Science.gov

Sample records for fusion-fission hybrid reactor

  1. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  2. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed

    2009-11-01

    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  3. Materials compatibility considerations for a fusion-fission hybrid reactor design

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of /sup 233/U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490/sup 0/C) and the recycling time of breeding materials (<1 year).

  4. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  5. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  6. Tandem mirror fusion-fission hybrid studies

    NASA Astrophysics Data System (ADS)

    Lee, J. D.

    1980-04-01

    The concept of combining nuclear fusion and nuclear fission techniques is discussed. Initial tandem mirror hybrid studies predict the ability to produce large amounts of fissile fuel (2 to 7 tons U233 per year from a 4000 MW plant) at a cost that adds less than 25% to the cost of power from a light water reactor.

  7. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  8. A study of 239Pu production rate in a water cooled natural uranium blanket mock-up of a fusion-fission hybrid reactor

    NASA Astrophysics Data System (ADS)

    Feng, Song; Liu, Rong; Lu, Xinxin; Yang, Yiwei; Xu, Kun; Wang, Mei; Zhu, Tonghua; Jiang, Li; Qin, Jianguo; Jiang, Jieqiong; Han, Zijie; Lai, Caifeng; Wen, Zhongwei

    2016-03-01

    The 239Pu production rate is important data in neutronics design for a natural uranium blanket of a fusion-fission hybrid reactor, and the accuracy and reliability should be validated by integral experiments. The distribution of 239Pu production rates in a subcritical natural uranium blanket mock-up was obtained for the first time with a D-T neutron generator by using an activation technique. Natural uranium foils were placed in different spatial locations of the mock-up, the counts of 277.6 keV γ-rays emitted from 239Np generated by 238U capture reaction were measured by an HPGe γ spectrometer, and the self-absorption of natural uranium foils was corrected. The experiment was analyzed using the Super Monte Carlo neutron transport code SuperMC2.0 with recent nuclear data of 238U from the ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0u2, JEFF-3.2 and CENDL-3.1 libraries. Calculation results with the JEFF-3.2 library agree with the experimental ones best, and they agree within the experimental uncertainty in general with the average ratios of calculation results to experimental results (C/E) in the range of 0.93 to 1.01.

  9. Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Pinto, L. N.; Gonnelli, E.; Rossi, P. C. R.; Carluccio, T.; dos Santos, A.

    2015-07-01

    The successful development of energy-conversion machines based on either nuclear fission or fusion is completely dependent on the behaviour of the engineering materials used to construct the fuel containment and primary heat extraction systems. Such materials must be designed in order to maintain their structural integrity and dimensional stability in an environment involving high temperatures and heat fluxes, corrosive media, high stresses and intense neutron fluxes. However, despite the various others damage issues, such as the effects of plasma radiation and particle flux, the neutron flux is sufficiently energetic to displace atoms from their crystalline lattice sites. It is clear that the understanding of the neutron damage is essential for the development and safe operation of nuclear systems. Considering this context, the work presents a study of neutron damage in the Gas Cooled Fast Transmutation Reactor (GCFTR-2) driven by a Tokamak D-T fusion neutron source of 14.03 MeV. The theoretical analysis was performed by MCNP-5 and the ENDF/B-VII.1 neutron data library. A brief discussion about the determination of the radiation damage is presented, along with an analysis of the total neutron energy deposition in seven points through the material of the plasma source wall (PSW), in which was considered the HT-9 steel. The neutron flux was subdivided into three energy groups and their behaviour through the material was also examined.

  10. Fusion-fission hybrid studies in the United States

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  11. EBW Current Drive and Heating for Fusion/Fission Hybrids

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Preinhaelter, Josef; Vahala, George; Vahala, Linda; Decker, Joan; Ram, Abhay

    2011-10-01

    From the RF requirements for spherical tokamak and the need to reduce antenna exposure to neutron bombardment, EBW are an important source for both heating and current drive (CD). ICRF, LH, HHFW antennas are subject to significant neutron damage (as are NBI) because of their very large size and necessary proximity to the plasma. Recently Mahajan et. al. have studied other important uses of fusion neutrons - in particular their use in the efficient breeding of fission reactor fuel as well as in the ``rapid'' destruction of nuclear waste using their Compact High Power Density Fast Neutron Source (CFNS). For overdense plasmas the standard electromagnetic O- and X- mode experience cutoffs. EBW can propagate and be absorbed in such plasmas but its characteristics are strongly dependent on the plasma parameters with important variations in the parallel wave number. If the required temperatures in CFNS are around 35 KeV, then one will may need to revisit the electrostatic approximation and incorporate relativistic effects for EBW rays.

  12. Radiological Aspects of Deep-Burn Fusion-Fission Hybrid Waste in a Repository

    SciTech Connect

    Shaw, H F; Blink, J A; Farmer, J C; Karmer, K J; Latkowski, J F; Zhao, P

    2008-11-25

    The quantity, radioactivity, and isotopic characteristics of the spent fission fuel from a hybrid fusion-fission system capable of extremely high burnups are described. The waste generally has higher activity per unit mass of heavy metal, but much lower activity per unit energy generated. The very long-term radioactivity is dominated by fission products. Simple scaling calculations suggest that the dose from a repository containing such waste would be dominated by {sup 129}I, {sup 135}Cs, and {sup 242}Pu. Use of such a system for generating energy would greatly reduce the need for repository capacity.

  13. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  14. Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids

    SciTech Connect

    L. Zakharov, J. Li and Y. Wu

    2010-11-18

    The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

  15. Neutronic Model of a Mirror Based Fusion-Fission Hybrid for the Incineration of Spent Nuclear Fuel and with Potential for Energy Amplification

    NASA Astrophysics Data System (ADS)

    Noack, Klaus; Moiseenko, V. E.; Agren, O.; Hagnestall, A.

    2010-11-01

    In the last decade the Georgia Institute of Technology (Georgia Tech) published several design concepts of tokamak based fusion-fission hybrids which use solid fuels consisting of transuranic elements of the spent nuclear fuel from Light-Water-Reactors. The objectives of the hybrids are the incineration of the transuranic elements and an additional net energy production under the condition of tritium self-sufficiency. The present paper presents a preliminary scientific design of the blanket of a mirror based hybrid which was derived from the results of Monte Carlo neutron transport calculations. The main operation parameters of two hybrid options were specified. One is the analog to Georgia Techs first version of a ``fusion transmutation of waste reactor'' (FTWR) and the other is a possible near-term option which requires minimal fusion power. The latter version shows considerably better performance parameters.

  16. Thermal Performance of Deep-Burn Fusion-Fission Hybrid Waste in a Repository

    SciTech Connect

    Blink, J A; Chipman, V; Farmer, J; Shaw, H; Zhao, P

    2008-11-25

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Engine [1] combines a neutron-rich but energy-poor inertial fusion system with an energy-rich but neutron-poor subcritical fission blanket. Because approximately 80% of the LIFE Engine energy is produced from fission, the requirements for laser efficiency and fusion target performance are relaxed, compared to a pure-fusion system, and hence a LIFE Engine prototype can be based on target performance in the first few years of operation of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Similarly, because of the copious fusion neutrons, the fission blanket can be run in a subcritical, driven, mode, without the need for control rods or other sophisticated reactivity control systems. Further, because the fission blanket is inherently subcritical, fission fuels that can be used in LIFE Engine designs include thorium, depleted uranium, natural uranium, spent light water reactor fuel, highly enriched uranium, and plutonium. Neither enrichment nor reprocessing is required for the LIFE Engine fuel cycle, and burnups to 99% fraction of initial metal atoms (FIMA) being fissioned are envisioned. This paper discusses initial calculations of the thermal behavior of spent LIFE fuel following completion of operation in the LIFE Engine [2]. The three time periods of interest for thermal calculations are during interim storage (probably at the LIFE Engine site), during the preclosure operational period of a geologic repository, and after closure of the repository.

  17. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    SciTech Connect

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  18. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  19. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  20. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept (LIFE) by the Lawrence Livermore National Laboratory.

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2009-05-01

    The recently proposed Super Marx pure deuterium micro-detonation ignition concept [1] is compared to the Lawrence Livermore National Ignition Facility (NIF) laser DT fusion-fission hybrid concept (LIFE) [2]. A typical example of the LIFE concept is a fusion gain 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation gains of the same magnitude can in theory be reached. If the theoretical prediction can be supported by more elaborate calculations, the Super Marx approach is likely to make lasers obsolete as a means for the ignition of thermonuclear micro-explosions. [1] ``Ignition of a Deuterium Micro-Detonation with a Gigavolt Super Marx Generator,'' Winterberg, F., Journal of Fusion Energy, Springer, 2008. http://www.springerlink.com/content/r2j046177j331241/fulltext.pdf. [2] ``LIFE: Clean Energy from Nuclear Waste,'' https://lasers.llnl.gov/missions/energy&_slash;for&_slash;the&_slash;future/life/

  1. Safety and power multiplication aspects of mirror fusion-fission hybrids

    SciTech Connect

    Noack, Klaus; Agren, Olov; Kaellne, Jan; Hagnestal, Anders; Moiseenko, Vladimir E.

    2012-06-19

    Recently, in a research project at Uppsala University a simplified neutronic model for a straight field line mirror hybrid has been devised and its most important operation parameters have been calculated under the constraints of a fission power production of 3 GW and that the effective multiplication factor k{sub eff} does not exceed 0.95. The model can be considered as representative for hybrids driven by other types of mirrors too. In order to reduce the demand on the fusion power of the mirror, a modified option of the hybrid has been considered that generates a reduced fission power of 1.5 GW with an increased maximal value k{sub eff}=0.97. The present paper deals with nuclear safety aspects of this type of hybrids. It presents and discusses calculation results of reactivity effects as well as of driver effects.

  2. Safety and power multiplication aspects of mirror fusion-fission hybrids

    NASA Astrophysics Data System (ADS)

    Noack, Klaus; Ågren, Olov; Källne, Jan; Hagnestâl, Anders; Moiseenko, Vladimir E.

    2012-06-01

    Recently, in a research project at Uppsala University a simplified neutronic model for a straight field line mirror hybrid has been devised and its most important operation parameters have been calculated under the constraints of a fission power production of 3 GW and that the effective multiplication factor keff does not exceed 0.95. The model can be considered as representative for hybrids driven by other types of mirrors too. In order to reduce the demand on the fusion power of the mirror, a modified option of the hybrid has been considered that generates a reduced fission power of 1.5 GW with an increased maximal value keff =0.97. The present paper deals with nuclear safety aspects of this type of hybrids. It presents and discusses calculation results of reactivity effects as well as of driver effects.

  3. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    SciTech Connect

    Shaw, H F; Blink, J; Farmer, J; Latkowski, J; Kramer, K

    2009-09-08

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce {approx}2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  4. Actinide incineration in fusion-fission hybrid-A model nuclear synergy

    NASA Astrophysics Data System (ADS)

    Taczanowski, Stefan

    2012-06-01

    The alliance of fusion with fission is a cause worthy of great efforts, as being able to ease (if not even to solve) serious problems that both these forms of nuclear energy are facing. Very high investment costs caused by tokamak enormous size, material consumption and difficult technology put in doubt whether alone the minute demand for fuel raw material (Li) and lack of danger of uncontrolled supercriticality prove sufficient for making it competitive. Preliminary evaluations demonstrated that a radical shift of energy production i.e. the energy gain from plasma to fission blanket is feasible [1]. A reduction in the fusion component to about 2% at given system power allows for a radical drop in plasma Q down to the values of ˜0.2-0.3 achievable in small systems [2] (e.g. mirrors) of sizes comparable to fission reactors. As a result in a Fusion-Driven Actinide Incinerator (FDI) both radiations from the plasma: corpuscular (i.e. neutrons and ions) and photons are drastically reduced. Thus are too, first of all - the neutron induced radiation damage: DPA and gas production, then plasma-wall interactions. The fundamental safety of the system has been proved by simulation of its collapse that has shown preservation its subcriticality. Summarizing, all the above problems may be solved with synergic union of fusion with fission embodied in the concept of FDI - small and less expensive.

  5. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  6. Neutronics for critical fission reactors and subcritical fission in hybrids

    NASA Astrophysics Data System (ADS)

    Salvatores, Massimo

    2012-06-01

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  7. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE PAGESBeta

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  8. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    SciTech Connect

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  9. Fusion-fission energy systems evaluation

    SciTech Connect

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  10. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  11. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  13. Hybrid plasmachemical reactor

    SciTech Connect

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  14. Diagnostics for hybrid reactors

    NASA Astrophysics Data System (ADS)

    Orsitto, Francesco Paolo

    2012-06-01

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  15. Diagnostics for hybrid reactors

    SciTech Connect

    Orsitto, Francesco Paolo

    2012-06-19

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  16. Fusion-Fission Burner for Transuranic Actinides

    NASA Astrophysics Data System (ADS)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  17. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  18. Magnetic mirror fusion-fission early history and applicability to other systems

    SciTech Connect

    Moir, R

    2009-08-24

    In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed

  19. Cluster fusion-fission dynamics in the Singapore stock exchange

    NASA Astrophysics Data System (ADS)

    Teh, Boon Kin; Cheong, Siew Ann

    2015-10-01

    In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.

