Note: This page contains sample records for the topic future biofuel production from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Biofuels of the Future  

Microsoft Academic Search

There are good biofuels and bad biofuels. The good ones offer the prospect of transport fuels that have much lower environmental impact than fossil fuels and could before long be less expensive as well. Bad or irresponsibly produced biofuels may at best bring little environmental advantage; at worst they may also cause serious environmental damage, habitat destruction and food shortages.

Ron Oxburgh

2007-01-01

2

Economics of Current and Future Biofuels  

SciTech Connect

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01

3

iBioSeminar: Technical Issues Associated with Future Large-Scale Cellulosic Biofuels Production  

NSDL National Science Digital Library

This presentation describes the rationale for using plant biomass as a source of fuels and presents information about how much energy could be obtained in this way. Examples of the kinds of plants that are likely to be used are presented along with comments on some of the issues, such as losses to disease and effects of various cropping systems on soil quality, that need additional research. The potential for various types of biofuels are compared and some of the technical challenges in production of cellulosic fuels are outlined.

Chris Somerville (Carnegie Institution for Science;)

2007-05-01

4

Biofuels  

Microsoft Academic Search

It is the cost and abundant availability of raw materials that determine the economic feasibility of biofuel production. Considering\\u000a these constrains, agro-industrial residues may offer cheaper options as raw materials for biofuel production. This chapter\\u000a thus aims at presenting the current status and future directions of biofuel production using both conventional substrates\\u000a and agro-industrial residues as raw materials and critically

Soham Chattopadhyay; Asmita Mukerji; Ramkrishna Sen

5

Synthetic biology guides biofuel production.  

PubMed

The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

Connor, Michael R; Atsumi, Shota

2010-08-12

6

Synthetic Biology Guides Biofuel Production  

PubMed Central

The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

Connor, Michael R.; Atsumi, Shota

2010-01-01

7

Biofuels versus food production: Does biofuels production increase food prices?  

Microsoft Academic Search

Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels.Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem

Amela Ajanovic

2011-01-01

8

Biofuels and biodiversity: principles for creating better policies for biofuel production.  

PubMed

Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards. PMID:18261147

Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

2008-02-07

9

Future of Liquid Biofuels for APEC Economies  

SciTech Connect

This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

Milbrandt, A.; Overend, R. P.

2008-05-01

10

Production of biofuels from microalgae  

Microsoft Academic Search

The production of biofuels from microalgae, especially biodiesel, has become a topic of great interest in recent years. However,\\u000a many of the published papers do not consider the question of scale up and the feasibility of the various processes to be operated\\u000a at the very large scale required if algal biofuels are to make a meaningful contribution to renewable fuels.

Sophie Fon Sing; Andreas Isdepsky; Michael A. Borowitzka; Navid Reza Moheimani

11

Biofuels Fuels Technology Pathway Options for Advanced Drop-In Biofuels Production.  

National Technical Information Service (NTIS)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel al...

K. L. Kenney

2011-01-01

12

Towards Sustainable Production of Biofuels from Microalgae  

Microsoft Academic Search

Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal

Vishwanath Patil; Khanh-Quang Tran; Hans Ragnar Giselrřd

2008-01-01

13

Supercritical fluids technology for clean biofuel production  

Microsoft Academic Search

Biofuels are liquid or gaseous fuels that are predominantly produced from biomass for transport sector applications. As biofuels are renewable, sustainable, carbon neutral and environmentally benign, they have been proposed as promising alternative fuels for gasoline and diesel engines. This paper reviews state-of-the-art application of the supercritical fluid (SCF) technique in biofuels production that includes biodiesel from vegetable oils via

Dongsheng Wen; H. Jiang; Kai Zhang

2009-01-01

14

Towards sustainable production of biofuels from microalgae.  

PubMed

Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel. PMID:19325798

Patil, Vishwanath; Tran, Khanh-Quang; Giselrřd, Hans Ragnar

2008-07-09

15

Multiphase Flow Modeling of Biofuel Production Processes  

SciTech Connect

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01

16

Constructed wetlands as biofuel production systems  

NASA Astrophysics Data System (ADS)

Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

2012-03-01

17

Is Large-Scale Production of Biofuel Possible?  

