties was revealed through systematically discussing the structures and simulated circuits of rPANI@CNT-0.75rGO/EP composites.

  7. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  8. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  9. Radiation curing of epoxies

    NASA Astrophysics Data System (ADS)

    Dickson, Lawrence W.; Singh, Ajit

    The literature on radiation polymerization of epoxy compounds has been reviewed to assess the potential use of radiation for curing these industrially important monomers. Chemical curing of epoxies may proceed by either cationic or anionic mechanisms depending on the nature of the curing agent, but most epoxies polymerize by cationic mechanisms under the influence of high-energy radiation. Radiation-induced cationic polymerization of epoxy compounds is inhibited by trace quantities of water because of proton transfer from the chain-propagating epoxy cation to water. Several different methods with potential for obtaining high molecular weight polymers by curing epoxies with high-energy radiation have been studied. Polymeric products with epoxy-like properties have been produced by radiation curing of epoxy oligomers with terminal acrylate groups and mixtures of epoxies with vinyl monomers. Both of these types of resin have good potential for industrial-scale curing by radiation treatment.

  10. A new class of high performance protective coatings for the rail industry based on siloxane technology

    SciTech Connect

    Hull, C.G.; Woods, J.J.

    1995-12-01

    A novel new class of protective coatings has been developed which is based on the hybridization of inorganic siloxane polymers with organic epoxy polymers. These coatings exhibit the corrosion resistance of an epoxy and weathering resistance superior to the best aliphatic polyurethane. As a result, traditional high performance 3-coat inorganic zinc/epoxy/polyurethane coatings can be replaced with 2-coat zinc/epoxy siloxane coatings with significant savings in applied cost.

  11. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  12. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  13. Method of making superhydrophobic/superoleophilic paints, epoxies, and composites

    DOEpatents

    Simpson, John T.; Hunter, Scott Robert

    2016-05-10

    Superhydrophobic paints and epoxies comprising superoleophilic particles and surfaces and methods of making the same are described. The superoleophilic particles can include porous particles having a hydrophobic coating layer deposited thereon. superoleophilic particles.

  14. Hybrid inorganic-organic materials: Novel poly(propylene oxide)-based ceramers, abrasion-resistant sol-gel coatings for metals, and epoxy-clay nanocomposites, with an additional chapter on: Metallocene-catalyzed linear polyethylene

    NASA Astrophysics Data System (ADS)

    Jordens, Kurt

    1999-12-01

    The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionalized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing day content This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure. The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological

  15. Nature of the adhesion bond between epoxy adhesive and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Mamalimov, R. I.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Sytov, V. A.

    2014-03-01

    The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.

  16. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  17. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  18. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  19. Biodegradable Epoxy Networks Cured with Polypeptides

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigeo; Kramer, Edward J.

    2006-03-01

    Epoxy resins are used widely for adhesives as well as coatings. However, once cured they are usually highly cross-linked and are not biodegradable. To obtain potentially biodegradable polypeptides that can cure with epoxy resins and achieve as good properties as the conventional phenol novolac hardeners, poly(succinimide-co-tyrosine) was synthesized by thermal polycondensation of L-aspartic acid and L-tyrosine with phosphoric acid under reduced pressure. The tyrosine/succinimide ratio in the polypeptide was always lower than the tyrosine/(aspartic acid) feed ratio and was influenced by the synthesis conditions. Poly(succinimide-tyrosine- phenylalanine) was also synthesized from L-aspartic acid, L- tyrosine and L-phenylalanine. The thermal and mechanical properties of epoxy resins cured with these polypeptides are comparable to those of similar resins cured with conventional hardeners. In addition, enzymatic degradability tests showed that Chymotrypsin or Subtilisin A could cleave cured films in an alkaline borate buffer.

  20. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  1. Synthesis and properties of a novel UV-cured fluorinated siloxane graft copolymer for improved surface, dielectric and tribological properties of epoxy acrylate coating

    NASA Astrophysics Data System (ADS)

    Yan, Zhenlong; Liu, Weiqu; Gao, Nan; Wang, Honglei; Su, Kui

    2013-11-01

    A novel functional fluorinated siloxane graft copolymer bearing with vinyl end-groups was synthesized from dihydroxypropyl-terminated poly(dimethylsiloxane) (PDMS), dicarboxyl terminated poly(2,2,3,4,4,4-hexafluorobutyl acrylate) oligomer (CTHFA), 2,4-toluene diissocyanate (TDI) and 2-hydroxyethyl methacrylate (HEMA). The chemical structure was characterized by FT-IR and GPC. The effect of concentration of the vinyl-capped fluorosilicone graft copolymer (Vi-PFSi) on the surface, thermal properties, dielectric and tribological properties of UV-cured films was investigated. Contact angles and surface energies showed that the high hydrophobic and oleophobic surfaces were obtained by incorporation of Vi-PFSi at very low amount (0.5 wt%). X-ray photoelectron spectroscopy (XPS) evidenced that the fluorinated and siloxane moiety selectively migrated to the outermost surface of UV-cured film, thus reduced its surface energy from 45.42 to 15.40 mN/m2 without affecting its bulk properties. The morphology of fracture surface of modified film exhibited rough fracture surface only at the outermost surface, revealing fluorinated and siloxane groups migrated toward air-side surface. The dielectric constants decreased from 5.32 (1 MHz) for bisphenol-A epoxy methacrylate (EMA) to 2.82 (1 MHz) for modified film when the Vi-PFSi copolymer concentration increased from 0 to 0.8 wt%. Tribological results from abrasion tester suggested that the Vi-PFSi could obviously reduce the abrasion weight loss of modified films.

  2. Epoxy-rubber interactions

    SciTech Connect

    McGarry, F.J.; Rosner, R.B.

    1993-12-31

    Films containing amine-terminated butadiene-acrylonitrile (ATBN) rubber and diglycidal ether of bisphenol A (DGEBA) epoxy, cross-linked with amine curing agent, exhibit tensile extensibility over the composition range of 50-600 parts by weight rubber to 100 parts by weight epoxy. This tensile extensibility suggests the presence of ductile behavior in the second-phase particles of ATBN rubber-toughened DGEBA epoxy systems, even if the particles contain substantial amounts of epoxy. Such cured films also are capable of absorbing large additional amounts of liquid epoxy that contains the cure agent. When the epoxy is cured in situ, the film tensile behavior is consistent with the overall proportions of rubber and epoxy present. The solubility behavior also suggests that the glassy epoxy matrix immediately surrounding a precipated particle contains rubber in solid solution and thereby can plastically yield under shear-stress action. As observations confirm, such flow would be heat recoverable. 15 refs., 9 figs., 2 tabs.

  3. Respiratory effects of exposure of shipyard workers to epoxy paints.

    PubMed Central

    Rempel, D; Jones, J; Atterbury, M; Balmes, J

    1991-01-01

    Epoxy resin systems have been associated with occupational asthma in several case reports, but medical publications contain little on the potential adverse respiratory effects of these chemicals in exposed worker populations. To further evaluate the association of workplace exposure to epoxy paints and respiratory dysfunction, the cross workshift changes in pulmonary function and symptoms of 32 shipyard painters exposed to epoxy paints were compared with 28 shipyard painters not exposed to epoxy paints. The prevalence of lower respiratory tract symptoms was significantly higher among painters exposed to epoxy paints compared with controls. Among exposed painters the mean cross workshift change in forced expiratory volume in one second (FEV1) (-3.4%) was greater than the decrement in the non-exposed group (-1.4%). A significant linear relation was seen between % decrement in FEV1 and hours of exposure to epoxy paints. This study suggests that epoxy resin coatings as used by shipyard painters are associated with increased lower respiratory tract symptoms and acute decrements in FEV1. Adequate respiratory protection and medical surveillance programmes should be established in workplaces where exposure to epoxy resin systems occurs. PMID:1954156

  4. Evaluation of the structural steel corrosion behaviour, covered with epoxy-type paints, by means of electrochemical DC techniques

    NASA Astrophysics Data System (ADS)

    Salas, Y.; Guerrero, L.; Martinez, R.; Chicino, T.; Devia, C.