  20. Fusion-fission experiments in Aphidius: evolutionary split without isolation in response to environmental bimodality.

    PubMed

    Emelianov, I; Hernandes-Lopez, A; Torrence, M; Watts, N

    2011-05-01

    Studying host-based divergence naturally maintained by a balance between selection and gene flow can provide valuable insights into genetic underpinnings of host adaptation and ecological speciation in parasites. Selection-gene flow balance is often postulated in sympatric host races, but direct experimental evidence is scarce. In this study, we present such evidence obtained in host races of Aphidius ervi, an important hymenopteran agent of biological control of aphids in agriculture, using a novel fusion-fission method of gene flow perturbation. In our study, between-race genetic divergence was obliterated by means of advanced hybridisation, followed by a multi-generation exposure of the resulting genetically uniform hybrid swarm to a two-host environment. This fusion-fission procedure was implemented under two contrasting regimes of between-host gene flow in two replicated experiments involving different racial pairs. Host-based genetic fission in response to environmental bimodality occurred in both experiments in as little as six generations of divergent adaptation despite continuous gene flow. We demonstrate that fission recovery of host-based divergence evolved faster and hybridisation-induced linkage disequilibrium decayed slower under restricted (6.7%) compared with unrestricted gene flow, directly pointing at a balance between gene flow and divergent selection. We also show, in four separate tests, that random drift had no or little role in the observed genetic split. Rates and patterns of fission divergence differed between racial pairs. Comparative linkage analysis of these differences is currently under way to test for the role of genomic architecture of adaptation in ecology-driven divergent evolution. PMID:20924399

  1. Fusion, fission, and quasi-fission using TDHF

    NASA Astrophysics Data System (ADS)

    Umar, Sait; Oberacker, Volker

    2014-03-01

    We study fusion, fission, and quasi-fission reactions using the time-dependent Hartee-Fock (TDHF) approach together with the density-constrained TDHF method for fusion. The only input is the Skyrme NN interaction, there are no adjustable parameters. We discuss the identification of quasi-fission in 40Ca+238U, the scission dynamics in symmetric fission of 264Fm, as well as calculating heavy-ion interaction potentials V (R) , mass parameters M (R) , and total fusion cross sections from light to heavy systems. Some of the effects naturally included in these calculations are: neck formation, mass exchange, internal excitations, deformation effects, as well as nuclear alignment for deformed systems. Supported by DOE grant DE-FG02-96ER40975.

  2. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission

  3. Italian hybrid and fission reactors scenario analysis

    SciTech Connect

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-19

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  4. Italian hybrid and fission reactors scenario analysis

    NASA Astrophysics Data System (ADS)

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-01

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  5. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    SciTech Connect

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-19

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  6. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    NASA Astrophysics Data System (ADS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  7. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  8. Hybrid Reactor Simulation of Boiling Water Reactor Power Oscillations

    SciTech Connect

    Huang Zhengyu; Edwards, Robert M.

    2003-08-15

    Hybrid reactor simulation (HRS) of boiling water reactor (BWR) instabilities, including in-phase and out-of-phase (OOP) oscillations, has been implemented on The Pennsylvania State University TRIGA reactor. The TRIGA reactor's power response is used to simulate reactor neutron dynamics for in-phase oscillation or the fundamental mode of the reactor modal kinetics for OOP oscillations. The reactor power signal drives a real-time boiling channel simulation, and the calculated reactivity feedback is in turn fed into the TRIGA reactor via an experimental changeable reactivity device. The thermal-hydraulic dynamics, together with first harmonic mode power dynamics, is digitally simulated in the real-time environment. The real-time digital simulation of boiling channel thermal hydraulics is performed by solving constitutive equations for different regions in the channel and is realized by a high-performance personal computer. The nonlinearity of the thermal-hydraulic model ensures the capability to simulate the oscillation phenomena, limit cycle and OOP oscillation, in BWR nuclear power plants. By adjusting reactivity feedback gains for both modes, various oscillation combinations can be realized in the experiment. The dynamics of axially lumped power distribution over the core is displayed in three-dimensional graphs. The HRS reactor power response mimics the BWR core-wide power stability phenomena. In the OOP oscillation HRS, the combination of reactor response and the simulated first harmonic power using shaping functions mimics BWR regional power oscillations. With this HRS testbed, a monitoring and/or control system designed for BWR power oscillations can be experimentally tested and verified.

  9. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  10. Description of the Fusion-Fission Reactions in the Framework of Dinuclear System Conception

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    Within the dinuclear system model fusion-fission reactions 78Kr+40Ca and 86Kr+48Ca is investigated. The charge distributions of the decay products are predicted at bombarding energy 10 MeV/nucleon. The competition is treated between complete fusion followed by the decay of compound nucleus and quasifission channels. The possible explanation of the odd-even staggering in the yield of the final reaction products at high excitation energies is discussed.

  11. Mathematical modelling of the anaerobic hybrid reactor.

    PubMed

    Soroa, S; Gomez, J; Ayesa, E; Garcia-Heras, J L

    2006-01-01

    This paper presents a new mathematical model for the anaerobic hybrid reactor (AHR) (a UASB reactor and an anaerobic filter in series) and its experimental calibration and verification. The model includes a biochemical part and a mass transport one, which considers the AHR as two contact reactors in series. The anaerobic process transformations are described by the model developed by Siegrist et al. The fraction (F) of solids in the clarification zone of the UASB reactor that leaves this first reactor is the key physical parameter to be estimated. The main parameters of the model were calibrated using experimental results from a bench-scale AHR fed with real slaughterhouse wastewater. The fraction of inert particulate COD in the influent and the factor F were estimated by a trial and error procedure comparing experimental and simulated results of the mass of solids in the lower tank and the VSS concentration in the AHR effluent. A good fit was obtained. The final verification was carried out by comparing a set of experiments with simulated data. The model's capability to predict the process performance was thus proved. PMID:16939085

  12. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  13. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  14. Fusion-Fission In The {sup 86}Kr+{sup 238}U Reaction

    SciTech Connect

    Lipoglavsek, M.; Hansen, E. Lindbo; Petrovic, T.; Vencelj, M.; Bark, R. A.; Gueorguieva, E. A.; Lawrie, J. J.; Lieder, E.; Lieder, R.; Mullins, S. M.; Ntshangase, S. S.; Papka, P.

    2008-05-12

    The {sup 86}Kr+{sup 238}U reaction has been studied at krypton beam energies about 30 MeV above the Coulomb barrier. Reaction products were detected by an array of 32 photovoltaic cells coupled to the AFRODITE {gamma}-ray detector array at iThemba LABS. A symmetric fission component has been observed at about 600 MeV total kinetic energy. This could possibly be due to fusion-fission with a cross section of 35{+-}20 mb.

  15. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  16. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    SciTech Connect

    Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

    2008-10-02

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

  17. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    PubMed Central

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  18. Short-term forecasting of Taiwanese earthquakes using a universal model of fusion-fission processes.

    PubMed

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M A; Johnson, Neil F

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  19. The Processes of Fusion-Fission and Quasi-Fission of Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Behera, B. R.; Corradi, L.; Fioretto, E.; Gadea, A.; Latina, A.; Stefanini, A. M.; Szilner, S.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Trotta, M.; Bouchat, V.; Hanappe, F.; Materna, T.; Dorvaux, O.; Rowley, N.; Schmitt, C.; Stuttge, L.

    2008-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 48Ca + 144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 50Ti + 208Pb, 244Pu; 58Fe + 208Pb, 244Pu, 248Cm, and 64Ni + 186W, 242Pu leading to the formation of heavy and super-heavy systems with Z = 82-122 are presented. Cross sections, mass-energy and angular distributions for fission and quasi-fission fragments have been studied at energies close and below the Coulomb barrier. The influence of the reaction entrance channel properties such as mass asymmetry, deformations, neutron excess, shell effects in the interacting nuclei and producing compound nucleus, the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  20. Next generation laser optics for a hybrid fusion-fission power plant

    SciTech Connect

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  1. UW MCNP source patch for the EPFL Haefely source. EPFL (Swiss) fusion-fission hybrid experiment

    SciTech Connect

    McKinney, G; Woodruff, G L

    1986-06-01

    The development of a source patch which describes the Haefely neutron source for use in the MCNP Monte Carlo code has been described in progress reports of the EPFL (Swiss) Fusion Blanket Project at the University of Washington. The most recent of these reports dealing with the source patch was Progress Report No. 14. This report reviews some of the physical description included in the report, and also includes additional details of the patch as well as a listing of the patch itself.

  2. What we should do for transition from current tokamaks to fusion-fission reactor

    NASA Astrophysics Data System (ADS)

    Mirnov, S.

    2012-06-01

    The Russian fission community places several heavy demands to quality of fusion neutron source for the first step of investigation of minority transmutations ("burning") and breading of nuclear fuel. They are: the steady state regime of neutron production (not rare 80% of main operation time), the total power on neutron flux should be not lower than 20MW with surface neutron load not lower than 0.2MW/m2. Between the current fusion devices: mirror traps, reverse field pinches, stellarators, spherical torus and tokamaks only lasts have today the some probability to fulfill in the near future these hard demands. Two well known DT-tokamaks with neutron power production higher 10MW - TFTR and JET-had maximal neutron load approximately 0.1MW/m2 only in transient (with time scale lower 1s) regimes. The quasi steady state neutron emission regime (˜5MW, 5sec) was performed in JET with mean surface neutron load lower than 0.025MW/m2 only. In this communication it will be discussed the main needs of JET scale tokamak improvement for increase on neutron load up to 0.2MW/m2. They are: decrease of Zeff by ECRH and lithium use as plasma facing components, the increase of energy of steady state neutral injectors up to 150-170keV (tritium), the He removal and creation of closed loop of DT fuel circulation.

  3. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  4. To follow or not? How animals in fusion-fission societies handle conflicting information during group decision-making.

    PubMed

    Merkle, Jerod A; Sigaud, Marie; Fortin, Daniel

    2015-08-01

    When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break-ups, and are therefore a fundamental driver of fusion-fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion-fission dynamics. Using movement data from GPS-collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group - a tactic that led to energy-rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion-fission dynamics and play an essential role in animal distribution. PMID:26013202

  5. Allowance for the shell structure of colliding nuclei in the fusion-fission process

    SciTech Connect

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.; Pashkevich, V. V.

    2011-07-15

    The motion of two nuclei toward each other in fusion-fission reactions is considered. The state of the system of interacting nuclei is specified in terms of three collective coordinates (parameters). These are the distance between the centers of mass of the nuclei and the deformation parameter for each of them (the nose-to-nose orientation of the nuclei is assumed). The evolution of collective degrees of freedom of the system is described by Langevin equations. The energies of the Coulomb and nuclear (Gross-Kalinovsky potential) interactions of nuclei are taken into account in the potential energy of the system along with the deformation energy of each nucleus with allowance for shell effects. The motion of nuclei toward each other are calculated for two reaction types: reactions involving nuclei that are deformed ({sub 42}{sup 100}Mo + {sub 42}{sup 100}Mo {yields} {sub 84}{sup 200}Po) and those that are spherical ({sub 82}{sup 208}Pb + {sub 8}{sup 18}O {yields} {sub 90}{sup 226}Th) in the ground state. It is shown that the shell structure of interacting nuclei affects not only the fusion process as a whole (fusionbarrier height and initial-reaction-energy dependence of the probability that the nuclei involved touch each other) but also the processes occurring in each nucleus individually (shape of the nuclei and their excitation energies at the point of touching).

  6. Dissipation strength of the tilting degree of freedom in fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Vanin, D. V.; Cheredov, A. V.; Fedorov, S. V.; Ryabov, E. G.; Adeev, G. D.

    2016-05-01

    The four-dimensional Langevin model was applied to calculate a wide set of experimental observables for compound nuclei, formed in heavy-ion fusion-fission reactions. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a "wall" formula was used for shapes parameters. Different possibilities of deformation-dependent dissipation coefficient for the K coordinate (γK) were investigated. Presented results demonstrate that the influence of the ks and γK parameters on the calculated quantities can be selectively probed. It was found that it is possible to describe experimental data with the deformation-dependent γK coefficient. One of the possibility is to use large values of γK ≃ 0.2 (MeV zs)-1/2 for compact shapes featuring no neck and small values of γK ≃ 0.0077 (MeV zs)-1/2 for elongated shapes.