NSDL National Science Digital Library

By genetically engineering certain crops, there is potential to produce biofuels commercially. Additionally: 1) Producing biofuels can decrease the worldâÂÂs dependence on petroleum fuel. 2)Using biofuels can alleviate environmental contamination from fossil fuel production and use. 3)Farming bioenergy crops could improve rural economies. 4)Establishing sustainability for the biofuel sector can avoid costly production processes.

Miriam Sticklen (Michigan State University;)

2010-07-17

18

Commercialization potential of microalgae for biofuels production  

Microsoft Academic Search

Microalgae feedstocks are gaining interest in the present day energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a

Jasvinder Singh; Sai Gu

2010-01-01

19

Closed photo-bioreactors as tools for biofuel production.  

PubMed

Production of biofuels from microalgae is a promising sustainable option for the future. Unfortunately, until now production of algae biomass is too expensive owing to costly plant designs or high demand of auxiliary energy. These problems are addressed in recent developments. Basic ideas that are followed in different novel pilot plants are efficient mixing, high light dilution via large external surfaces or internal light conducting structures and gas transport via membranes. Other attempts are directed towards cheaper constructions. These endeavours have brought microalgal biofuel production closer to economic viability as has been shown in some pilot plants. But until now, these plants operate only on a small area and a limited time frame, making economic assessment difficult. The next years will show, whether these promises can be kept on a pure commercial basis for a whole process chain from algae cultivation to oil extraction during a whole year and on a real hectare. PMID:19501503

Lehr, Florian; Posten, Clemens

2009-06-06

20

Policy options to support biofuel production.  

PubMed

Biofuels for use in the transportation sector have been produced on a significant scale since the 1970s, using a variety of technologies. The biofuels widely available today are predominantly sugar- and starch-based bioethanol, and oilseed- and waste oil-based biodiesel, although new technologies under development may allow the use of lignocellulosic feedstocks. Measures to promote the use of biofuels include renewable fuel mandates, tax incentives, and direct funding for capital projects or fleet upgrades. This paper provides a review of the policies behind the successful establishment of the biofuel industry in countries around the world. The impact of direct funding programs and excise tax exemptions are examined using the United States as a case study. It is found that the success of five major bioethanol producing states (Illinois, Iowa, Nebraska, South Dakota, and Minnesota) is closely related to the presence of funding designed to support the industry in its start-up phase, while tax exemptions on bioethanol use do not influence the development of production capacity. The study concludes that successful policy interventions can take many forms, but that success is equally dependent upon external factors, which include biomass availability, an active industry, and competitive energy prices. PMID:17846726

Mabee, W E

2007-01-01

21

Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production  

Microsoft Academic Search

Global threats of fuel shortages in the near future and climate change due to green-house gas emissions are posing serious challenges and hence and it is imperative to explore means for sustainable ways of averting the consequences. The dual application of microalgae for phycoremediation and biomass production for sustainable biofuels production is a feasible option. The use of high rate

I. Rawat; R. Ranjith Kumar; T. Mutanda; F. Bux

2011-01-01

22

Spatial scale and social impacts of biofuel production  

Microsoft Academic Search

The prospect of biofuels going ‘mainstream’ has drawn more attention to the social impacts of the production and use of transport biofuels. Since 2007, many media stories have appeared about alleged negative impacts of biofuels, notably the price of food going up or land-grab by plantation developers. These stories stand in stark contrast with the rosy picture painted by some

Dan van der Horst; Saskia Vermeylen

2011-01-01

23

A Survey of Biofuel Production potentials in Russia  

NASA Astrophysics Data System (ADS)

Due to the abundance of fossil fuel resources in Russia, the development of the renewable energy market there was delayed. Recent technological advancement has led to an increasing interest in biofuel production. The aim of research was to evaluate how biofuels are introduced into the current energy scheme of the country. The potential production of biofuels was estimated based on sustainable approaches which provide solution for carbon emission reduction and environmental benefits. Russia still requires biofuel policy to make biofuels compatible with traditional fossil fuels.