    2016-02-01

    In this work we have studied the behaviour of the electrochemical corrosion of structural steel AISI SAE 1007 with epoxy coatings, using epoxy-type paints, through techniques such as DC resistance Polarization and Potentio-dynamic tests. In order to determine potential and corrosion rates of these coatings, have been correlated this results with different used electrolytes. For this, coatings were characterized by thickness measurement and continuity measurements. The coatings showed a slight degradation in the testing time, due to defects present in their structure, and the attack by the electrolyte; however, epoxy coating system tends to react with the electrolytes based on their chemical composition.

  5. Large fracture toughness boron-epoxy composites

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1975-01-01

    The high tensile strengths of strong interfacial bonding may be combined with the large fracture toughness of weak interfacial bonding in brittle fiber/brittle matrix composites by intermittently coating the filaments before layup so as to have random alternate weak and strong regions. Appropriate coating materials enable Cook-Gordon Mode I interfacial debonding to take place, which produces very long pull-out lengths with an associated large contribution to toughness. Unidirectional boron-epoxy composites have been so made which have toughnesses greater than 200 kJ/sq m while retaining rule of mixtures tensile strengths. Similar trends have been observed for crossply layups.

  6. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 7. Communication: long time observations in two drinking water reservoirs coated by epoxy resin (author's transl)].

    PubMed

    Schoenen, D; Dott, W; Thofern, E

    1981-01-01

    In two potable water reservoirs with an epoxy resin lining an increase of the colony count in the water and a visible microbial growth on the surface could be observed. The slime consists of bacteria and fungi. In one case higher organisms like protozoa were found too. The growth of microorganisms is caused by organic compounds of the epoxy resin which can be deteriorated by microorganisms. After a period of 3 years both materials still promote microbial growth on the surface. PMID:6792815

  7. Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method

    SciTech Connect

    Hutchins, Karen Isabel

    2015-07-01

    The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order of magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.

  8. Effect of Solvent-Assisted Dispersions of Clay/Epoxy Nanocomposites on Steel Passivation.

    PubMed

    Choi, Danbi; Park, Chan Eon; Yang, Seung Yun; Kim, Haekyoung; Kim, Se Hyun

    2016-01-01

    Dispersion of clay in polymer matrices is important to improve their engineering performances. Here we report the effect of solvent on dispersion of montmorillonite (MMT) in an epoxy matrix by examining transmission electron micrographs and X-ray diffraction of MMT/epoxy composites prepared with solvents with different polarities. We found that N-metyl-2-pyrrolidone (NMP) used as a polar solvent exhibited the improved dispersion of MMT in the epoxy owing to positive interaction energies with components, which prevents the aggregation of MMT platelets. The solvent-assisted dispersion of MMT significantly increased the corrosion resistance of MMT/epoxy nanocomposites pre-coated onto steel plates. PMID:27398557

  9. Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability.

    PubMed

    Wang, Xin-Bo; Lin, Tze-Chung; Hsueh, Han-Yu; Lin, Shih-Chieh; He, Xiao-Dong; Ho, Rong-Ming

    2016-06-28

    Nanoporous epoxy with gyroid texture is fabricated by using a nanoporous polymer with gyroid-forming nanochannels as a template for polymerization of epoxy. The nanoporous polymer template is obtained from the self-assembly of degradable block copolymer, polystyrene-b-poly(l-lactide) (PS-PLLA), followed by hydrolysis of PLLA blocks. Templated polymerization can be conducted under ambient conditions to create well-defined, bicontinuous epoxy networks in a PS matrix. By taking advantage of multistep curing of epoxy, well-ordered robust nanoporous epoxy can be obtained after removal of PS template, giving robust porous materials. The through-hole nanoporous epoxy in the film state can be used as a coated layer to enhance the adsorbability for both lysozyme and bovine serum albumin. PMID:27245380

  10. Cobalt ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1983-01-01

    Varying concentrations of an organometallic cobalt complex were added to an epoxy system currently used by the aerospace industry as a composite matrix resin. Methods for combining cobalt (III) acetylacetonate with a tetraglycidyl 4,4 prime - diaminodiphenylmethane-based epoxy were investigated. The effects of increasing cobalt ion concentration on the epoxy cure were demonstrated by epoxy gel times and differential scanning calorimetry cure exotherms. Analysis on cured cobalt-containing epoxy castings included determination of glass transition temperatures by thermomechanical analysis, thermooxidative stabilities by thermogravimetric analysis, and densities in a density gradient column. Flexural strength and stiffness were also measured on the neat resin castings.

  11. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  12. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  13. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  14. Interaction of water with epoxy.

    SciTech Connect

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  15. Corrosion-Protection Coatings for Aluminum

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1983-01-01

    Study investigates 21 combinatios of surface treatments, primers and topcoats. Study considers several types of coatings, including primers, enamels, chlorinated rubbers, alkyds, epoxies, vinyls, polyurethanes, waterbased paints, and antifouling paints. 20-page report summarizes the study.

  16. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  17. The quantification and characterization of endocrine disruptor bisphenol-A leaching from epoxy resin.

    PubMed

    Bae, B; Jeong, J H; Lee, S J

    2002-01-01

    Bisphenol-A (BPA), a known endocrine disruptor, is a main building block of epoxy resin which has been widely used as a surface coating agent on residential water storage tanks. Therefore, BPA leaching from the epoxy resin can adversely affect human health. In this study, BPA leaching from three epoxy resins were quantified at 20, 50, 75 and 100 degrees C both in deionized water and the specified test water, respectively. BPA leached to the test water was identified using GC-MS and quantified with GC-FID after a sequential extraction and concentration. The results showed that BPA leaching has occurred in all three samples tested. The quantity of BPA from unit area of epoxy resin coating was in the range of 01.68-273. 12 microg/m2 for sample A, 29.74-1734.05 microg/m2 for sample B and 52.86-548.78 microg/m2 for sample C depending on the test temperature, respectively. In general, the amount of BPA leashing increased as the water temperature increases. This result implies a higher risk of BPA leaching to drinking water during a summer season. In addition, microbial growth, measured by colony forming units, in epoxy coated water tanks was higher than that in a stainless steel tank. The results suggest that compounds leaching from epoxy resin may support the growth of microorganisms in a residential water holding tank. PMID:12523782

  18. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  19. Mechanical properties of photo-polymerized sustainable epoxy materials from vegetable oils

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew; Yang, Zheqin; Crivello, James

    2014-03-01

    Our research program aimed at advancing our ability to tailor the photocationic polymerization and physical properties of sustainable epoxy materials derived from crosslinked epoxidized vegetable oils using onium salt photoinitiators. Specifically, we developed solventless, photopolymerizable epoxy monomer and oligomer systems derived from sustainable biorenewable sources as alternatives to existing highly polluting and energy-intensive thermal curing of epoxy resin chemistry. Two sustainable epoxy network polymer systems will be presented to investigate how the network formation can be controlled. The first system is a series of epoxidized vegetable oils that offer various degrees of crosslinking densities, and the second system represents the blends of epoxidized vegetable oils with epoxidized terpenes to tailor their photocuring and mechanical properties for the potential usage in ``green'' coating, adhesive, 3D printing, and composite applications. NSF DMR POLYMERS 1308617.