  7. Low-Energy Fusion-Fission Dynamics of Heavy Nuclear Systems

    SciTech Connect

    Zagrebaev, Valery; Greiner, Walter

    2006-08-14

    A new approach is proposed for a unified description of strongly coupled deep-inelastic (DI) scattering, fusion, fission, and quasi-fission (QF) processes of heavy ion collisions. A unified driving-potential and a unified set of dynamic Langevin-type equations of motion are used in this approach. This makes it possible to perform a full (continuous) time analysis of the evolution of heavy nuclear systems, starting from the approaching stage, moving up to the formation of the compound nucleus or emerging into two final fragments. The calculated mass, charge, energy and angular distributions of the reaction products agree well with the corresponding experimental data for heavy and superheavy nuclear systems. Collisions of very heavy nuclei (such as 238U+248Cm) are investigated as an alternative way for production of superheavy elements. Large charge and mass transfer was found in these reactions due to the inverse (anti-symmetrizing) quasi-fission process leading to formation of surviving superheavy long-lived neutron-rich nuclei.

  8. Capture and Fusion-Fission Processes in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogatchev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Gadea, A.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Lyapin, V. G.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Voskresenski, V. M.

    2005-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+204Pb, 48Ca+144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 58Fe+208Pb, 244Pu, 248Cm, and 64Ni+186W, 242Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  9. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  10. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    SciTech Connect

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  11. Preconceptual design and assessment of a Tokamak hybrid reactor

    NASA Astrophysics Data System (ADS)

    Teofilo, V. L.; Leonard, B. R., Jr.; Aase, D. T.; Bickford, W. E.; McCormick, N. J.; McGrath, R. T.; Morrison, J. E.; Perry, R. T.; Schulte, S. C.; Willingham, C. E.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant was performed. The Tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb3Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited Tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs were made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis was made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  12. Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-01

    A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  13. Specifications of an accelerator for the soliton hybrid reactor (RHYS)

    NASA Astrophysics Data System (ADS)

    Gaveau, Bernard; Maillard, Jacques; Maurel, Gérard; Silva, Jorge

    2006-06-01

    The soliton hybrid reactor is a concept of an Accelerator Driven System, with a design insuring a long lifetime without core interventions. Soliton reactors and "candle reactors" have been proposed in order to use reactors for very long periods without reprocessing or enrichment. In this paper, we present the concept of hybrid soliton reactor. In this system, the constant displacement of the beam during the 30 years lifetime implies lower constraints on the window compared to other accelerator-driven systems. During its lifetime, the reactor can present constant profiles in chemical and isotopic composition and in power production if the beam of protons is maintained within certain limits. This is the soliton-like behavior. Using a mathematical analysis of the problem, we have shown that the solution of the equations presents a solitary wave behavior which is stable if the accelerator intensity is sufficiently low or if the velocity of the neutron source is sufficiently high. We have simulated these two behaviors with a GEANT III Monte Carlo program: a soliton behavior, and a one which may become unstable when the intensity is too large or the velocity too small. These preliminary considerations allow us to describe some specifications concerning an accelerator which can drive such a system.

  14. Conceptual design of a Commercial Tokamak Hybrid Reactor (CTHR)

    NASA Astrophysics Data System (ADS)

    1980-12-01

    This design was developed as a first generation commercial plant for the production of fissile fuel to support a significant number of client light water reactor (LWR) plants. The study was carried out in sufficient depth of indicate no insurmountable technical problems exist, assuming the physics of the fusion driver is verified, and has provided a basis for deriving cost estimates of the hybrid plant as well as estimates of the hybrid/LWR symbiotic system busbar electricity costs. This energy system has the potential to be optimized such that the net cost of electricity becomes competitive with conventional LWR plants as the price of U308 exceeds $100 per pound.

  15. Hybrid estimation technique for predicting butene concentration in polyethylene reactor

    NASA Astrophysics Data System (ADS)

    Mohd Ali, Jarinah; Hussain, M. A.

    2016-03-01

    A component of artificial intelligence (AI), which is fuzzy logic, is combined with the so-called conventional sliding mode observer (SMO) to establish a hybrid type estimator to predict the butene concentration in the polyethylene production reactor. Butene or co-monomer concentration is another significant parameter in the polymerization process since it will affect the molecular weight distribution of the polymer produced. The hybrid estimator offers straightforward formulation of SMO and its combination with the fuzzy logic rules. The error resulted from the SMO estimation will be manipulated using the fuzzy rules to enhance the performance, thus improved on the convergence rate. This hybrid estimation is able to estimate the butene concentration satisfactorily despite the present of noise in the process.

  16. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  17. Development and Optimization of Modular Hybrid Plasma Reactor

    SciTech Connect

    N /A

    2013-01-02

    INL developed a bench–scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system was optimized for WO{sub 3} nanoparticle production and scale-model projection to a 300 kW pilot system. During the course of technology development, many modifications were made to the system to resolve technical issues that surfaced and also to improve performance. All project tasks were completed except two optimization subtasks. Researchers were unable to complete these two subtasks, a four-hour and an eight-hour continuous powder production run at 1 lb/hr powder-feeding rate, due to major technical issues developed with the reactor system. The 4-hour run was attempted twice, and on both occasions, the run was terminated prematurely. The termination was due to (1) heavy material condensation on the modular electrodes, which led to system operational instability, and (2) pressure buildup in the reactor due to powder clogging of the exhaust gas and product transfer line. The modular electrode for the plasma system was significantly redesigned to address the material condensation problem on the electrodes. However, the cause for product powder clogging of the exhaust gas and product transfer line led to a pressure build up in the reactor that was undetected. Fabrication of the redesigned modular electrodes and additional components was completed near the end of the project life. However, insufficient resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable {delta}- Al{sub 2}O{sub 3} from pure {alpha}-phase large Al{sub 2}O{sub 3} powder. The formation of {delta} -Al{sub 2}O{sub 3} was surprising because this phase is meta-stable and only formed between 973–1073 K, and {delta} -Al{sub 2}O{sub 3} is very difficult to synthesize as a single

  18. Treatment of phthalic waste by anaerobic hybrid reactor

    SciTech Connect

    Tur, M.Y.; Huang, J.C.

    1997-11-01

    The anaerobic treatment performance of phthalic acid at 4,000 mg/L (dry weight) by a hybrid reactor consisting of an upflow anaerobic sludge blanket (UASB) and a biofilter was examined. Using anaerobic sewage sludge as the seed and glucose as a carbon supplement, it took 3 months to initiate phthalate degradation. After that, the glucose supplement could be discontinued. At 35 C and a phthalic loading of 20 g-COD/L-d, the chemical oxygen demand (COD) removal efficiency was nearly 95%. About 89.5% of the removed phthalic COD was converted to methane. When the phthalic loadings were increased to 26.7, 33.0, 39.7, and 46.3 g-COD/L-d, the COD removal efficiencies were progressively reduced to 78, 65, 58, and 47.7%, respectively. More than 95% of the residual effluent COD was composed of nondecomposed phthalic acid. In the hybrid reactor, 86% of the biomass was found in the UASB section while the remaining 14% was found in the biofilter section. The anaerobic sludge could lead to granulation. At 35 C and a phthalic loading of 26 g-COD/L-D, the overall specific removal rate was 0.81--0.85 g-COD/g VSS-d, and the corresponding methane production rate was 0.24--0.26 L CH{sub 4}/g VSS-d.

  19. A hybrid anode reactor for the SLAC modulator

    SciTech Connect

    Donaldson, A.R.

    1994-06-01

    The SLAC modulators operate at 150 MW ak outputs at 120 pps with an average power of 87 kW. In an effect to improve modulator performance and reliability, we describe the design of a hybrid anode reactor using ferrite to decrease the ringing of the output pulse, and incidentally reduce thyratron commutation loss. The design uses MnZn ferrite as a saturable lossy element to decrease the ringing in combination with NiZn ferrite as a saturable reactor for reducing the switching loss. The output ringing is product of the PFN stray capacitance and the leakage inductance of the pulse transformer, and if not suppressed causes premature failures of the output cable. The saturable switch aspect then offers the necessary rise time and pulse width recovery. While these two goals seem contrary, our initial performance objectives were met Ringing on the output pulse is decreased by 50%. Switching loss reduction is measured by a thyratron temperature decrease of 15% as measured on the anode with a cathode reference temperature. The reactor packaging is very simple, and it is separated from the thyratron space so not to complicate thyratron replacement or modulator repairs and maintenance.

  20. Outlook for the fusion hybrid and tritium-breeding fusion reactors

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Cohen, R.; Simpson, J. W.

    The study examines the outlook for fusion hybrid reactors. The study evaluates the status of fusion hybrid technology in the United States and analyzes the circumstances under which such reactors might be deployed. The study also examines a related concept, the tritium-breeding fusion reactor. The study examined two potential applications for fusion hybrid technology: (1) the production of fissile material to fuel light-water reactors, and (2) the direct production of baseload electricity. For both applications, markets were sufficiently problematical or remote (mid-century or later) to warrant only modest current research and development emphasis on technology specific to the fusion hybrid reactor. For the tritium-breeding fusion reactor, a need for tritium for use in nuclear weapons might arise well before the middle of the next century, so that a program of design studies, experimentation, and evaluation should be undertaken.

  1. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    SciTech Connect

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated.

  2. The fusion fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.

  3. A PPARγ-Bnip3 Axis Couples Adipose Mitochondrial Fusion-Fission Balance to Systemic Insulin Sensitivity.

    PubMed

    Tol, Marc J; Ottenhoff, Roelof; van Eijk, Marco; Zelcer, Noam; Aten, Jan; Houten, Sander M; Geerts, Dirk; van Roomen, Cindy; Bierlaagh, Marlou C; Scheij, Saskia; Hoeksema, Marten A; Aerts, Johannes M; Bogan, Jonathan S; Dorn, Gerald W; Argmann, Carmen A; Verhoeven, Arthur J

    2016-09-01

    Aberrant mitochondrial fission plays a pivotal role in the pathogenesis of skeletal muscle insulin resistance. However, fusion-fission dynamics are physiologically regulated by inherent tissue-specific and nutrient-sensitive processes that may have distinct or even opposing effects with respect to insulin sensitivity. Based on a combination of mouse population genetics and functional in vitro assays, we describe here a regulatory circuit in which peroxisome proliferator-activated receptor γ (PPARγ), the adipocyte master regulator and receptor for the thiazolidinedione class of antidiabetic drugs, controls mitochondrial network fragmentation through transcriptional induction of Bnip3. Short hairpin RNA-mediated knockdown of Bnip3 in cultured adipocytes shifts the balance toward mitochondrial elongation, leading to compromised respiratory capacity, heightened fatty acid β-oxidation-associated mitochondrial reactive oxygen species generation, insulin resistance, and reduced triacylglycerol storage. Notably, the selective fission/Drp1 inhibitor Mdivi-1 mimics the effects of Bnip3 knockdown on adipose mitochondrial bioenergetics and glucose disposal. We further show that Bnip3 is reciprocally regulated in white and brown fat depots of diet-induced obesity and leptin-deficient ob/ob mouse models. Finally, Bnip3(-/-) mice trade reduced adiposity for increased liver steatosis and develop aggravated systemic insulin resistance in response to high-fat feeding. Together, our data outline Bnip3 as a key effector of PPARγ-mediated adipose mitochondrial network fragmentation, improving insulin sensitivity and limiting oxidative stress. PMID:27325287

  4. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    NASA Astrophysics Data System (ADS)

    Bang, Youngsuk

    hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.

  5. EPFL (Swiss) Fusion-Fission Hybrid Experiment. Progress report No. 15, August 1, 1985-October 31, 1985

    SciTech Connect

    Woodruff, G.L.

    1986-01-01

    A series of calculations have been performed to analyze the Lithium Blanket Module (LBM) when driven by a Haefely neutron source. In these calculations the LBM was positioned on the center line of the Haefely at a distance of 20 cm from the front face of the Haefely. The back wall of the LOTUS cavity was placed 139 cm from the front of the Haefely. A Haefely accelerating potential of 170 keV was assumed. No support structure for LBM was included. 2 refs., 15 figs., 2 tabs.

  6. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOEpatents

    Miller, John V.; Carlson, William R.; Yarbrough, Michael B.

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  7. Neutronics analysis of deuterium-tritium-driven experimental hybrid blankets

    SciTech Connect

    Sahin, S.; Kumar, A.

    1984-07-01

    At the Swiss Federal Institute of Technology, an experimental fusion and fusion-fission (hybrid) reactor facility is near completion. Experiments are scheduled to begin in February 1984. The experimental cavity leads one to plan experiments mostly with blankets in plane geometry. Five different hybrid blanket modules in plane geometry are analyzed with two different left boundary conditions representing varying experimental situations. Numbers I and II represent energy and fissile fuel producing blankets, whereas number III is mainly a fissile fuel producing blanket. Numbers IV and V are actinide burning blankets. It is shown that the overall neutronic performance, such as k /sub eff/ , energy multiplication factor M, fusile and fissile breeding, of a hybrid blanket with transplutonium actinide fuel is already better than that of a UO/sub 2/ or ThO/sub 2/ hybrid blanket. Furthermore, the transplutonium actinide waste is partly converted into precious nuclear fuel of a new type, such as /sup 242m/ Am and /sup 245/Cm. An experimental blanket with a vacuum left boundary has a harder neutron spectrum, and also excessive neutron leakage from the front surface and the lateral surfaces, as compared to that in the blanket in confinement geometry. It leads to the poorer neutronic performance of the former.