Lykova, Natalya; Gustafsson, Jan-Erik

2010-01-01

24

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

SciTech Connect

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01

25

Challenges in Engineering Microbes for Biofuels Production  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Economic and geopolitical factors (high oil prices, environmental concerns, and supply instability) have been prompting policy-makers to put added emphasis on renewable energy sources. For the scientific community, recent advances, embodied in new insights into basic biology and technology that can be applied to metabolic engineering, are generating considerable excitement. There is justified optimism that the full potential of biofuel production from cellulosic biomass will be obtainable in the next 10 to 15 years.

Gregory Stephanopoulos (Massachusetts Institute of Technology;Department of Chemical Engineering)

2007-02-09

26

National microalgae biofuel production potential and resource demand  

Microsoft Academic Search

Microalgae are receiving increased global attention as a potential sustainable ``energy crop'' for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and

Mark S. Wigmosta; André M. Coleman; Richard J. Skaggs; Michael H. Huesemann

2011-01-01

27

The potential of sustainable algal biofuel production using wastewater resources.  

PubMed

The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production. PMID:20594826

Pittman, Jon K; Dean, Andrew P; Osundeko, Olumayowa

2010-07-01

28

Limitation of Biofuel Production in Europe from the Forest Market  

NASA Astrophysics Data System (ADS)

The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

2013-04-01

29

Biofuel Co-Product Uses for Pavement Geo-Materials Stabilization.  

National Technical Information Service (NTIS)

The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin derivatives....

H. Ceylan K. Gopalakrishnan S. Kim

2010-01-01

30

Metabolic engineering for advanced biofuels production from Escherichia coli.  

PubMed

Global energy and environmental problems have stimulated increasing efforts toward synthesizing liquid biofuels as transportation energy. Compared to the traditional biofuel, ethanol, advanced biofuels should offer advantages such as higher energy density, lower hygroscopicity, lower vapor pressure, and compatibility with existing transportation infrastructure. However, these fuels are not synthesized economically using native organisms. Metabolic engineering offers an alternative approach in which synthetic pathways are engineered into user-friendly hosts for the production of these fuel molecules. These hosts could be readily manipulated to improve the production efficiency. This review summarizes recent progress in the engineering of Escherichia coli to produce advanced biofuels. PMID:18761088

Atsumi, Shota; Liao, James C

2008-09-12

31

Metabolic Engineering for Advanced Biofuels Production from Escherichia coli  

PubMed Central

Summary Global energy and environmental problems have stimulated increasing efforts towards synthesizing liquid biofuels as transportation energy. Compared to the traditional biofuel, ethanol, advanced biofuels should offer advantages such as higher energy density, lower hygroscopicity, lower vapor pressure, and compatibility with existing transportation infrastructure. However, these fuels are not synthesized economically using native organisms. Metabolic engineering offers an alternative approach in which synthetic pathways are engineered into user friendly hosts for the production of these fuel molecules. These hosts could be readily manipulated to improve the production efficiency. This review summarizes recent progress in the engineering of Escherichia coli to produce advanced biofuels.

Atsumi, Shota; Liao, James C.

2008-01-01

32

The Impacts of Biofuel Production on Food Prices: a review  

Microsoft Academic Search

The various calculations of the impacts of biofuel production on the mid-term projections of food and agricultural commodity prices are difficult to reconcile. This is largely due to the intricate set of assumptions, the differences in the baseline scenario and in the projection horizon they are built upon. For similar reasons, studies evaluating the impact of biofuel production on food

Nicolas Gerber; Manfred Van Eckert; Thomas Breuer

2008-01-01

33

Wastewater treatment high rate algal ponds for biofuel production  

Microsoft Academic Search

While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today’s fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment

J. B. K. Park; R. J. Craggs; A. N. Shilton

2011-01-01

34

Genetically Engineered Materials for Biofuels Production  

NASA Astrophysics Data System (ADS)

Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

Raab, Michael

2012-02-01

35

Fermentative butanol production: bulk chemical and biofuel.  