  20. Multifunctional epoxy composites with natural Moroccan clays

    NASA Astrophysics Data System (ADS)

    Monsif, M.; Zerouale, A.; Kandri, N. Idrissi; Allali, F.; Sgarbossa, P.; Bartolozzi, A.; Tamburini, S.; Bertani, R.

    2016-05-01

    Two natural Moroccan clays, here firstly completely characterized, have been used as fillers without modification in epoxy composites. Mechanical properties resulted to be improved and a significant antibacterial activity is exhibited by the epoxy composite containing the C2 clay.

  1. Measuring the Electrical Properties of Epoxies

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1982-01-01

    Two techniques rapidly determine low-frequency resistivity of conductive epoxies and high-frequency dielectric properties of insulating epoxies. Conductive epoxy is molded in channels in plastic block. Four-point ohmmeter is used to apply current and sense voltage; it reads out resistance. Because mold has precise and stable dimensions, it produces accurate consistent measurements.

  2. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.

    PubMed

    Du, Fei-Peng; Yang, Wen; Zhang, Fang; Tang, Chak-Yin; Liu, Sheng-Peng; Yin, Le; Law, Wing-Cheung

    2015-07-01

    Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m. PMID:26075677

  3. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    1981-02-24

    Primary diamines are disclosed of the formula shown in a diagram wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzomethane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  4. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, James A. [Livermore, CA; Newey, Herbert A. [Lafayette, CA

    1981-02-24

    Primary diamines of the formula ##STR1## wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzo methane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  5. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  6. Evaluation of roughness and micromorphology of epoxy paint on cobalt-chromium alloy before and after thermal cycling.

    PubMed

    Nascimento, Alessandra Cardoso da Silva; Muzilli, Carlos Alberto; Miranda, Milton Edson; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    It has been suggested that the epoxy paint used to coat metal substrates in industrial electrostatic painting applications could also be used to mask metal clasps in removable dental prostheses (RDP). The purpose of this study was to evaluate both the influence of thermal cycling and the in vitro roughness of a surface after application of epoxy paint, as well as to assess the micromorphology of a cobalt-chromium (CoCr) based metal structure. Sixty test specimens were fabricated from a CoCr alloy. The specimens were separated into three groups (n = 20) according to surface treatment: Group 1 (Pol) - polished with abrasive stone and rubbers; Group 2 (Pol+Epo) - polished and coated with epoxy paint; Group 3 (Epo) - air-abraded with aluminum oxide particles and coated with epoxy paint. The surface roughness was evaluated before and after 1000 thermal cycles (5°C and 50°C). The surface micromorphology was verified by scanning electron microscopy (SEM). The two-way repeated measures ANOVA showed significant differences among surface treatments (p < 0.0001), but no difference was found before and after thermal cycling (p = 0.6638). The CoCr-based metal alloy surfaces treated with epoxy paint (Groups 2 and 3) were rougher than the surfaces that were only polished (Group 1). Thermal cycling did not influence surface roughness, or lead to chipping or detachment of the epoxy paint. PMID:23538429

  7. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  8. Fire-retardant epoxy polymers

    NASA Technical Reports Server (NTRS)

    Akawie, R. I.; Bilow, N.; Giants, T. W.

    1978-01-01

    Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.

  9. Preparation of Epoxy Resin Thin Film by Electroless Deposition Method

    NASA Astrophysics Data System (ADS)

    Fukui, Hitoshi; Hirai, Makoto; Shinagawa, Tsutomu; Kobayashi, Yasuyuki; Chigane, Masaya; Fujiwara, Yutaka; Fujita, Naoyuki

    The electrodeposition coating process, which is a polymer film deposition method using water electrolysis, is widely used for automobile body primers. Recently this process is being used in the insulating polymer films deposition for the microelectromechanical system (MEMS) or micro electric components. However, this process has difficulty in depositing polymer film on complex shapes and non-conductive surfaces. In this paper, we demonstrate that epoxy resin thin films used extensively as insulating polymer films were successfully deposited using the electroless chemical reaction in aqueous solution on a non-conductive surface and high aspect glass tube. The substrates catalyzed using a commercialized three-step Sn/Ag/Pd activation process were immersed in the reaction solution containing water-soluble resin and NO3- ion, reducing agent (DMAB). The pH near the substrate rose when NO3- was reduced by released electrons from DMAB. Water-soluble resin combined with OH- hence, polymer thin film was deposited by the electroless deposition reaction. By FE-SEM and FT-IR measurement, it was clear that the conformal and dense epoxy resin films were deposited. Using the present method, epoxy films could be deposited on the surface of a high aspect ratio glass tube 50 mm in length and φ3 in inner diameter. These films had high insulation resistivity of 108∼1011Ωm with applied voltage of 250 V.

  10. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    NASA Technical Reports Server (NTRS)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  11. Protective Coats For Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G, III

    1993-01-01

    Report describes tests of topcoats for inorganic zinc-rich primers on carbon steel. Topcoats intended to provide additional protection against corrosion in acidic, salty seacoast-air/rocket-engine-exhaust environment of Space Shuttle launch site. Tests focused on polyurethane topcoats on epoxy tie coats on primers. Part of study involved comparison between "high-build" coating materials and thin-film coating materials.

  12. Evaluation of adhesives for adhering carbon/epoxy composites to various metallic substrates

    SciTech Connect

    Bonk, R.B.; Osterndorf, J.F.; Ambrosio, A.M.; Pettenger, B.L.

    1996-12-31

    The strength properties of composite matrix resins and adhesive are dependent on time, temperature, environment, and stress factors. All of these conditions combine to influence the properties of adhesives and composites in ways that are not yet fully known or quantifiable. Therefore, it is important to know the service conditions that structural adhesive bonded composite joints will encounter prior to fielding. This paper details an evaluation of five epoxy adhesives used to adhere a carbon/epoxy composite to 7075-T6 aluminum, 4340 steel and aluminum coated steel. Test results indicate that certain paste adhesives are capable of better lap-shear and peel performance than film adhesives, especially at elevated temperatures.

  13. Evaluation of experimental epoxy monomers

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.; Pratt, J. R.; Ficklin, R.

    1985-01-01

    Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides.

  14. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  15. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  16. Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.

    PubMed

    Li, Wenbin; Shang, Tinghua; Yang, Wengang; Yang, Huichuan; Lin, Song; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-05-25

    The effects of dopamine reduced graphene oxide (pDop-rGO) on the curing activity and mechanical properties of epoxy-based composites were evaluated. Taking advantage of self-polymerization of mussel-inspired dopamine, pDop-rGO was prepared through simultaneous functionalization and reduction of graphene oxide (GO) via polydopamine coating. Benefiting from the universal binding ability of polydopamine, good dispersion of pDop-rGO in epoxy matrix was able to be achieved as the content of pDop-rGO being below 0.2 wt %. Curing kinetics of epoxy composites with pDop-rGO were systematically studied by nonisothermal differential scanning calorimetry (DSC). Compared to the systems of neat epoxy or epoxy composites containing GO, epoxy composites loaded with pDop-rGO showed lower activation energy (Eα) over the range of cure (α). It revealed that the amino-bearing pDop-rGO was able to react with epoxy matrix and enhance the curing reactions as an amine-type curing agent. The nature of the interactions at GO-epoxy interface was further evaluated by Raman spectroscopy, confirming the occurrence of chemical bonding. The strengthened interfacial adhesion between pDop-rGO and epoxy matrix thus enhanced the effective stress transfer in the composites. Accordingly, the tensile and flexural properties of EP/pDop-rGO composites were enhanced due to both the well dispersion and strong interfacial bonding of pDop-rGO in epoxy matrix. PMID:27159233

  17. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  18. High char imide-modified epoxy matrix resins. [for graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1979-01-01

    The synthesis of a class of bis(imide-amine) curing agents for epoxy matrix resins is discussed. Glass transition temperatures and char yield data of an epoxy cured with various bis(imide-amines) are presented. The room temperature and 350 F mechanical properties, and char yields of unidirectional graphite fiber laminates prepared with conventional epoxy and imide-modified epoxy resins are presented.