  8. Competition between fusion-fission and quasifission processes in the {sup 32}S+{sup 184}W reaction

    SciTech Connect

    Zhang, H. Q.; Zhang, C. L.; Lin, C. J.; Liu, Z. H.; Yang, F.; Nasirov, A. K.; Mandaglio, G.; Manganaro, M.; Giardina, G.

    2010-03-15

    The angular distributions of fission fragments for the {sup 32}S+{sup 184}W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (A{sub exp}) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the {sup 32}S+{sup 182,184}W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K{sub 0}{sup 2}, , and A{sub exp}, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the {sup 32}S+{sup 184}W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about E{sub c.m.}approx =160 MeV. The underestimation of the experimental data at high excitation energies E{sub c.m.}>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  9. Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats.

    PubMed

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Yang, Zhenhua; Zhang, Yuexia; Cai, Zongwei; Dong, Chuan

    2015-03-16

    Exposure to ambient fine particulate matter (PM2.5) increases the risk of respiratory disease. Although previous mitochondrial research has provided new information about PM toxicity in the lung, the exact mechanism of PM2.5-mediated structural and functional damage of lung mitochondria remains unclear. In this study, changes in lung mitochondrial morphology, expression of mitochondrial fission/fusion markers, lipid peroxidation, and transport ATPase activity in SD rats exposed to ambient PM2.5 at different dosages were investigated. Also, the release of reactive oxygen species (ROS) via the respiratory burst in rat alveolar macrophages (AMs) exposed to PM2.5 was examined by luminol-dependent chemiluminescence (CL). The results showed that (1) PM2.5 deposited in the lung and induced pathological damage, particularly causing abnormal alterations of mitochondrial structure, including mitochondrial swelling and cristae disorder or even fragmentation in the presence of higher doses of PM2.5; (2) PM2.5 significantly affected the expression of specific mitochondrial fission/fusion markers (OPA1, Mfn1, Mfn2, Fis1, and Drp1) in rat lung; (3) PM2.5 inhibited Mn superoxide dismutase (MnSOD), Na(+)K(+)-ATPase, and Ca(2+)-ATPase activities and elevated malondialdehyde (MDA) content in rat lung mitochondria; and (4) PM2.5 induced rat AMs to produce ROS, which was inhibited by about 84.1% by diphenyleneiodonium chloride (DPI), an important ROS generation inhibitor. It is suggested that the pathological injury observed in rat lung exposed to PM2.5 is associated with mitochondrial fusion-fission dysfunction, ROS generation, mitochondrial lipid peroxidation, and cellular homeostasis imbalance. Damage to lung mitochondria may be one of the important mechanisms by which PM2.5 induces lung injury, contributing to respiratory diseases. PMID:25560372

  10. Neutronic Analysis of the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine Using Various Thorium Molten Salts

    NASA Astrophysics Data System (ADS)

    Acır, Adem

    2013-08-01

    In this study, a neutronic performance of the Laser Inertial Confinement Fusion Fission Energy (LIFE) molten salt blanket is investigated. Neutronic calculations are performed by using XSDRNPM/SCALE5 codes in S8-P3 approximation. The thorium molten salt composition considered in this calculation is 75 % LiF—25 % ThF4, 75 % LiF—24 % ThF4—1 % 233UF4, 75 % LiF—23 % ThF4—2 % 233UF4. Also, effects of the 6Li enrichment in molten salt are performed for all heavy metal salt. The radiation damage behaviors of SS-304 structural material with respect to higher fissionable fuel content and 6Li enrichment are computed. By higher fissionable fuel content in molten salt and with 6Li enrichment (20 and 50 %) in the coolant in form of 75 % LiF—23 % ThF4—2 % 233UF4, an initial TBR >1.05 can be realized. On the other hand, the 75 % LiF—25 % ThF4 or 75 % LiF—24 % ThF4—1 % 233UF4 molten salt fuel as regards maintained tritium self-sufficiency is not suitable as regards improving neutronic performance of LIFE engine. A high quality fissile fuel with a rate of ~2,850 kg/year of 233U can be produced with 75 % LiF—23 % ThF4—2 % 233UF4. The energy multiplication factor is increased with high rate fission reactions of 233U occurring in the molten salt zone. Major damage mechanisms in SS-304 first wall stell have been computed as DPA = 48 and He = 132 appm per year with 75 % LiF—23 % ThF4—2 % 233UF4. This implies a replacement of the SS-304 first wall stell of every between 3 and 4 years.

  11. Mirror-based hybrids of recent design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.; Martovetsky, N. N.; Molvik, A. W.; Ryutov, Dimitri; Simonen, T. C.

    2012-06-01

    Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=Pfusion/Pinput ˜0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. Operation at Q˜0.7 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy ˜ 80 keV from existing positive ion neutral beams designed for steady state. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror 2.5 T solenoid length of 40 m is discussed. Simple circular steady state superconducting coils at each end are based on 15 T technology development of the ITER central solenoid. Hybrids obtain important revenues from the sale of both electricity and fuel production or waste burning. Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion's neutron energy by a factor of ˜10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q˜0.2. Hybrids that produce fissile fuel with fissioning blankets might need Q<2 while suppressing fissioning might be the most economical application of fusion but will require Q>4.

  12. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOEpatents

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  13. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    SciTech Connect

    Edwards, Robert; Huang, Zhengyu

    2001-06-17

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown.

  14. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  15. Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and Fe2O3

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Haljaste, Ants; Laan, Matti

    2013-02-01

    In the present study, Fe2O3 was used as catalyst for the removal of NO in a hybrid plasma- catalytic reactor. The catalyst was located either directly inside the hybrid plasma-catalytic reactor or in a separate catalytic reactor, which followed ozone producing and injecting plasma reactor. Ozone production in such a reactor was dependent on the state of the electrode surface. The fresh catalyst ensured an order of magnitude smaller ozone concentration in the outlet of the hybrid reactor. After a short treatment of the catalyst with NO2, its ability to destroy ozone diminished but was regained after heating of the reactor up to 100 °C. Similarly to earlier results obtained with TiO2, the removal of NO in the hybrid reactor with Fe2O3 was enhanced compared to that in an ordinary plasma reactor. In the ozone injection reactor, oxidation of NO to NO2 took place with considerably higher efficiency compared to the hybrid reactor. The use of catalyst in the ozonation stage further improved the oxidation of NO2 to N2O5. The time-dependence effects of NO removal during plasma and ozone oxidation were explained by reactions between NO2 adsorbed on surface, with surface-bound NO3 and gas phase NO as the reaction product. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  16. Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors

    SciTech Connect

    Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

    2008-09-01

    An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

  17. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-10-05

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to /sup 7/Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation.

  18. FEASIBILITY ANALYSIS REPORT FOR HYBRID NON-THERMAL PLASMA REACTORS

    EPA Science Inventory

    The purpose of SERDP project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for DoD air emissions control applications. The primary focus is on oxides of nitrogen (NOx) and a secondary focus on hazardous air pollutants (HAPs), especially volatile o...

  19. Fission-suppressed hybrid reactor: the fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  20. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  1. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    PubMed

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. PMID:24048074

  2. Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR).

    PubMed

    Aybar, M; Pizarro, G; Boltz, J P; Downing, L; Nerenberg, R

    2014-01-01

    We used modeling to predict the energy and cost savings associated with the air-based, hybrid membrane-biofilm reactor (hybrid MfBR). This process is obtained by replacing fine-bubble diffusers in conventional activated sludge with air-supplying, hollow-fiber membrane modules. Evaluated processes included removal of chemical oxygen demand (COD), combined COD and total nitrogen (TN) removal, and hybrid growth (biofilm and suspended). Target concentrations of COD and TN were based on high-stringency water reuse scenarios. Results showed reductions in power requirements as high as 86%. The decrease mainly resulted from the dramatically lower air flows for the MBfR, resulting from its higher oxygen-transfer efficiencies. When the MBfR was used for COD and TN removal, savings up to US$200/1,000 m(3) of treated water were predicted. Cost savings were highly sensitive to the costs of the membrane modules and electrical power. The costs were also very sensitive to membrane oxidation flux for ammonia, and the membrane life. These results suggest the hybrid MBfR may provide significant savings in energy and costs. Further research on the identified key parameters can help confirm these modeling predictions and facilitate scale-up. PMID:24759536

  3. Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat

    2013-08-01

    Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.

  4. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  5. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  6. NEBA-3 pin and cermet hybrid bimodal reactor

    SciTech Connect

    Weitzberg, A.; Josloff, A.T.; Mondt, J.F.

    1995-12-31

    Early in 1994 a bimodal (power and propulsion) reactor concept that made use of two different fuel types was identified. UN pin fuel was selected for long lifetime to produce electricity, and UO{sub 2}-W cermet was selected for short-time high-temperature propulsion. During the last year the concept has been refined and analyzed as part of the DOE contribution to the joint Air Force Phillips Laboratory-Department of Energy Bimodal Program. With the exception of refractory metal vacuum gaps between the components containing hydrogen propellant and the refractory metal components containing lithium, and high temperature liquid metal-gas heat exchangers, the concept identified as Nuclear Engine for Bimodal Applications (NEBA)-3 uses previously developed and demonstrated technologies, including high efficiency closed Brayton cycle turboalternator-compressors for power production. Using near-term technology NEBA-3 can, as an upper stage to an Atlas IIAS launch vehicle, provide propulsion with specific impulse of about 850 seconds at thrusts of 90 to 925 Newtons, and 10 kilowatts of electricity for ten years. Based on previous cost estimates by DOE and NASA, a minimum program could deliver a flight system such as NEBA-3 within six years at a cost of from $500 to $700 million. The US space reactor power and propulsion community now has the technical capability to deliver such a system early in the next century.

  7. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    SciTech Connect

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  8. MYRRHA a multi-purpose hybrid research reactor for high-tech applications

    SciTech Connect

    Abderrahim, H. A.; Baeten, P.

    2012-07-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

  9. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    NASA Astrophysics Data System (ADS)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  10. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers. PMID:24089868

  11. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  12. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  13. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  14. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao; Cliff Davis

    2008-06-01

    An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heat from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet

  15. Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor.

    PubMed

    Trapani, Daniele Di; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2010-01-01

    Over the last decade new technologies are emerging even more for wastewater treatment. Among the new technologies, a recent possible solution regards Moving Bed Biofilm Reactors (MBBRs) that represent an effective alternative to conventional processes. More specifically such systems consist in the introduction of plastic elements inside the aerobic reactor as carrier material for the growth of attached biomass. Recently, one of the mostly used alternatives is to couple the Moving Bed Biofilm Reactor (MBBR) process with the conventional activated sludge process, and the resulting process is usually called HMBBR (Hybrid MBBR). In the MBBR process the biofilm grows attached on small plastic elements that are kept in constant motion throughout the entire volume of the reactor. Indeed, in such a system, a competition between the two biomasses, suspended and attached, can arise for the availability of the substrates, leading, as a consequence, to a modification in the biokinetic parameters of the two biomasses, compared to that of a pure suspended or attached biomass process. This paper presents the first results of a study aimed at estimating the kinetic heterotrophic constants in a HMBBR pilot plant using respirometric techniques. The pilot plant was built at the Acqua dei Corsari (Palermo) wastewater treatment plant and consisted of two parallel lines realized in a pre-anoxic scheme, in one of which the carrier material was added to the aerobic reactor with a filling ratio of 30%. PMID:20371934

  16. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  17. Investigation of Shell Effects in the Fusion-Fission Process in the Reaction 34S + 186W Near the Interaction Barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Kozulin, E. M.; Bogachev, A.; Dmitriev, S. N.; Itkis, J.; Knyazheva, G.; Loktev, T.; Novikov, K.; Vardaci, E.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.

    2015-06-01

    The reaction 34S + 186W at Elab = 160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays coincident with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. The coupling of the ORGAM and CORSET setups enables the FF-γ coincident measurement which offers the opportunity to extract the isotopic distribution of the fragments of different masses formed in the aforementioned reaction and to find the exact neutron multiplicity, the average spin and average angular momenta. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  18. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.