PubMed

Clostridium acetobutylicum is an anaerobic, spore-forming bacterium with the ability to ferment starch and sugars into solvents. In the past, it has been used for industrial production of acetone and butanol, until cheap crude oil rendered petrochemical synthesis more economically feasible. Both economic (price of crude oil) and environmental aspects (carbon dioxide emissions) have caused the pendulum to swing back again. Molecular biology has allowed a detailed understanding of genes and enzymes, required for solventogenesis. Thus, construction of strains with improved fermentation ability is now possible. Advances in continuous culture technology and improved downstream processing also add to economic advantages of a new biotechnological process. Two major companies have already committed themselves to biobutanol production as a biofuel additive. Thus, butanol fermentation is on the rise again. PMID:18378605

Dürre, Peter

2008-03-01

36

The potential of sustainable algal biofuel production using wastewater resources  

Microsoft Academic Search

The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for

Jon K. Pittman; Andrew P. Dean; Olumayowa Osundeko

2011-01-01

37

Genetically Engineered Crops for Biofuel Production: Regulatory Perspectives  

Microsoft Academic Search

There are numerous challenges in realizing the potential of biofuels that many policy makers have envisioned. The technical challenges in making the production of biofuels economical and on a scale to replace a significant fraction of transportation fuel have been well described, along with the potential environmental concerns. The use of biotechnology can potentially address many of these technical challenges

DAVID LEE; ALICE CHEN; RAMESH NAIR

38

Use of tamarisk as a potential feedstock for biofuel production  

Microsoft Academic Search

This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation,

Amy Cha-Tien Sun; Kirsten Norman

2011-01-01

39

Downstream Processing of Synechocystis for Biofuel Production  

NASA Astrophysics Data System (ADS)

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. Production of excreted FFA by mutant Synechocystis has the potential of reducing the complexity of downstream processing. Major problems, such as FFA precipitation and biodegradation by scavengers, account for FFA loss in operation. Even a low concentration of FFA scavengers could consume FFA at a high rate that outpaced FFA production rate. Potential strategies to overcome FFA loss include high pH, adsorptive resin, and sterilization techniques.

Sheng, Jie

40

Sustainable production of grain crops for biofuels  

Technology Transfer Automated Retrieval System (TEKTRAN)

Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

41

Conceptual net energy output for biofuel production from ...  

Treesearch

International Institute of Tropical Forestry ... Title: Conceptual net energy output for biofuel production from lignocellulosic ... Author: Zhu, J.Y.; Zhuang, X.S. ... are needed to determine energy inputs for fuel in farming and farm machinery.

42

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

SciTech Connect

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15

43

Exergy-based efficiency and renewability assessment of biofuel production.  

PubMed

This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy. PMID:15952399

Dewulf, J; Van Langenhove, H; Van De Velde, B

2005-05-15

44

Microbial engineering for the production of advanced biofuels.  

PubMed

Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels. PMID:22895337

Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

2012-08-16

45

Advanced biofuel production by the yeast Saccharomyces cerevisiae.  

PubMed

Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. PMID:23628723

Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

2013-04-27

46

Genetic modification of wood quality for second-generation biofuel production.  

PubMed

How the abundant tree biomass resources can be efficiently used for future biofuel production has attracted a great deal of interest and discussion in the past few years. Capable technologies are expected to be developed to realize the production of biofuel from wood biomass. A significant effort is put into the field of modifying wood properties of trees and simplifying the process of biomass-to-ethanol conversion, which includes mainly genetic engineering of lignin, cellulose and hemicellulose of woods. Current research in this field has achieved some promising results and opened up new opportunities to utilize wood biomass efficiently. This review will discuss the main developments in genetic modification of lignin, cellulose and hemicellulose biosynthesis in trees as well as other potential genetic technology of biofuel production from wood biomass. PMID:21844678

Lu, Shanfa; Li, Laigeng; Zhou, Gongke

47

Tree legumes as feedstock for sustainable biofuel production: Opportunities and challenges.  