  19. Space environmental effects on LDEF composites: Leading graphite/epoxy panel, selected trailing edge specimens

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; George, Pete; Hill, Sylvester

    1992-01-01

    The composite electronics-module cover for the leading edge (row D9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a multi-oriented layup. This panel contained thermal control coatings in three of the four quadrants with the fourth quadrant left uncoated as a control. The composite experienced different thermal cycling extremes in each quadrant due to the differing optical properties of the coatings. Results will be presented on microcracking and other Low Earth Orbital (LEO) effects on the coated panel substrate.

  20. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  1. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    DOE PAGESBeta

    Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; Godeke, Arno; National High Magnetic Field Lab., Tallahassee, FL; Ye, Liyang; Fermi National Accelerator Lab.; Flanagan, Gene; Shen, Tengming

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramicmore » sleeve.« less

  2. Thermal-mechanical Properties of Epoxy-impregnated Bi-2212/Ag Composite

    SciTech Connect

    Li, Pei; Wang, Yang; Godeke, Arno; Ye, Liyang; Flanagan, Gene; Shen, Tengming

    2014-11-26

    Knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson’s ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramic sleeve.

  3. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    SciTech Connect

    Li, Pei; Wang, Yang; Godeke, Arno; Ye, Liyang; Flanagan, Gene; Shen, Tengming

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramic sleeve.

  4. Laser-based coatings removal

    SciTech Connect

    Freiwald, J.G.; Freiwald, D.A.

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  5. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; Schultz, Peter H.; Sunshine, Jessica M.; Thomas, Peter C.; Veverka, Joseph; Wellnitz, Dennis D.; Yeomans, Donald K.; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J.; Carcish, Brian T.; Collins, Steven M.; Farnham, Tony F.; Groussin, Oliver; Hermalyn, Brendan; Kelley, Michael S.

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  6. Water transport into epoxy resins and composites

    SciTech Connect

    Tsou, H.S.

    1987-01-01

    The processing-property relationships were established for the epoxy system of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) cured with diaminodiphenyl sulfone (DDS). The TGDDM-DDS epoxy system was selected for analysis as the ensuing polymer matrix is most common in high-performance fiber-reinforced epoxy composites. Experiments on water transport in epoxy resins with varying compositions were performed and a relaxation-coupled transport behavior was observed in these epoxy resins. By post-curing vitrified epoxy resins, the additional free volume usually measured in them was removed and maximum water uptake was reduced. Since epoxy resins were in a quasi-equilibrium glassy state after the post-cure, Fick's law with a constant diffusion coefficient could adequately describe the water sorption behavior. A network formation model based on the branching theory was developed, taking into account the difference in reactivities of primary and secondary amines and the etherification reaction. Using this network formation model, water uptake in post-cured epoxy resins was found to be proportional to tertiary amine concentration.

  7. Thermoset epoxy polymers from renewable resources

    DOEpatents

    East, Anthony; Jaffe, Michael; Zhang, Yi; Catalani, Luiz H

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  8. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    SciTech Connect

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

  9. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  10. Optical properties of sputtered aluminum on graphite/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Teichman, Louis A.

    1989-01-01

    Solar absorptance, emittance, and coating thickness were measured for a range of coating thicknesses from about 400 A to 2500 A. The coatings were sputtered from an aluminum target onto 1-inch-diameter substrates of T300/5209 graphite/epoxy composite material with two different surface textures. Solar absorptance and emittance values for the specimens with the smooth surface finish were lower than those for the specimens with the rough surface finish. The ratio of solar absorptance to emittance was higher for the smooth specimens, increasing from 2 to 4 over the coating thickness range, than for the rough ones, which had a constant ratio of about 1. The solar absorptance and emittance values were dependent on the thickness of the sputtered coating.

  11. Development of a special purpose spacecraft interior coating. Phase 2. [fire resistant fluoropolymer coating

    NASA Technical Reports Server (NTRS)

    Bartoszek, E. J.; Christofas, A.; Nannelli, P.

    1977-01-01

    Numerous acrylic and epoxy modifiers for the fluorocarbon latex resin base were investigated. Optimum coatings were developed by modifying the fluorocarbon latex with an epoxy acrylic resin system. In addition, a number of other formulations, containing hard acrylics as modifiers, displayed attractive properties and potential for further improvements. The preferred formulations dried to touch in about one hour and were fully dried in about twenty four hours under normal room temperature and humidity conditions. In addition to physical and mechanical properties either comparable or superior to those of commercial solvent base polyurethane or polyester coatings, the preferred compositions meet the flammability and offgassing requirements specified by NASA.

  12. Synthesis & Biological, Physical, & Adhesive Properties of Epoxy Sucroses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raw sugar was converted in two steps to epoxy allyl sucroses (EAS), epoxy crotyl sucroses (ECS), and epoxy methallyl sucroses (EMS) respectively, in 82, 91, and 91.5 % overall yields. EAS, ECS, and EMS are regio and diastereo isomeric epoxy monomers that are liquids at room temperature. The averag...

  13. APPLICATION OF HYDROPHILIC STARCH-BASED COATINGS TO POLYETHYLENE SURFACES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coatings were applied to polyethylene film surfaces by spraying formulations prepared from a jet cooked dispersion of waxy cornstarch, a water-based epoxy resin, a wax emulsion, and a surfactant. Although the starch component separated rapidly from the coating when the film was placed in water at r...

  14. Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Peng

    , the grafted PGMA brushes effectively screen the van der Waals attraction between the particles, and homogenous nanoparticle dispersions of grafted nanoparticles were obtained. Transparent high refractive index TiO2/epoxy thin film and bulk nancomposites were obtained by dispersing PGMA brushes-grafted TiO2 nanoparticles into a commercial epoxy matrix. The refractive index of the nanocomposites showed a linear dependence on the volume fraction of TiO2 nanoparticles and the optical transparency could be generally described by the Rayleigh scattering model. This powerful dispersing technique was further employed to make visibly transparent, UV/IR blocking ITO/epoxy nanocomposites which can be easily applied onto glass and plastic substrates as energy saving optical coating materials. To produce transparent silicone nanocomposites, we directly coupled phosphate-terminated PDMS chains onto the optical nanoparticle surface. It was observed that the mono-modal PDMS-grafted particles usually formed agglomerates within silicone matrices, whereas the bimodal PDMS-grafted particles were able to be individually dispersed even within high molecular weight matrices. Transparent high refractive index bulk TiO2/silicone nanocomposites were successfully prepared by filling with bimodal PDMS-grafted TiO2 nanoparticles. Furthermore, we used the PDMS-grafted TiO2/silicone nanocomposite as a model system to create a methodology to predict and control the dispersion behavior of grafted nanoparticles. The good agreement between experimental observation of dispersion of mono-modal and bimodal grafted particles and theoretical prediction would better guide future experiments and lead to predictability in polymer composite design. Finally, the bimodal grafted chain design was implemented in the preparation of transparent and luminescent CdSe/silicone nanocomposites with potential application as non-scattering light conversion materials for LEDs. The homogeneous dispersion of bimodal PDMS