    PubMed

    Tam, H L S; Tang, D T W; Leung, W Y; Ho, K M; Greenfield, P F

    2004-01-01

    Bench-scale systems, using conventional and compact hybrid activated sludge configurations, were set up to evaluate the systems' nitrification-denitrification performance, operating sludge age/MLSS concentration and sludge settleability at a Hong Kong municipal STW. Configurations tested were the continuous clarifier modified Ludzack Ettinger (MLE) and the sequencing batch reactor (SBR) with and without hybrid suspended biofilm carriers. Results demonstrated that the hybrid SBR and MLE systems consistently achieved close to complete nitrification (effluent NH4-N = 2.4 and 6.9 mg/L) and 75% and 67% removal of nitrogen (N) (effluent NO3-N < 10 mg/L) with an overall hydraulic retention time of only 7.5 hours, operating sludge age as short as 5.2 days, and mixed liquor suspended solids concentration of approximately 1,300 mg/L with a sludge volume index of 109 and 229 mL/g, respectively. The most sensitive and slowest growing nitrifiers attached to the hybrid biofilm carriers. This allowed the hybrid processes to be operated at a sludge age shorter than the critical nitrifying sludge age while still retaining near complete nitrification. In contrast, to achieve complete nitrification, the conventional MLE system needed to be operated at 1.5 to 2.5 times the critical sludge age. These results indicate that the hybrid MLE configuration is a suitable process for use in upgrading existing conventional works for N removal and for increasing hydraulic capacity of existing N removal works, without major civil works modifications, in Hong Kong. For new works, consideration might be given to the use of the hybrid SBR, which shows a more stable N removal performance than the MLE process due to its inherent in-basin equalization capacity and better reaction conditions for nitrification in terms of higher initial NH4-N level. It was also observed that the conventional SBR produced better nitrification performance than the hybrid MLE process tested. Design parameters and operating

  19. Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials

    SciTech Connect

    Peter C. Kong

    2011-12-01

    INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The

  20. Effects of oxygen concentration on the nitrifying activity of an aerobic hybrid granular sludge reactor.

    PubMed

    Filali, Ahlem; Bessiere, Yolaine; Sperandio, Mathieu

    2012-01-01

    The aim of the work was to quantify the influence of the simultaneous presence of flocs and granules in the nitrifying activity in a sequencing batch airlift reactor (SBAR). The nitrification rate and oxygen limitation of flocs, granules and hybrid sludge was investigated using respirometric assays at different dissolved oxygen concentrations. The spatial distribution of Ammonium Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) was investigated using fluorescence in situ hybridization (FISH). Results showed that the nitrification rate was much less sensitive to oxygen limitation in systems containing a fraction of flocs than in pure granular sludge. Ammonium Oxidizing Bacteria (AOB) were found to be distributed in similar quantities in flocs and granules whereas the Nitrite Oxidizing Bacteria (NOB) were located preferentially in granules. This study showed that the presence of flocs with granules could increase the robustness of the process to transitory reductions of aeration. PMID:22233907

  1. Investigation of Asymmetries in Inductively Coupled Plasma Etching Reactors Using a 3-Dimensional Hybrid Model

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.; Grapperhaus, Michael J.

    1996-10-01

    Inductively Coupled Plasma (ICP) reactors have the potential for scaling to large area substrates while maintaining azimuthal symmetry or side-to-side uniformity across the wafer. Asymmetric etch properties in these devices have been attributed to transmission line properties of the coil, internal structures (such as wafer clamps) and non-uniform gas injection or pumping. To investigate the origins of asymmetric etch properties, a 3-dimensional hybrid model has been developed. The hybrid model contains electromagnetic, electric circuit, electron energy equation, and fluid modules. Continuity and momentum equations are solved in the fluid module along with Poisson's equation. We will discuss results for ion and radical flux uniformity to the substrate while varying the transmission line characteristics of the coil, symmetry of gas inlets/pumping, and internal structures. Comparisons will be made to expermental measurements of etch rates. ^*Work supported by SRC, NSF, ARPA/AFOSR and LAM Research.

  2. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  3. Progress of Integral Experiments in Benchmark Fission Assemblies for a Blanket of Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Liu, R.; Zhu, T. H.; Yan, X. S.; Lu, X. X.; Jiang, L.; Wang, M.; Han, Z. J.; Wen, Z. W.; Lin, J. F.; Yang, Y. W.

    2014-04-01

    This article describes recent progress in integral neutronics experiments in benchmark fission assemblies for the blanket design in a hybrid reactor. The spherical assemblies consist of three layers of depleted uranium shells and several layers of polyethylene shells, separately. In the assemblies with centralizing the D-T neutron source, the plutonium production rates, uranium fission rates and leakage neutron spectra are measured. The measured results are compared to the calculated ones with the MCNP-4B code and ENDF/B-VI library data, available.

  4. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    PubMed

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed. PMID:17504745

  5. Intense lower-hybrid wave penetration and current drive in reactor-grade plasmas

    SciTech Connect

    Cohen, R.H.; Rognlien, T.D ); Bonoli, P.T.; Porkolab, M. . Plasma Fusion Center)

    1990-01-01

    Apply lower-hybrid power in short, intense pulses can overcome Landau damping, allowing penetration into the core of reactor-grade plasmas. We present a theoretical description of the absorption and parametric stability of the pulses, and show results of ray-tracing calculations which include the absorption calculation. Consideration of the absorption and potential source availability lead to the consideration of 5--10 GW peak power, 30--100 {mu}s pulses for ITER, and {approximately} 2 MW, 20 {mu}s pulses for a proof-of-principle experiment in the Microwave Tokamak Experiment (MTX).

  6. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization.

    PubMed Central

    Raskin, L; Poulsen, L K; Noguera, D R; Rittmann, B E; Stahl, D A

    1994-01-01

    The microbial community structure of anaerobic biological reactors was evaluated by using oligonucleotide probes complementary to conserved tracts of the 16S rRNAs of phylogenetically defined groups of methanogens. Phylogenetically defined groups of methanogens were quantified and visualized, respectively, by hybridization of 32P- and fluorescent-dye-labeled probes to the 16S rRNAs from samples taken from laboratory acetate-fed chemostats, laboratory municipal solid waste digestors, and full-scale sewage sludge digestors. Methanosarcina species, members of the order Methanobacteriales, and Methanosaeta species were the most abundant methanogens present in the chemostats, the solid-waste digestors, and the sewage sludge digestors, respectively. PMID:7517129

  7. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    SciTech Connect

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  8. Study of nitrogen and organics removal in sequencing batch reactor (SBR) using hybrid media.

    PubMed

    Thuan, Tran-Hung; Chung, Yun-Chul; Ahn, Dae-Hee

    2003-03-01

    The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under

  9. Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis

    SciTech Connect

    Heo, W.; Kim, W.; Kim, Y.; Yun, S.

    2013-07-01

    A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)

  10. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    PubMed

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass. PMID:26606088

  11. Visible-Light-Responsive Photocatalytic Flow Reactor Composed of Titania Film Photosensitized by Metal Complex-Clay Hybrid.

    PubMed

    Goto, Takehito; Ogawa, Makoto

    2015-06-17

    Synthetic saponite containing a photosensitizing metal complex, tris(2,2'-bipyridine)ruthenium(II)), in the interlayer space was complexed with anatase nanoparticles to obtain transparent hybrid film photocatalyst. The catalyst film was mounted in a flow reactor device to catalyze such photocatalytic reactions as the decomposition of aqueous acetic acid and N-alkylation of benzylamine with ethanol. PMID:26029789

  12. Lower hybrid current drive at plasma densities required for thermonuclear reactors

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Tuccillo, A. A.; Amicucci, L.

    2011-12-23

    Driving current in high-density plasmas is essential for the progress of thermonuclear fusion energy research based on the tokamak concept. The lower hybrid current drive (LHCD) effect, is potentially the most suitable tool for driving current at large plasma radii, consistent with the needs of ITER steady state scenario. Unfortunately, experiments at reactor grade high plasma densities with kinetic profiles approaching those required for ITER, have shown problems in penetration of the LH power into the core plasma. These plasmas represent a basic reference for designing possible methods useful for assessing the LHCD concept in ITER. On the basis of the phenomenology observed during LHCD experiments carried out in different machines, and model of the spectral broadening effect due to parametric instability, an interpretation and possible solution of the related important problem is presented.

  13. [Pilot-scale opposite folded plate hybrid anaerobic reactor (OFPHAR) in treatment of sewage].

    PubMed

    Han, Xiang-Kui; Ye, Chang-Bing; Zhuang, Jin-Peng; Bi, Dong; Wang, Lei

    2008-11-01

    Based on the theories of mass-transfer and two-double integrated staged multi-phase anaerobe (TSMPA), a pilot-scale opposite folded plate hybrid anaerobic reactor (OFPHAR) was designed to treat low concentration sewage. All the trial lasted 12 months and the results indicated that the optimal HRT was 6h. At this HRT, the COD, TP and TN removal rate were 78.58%, 35.15%, 39.17%, respectively, at 25 degrees C +/- 2 degrees C. The optimal rate of anaerobic section was 45%-65%. Controlled HRT = 6 h, the COD, TP and TN removal rate were 64.37%, 20.72%, 23.65%, respectively, and the specific methane production capacity were 1.85 mL/(g x h) when the temperature decreased to 7 degrees C. The results of trial indicated that apply this OFPHAR to treat low concentration sewage at low temperature in north China is feasible. PMID:19186805

  14. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale

    NASA Astrophysics Data System (ADS)

    Faucher, V.; Galon, P.; Beccantini, A.; Crouzet, F.; Debaud, F.; Gautier, T.

    2014-06-01

    This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid-structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid-structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside subdomains.

  15. Performance evaluation of the anammox hybrid reactor seeded with mixed inoculum sludge.

    PubMed

    Tomar, Swati; Gupta, Sunil Kumar; Mishra, Brijesh Kumar

    2016-01-01

    Long startup and poor granulation are the major bottlenecks in field-scale application of the anammox (ANaerobic AMMonium OXidation) process. In the present study, the anammox process was investigated in a modified anammox hybrid reactor (AHR) inoculated with mixed seed culture (anoxic and activated sludge). The startup study delineated four distinct phases, i.e. cell lysis, lag phase, activity elevation and stationary phase. Use of mixed seed culture at influent [Formula: see text] ratio (1:1) and hydraulic retention time (HRT) of 1 d led to early startup of the anammox process. The removal efficiencies of [Formula: see text] and [Formula: see text] during acclimation were found to be 94.3% and 96.4%, respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m(3) d. Pearson correlation analysis dictated strong and positive correlation of HRT and sludge retention time (SRT) with nitrogen removal efficiency (NRE) while NLR and sludge loading rate (SLR) were negatively correlated. Attached growth system (AGS) in AHR contributed an additional 11% ammonium removal and reduced the sludge washout rate by 29%. Mass balance of nitrogen revealed that the major fraction (74.1%) of input nitrogen was converted into N2 gas indicating higher substrate conversion efficiency of anammox biomass. Scanning electron microscope (SEM) study of biomass indicated the presence of heterogeneous population of cocci and rod-shaped bacteria of average diameter varying from 1.2 to 1.5 mm. Owing to the features of early start-up, ability to retain high biomass and consistently higher NRE, hybrid reactor configuration seeded with mixed culture offers noble strategy for cultivation of well-compacted anammox granules for field-scale installation. PMID:26411578

  16. Removal of VOCs by hybrid electron beam reactor with catalyst bed

    NASA Astrophysics Data System (ADS)

    Kim, Jinkyu; Han, Bumsoo; Kim, Yuri; Lee, Jae-Hyung; Park, Chong-Rae; Kim, Jong-Chul; Kim, Jo-Chun; Kim, Ki-Joon

    2004-09-01

    Electron beam decomposition of volatile organic compounds (VOCs) was studied in order to obtain information for developing effective treatment method of off-gases from industries. We have examined the combination of electron beam and catalyst honeycomb which is either 1% platinum based or ceramic honeycomb- based aluminum oxide, using a hybrid reactor in order to improve removal efficiency and CO 2 formation; and to suppress undesirable by-product formation e.g. O 3, aerosol, H xC y. , and tar. The experiments were conducted using a pilot-scale treatment system (maximum capacity; 1800 N m 3/h) that fitted the field size to scale up from the traditional laboratory scale system for VOC removal with electron beam irradiation. Toluene was selected as a typical VOC that was irradiated to investigate product formation, effect of ceramic and catalyst, and factors effecting overall efficiency of degradation. Styrene was selected as the most odorous compound among the VOCs of interest. It was found that VOCs could be destroyed more effectively using a hybrid system with catalyst bed than with electron beam irradiation only.

  17. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Lu, Na; Li, Jie; Wu, Yan; Masayuki, Sato

    2012-02-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II.

  18. Relevance of mesocatalytic hybrid reactors for accumulation of fissile nuclei and energy balance analysis

    NASA Astrophysics Data System (ADS)

    Chigrinov, S. E.; Kievitskaya, A. I.; Petlitskij, V. A.