PubMed

Concerns about future fossil fuel supplies and the environmental effects of their consumption have prompted the search for alternative sources of liquid fuels, specifically biofuels. However, it is important that the sources of such biofuel have minimal impact on global food supplies, land use, and commodity prices. Many legume trees can be grown on so-called marginal land with beneficial effects to the environment through their symbiotic interaction with "Rhizobia" and the associated process of root nodule development and biological nitrogen fixation. Once established legume trees can live for many years and some produce an annual yield of oil-rich seeds. For example, the tropical and sub-tropical legume tree Pongamia pinnata produces large seeds (?1.5-2g) that contain about 40% oil, the quality and composition of which is regarded as highly desirable for sustainable biofuel production. Here we consider the benefits of legume trees as future energy crops, particularly in relation to their impact on nitrogen inputs and the net energy balance for biofuel production, and also ways in which these as yet fully domesticated species may be further improved for optimal use as biofuel feedstock. PMID:21715045

Biswas, Bandana; Scott, Paul T; Gresshoff, Peter M

2011-06-29

48

The potential of C4 grasses for cellulosic biofuel production  

PubMed Central

With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel.

van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

2013-01-01

49

Production of liquid biofuels from renewable resources  

Microsoft Academic Search

This article is an up-to-date review of the literature available on the subject of liquid biofuels. In search of a suitable fuel alternative to fast depleting fossil fuel and oil reserves and in serious consideration of the environmental issues associated with the extensive use of fuels based on petrochemicals, research work is in progress worldwide. Researchers have been re-directing their

Poonam Singh Nigam; Anoop Singh

2011-01-01

50

Soil Quality as an Indicator of Sustainable Biofuel Feedstock Production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sustainable production of cellulosic feedstocks for second-generation biofuels must not degrade soil, water, or air resources. Critical functions such as (i) sustaining biological productivity, (ii) regulating and portioning soil water, (iii) storing and cycling nutrients, and (iv) filtering and buf...

51

Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands  

ERIC Educational Resources Information Center

|The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML…

Gutierrez, Andrew Paul; Ponti, Luigi

2009-01-01

52

Managing water resources for biomass production in a biofuel economy  

Technology Transfer Automated Retrieval System (TEKTRAN)

One goal of our national security policy is to become more energy independent using biofuels. The expanded production of agricultural crops for bioenergy production has introduced new challenges for management of water. Water availability has been widely presumed in the discussion of bioenergy crop ...

53

Biofuels  

NSDL National Science Digital Library

In this lesson, learners will design a fermentation experiment and use their data as well as outside research to design a biorefinery plant. Learners design an experiment to compare the amount of ethanol produced by the fermentation of materials such as corn, grass and fruits. Learners research the pros and cons of growing and processing these materials for use as biofuels. Learners also design a biorefinery plant.

Boulder, University O.

2012-01-01

54

Fueling the future: Evaluating the sustainability of biofuels  

NSDL National Science Digital Library

In this activity, students consider the impact and sustainability of use of different classes of biofuels on the economy, the environment, and society. Students also learn about bioelectricity and how converting biomass to electricity may be the more efficient way to fuel cars in the 21st century.

Haine, Dana; University Of North Carolina, School O.

55

Sustainability of Biofuels Workshop. State of the Science and Future Directions, October 28-29, 2008.  

National Technical Information Service (NTIS)

Legislative mandates and incentives, volatility in oil prices, and new research and technological advances are driving the expectation of major increases in the production of biofuels from cellulosic biomass. To assess the current state of the science und...

2008-01-01

56

Production of Liquid Biofuels from Biomass: Emerging Technologies  

Technology Transfer Automated Retrieval System (TEKTRAN)

This is an overview of the emerging technologies that have been developed recently or are in the process of development for ethanol (biofuel) production from agricultural residues. In this direction numerous advances have been made. Problems associated with inhibitor generation and detoxification,...