  15. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  16. Mechanical behaviors of hyberbranched epoxy toughened bisphenol F epoxy resin for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Wu, Zhixiong; Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    Epoxy resins have been widely employed in cryogenic engineering fields. In this work, bisphenol F epoxy resin was modified by an aromatic polyester hyperbranched epoxy resin (HTDE-2). Mechanical behaviors of the modified epoxy resins in terms of tensile properties and impact property were studied at both room and cryogenic temperatures. Moreover, the toughening mechanism was discussed by fracture surface morphology analysis. The results demonstrated that, the mechanical properties of composites initially increased until reaches the maximum value with increasing the mass content of the HTDE-2, and then decreased at both room temperature (RT) and 77K. Especially, the impact strength at 77 K was improved 40.7% compared with the pure epoxy matrix when 10 wt% HTDE-2 was introduced. The findings suggest that the HTDE-2 will be an effective toughener for the brittle bisphenol F epoxy resin for cryogenic applications.

  17. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  18. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  19. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  20. Breakdown properties of epoxy nanodielectric

    SciTech Connect

    Tuncer, Enis; Cantoni, Claudia; More, Karren Leslie; James, David Randy; Polyzos, Georgios; Sauers, Isidor; Ellis, Alvin R

    2010-01-01

    Recent developments in polymeric dielectric nanocomposites have shown that these novel materials can improve design of high voltage (hv) components and systems. Some of the improvements can be listed as reduction in size (compact hv systems), better reliability, high energy density, voltage endurance, and multifunctionality. Nanodielectric systems demonstrated specific improvements that have been published in the literature by different groups working with electrical insulation materials. In this paper we focus on the influence of in-situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles on the dielectric breakdown characteristics of an epoxy-based nanocomposite system. The in-situ synthesis of the particles creates small nanoparticles on the order of 10 nm with narrow size distribution and uniform particle dispersion in the matrix. The breakdown strength of the nanocomposite was studied as a function of TiO{sub 2} concentration at cryogenic temperatures. It was observed that between 2 and 6wt% yields high breakdown values for the nanodielectric.

  1. Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints

    NASA Astrophysics Data System (ADS)

    Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal

    2015-08-01

    The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.

  2. Intumescent coatings containing 4,4'-dinitrosulfanilide

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1977-01-01

    A coating which is stable to the environment and to exposure to water, and which intumesces at a favorable temperature was developed. The composition comprises a mixture of 4, 4 prime dinitrousulfanilide as the intumescent agent in a polymer binder mixture of a chlorinated polyolefin, a bisphenol A epoxy resin, and a rubber-like amine hardener.

  3. Self-healing coatings containing microcapsule

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun

    2012-01-01

    Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.

  4. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  5. Impregnating magnetic components with MDA free epoxy

    SciTech Connect

    Sanchez, R.O.; Domeier, L.; Gunewardena, S.

    1995-08-01

    This paper describes the use of {open_quotes}Formula 456{close_quotes} an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.

  6. Investigation of paramagnetic response of metallic epoxies

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Chegini, H.

    1986-01-01

    The paramagnetic properties of epoxies which were impregnated with metal ions were examined as the primary task in this research. A major conclusion was that the quality control of the epoxies was insufficient to permit reliable evaluation. Subsequently, a new set of specimens is being prepared. As an additional task, a new method is investigated for estimating heats of combustion for saturated hydrocarbons. The results of that investigation have shown that the empirical approach is a promising method for on-line measurements.

  7. Electrical properties of epoxies and film resistors

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1976-01-01

    The reliability of hybrid microcircuits has been enhanced in recent years by the use of organic adhesives as a replacement for solder and eutectics. The epoxies have been the most effective and widely used material for this application. Methods for measuring the electrical and mechanical properties of epoxies are developed. Data are given for selected conductive adhesives at high and low frequencies. The temperature coefficients of resistance of thick film resistors are presented.

  8. Underwater Coatings for Contamination Control

    SciTech Connect

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: · Be easy to apply · Adhere well to the four surfaces of interest · Not change or have a negative impact on water chemistry or clarity · Not be hazardous in final applied form · Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to

  9. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  10. Laser-based coatings removal

    SciTech Connect

    Freiwald, J.G.; Freiwald, D.

    1995-12-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D & D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building.

  11. The modifications of epoxy resin and their crystalline polymer particle filled epoxies

    SciTech Connect

    Huei-Hsiung Wang

    1996-12-31

    The chemical linking of the modifier to the epoxy network was overcome by using Bisphenol A, 4,4`-diaminodiphenyl sulphone or benzophenone-tetracarboxylic dianhydride as a coupling agent between the PU and the epoxy oligomer. From the experimental results, it was shown that the values of fracture energy, G{sub IC} for PU-modified epoxy were dependent on the macroglycols and the coupling agents. Scanning electron microscopy and the glass transition temperature were used to assess the morphology and their compatibility of these modified epoxies. It revealed that the ether type (PTMG) of PU modified epoxy showed the present of an aggregated separated phase. However, the ester type (PBA) PU-modified epoxy resin showed a homogenous morphology. In addition, the {Beta}-relaxation of cured epoxy resin showed a more clear two-phase separation existed in Bis-A as a coupling agents. The additive of the semi-crystalline PBT powder was more efficient in fracture energies of epoxy network than that of the Nylon 6,6 powder.

  12. The insulation of copper wire by the electrostatic coating process

    NASA Astrophysics Data System (ADS)

    Wells, M. G. H.

    1983-06-01

    A review of the fluidized bed electrostatic coating process and materials available for application to flat copper conductor has been made. Lengths of wire were rolled and electrostatically coated with two epoxy insulations. Electrical tests were made in air on coated samples at room and elevated temperatures. Compatibility tests in the cooling/lubricating turbine oil at temperatures up to 220 deg. C were also made. Recommendations for additional work are provided.

  13. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    PubMed Central

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3−/I−) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  14. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3‑/I‑) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  15. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites.

    PubMed

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3(-)/I(-)) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  16. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  17. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--EVERMORE PAINTS AND COATINGS INC. FORMULA 5 COATING

    EPA Science Inventory

    This report is of a test of the pollution prevention capabilities of a polyamide-epoxy-silicone modified paint coating. It was analyzed for volatile organic emissions, hazardous air pollutants, film thickness, gloss, appearance, MEK rub resistance, abrasion resistance and other ...

  19. Corrosion protection mechanism of polyaniline blended organic coating on steel

    SciTech Connect

    Sathiyanarayanan, S.; Jeyaram, R.; Muthukrishnan, S.; Venkatachari, G.

    2009-07-01

    Epoxy-coal tar coatings are widely used to protect steel structures exposed to marine atmosphere due to their good barrier property. However, the presence of micropores and microcracks formed during the coating formation leads to failure of the coating due to permeation of corrosive ions. In recent years, it has been established that the coatings containing polyaniline (PANI) is able to protect pinholes and defects due to its passivating ability. Hence, a study has been made on the effect of polyaniline content (1 and 3%) in epoxy-coal tar coating on the corrosion protection of steel in 3% NaCl solution by electrochemical impedance spectroscopy (EIS) studies. Both phosphate- and chloride-doped polyanilines were prepared by a chemical oxidative polymerization method. From EIS studies, it has been found that the resistance value of the coatings containing 1 and 3% phosphate-doped polyaniline and 3% chloride-doped polyaniline pigmented coatings are similar to 10{sup 9} {Omega} cm{sup 2} even after 90 days exposure to NaCl solution, which are two orders high in comparison to that of conventional coal tar epoxy coatings. Besides, the conducting state of polyaniline has been found to be decreased after exposure to NaCl solution due to redox property of PANI. X-ray photoelectron spectroscopy studies have shown that polyaniline forms a complex layer with iron beneath the coating along with iron oxide.