    1993-05-01

    On the basis of the energy and angular spectra of particles emitted from the lateral surfaces of light element targets, the energy balance of a mesocatalytic hybrid reactor (MCHR) has been estimated, with the dependence upon fuel enrichment, type and volume fraction of coolant in the mesocatalytic and electronuclear channel blankets taken into account. It is shown that it is possible to generate a considerable amount of electric power in an MCHR due to burning up fissile nuclides in an MCHR blanket by choosing appropriate types of fuel composition and coolant. Despite some reduction of the fissile nuclide breeding ratio and of the number of nuclear reactors (NR) in the MCHR-NR system, the primary beam power gain is of the same magnitude as in the case of a natural uranium blanket with a hard neutron spectrum. A simplification in solving ecological, economic and safety problems in nuclear fuel reprocessing can be reached by burning the accumulated fissile nuclides directly in the MCHR blanket

  19. Effect of hydraulic retention time on the biodegradation of complex phenolic mixture from simulated coal wastewater in hybrid UASB reactors.

    PubMed

    Ramakrishnan, Anushuya; Gupta, Sudhir Kumar

    2008-05-01

    This study describes the feasibility of anaerobic treatment of complex phenolics mixture from a simulated synthetic coal wastewater using four identical 13.5L (effective volume) bench scale hybrid up-flow anaerobic sludge blanket (HUASB) (combining UASB+anaerobic filter) reactors at four different hydraulic retention times (HRT) under mesophilic (27+/-5 degrees C) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. The phenolics contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. The study demonstrated that at optimum HRT, 24h, and phenolic loading rate of 0.75 g COD/(m(3)-d), the phenolics and COD removal efficiency of the reactors were 96% and 86%, respectively. Bio-kinetic models were applied to data obtained from experimental studies in hybrid UASB reactor. Grau second-order multi-component substrate removal model was best fitted to the hybrid UASB reactor. The second-order substrate removal rate constant (k(2(s))) was found as 1.72 h(-1) for the hybrid reactor treating complex phenolic mixture. Morphological examination of the sludge revealed rod-type Methanothrix-like, cells to be dominant on the surface. PMID:17950527

  20. Start-up of an anaerobic hybrid (UASB/filter) reactor treating wastewater from a coffee processing plant.

    PubMed

    Bello-Mendoza, R; Castillo-Rivera, M F

    1998-10-01

    The ability of an anaerobic hybrid reactor, treating coffee wastewater, to achieve a quick start-up was tested at pilot scale. The unacclimatized seed sludge used showed a low specific methanogenic activity of 26.47 g CH4 as chemical oxygen demand (COD)/kg volatile suspended solids (VSS) x day. This strongly limited the reactor performance. After a few days of operation, a COD removal of 77.2% was obtained at an organic loading rate (OLR) of 1.89 kg COD/m3 x day and a hydraulic retention time (HRT) of 22 h. However, suddenly increasing OLR above 2.4 kg COD/m3 x day resulted in a deterioration in treatment efficiency. The reactor recovered from shock loads after shutdowns of 1 week. The hybrid design of the anaerobic reactor prevented the biomass from washing-out but gas clogging in the packing material was also observed. Wide variations in wastewater strength and flow rates prevented stable reactor operation in the short period of the study. PMID:16887646

  1. Hybrid systems for transuranic waste transmutation in nuclear power reactors: state of the art and future prospects

    NASA Astrophysics Data System (ADS)

    Yurov, D. V.; Prikhod'ko, V. V.

    2014-11-01

    The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U-Pu nuclear fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of widely different natures -- nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma -- are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U-Pu nuclear fuel cycle is assessed.

  2. Effect of Lithium Enrichment on the Tritium Breeding Characteristics of Various Breeders in a Fusion Driven Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2009-09-01

    Selection of lithium containing materials is very important in the design of a deuterium-tritium (DT) fusion driven hybrid reactor in order to supply its tritium self-sufficiency. Tritium, an artificial isotope of hydrogen, can be produced in the blanket by using the neutron capture reactions of lithium in the coolants and/or blanket materials which consist of lithium. This study presents the effect of lithium-6 enrichment in the coolant of the reactor on the tritium breeding of the hybrid blanket. Various liquid-solid breeder couples were investigated to determine the effective breeders. Numerical results pointed out that the tritium production increased with increasing lithium-6 enrichment for all cases.

  3. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  4. Development of Subspace-based Hybrid Monte Carlo-Deterministric Algorithms for Reactor Physics Calculations

    SciTech Connect

    Abdel-Khalik, Hany S.; Zhang, Qiong

    2014-05-20

    The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 103 - 105 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.

  5. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    PubMed

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-07-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs. PMID:26652186

  6. Mechanical shear contributes to granule formation resulting in quick start-up and stability of a hybrid anammox reactor.

    PubMed

    Gao, Yanning; Liu, Zhijun; Liu, Fengxia; Furukawa, Kenji

    2012-06-01

    It appears that if suspended biomass washout can be reduced effectively, granule formation will be fastened in fluidized bed. Quicker reactor start-up can be anticipated especially for those system keeping slow growth bacteria such as anammox. A hybrid reactor combined fixed-bed with nonwoven fabrics as biomass carrier and fluidized bed with slow speed mechanical stirring was therefore developed, and its nitrogen removal performances was evaluated experimentally. Only in 38 days, the total nitrogen removal rate (NRR) reached to 1.9 kg(N) m(-3) day (-1) and then doubled within 17 days, with total nitrogen removal efficiency kept above 70%. After 180 days reactor operating, the NRR reached a maximum value of 6.6 kg(N) m(-3) day(-1) and the specific anammox activity was gradually constant in 0.32 kg(N) kg(VSS)(-1) day(-1). Biomass attached on nonwoven fabrics could additionally improve reactor nitrogen removal by 8%. The dominant size of granular sludge reached to 0.78 mm with stirring speed adjusted from 30 to 80 rpm and the hydraulic retention time (HRT) from 8 to 1.5 h during the whole operating time. Scanning electron microscope observation showed especially compact structure of granular sludge. A 70% of anammox bacteria percentage was identified by fluorescence in situ hybridization analysis. PMID:21928094

  7. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit. PMID:26926200

  8. Annual Report for Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems—Phase 1B

    SciTech Connect

    Josephson, Gary B.; Tonkyn, Russell G.; Rappe, Kenneth G.; Frye, John G.

    2009-06-01

    Annual report covering the development of a hybrid nonthermal plasma single-pass filtration system for collective protection. This report covers NTP destruction testing on a high priority Toxic Industrial Material and an surrogate for a sulfur containing chemical agent (e.g. mustard), Effects of catalysts in the nonthermal plasma and catalyst poisoning by the sulfur are presented. Also presented are proof-of-principle data for utilizing ozone created in the NTP as a beneficial reactant to destroy adsorbed contaminants in-situ. Catalysts to decompose the ozone within the adsorbent bed are necessary to convert the adsorber into an ozone reactor.

  9. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  10. Effect of effluent recycling and shock loading on the biodegradation of complex phenolic mixture in hybrid UASB reactors.

    PubMed

    Ramakrishnan, Anushuya; Gupta, Sudhir Kumar

    2008-06-01

    This study describes the feasibility of anaerobic treatment of synthetic coal wastewater using four identical 13.5L (effective volume) bench scale hybrid up flow anaerobic sludge blanket (HUASB) reactors (R1, R2, R3 and R4) under mesophilic (27+/-5 degrees C) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. Effluent recirculation was employed at four different effluent to feed recirculation ratios (R/F) of 0.5, 1.0, 1.5 and 2.0 for 100 days to study the effect of recirculation on the performance of the reactors. Phenolics and COD removal was found to improve with increase in effluent recirculation. An effluent to feed recycle ratio of 1.0 resulted in maximum removal of phenolics and COD. Phenolics and COD removal improved from 88% and 92% to 95% each, respectively. The concentration of volatile fatty acids in the effluent was lower than the influent when effluent to feed recirculation was employed. Effect of shock loading on the reactors revealed that phenolics shock load up to 2.5 times increase in the normal input phenolics concentration in the form of continuous shock load for 4days did not affect the reactors performance irreversibly. PMID:17714941

  11. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    SciTech Connect

    Haihua Zhao; Hongbin Zhang

    2007-11-01

    The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphénix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

  12. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water

    PubMed Central

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption–desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes. PMID:26754440

  13. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water.

    PubMed

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes. PMID:26754440

  14. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes.

  15. Fluid-structure-interaction analyses of reactor vessel using improved hybrid Lagrangian Eulerian code ALICE-II

    SciTech Connect

    Wang, C.Y.

    1993-06-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  16. Fluid-structure-interaction analyses of reactor vessel using improved hybrid Lagrangian Eulerian code ALICE-II

    SciTech Connect

    Wang, C.Y.

    1993-01-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  17. Hybrid Monte Carlo-Deterministic Methods for Nuclear Reactor-Related Criticality Calculations

    SciTech Connect

    Edward W. Larson

    2004-02-17

    The overall goal of this project is to develop, implement, and test new Hybrid Monte Carlo-deterministic (or simply Hybrid) methods for the more efficient and more accurate calculation of nuclear engineering criticality problems. These new methods will make use of two (philosophically and practically) very different techniques - the Monte Carlo technique, and the deterministic technique - which have been developed completely independently during the past 50 years. The concept of this proposal is to merge these two approaches and develop fundamentally new computational techniques that enhance the strengths of the individual Monte Carlo and deterministic approaches, while minimizing their weaknesses.

  18. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  19. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  20. Ion species mix measurements in DIII-D and International Thermonuclear Experimental Reactor using ion-ion hybrid layer reflectometry

    SciTech Connect

    Heidbrink, W.W.; Watson, G.W.; Burrell, K.H.

    2004-10-01

    A superheterodyne reflectometer can provide a direct and inexpensive measurement of the concentrations of ion species with different charge to mass ratios. The ion-ion hybrid cutoff frequency is uniquely determined by the cyclotron frequencies and concentrations of the different species. The phase of a {approx}20 MHz wave that travels from a launching antenna on the low-field side of a tokamak, reflects off the cutoff layer, then travels to a receiving antenna provides a direct measure of the species mix. Hydrogen concentrations between 3% and 67% are measured in DIII-D using this technique. In theory, the technique can measure the spatial profile of the tritium concentration in the International Thermonuclear Experimental Reactor. Possible practical difficulties include attenuation of the wave in the evanescent layer near the antenna.

  1. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    NASA Astrophysics Data System (ADS)

    Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco

    2012-06-01

    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.

  2. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. PMID:26031758

  3. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  4. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  5. Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater.

    PubMed

    Tawfik, A; El-Zamel, T; Herrawy, A; El-Taweel, G

    2015-08-01

    Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m(3)) in combination with downflow hanging sponge (DHS) system (1.3 m(3)) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of COD(total) resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7% of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2% of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10(5) ± 1.1 × 10(2)/100 ml for TC, 7.1 × 10(4) ± 1.2 × 10(2)/100 ml for FC, and 7.5 × 10(4) ± 1.3 × 10(2)/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3% were detected in the effluent of AH and DHS system, respectively. Only 10% of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system. PMID:25893628

  6. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  7. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    SciTech Connect

    Terlizzi, Stefano; Dulla, Sandra; Ravetto, Piero; Rahnema, Farzad; Zhang, Dingkang

    2015-12-31

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  8. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    NASA Astrophysics Data System (ADS)

    Terlizzi, Stefano; Rahnema, Farzad; Zhang, Dingkang; Dulla, Sandra; Ravetto, Piero

    2015-12-01

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  9. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  10. Mini Fission-Fusion-Fission Explosions (Mini-Nukes). A Third Way Towards the Controlled Release of Nuclear Energy by Fission and Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2004-06-01

    Chemically ignited nuclear microexplosions with a fissile core, a DT reflector and U238 (Th232) pusher, offer a promising alternative to magnetic and inertial confinement fusion, not only burning DT, but in addition U238 (or Th232), and not depending on a large expensive laser of electric pulse power supply. The prize to be paid is a gram size amount of fissile material for each microexplosion, but which can be recovered by breeding in U238. In such a "mini-nuke" the chemical high explosive implodes a spherical metallic shell onto a smaller shell, with the smaller shell upon impact becoming the source of intense black body radiation which vaporizes the ablator of a spherical U238 (Th232) pusher, with the pusher accelerated to a velocity of ˜200 km/s, sufficient to ignite the DT gas placed in between the pusher and fissile core, resulting in a fast fusion neutron supported fission reaction in the core and pusher. Estimates indicate that a few kg of high explosives are sufficient to ignite such a "mini-nuke", with a gain of ˜103, releasing an energy equivalent to a few tons of TNT, still manageable for the microexplosion to be confined in a reactor vessel. A further reduction in the critical mass is possible by replacing the high explosive with fast moving solid projectiles. For light gas gun driven projectiles with a velocity of ˜ 10 km/s, the critical mass is estimated to be 0.25 g, and for magnetically accelerated 25 km/s projectiles it is as small as ˜ 0.05 g. With the much larger implosion velocities, reached by laser- or particle beam bombardment of the outer shell, the critical mass can still be much smaller with the fissile core serving as a fast ignitor. Increasing the implosion velocity decreases the overall radius of the fission-fusion assembly in inverse proportion to this velocity, for the 10 km/s light gas gun driven projectiles from 10 cm to 5 cm, for the 25 km/s magnetically projectiles down to 2 cm, and still more for higher implosion velocities.