57

Impact of biofuel production and other supply and demand factors on food price increases in 2008  

Microsoft Academic Search

The prices of some grain commodities more than doubled from March 2007 to March 2008. Increased food prices coincided with increasing global biofuel production, leading to speculation that biofuel production was responsible for the increased food prices. However, over the six-month period after March 2008, grain prices declined by 50% while biofuel production continued to increase. It is not possible

Sherry A. Mueller; James E. Anderson; Timothy J. Wallington

2011-01-01

58

The Impact of Biofuel Production on Crop Production in the Southern Plains  

Microsoft Academic Search

The objective of the study is to determine how grain-based ethanol, cellulosic-based ethanol, and biodiesel production could influence cropping patterns in the Southern Plains. The study analyzes current and potential biofuel crop production and projects cropping changes at various biofuel prices.

Holly R. Ragan; Philip L. Kenkel

2007-01-01

59

The role of synthetic biology in the design of microbial cell factories for biofuel production.  

PubMed

Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel. PMID:22028591

Colin, Verónica Leticia; Rodríguez, Analía; Cristóbal, Héctor Antonio

2011-10-15

60

Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2  

SciTech Connect

Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

None

2010-08-01

61

Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production.  

PubMed

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology. PMID:20889752

Hemme, Christopher L; Mouttaki, Housna; Lee, Yong-Jin; Zhang, Gengxin; Goodwin, Lynne; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Glavina del Rio, Tijana; Tice, Hope; Saunders, Elizabeth; Brettin, Thomas; Detter, John C; Han, Cliff S; Pitluck, Sam; Land, Miriam L; Hauser, Loren J; Kyrpides, Nikos; Mikhailova, Natalia; He, Zhili; Wu, Liyou; Van Nostrand, Joy D; Henrissat, Bernard; He, Qiang; Lawson, Paul A; Tanner, Ralph S; Lynd, Lee R; Wiegel, Juergen; Fields, Matthew W; Arkin, Adam P; Schadt, Christopher W; Stevenson, Bradley S; McInerney, Michael J; Yang, Yunfeng; Dong, Hailiang; Xing, Defeng; Ren, Nanqi; Wang, Aijie; Huhnke, Raymond L; Mielenz, Jonathan R; Ding, Shi-You; Himmel, Michael E; Taghavi, Safiyh; van der Lelie, Daniël; Rubin, Edward M; Zhou, Jizhong

2010-10-01

62

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production  

SciTech Connect

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d'Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

2010-01-01

63

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production ?  

PubMed Central

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Hemme, Christopher L.; Mouttaki, Housna; Lee, Yong-Jin; Zhang, Gengxin; Goodwin, Lynne; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Glavina del Rio, Tijana; Tice, Hope; Saunders, Elizabeth; Brettin, Thomas; Detter, John C.; Han, Cliff S.; Pitluck, Sam; Land, Miriam L.; Hauser, Loren J.; Kyrpides, Nikos; Mikhailova, Natalia; He, Zhili; Wu, Liyou; Van Nostrand, Joy D.; Henrissat, Bernard; He, Qiang; Lawson, Paul A.; Tanner, Ralph S.; Lynd, Lee R.; Wiegel, Juergen; Fields, Matthew W.; Arkin, Adam P.; Schadt, Christopher W.; Stevenson, Bradley S.; McInerney, Michael J.; Yang, Yunfeng; Dong, Hailiang; Xing, Defeng; Ren, Nanqi; Wang, Aijie; Huhnke, Raymond L.; Mielenz, Jonathan R.; Ding, Shi-You; Himmel, Michael E.; Taghavi, Safiyh; van der Lelie, Daniel; Rubin, Edward M.; Zhou, Jizhong

2010-01-01

64

Molecular Breeding of Advanced Microorganisms for Biofuel Production  

PubMed Central

Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

2011-01-01

65

Genetic Engineering of Algae for Enhanced Biofuel Production ?  