  20. Oxidation and protection of fiberglass-epoxy composite masts for photovoltaic arrays in the low earth orbital environment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Ciancone, Michael L.; Paulsen, Phillip E.; Brady, Joyce A.

    1988-01-01

    The extent of degradation of fiberglass-epoxy composite masts of the Space Station solar array panel, when these are exposed to atomic oxygen environment of the low-earth orbit, was investigated in ground testing of fiberglass-epoxy composites in an RF plasma asher. In addition, several methods of protecting the composite structures were evaluated, including an aluminum braid covering, an In-Sn eutectic, and a silicone based paint. It was found that, during exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. The results of mass measurements and SEM examination carried out after thermal cycling and flexing of exposed composite samples indicated that coatings such as In-Sn eutectic may provide adequate protection by containing the glass fibers, even though mass loss still occurs.

  1. Metallographic techniques for evaluation of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  2. Electrical properties of epoxies used in hybrid microelectronics

    NASA Technical Reports Server (NTRS)

    Stout, C. W.

    1976-01-01

    The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.

  3. UV-curable acrylated coating from epoxidized palm oil

    NASA Astrophysics Data System (ADS)

    Rahman, Nurliyana Abd; Badri, Khairiah Haji; Salleh, Nik Ghazali Nik

    2014-09-01

    The properties of coating film prepared from the incorporation of acrylated palm oil (EPOLA) in commercial epoxy acrylate have been studied. A series of different amount of EPOLA was mixed with commercial epoxy acrylate. The blended acrylates passed through UV light to produce a non-tacky film. The conversion of acrylate double bond was monitored by FTIR. The effect of EPOLA concentration onto coated films were investigated by determination of the pendulum hardness and gel content. The higher the amount of EPOLA, the lower the pendulum hardness and the gel content but to a level acceptable for usage in the high-end applications.

  4. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  5. Free-volume characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Shultz, William J.; St.clair, Terry L.

    1992-01-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  6. Microwave assisted pultrusion of an epoxy composite

    SciTech Connect

    Methven, J.M.; Abidin, A.Z.

    1995-12-01

    A 6mm diameter cylindrical profile based on E-glass fibers and a BF{sub 3}-triamine-epoxy resin system has been manufactured by Microwave Assisted Pultrusion (MAP) using a single mode resonant microwave cavity operating in a TM{sub 010} mode at 2450 MHz. Power transfer is at least 70% and pulling speeds of more than 2m/minute have been achieved for a power input of about 800W. The results are consistent with earlier MAP studies using unsaturated polyesters, epoxies urethane acrylates and vinyl esters. The results provide a sound basis for proposing the use of this type of epoxy system as a material that is suitable for a high speed gel-cure pultrusion process that uses both a microwave heating cavity and a conventional pultrusion die.

  7. Free-volume characteristics of epoxies

    SciTech Connect

    Singh, J.J.; Eftekhari, A.; Shultz, W.J.; St.Clair, T.L.

    1992-09-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  8. Physical aging in graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time.

  9. Evaluation of epoxy systems for use in SBASI

    NASA Technical Reports Server (NTRS)

    Coultas, T. J.

    1971-01-01

    The purpose of the test program was to evaluate the performance of different epoxy systems as replacements for existing epoxy systems in the SBASI. The three areas of investigation were the connector shell potting, the epoxy tape under the charge cup, and the epoxy impregnated fiberglass over the output charge. Factors considered, in addition to performance, were availability, shelf life, pot life, and effect on producibility and cost.

  10. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  11. Thermal properties of epoxy composites filled with boric acid

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.

    2015-04-01

    The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.

  12. Nanoimprinting ultrasmall and high-aspect-ratio structures by using rubber-toughened UV cured epoxy resist

    NASA Astrophysics Data System (ADS)

    Shin, Young Jae; Wu, Yi-Kuei; Guo, L. Jay

    2013-06-01

    A simple and robust scheme is proposed for the fabrication of nanoscale (20 nm line width) and high-aspect-ratio (9:1) structures by using modulus-tunable UV curable epoxy resists. Additionally, the ability to control the Young’s modulus of the imprinted material from hard to rigiflex using these epoxy resists is demonstrated. The physical properties of the new epoxy resists were controlled by adjusting the ratio of bisphenol F-type epoxy resin and acrylonitrile-butadiene rubber-based epoxy resin in the formulation of the resist. The mechanical properties of the resist were tuned to obtain various aspect ratios as well as mold flexibility for conformal contact over non-planar surfaces and large areas. In order to reduce the line width of the imprinted patterns, a process to conformally coat the mold structure by atomic layer deposition of alumina was also developed. Narrow lines with high-aspect-ratio features and with very low defect density were achieved via the new approach and the high mechanical strength of the new resist formulation.

  13. Nanoimprinting ultrasmall and high-aspect-ratio structures by using rubber-toughened UV cured epoxy resist.

    PubMed

    Shin, Young Jae; Wu, Yi-Kuei; Jay Guo, L

    2013-06-28

    A simple and robust scheme is proposed for the fabrication of nanoscale (20 nm line width) and high-aspect-ratio (9:1) structures by using modulus-tunable UV curable epoxy resists. Additionally, the ability to control the Young's modulus of the imprinted material from hard to rigiflex using these epoxy resists is demonstrated. The physical properties of the new epoxy resists were controlled by adjusting the ratio of bisphenol F-type epoxy resin and acrylonitrile-butadiene rubber-based epoxy resin in the formulation of the resist. The mechanical properties of the resist were tuned to obtain various aspect ratios as well as mold flexibility for conformal contact over non-planar surfaces and large areas. In order to reduce the line width of the imprinted patterns, a process to conformally coat the mold structure by atomic layer deposition of alumina was also developed. Narrow lines with high-aspect-ratio features and with very low defect density were achieved via the new approach and the high mechanical strength of the new resist formulation. PMID:23708317

  14. Effects of epoxy/hardener stoichiometry on structures and properties of a diethanolamine-cured epoxy encapsulant

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, M. Z.; Wu, Z.; Peng, K.; Han, C. M.; Xiang, W.; Dai, J. Y.

    2016-07-01

    For the epoxy encapsulant cured by diethanolamine, optimal epoxy/hardener stoichiometry could hardly be predicted due to the complex curing mechanisms. In this paper, the influences of stoichiometry were investigated by FTIR, DMA and tensile testing. The results showed that stoichiometry has a dominating effect on both Tg and tensile properties of the cured epoxy. The largest Tg , highest crosslink density as well as excellent ductility appeared in epoxy encapsulant cured with 14 wt% diethanolmine. When the content of diethanolamine was lower than 14 wt%, epoxy encapsulants showed smaller glycidyl conversion even with long-duration post-cure. Larger tensile strength and modulus were also observed in the glycidyl-rich epoxies, which could be explained by anti-plasticization effect. The amine-rich epoxy, however, had extremely high glycidyl conversion and presented brittle tensile behavior. A diethanolamine content of 12-14 wt% for the epoxy encapsulant is suggested to obtain optimal thermal and tensile properties.