  11. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    SciTech Connect

    Courau, T.; Plagne, L.; Ponicot, A.; Sjoden, G.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadrature required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)

  12. Homoploid hybrid speciation and genome evolution via chromosome sorting

    PubMed Central

    Lukhtanov, Vladimir A.; Shapoval, Nazar A.; Anokhin, Boris A.; Saifitdinova, Alsu F.; Kuznetsova, Valentina G.

    2015-01-01

    Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization. PMID:25925097

  13. Homoploid hybrid speciation and genome evolution via chromosome sorting.

    PubMed

    Lukhtanov, Vladimir A; Shapoval, Nazar A; Anokhin, Boris A; Saifitdinova, Alsu F; Kuznetsova, Valentina G

    2015-05-22

    Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization. PMID:25925097

  14. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach.

    PubMed

    Chao, Yuanqing; Mao, Yanping; Yu, Ke; Zhang, Tong

    2016-09-01

    Biofilms are widely used in wastewater treatment for their particular enhancement of nitrogen removal and other significant advantages. In this study, the diversity and potential functions of nitrogen removal bacteria in suspended activated sludge (AS) and biofilm of a full-scale hybrid reactor were uncovered by metagenomes (∼34 Gb), coupled with PCR-based 454 reads (>33 K reads). The results indicated that the diversity and abundance of nitrifiers and denitrifiers in biofilm did not surpass that in AS, while more nitrification and denitrification genes were indeed found in biofilm than AS, suggesting that the increased nitrogen removal ability by applying biofilm might be attributed to the enhancement of removal efficiency, rather than the biomass accumulation of nitrogen removal bacteria. The gene annotation and phylogenetic analysis results revealed that AS and biofilm samples consisted of 6.0 % and 9.4 % of novel functional genes for nitrogen removal and 18 % and 30 % of new Nitrospira species for nitrite-oxidizing bacteria, respectively. Moreover, the identification of Nitrospira-like amoA genes provided metagenomic evidence for the presence of complete ammonia oxidizer (comammox) with the functional potential to perform the complete oxidation of ammonia to nitrate. These findings have significant implications in expanding our knowledge of the biological nitrogen transformations in wastewater treatment. PMID:27287850

  15. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants.

    PubMed

    Alvarino, T; Suárez, S; Garrido, M; Lema, J M; Omil, F

    2016-02-01

    An innovative plant configuration based in an UASB reactor coupled to a hybrid aerobic membrane bioreactor designed for sustainable treatment of municipal wastewater at ambient temperatures and low hydraulic retention time was studied in terms of organic micropollutants (OMPs) removal. OMPs removal mechanisms, as well as the potential influence of biomass activity and physical conformation were assessed. Throughout all periods of operation (150 days) high organic matter removals were maintained (>95%) and, regarding OMPs removal, this innovative system has shown to be more efficient than conventional technologies for those OMPs which are prone to be biotransformed under anaerobic conditions. For instance, sulfamethoxazole and trimethoprim have both shown to be biodegradable under anaerobic conditions with similar efficiencies (removal efficiencies above 84%). OMPs main removal mechanism was found to be biotransformation, except in the case of musk fragrances which showed medium sorption onto sludge. OMPs removal was strongly dependent on the efficiency of the primary metabolism (organic matter degradation and nitrification) and the type of biomass. PMID:26386770

  16. Effect of Cu(II) shock loads on shortcut biological nitrogen removal in a hybrid biofilm nitrogen removal reactor.

    PubMed

    Yin, Jun; Xu, Hengjuan; Shen, Dongsheng; Wang, Kun; Lin, Ying

    2015-06-01

    The effect of Cu(II) shock loads on shortcut biological nitrogen removal during a continuous-flow anoxic/aerobic process was investigated using a hybrid biofilm nitrogen removal reactor. The results demonstrated that [Formula: see text]-N removal was not affected by any Cu(II) shock loads, but TN removal was inhibited by Cu(II) of shock loads of 2 and 5 mg/L, and the performance could not be recovered at 5 mg/L. Furthermore, the TN removal pathway also changed in response to Cu(II) concentrations of 2 and 5 mg/L. Denitrification is more sensitive to Cu(II) shock in SBNR processes. Examination of amoA communities using quantitative PCR showed that the abundance of AOB in the aerobic tank decreased after Cu(II) shock with 5 mg/L, which supported the observed changes in [Formula: see text]-N removal efficiency. The abundance of denitrification genes declined obviously at Cu(II) concentrations of 2 and 5 mg/L, which explained the decreased TN removal efficiency at those concentrations. PMID:25833010

  17. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water.

    PubMed

    Mousa, Ibrahim E

    2016-08-15

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1min and the energy consumption was 32.6mA/cm(2). However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20L/h. Pseudo steady state was achieved after 30min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. PMID:27236229

  18. Relaxation of ultralarge VWF bundles in a microfluidic-AFM hybrid reactor

    SciTech Connect

    Steppich, D.M.; Angerer, J.I.; Sritharan, K.; Schneider, S.W.; Thalhammer, S.; Wixforth, A.; Alexander-Katz, A.; Schneider, M.F.

    2008-05-02

    The crucial role of the biopolymer 'Von Willebrand factor' (VWF) in blood platelet binding is tightly regulated by the shear forces to which the protein is exposed in the blood flow. Under high-shear conditions, VWFs ability to immobilize blood platelets is strongly increased due to a change in conformation which at sufficient concentration is accompanied by the formation of ultra large VWF bundles (ULVWF). However, little is known about the dynamic and mechanical properties of such bundles. Combining a surface acoustic wave (SAW) based microfluidic reactor with an atomic force microscope (AFM) we were able to study the relaxation of stretched VWF bundles formed by hydrodynamic stress. We found that the dynamical response of the network is well characterized by stretched exponentials, indicating that the relaxation process proceeds through hopping events between a multitude of minima. This finding is in accordance with current ideas of VWF self-association. The longest relaxation time does not show a clear dependence on the length of the bundle, and is dominated by the internal conformations and effective friction within the bundle.

  19. Utilization of high-strength wastewater for the production of biogas as a renewable energy source using hybrid upflow anaerobic sludge blanket (HUASB) reactor

    SciTech Connect

    Shivayogimath, C.B.; Ramanujam, T.K.

    1998-07-01

    Anaerobic digestion of distillery spentwash, a high-strength wastewater, was studied using a hybrid upflow anaerobic sludge blanket (HUASB) reactor for 240 days under ambient conditions. The HUASB reactor combined an open volume in the bottom two-thirds of the reactor for sludge blanket and polypropylene pall rings packing in the upper one-third of the reactor. The aim of the study was to achieve optimum biogas production and waste treatment. Using non-granular anaerobic sewage sludge as seed, the start-up of the HUASB reactor was successfully completed, with the production of active bacterial granules of 1--2 mm size, within 90 days. Examination of the bacterial granules under scanning electron microscope (SEM) revealed that Methanothrix like microorganisms were the dominant species besides Methanosarcina. An organic loading of 24 kg COD/m{sup 3}d at a low hydraulic retention time (HRT) of 6 hours was achieved with 82% reduction in COD. Biogas with high methane content (80%) was produced at these loadings. The specific biogas yield was 0.36 m{sup 3} CH{sub 4}/kg COD. Packing in the upper third of the reactor was very efficient as a gas-solid separator (GSS); and in addition it retained the biomass.

  20. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  1. Alternative energy source II; Proceedings of the Second Miami International Conference, Miami Beach, Fla., December 10-13, 1979. Volume 6 - Nuclear energy

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    This volume examines conventional nuclear energy, breeder reactors, and thermonuclear energy. The particular papers presented consider current developments in nuclear breeder technology, fusion-driven fissile fuel breeder systems, and the fusion fission hybrid reactor. The implications of nuclear energy utilization in the Phillipines and the internationally safeguarded atomic fuel exchanger center for the Asian-Pacific basin are also discussed.

  2. The features of neutronic calculations for fast reactors with hybrid cores on the basis of BFS-62-3A critical assembly experiments

    SciTech Connect

    Mitenkova, E. F.; Novikov, N. V.; Blokhin, A. I.

    2012-07-01

    The different (U-Pu) fuel compositions are considered for next generation of sodium fast breeder reactors. The considerable discrepancies in axial and radial neutron spectra for hybrid reactor systems compared to the cores with UO{sub 2} fuel cause increasing uncertainty of generating the group nuclear constants in those reactor systems. The calculation results of BFS-62-3A critical assembly which is considered as full-scale model of BN-600 hybrid core with steel reflector specify quite different spectra in local areas. For those systems the MCNP 5 calculations demonstrate significant sensitivity of effective multiplication factor K{sub eff} and spectral indices to nuclear data libraries. For {sup 235}U, {sup 238}U, {sup 239}Pu the results of calculated radial fission rate distributions against the reconstructed ones are analyzed. Comparative analysis of spectral indices, neutron spectra and radial fission rate distributions are performed using the different versions of ENDF/B, JENDL-3.3, JENDL-4, JEFF-3.1.1 libraries and BROND-3 for Fe, Cr isotopes. For analyzing the fission rate sensitivity to the plutonium presence in the fuel {sup 239}Pu is substituted for {sup 235}U (enrichment 90%) in the FA areas containing the plutonium. For {sup 235}U, {sup 238}U, {sup 239}Pu radial fission rate distributions the explanation of pick values discrepancies is based on the group fission constants analyses and possible underestimation of some features at the experimental data recovery method (Westcott factors, temperature dependence). (authors)

  3. Unified Treatise of Phenomena of Seismic Fusion-Fission Under Seismonomy in the Light of Monistic Weltanschauung: the Doctrine of Dynamics Monism With Implication to the Earthquake Source Physics}

    NASA Astrophysics Data System (ADS)

    Zaurov, D.

    2006-12-01

    Established profoundly new conceptual framework by the five postulates of seismonomy, enables unified treatise of processes such as dynamic structural devastation, seismic blowing up of mount ridges, collision physics, meteorite impact cratering, and seismic global faulting with insight into the earthquake source physics. Hence, by establishing the parametric method of identification of natural modes and then Parametric Scan- Window Observation of Dynamic Responses (PSW-method), it becomes possible to obtain crucial field data. Thus, earth-dam dynamics data revealed an essential non-stationarity of dam's dynamic characteristics throughout earthquakes, the effect of stochastic alternation of the locally-stationary modal states with the discrete characteristics of their spectral distribution. At this point, in the course of other, separate line of far beyond lasting quest concerning metaphysical constituents of matter, and then constitutive relation between excited modal oscillation of structures and causal pattern of their fracture, the results of such analysis, resuming obscurity of the well known jaggedness of observing earthquake spectra, were illuminated and perceived. It was succeeded, on the one hand, to establish unitary conceptualized framework of seismic records analysis consisting both the PSW- and spectral- analysis, which reformulated to be a statistical representation complementary to PSW-method, and, on the other hand, to realize genesis of the doctrine of dynamics monism consisting concepts of both: fission-fusion dynamics and dynamics coherentism as an inspiration of the paradigm of seismic fusion-fission phenomena. Global faulting originating straight plane faults, which often stretch through large scale substantially inhomogeneous volumes, are, uncontestably, the result of dynamics fission, the first step of dynamics binary division of an emerged geoseismoid onto two secondary seismoids with a potential, occasionally stretched rupture plane. That

  4. Performance evaluation of anaerobic hybrid reactors with different packing media for treating wastewater of mild alkali treated rice straw in ethanol fermentation process.

    PubMed

    Narra, Madhuri; Balasubramanian, Velmurugan; Mehta, Himali; Dixit, Garima; Madamwar, Datta; Shah, Amita R

    2014-01-01

    Four anaerobic hybrid reactors with different packing media viz. gravel (R1), pumice stone (R2), polypropylene saddles (R3) and ceramic saddles (R4) were operated in semi-continuous mode. Biomethanation potential of the wastewater generated during alkali-treatment of rice straw in ethanol production process was investigated at ambient conditions. The reactors were operated with varying organic loading rates (0.861-4.313 g COD l(-1) d(-1)) and hydraulic retention time (3-15 days). Higher COD removal efficiency (69.2%) and methane yield (0.153 l CH4 g(-1) CODadded) were achieved in reactor R2 at 15 days HRT. Modified Stover-Kincannon model was applied to estimate the bio-kinetic coefficients and fitness of the model was checked by the regression coefficient for all the reactors. The model showed an excellent correlation between the experimental and predicted values. The present study demonstrated the treatment of wastewater from alkali treated rice straw for production of biogas. PMID:24291309

  5. Investigating the role of co-substrate-substrate ratio and filter media on the performance of anammox hybrid reactor treating nitrogen rich wastewater.