  15. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  16. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  17. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  18. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  19. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  20. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  1. Kevlar 49/Epoxy COPV Aging Evaluation

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  2. Control of pore size in epoxy systems.

    SciTech Connect

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow; Lee, Elizabeth; Kallam, Alekhya; Majumdar, Partha; Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J.; Celina, Mathias Christopher; Bahr, James; Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  3. Electroactive polymer gels based on epoxy resin

    NASA Astrophysics Data System (ADS)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  4. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation

  5. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy

    NASA Astrophysics Data System (ADS)

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-03-01

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ~200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ~200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport

  6. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  7. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2016-06-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature (T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature (T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  8. Development of Graphite/Epoxy Corner Fittings

    NASA Technical Reports Server (NTRS)

    Faile, G.; Hollis, R.; Ledbetter, F.; Maldonado, J.; Sledd, J.; Stuckey, J.; Waggoner, G.; Engler, E.

    1986-01-01

    Report documents development project aimed at improving design and load-carrying ability of complicated corner fitting for optical bench. New fitting made of graphite filaments in epoxy-resin matrix. Composite material selected as replacement for titanium because lighter and dimensions change little with temperature variations.

  9. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  10. Thermal modeling of an epoxy encapsulation process

    SciTech Connect

    Baca, R.G.; Schutt, J.A.

    1991-01-01

    The encapsulation of components is a widely used process at Sandia National Laboratories for packaging components to withstand structural loads. Epoxy encapsulants are also used for their outstanding dielectric strength characteristics. The production of high voltage assemblies requires the encapsulation of ceramic and electrical components (such as transformers). Separation of the encapsulant from internal contact surfaces or voids within the encapsulant itself in regions near the mold base have caused high voltage breakdown failures during production testing. In order to understand the failure mechanisms, a methodology was developed to predict both the thermal response and gel front progression of the epoxy the encapsulation process. A thermal model constructed with PATRAN Plus (1) and solved with the P/THERMAL (2) analysis system was used to predict the thermal response of the encapsulant. This paper discusses the incorporation of an Arrhenius kinetics model into Q/TRAN (2) to model the complex volumetric heat generation of the epoxy during the encapsulation process. As the epoxy begins to cure, it generates heat and shrinks. The total cure time of the encapsulant (transformation from a viscous liquid to solid) is dependent on both the initial temperature and the entire temperature history. Because the rate of cure is temperature dependent, the cure rate accelerates with a temperature increase and, likewise, the cure rate is quenched if the temperature is reduced. The temperature and conversion predictions compared well against experimental data. The thermal simulation results were used to modify the temperature cure process of the encapsulant and improve production yields.

  11. Some experiences with epoxy resin grouting compounds.

    PubMed

    Hosein, H R

    1980-07-01

    Epoxy resin systems are used in tiling and grouting in the construction industry. Because of the nature of the application, skin contact is the primary hazard. The most prevalent reaction was reddening of the forearms, followed by whole body reddening and loss of appetite, these latter two being associated with smoking while applying the resin. PMID:7415974

  12. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    PubMed

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants. PMID:25635377

  13. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    NASA Astrophysics Data System (ADS)

    Arogundade, A. I.; Megat-Yusoff, P. S. M.; Bhat, A. H.; Faiz, A.

    2015-07-01

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  14. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    SciTech Connect

    Arogundade, A. I. Megat-Yusoff, P. S. M. Faiz, A.; Bhat, A. H.

    2015-07-22

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  15. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  16. BLISTERING AND DEGRADATION OF POLYURETHANE COATINGS UNDER DIFFERENT ACCELERATED WEATHERING TESTS. (R828081E01)

    EPA Science Inventory

    An epoxy primer with a high gloss polyurethane topcoat coating system was exposed either only in a QUV chamber or exposed in a QUV chamber and a Prohesion chamber, alternatively, in this study. AFM studies found that micro blisters formed on the coating surface after both expo...

  17. Comparison of anti-corrosion properties of polyurethane based composite coatings with low infrared emissivity

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Xu, Guoyue; Yu, Huijuan; Hu, Chen; Yan, Xiaoxing; Guo, Tengchao; Li, Jiufen

    2011-03-01

    Four polyurethane resins, pure polyurethane (PU), epoxy modified polyurethane (EPU), fluorinated polyurethane (FPU) and epoxy modified fluorinated polyurethane (EFPU), with similar polyurethane backbone structure but different grafting group were used as organic adhesive for preparing low infrared emissivity coatings with an extremely low emissivity near 0.10 at 8-14 μm, respectively. By using these four resins, the effect of different resin matrics on the corrosion protection of the low infrared emissivity coatings was investigated in detail by using neutral salt spray test, SEM and FTIR. It was found that the emissivity of the coatings with different resin matrics changes significantly in corrosion media. And the results indicated that the coating using EFPU as organic adhesive exhibited excellent corrosion resistance property which was mainly attributed to the presence of epoxy group and atomic fluorine in binder simultaneously.

  18. Sustainable epoxy and oxetane thermosets from photo-initiated cationic polymerization

    NASA Astrophysics Data System (ADS)

    Ryu, Chang

    A group of sustainable materials are proposed and produced from multifunctional epoxides and oxetanes obtained from renewable sources. Monomers are photopolymerized using diaryliodonium salts designed and synthesized by our group as initiator. A detailed investigation of the network formation of epoxidized linseed oil revealed that crosslinks is markedly dependent to the thickness and viscosity of substrate. Copolymerization studies of difunctional oxetane showed that limonene dioxide was effective in increasing the reaction rates and shorten the inherent induction period, also known as kick-starting effect. Such oxetane thermoset can achieve desirable curing rates and Tg compared to petroleum based epoxy used in applications such as large scale surface coatings.

  19. Evaluation of several corrosion protective coating systems on aluminum

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  20. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    EPA Science Inventory

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  1. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    NASA Astrophysics Data System (ADS)

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  2. Development of a special purpose spacecraft interior coating, phase 3

    NASA Technical Reports Server (NTRS)

    Gillman, H. D.; Nannelli, P.

    1979-01-01

    A variety of intumescent coatings based on a fluorocarbon latex resin modified with either an acrylic resin or an epoxy resin were prepared. Several intumescent systems were used for these studies including some based on ammonium polyphosphate and others based on sulfanilamide. The best coatings developed had a high concentration (60-70% by wt.) of intumescent additives and had to be applied thick, approximately 100 mils, in order to have adequate intumescent/fire protection properties.

  3. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  4. Synthesis of liquid crystalline epoxy monomers

    NASA Astrophysics Data System (ADS)

    Fabia, J.; Galina, H.; Mossety-Leszczak, B.; Ulanski, J.; Wojciechowski, Piotr; Wlochowicz, Andrzej

    2002-06-01

    A two-stage method of synthesis of liquid-crystalline diepoxy monomers has been developed. In the first stage, esterification of 4-hydroxyphenyl-4-hydroxybenzoate or 4,4'- biphenol or 4,4'-dihydroxyazobenzene was carried out using 4-penetenoic acid. The resulting olefinic precursors were oxidized with m-chloroperoxybenzoic acid to introduce the epoxy groups. The structure of products was confirmed by FT- IR and 1H NMR. Examinations on a polarization microscope with a hot plate confirmed the presence of mesomorphic phases in both the precursors and monomers. The phase transition temperatures were in the range of 73.5 (at cooling) to 128.0 degree(s)C for olefinic precursors and in the range 57.1 (at cooling) to 143 degree(s)C for epoxy compounds, as determined by DSC and thermo-optical analysis (TOA).

  5. Glass/Epoxy Door Panel for Automobiles

    NASA Technical Reports Server (NTRS)

    Bauer, J. L. JR.

    1985-01-01

    Lightweight panel cost-effective. Integrally-molded intrusion strap key feature of composite outer door panel. Strap replaces bulky and heavy steel instrusion beam of conventional door. Standard steel inner panel used for demonstration purposes. Door redesigned to exploit advantages of composite outer panel thinner. Outer panel for automobilie door, made of glass/epoxy composite material, lighter than conventional steel door panel, meets same strength requirements, and less expensive.

  6. Safe epoxy encapsulant for high voltage magnetics

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.

    1998-01-01

    This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

  7. Interconnected porous epoxy monoliths prepared by concentrated emulsion templating.

    PubMed

    Wang, Jianli; Du, Zhongjie; Li, Hangquan; Xiang, Aimin; Zhang, Chen

    2009-10-01

    Porous epoxy monoliths were prepared via a step polymerization in a concentrated emulsion stabilized by non-ionic emulsifiers and colloidal silica. A solution in 4-methyl-2-pentanon was used as the continuous phase, which contained glycidyl amino epoxy monomer (GAE), curing agent, and an emulsifier. An aqueous suspension of colloidal silica was used as the dispersed phase of the concentrated emulsion. After the continuous phase was completely polymerized, the dispersed phase was removed and a porous epoxy was obtained. An optimal HLB value of emulsifier for the GAE concentrated emulsion was determined. In addition, the morphology of the porous epoxy was observed by SEM. The effect of the colloidal silica, the emulsifier, the curing of the epoxy, and the volume fraction of the dispersed phase on the morphology of porous epoxy are systematically discussed. PMID:19595357

  8. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  9. Morphology development of rubber-modified epoxy thermosets

    SciTech Connect

    Kwon, O.; Ward, T.C.

    1996-12-31

    Epoxy thermosets have been widely used as high performance adhesives and matrix resins for composites due to their outstanding mechanical and thermal properties, such as high modulus and tensile strength, high glass transition temperature, high thermal stability, and moisture resistance. Incorporation of a secondary rubbery phase into the glassy epoxy matrix can improve impact and fracture toughness of epoxy thermosets without sacrificing the other desirable properties of the neat epoxy thermoset. During the curing process, the initial homogeneous solution of epoxy resin-curing agent-rubber generally forms rubber-rich and epoxy-rich phases by a phase separation process which is arrested by gelation or vitrification. The final morphology developed by the cure depends on relative rates of cure reaction and phase separation. Cure conditions and the initial rubber composition control the morphology of the system and thus control the mechanical properties of the system.

  10. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules. PMID:26135389

  11. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    SciTech Connect

    Brown, Eric N; Rae, Philip J; Dattelbaum, Dana M; Stahl, David B

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  12. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property.

    PubMed

    Xu, Yu; Li, Ying; Hua, Wei; Zhang, Aiming; Bao, Jianjun

    2016-09-14

    Herein, light-weight and exceptionally conductive epoxy composite foams were innovatively fabricated for electromagnetic interference (EMI) shielding applications using multiwalled carbon nanotubes (MWCNTs) and 3D silver-coated melamine foam (SF) as conductive frameworks. A novel and nontraditional polymer microsphere was used to reduce the material density. The preformed, highly porous, and electrically conductive SF provided channels for fast electron transport. The MWCNTs were used to offset the decrease in conductive pathways due to the crystal defects of the silver layer and the insulating epoxy resin. Consequently, an exceptional conductivity of 253.4 S m(-1), a remarkable EMI shielding effectiveness of above 68 dB at 0.05-18 GHz, and a thermal conductivity of 0.305 W mK(-1) were achieved in these novel foams employing only 2 wt % of MWCNTs and 3.7 wt % of silver due to the synergistic effects that originated in the MWCNT and SF. These parameters are substantially higher than that achieved for the foam containing 2 wt % MWCNTs. Also, the SF exhibited little weakening in the foamability of the epoxy blends and the compression properties of resulting foams. All the results indicated that this effort provided a novel, simple, low-cost, and easily industrialized concept for fabricating light-weight, high-strength epoxy composite foams for high-performance EMI shielding applications. PMID:27553528

  13. Three-dimensional structure analysis and percolation properties of a barrier marine coating.

    PubMed

    Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian

    2013-01-01

    Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910

  14. Interactions between the glass fiber coating and oxidized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ku-Herrera, J. J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J. V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-03-01

    Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as "sizing"), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  15. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  16. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  17. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  18. Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties

    NASA Technical Reports Server (NTRS)

    Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.

  19. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  20. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.

    PubMed

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-04-21

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ∼200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications. PMID:24615536

  1. Oxidation and protection of fiberglass-epoxy composite masts for photovoltaic arrays in the low Earth orbital environment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.; Ciancone, Michael L.

    1988-01-01

    Fiberglass-epoxy composites are considered for use as structural members for the mast of the space station solar array panel. The low Earth orbital environment in which space station is to operate is composed mainly of atomic oxygen, which has been shown to cause erosion of many organic materials and some metals. Ground based testing in a plasma asher was performed to determine the extent of degradation of fiberglass-epoxy composites when exposed to a simulated atomic oxygen environment. During exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. Several methods of protecting the composite were evaluated in an atomic oxygen environment and with thermal cycling and flexing. The protection techniques evaluated to date include an aluminum braid covering, an indium-tin eutectic and a silicone based paint. The open aluminum braid offered little protection while the CV-1144 coating offered some initial protection against atomic oxygen, but appears to develop cracks which accelerate degradation when flexed. Coatings such as the In-Sn eutectic may provide adequate protection by containing the glass fibers even though mass loss still occurs.

  2. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  3. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  4. The fabrication, testing and delivery of boron/epoxy and graphite/epoxy nondestructive test standards

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1971-01-01

    A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.

  5. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  6. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  7. Electrochemical studies of corrosion inhibiting effect of polyaniline coatings

    SciTech Connect

    Wei, Yen; Wang, Jianguo; Jia, Xinru

    1995-12-01

    A series of electrochemical measurements, including corrosion potential (E{sub corr}), corrosion current (i{sub corr}), Tafel`s constants and polarization resistance (R{sub p}), have been made on polyaniline-coated cold rolled steel specimen under various conditions. Both the base and acid-doped forms of polyaniline were studied. The base form of polyaniline was found to offer good corrosion protection. This phenomenon may not originate merely from the barrier effect of the coatings, because the nonconjugated polymers such as polystyrene and epoxy did not show the same electrochemical behavior. The polyaniline base with zinc nitrate plus epoxy topcoat appeared to give better overall protection relative to other coating systems in this study.

  8. Production of epoxy compounds from olefinic compounds

    SciTech Connect

    Gelbein, A.P.; Kwon, J.T.

    1985-01-29

    Chlorine and tertiary alkanol dissolved in an inert organic solvent are reacted with aqueous alkali to produce tertiary alkyl hypochlorite which is recovered in the organic solvent and reacted with water and olefinically unsaturated compound to produce chlorohydrin and tertiary alkanol. Chlorohydrin and tertiary alkanol recovered in the organic solvent are contacted with aqueous alkali to produce the epoxy compound, and tertiary alkanol recovered in the organic solvent is recycled to hypochlorite production. The process may be integrated with the electrolytic production of chlorine, with an appropriate treatment of the recycle aqueous stream when required.

  9. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  10. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...