    PubMed

    Tomar, Swati; Gupta, Sunil Kumar

    2016-03-01

    This study explored the feasibility of using the anammox hybrid reactor (AHR), which combines suspended and attached growth media, for the biodegradation of ammonical nitrogen in wastewater. The study was performed in four laboratory-scale AHRs, inoculated with mixed seed culture (1:1). The anammox process was established by feeding the AHR with synthetic wastewater, containing NH(4)-N and NO(2)-N (1:1), at hydraulic retention time (HRT) of 1 day. The reactors were gradually acclimated to a higher ammonium concentration (1200 mg/l) until the pseudo-steady state was attained. Subsequently, the reactors were operated at various HRTs (0.25-3.0 days) to optimize the HRT and nitrogen loading rate (NLR). The study demonstrated that HRT of 1 day, corresponding to 95.1% of nitrogen removal was optimal. Pearson correlation analysis indicated the strong and positive correlation of HRT and sludge retention time (SRT), whereas the NLR and biomass yield correlated negatively with the nitrogen removal efficiency (NRE). The mass balance of nitrogen showed that a major fraction (79.1%) of the input nitrogen was converted into N2 gas, and 11.25% was utilized in synthesizing the biomass. The filter media in the AHR contributed to an additional 15.4% of ammonium removal and a reduction of 29% in the sludge washout rate. The nitrogen removal kinetics in the AHR followed the modified Stover-Kincannon model, whereas the Lawrence-McCarty model best described the bacterial growth kinetics. The study concludes that the hybrid configuration of the reactor demonstrated promising results and could be suitably applied for industrial applications. PMID:26277220

  6. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  7. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    NASA Astrophysics Data System (ADS)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  8. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    SciTech Connect

    Hwang, D.Q.; Horton, R.D.; Evans, R.W.

    1999-06-03

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population.

  9. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    PubMed

    Sridevi, K; Sivaraman, E; Mullai, P

    2014-08-01

    In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater. PMID:24746339

  10. Toroidal rotation and radial electric field driven by the lower-hybrid-wave in a tokamak fusion reactor

    SciTech Connect

    Wang Shaojie

    2011-10-15

    A theoretical model is proposed to interpret the counter-current rotation driven by the lower-hybrid-wave observed in the tokamak lower-hybrid-wave parallel current drive experiments. It is found that ions absorb the toroidal momentum indirectly from the wave through collisional friction with the resonant electrons that directly take the momentum from the wave through Landau resonance. This momentum coupling pumps out the ions to produce a negative radial electric field and makes the plasma rotate in the counter-current direction.

  11. Modeling studies of an impinging jet reactor design for hybrid physical-chemical vapor deposition of superconducting MgB 2 films

    NASA Astrophysics Data System (ADS)

    Lamborn, Daniel R.; Wilke, Rudeger H. T.; Li, Qi; Xi, X. X.; Snyder, David W.; Redwing, Joan M.

    2009-03-01

    An impinging jet reactor was developed for the deposition of superconducting MgB 2 thin films by hybrid physical-chemical vapor deposition, a technique that combines Mg evaporation with the thermal decomposition of B 2H 6 gas. A transport and chemistry model for boron film deposition from B 2H 6 was initially used to investigate the effect of carrier gas, Mg crucible temperature and gas flow rates on boron film growth rate and uniformity. The modeling studies, which were validated experimentally, demonstrated a reduction in B 2H 6 gas-phase depletion and an increased boron film growth rate using an argon carrier gas compared to hydrogen. The results were used to identify a suitable set of process conditions for MgB 2 deposition in the impinging jet reactor. The deposition of polycrystalline MgB 2 thin films that exhibited a transition temperature of 39.5 K was demonstrated at growth rates up to ˜50 μm/h.

  12. Hydrothermal Synthesis of TiO2@SnO2 Hybrid Nanoparticles in a Continuous-Flow Dual-Stage Reactor.

    PubMed

    Hellstern, Henrik L; Bremholm, Martin; Mamakhel, Aref; Becker, Jacob; Iversen, Bo B

    2016-03-01

    TiO2@SnO2 hybrid nanocomposites were successfully prepared in gram scale using a dual-stage hydrothermal continuous-flow reactor. Temperature and pH in the secondary reactor were found to selectively direct nucleation and growth of the secondary material into either heterogeneous nanocomposites or separate intermixed nanoparticles. At low pH, 2 nm rutile SnO2 nanoparticles were deposited on 9 nm anatase TiO2 particles; the presence of TiO2 was found to suppress formation of larger SnO2 particles. At high pH SnO2 formed separate particles and no deposition on TiO2 was observed. Ball-milling of TiO2 and SnO2 produced no TiO2@SnO2 composites. This verifies that the composite particles must be formed by nucleation and growth of the secondary precursor on the TiO2 . High concentration of secondary precursor led to formation of TiO2 particles embedded in aggregates of SnO2 nanoparticles. The results demonstrate how nanocomposites may be produced in high yield by green chemistry. PMID:26822385

  13. Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor

    NASA Astrophysics Data System (ADS)

    Lee, Jun; Han, Chang-Soo

    2014-02-01

    We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV-vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

  14. Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor

    PubMed Central

    2014-01-01

    We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents. PMID:24533662

  15. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    SciTech Connect

    Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  16. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    SciTech Connect

    Vdovin, V. L.

    2013-02-15

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  17. Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method

    NASA Astrophysics Data System (ADS)

    Risner, J. M.; Blakeman, E. D.

    2016-02-01

    The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the US Government purposes.

  18. A 3D µPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor.

    PubMed

    Ariza-Avidad, M; Salinas-Castillo, A; Capitán-Vallvey, L F

    2016-03-15

    This work reports on the development of a 3D microfluidic paper-based device (3D µPAD) for glucose detection using organic-inorganic hybrid nanoflower technology to immobilize the bi-enzymatic system (glucose oxidase and horseradish peroxidase). The system is based on nanoflowerssupported on cellulose paper (the microreactor zone) coupled to 3,3',5,5'-tetramethylbenzidine (TMB) as the colorimetric probe in the detection zone. We used a digital camera for the quantitative analysis of glucose with the S coordinate of the HSV color space as the analytical parameter. Under optimal operational conditions, linearity was observed for glucose concentrations up to 300 μM, with a detection limit of 15.6 µM. The biosensor is reusable and remains stable for 75 days in conventional storage conditions. PMID:26386331

  19. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    PubMed

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application. PMID:26143610

  20. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-01

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  1. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  2. DEVELOPMENT OF A MULTI-LOOP FLOW AND HEAT TRANSFER FACILITY FOR ADVANCED NUCLEAR REACTOR THERMAL HYDRAULIC AND HYBRID ENERGY SYSTEM STUDIES

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-09-01

    A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ~450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code ve

  3. Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-β-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-β-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  4. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    SciTech Connect

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  5. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    PubMed Central

    Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723

  6. Fusion Power Program biannual progress report, April-September 1979

    SciTech Connect

    Not Available

    1980-02-01

    This biannual report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the April-September 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Separate abstracts were prepared for three sections. (MOW)

  7. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system

    PubMed Central

    Cui, Min-Hua; Cui, Dan; Lee, Hyung-Sool; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2016-01-01

    In this study, two modes of hybrid anaerobic digestion (AD) bioreactor with built-in BESs (electrodes installed in liquid phase (R1) and sludge phase (R2)) were tested for identifying the effect of electrodes position on azo dye wastewater treatment. Alizarin yellow R (AYR) was used as a model dye. Decolorization efficiency of R1 was 90.41 ± 6.20% at influent loading rate of 800 g-AYR/ m3·d, which was 39% higher than that of R2. The contribution of bioelectrochemical reduction to AYR decolorization (16.23 ± 1.86% for R1 versus 22.24 ± 2.14% for R2) implied that although azo dye was mainly removed in sludge zone, BES further improved the effluent quality, especially for R1 where electrodes were installed in liquid phase. The microbial communities in the electrode biofilms (dominant by Enterobacter) and sludge (dominant by Enterococcus) were well distinguished in R1, but they were similar in R2. These results suggest that electrodes installed in liquid phase in the anaerobic hybrid system are more efficient than that in sludge phase for azo dye removal, which give great inspirations for the application of AD-BES hybrid process for various refractory wastewaters treatment. PMID:27121278

  8. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system.

    PubMed

    Cui, Min-Hua; Cui, Dan; Lee, Hyung-Sool; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2016-01-01

    In this study, two modes of hybrid anaerobic digestion (AD) bioreactor with built-in BESs (electrodes installed in liquid phase (R1) and sludge phase (R2)) were tested for identifying the effect of electrodes position on azo dye wastewater treatment. Alizarin yellow R (AYR) was used as a model dye. Decolorization efficiency of R1 was 90.41 ± 6.20% at influent loading rate of 800 g-AYR/ m(3)·d, which was 39% higher than that of R2. The contribution of bioelectrochemical reduction to AYR decolorization (16.23 ± 1.86% for R1 versus 22.24 ± 2.14% for R2) implied that although azo dye was mainly removed in sludge zone, BES further improved the effluent quality, especially for R1 where electrodes were installed in liquid phase. The microbial communities in the electrode biofilms (dominant by Enterobacter) and sludge (dominant by Enterococcus) were well distinguished in R1, but they were similar in R2. These results suggest that electrodes installed in liquid phase in the anaerobic hybrid system are more efficient than that in sludge phase for azo dye removal, which give great inspirations for the application of AD-BES hybrid process for various refractory wastewaters treatment. PMID:27121278

  9. Fission fusion hybrids- recent progress

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  10. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  11. Fouling potential evaluation of soluble microbial products (SMP) with different membrane surfaces in a hybrid membrane bioreactor using worm reactor for sludge reduction.

    PubMed

    Li, Zhipeng; Tian, Yu; Ding, Yi; Chen, Lin; Wang, Haoyu

    2013-07-01

    The fouling characteristics of soluble microbial products (SMP) in the membrane bioreactor coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR) were tested with different types of membranes. It was noted that the flux decrements of S-SMP (SMP in SSBWR-MBR) with cellulose acetate (CA), polyvinylidene fluoride (PVDF) and polyether sulfones (PES) membranes were respectively 6.7%, 8.5% and 9.5% lower compared to those of C-SMP (SMP in Control-MBR) with corresponding membranes. However, for both the filtration of the C-SMP and S-SMP, the CA membrane exhibited the fastest diminishing rate of flux among the three types of membranes. The surface morphology analysis showed that the CA membrane exhibited more but smaller protuberances compared to the PVDF and PES. The second minimums surrounding each protruding asperity on CA membrane were more than those on the PVDF and PES membranes, enhancing the attachment of SMP onto the membrane surface. PMID:23685647

  12. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket

    NASA Astrophysics Data System (ADS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2010-10-01

    A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 × 10 25 n m -2 ( E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-SiC-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance.

  13. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  14. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  15. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  16. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  17. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  18. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  19. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  20. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  1. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  2. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  3. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  4. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  5. Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Anikeev, Andrey V.

    2012-06-01

    The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.

  6. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  7. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  8. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  9. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  10. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  11. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  12. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  13. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  14. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  15. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  16. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  17. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  18. Development of high temperature catalytic membrane reactors. Final report

    SciTech Connect

    Gallaher, G.; Gerdes, T.; Gregg, R.

    1992-02-28

    Early efforts in 1992 were focused on relocating the membrane reactor system from Alcoa Separation Technology, Inc.`s Warrendale, PA facility to laboratory space at the University of Pittsburgh Applied Research Center (UPARC) in Harmarville, PA following the divestiture of Alcoa Separations to US Filter, Inc. Reconstruction was completed in March, 1992, at which time the reactor was returned to ethylbenzene dehydrogenation service. Efforts on ethylbenzene dehydrogenation to styrene focused on optimizing hybrid reactor performance relative to packed bed operation. Following this, the reactor system was converted to isobutane dehydrogenation. Experimentation on isobutane dehydrogenation focused on design of an inert reactor, evaluation of commercial light alkane dehydrogenation catalysts, and modeling of membrane reactor performance relative to the performance of a packed bed reactor. This report summarizes the effort in 1992 on the development of ceramic membranes as dehydrogenation reactors. In addition, outside interactions on behalf of this investigation are discussed.

  19. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  20. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  1. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  2. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  3. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  4. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  5. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  6. Bioconversion reactor

    SciTech Connect

    McCarty, P.L.; Bachmann, A.

    1992-02-25

    A bioconversion reactor is described for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible. 7 figs.

  7. Hybrid microelectronic technology

    NASA Astrophysics Data System (ADS)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  8. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  9. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  10. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503