PubMed Central

There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

2010-01-01

66

The US Ethanol and Biofuels Boom: Its Origins, Current Status, and Future Prospects  

NSDL National Science Digital Library

This article explains why we are experiencing a boom in ethanol and other biofuels, the current status of biofuels, and prospects for the future under different policy regimes. I argue that today's boom is in a sense an unintended consequence of a fixed ethanol subsidy that was keyed to $20-per-barrel crude oil, combined with a surge in crude oil pricesinitially to $60 per barrel, and later doubling to $120 per barrel. Future prospects for corn ethanol depend on the crude oil price, the price of corn and distillers' grains, the market value of ethanol, plant capital and operating costs, and federal ethanol and biofuels policies. I examine the impacts of a wide range of policies for subsidies and renewable fuels standards. Policy choices will be absolutely critical in determining the extent to which biofuels targets are achieved and at what cost. However, if the price of oil remains above $100 per barrel, biofuels will continue to be produced even without government interventions.

Wallace E. Tyner (Purdue University;)

2008-08-01

67

Grey relative analysis and future prediction on rural household biofuels consumption in China  

Microsoft Academic Search

By using the method of grey relative analysis, which can account for the time sequence, this paper carries out analyses for the relative relationship among the four major factors affecting the rural household biofuels consumption of each province\\/region in China through period 1991–1999. Based on the analytical results of the relative degrees and relative polarities, forecast models on the future

H. Mu; Y. Kondou; Y. Tonooka; Y. Sato; W. Zhou; Y. Ning; K. Sakamoto

2004-01-01

68

Alternative biofuel production in non-natural hosts.  

PubMed

Global energy and environmental concerns have stimulated increased efforts in synthesizing petroleum-derived products from renewable resources. Biological production of metabolites for fuel is increasingly becoming a feasible, renewable, environmentally sound alternative. However, many of these chemicals are not highly produced in any known native organism. Here we review the current progress of modifying microorganisms with heterogeneous elements for the production of biofuels. This strategy has been extensively employed in a variety of hosts for the development of production of various alcohols, fatty acids, alkenes and alkanes. PMID:22226463

McEwen, Jordan T; Atsumi, Shota

2012-01-04

69

Multiphase Flow Modeling of Biofuel Production Processes  

Microsoft Academic Search

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence

D. Gaston; D. P. Guillen; J. Tester

2011-01-01

70

Comparative cost analysis of algal oil production for biofuels  

Microsoft Academic Search

Economic analysis is an essential evaluation for considering feasibility and viability of large-scale, photoautotrophic algae-based, biofuel production. Thus far, economic analysis has been conducted on a scenario-by-scenario basis which does not allow for cross-comparisons. In 2008, a comparative study was carried out using a cross-section of cost analyses consisting of 12 public studies. The resulting triacylglyceride cost had a spread

Amy Sun; Ryan Davis; Meghan Starbuck; Ami Ben-Amotz; Ron Pate; Philip T. Pienkos

2011-01-01

71

BIOFUEL AND BIOENERGY PRODUCTION FROM SUGAR BEETS  

EPA Science Inventory

A design spreadsheet model for sizing and analyzing the integrated ethanol and biogas production system, a prototype of the ethanol and biogas production system in the laboratory that has been tested and documented with performance data, and a design and operating manual for t...

72

Alternatives to Trichoderma reesei in biofuel production.  

PubMed

Mutant strains of Trichoderma reesei are considered indisputable champions in cellulase production among biomass-degrading fungi. So, it is not surprising that most R&D projects on bioethanol production from lignocellulosics have been based on using T. reesei cellulases. The present review focuses on whether any serious alternatives to T. reesei enzymes in cellulose hydrolysis exist. Although not widely accepted, more and more data have been accumulated that demonstrate that fungi belonging to the genera Penicillium, Acremonium and Chrysosporium might represent such alternatives because they are competitive to T. reesei on some important parameters, such as protein production level, cellulase hydrolytic performance per unit of activity or milligram of protein. PMID:21612834

Gusakov, Alexander V

2011-05-24

73

Catalytic pyrolysis of biomass for biofuels production  

Microsoft Academic Search

Fast pyrolysis bio-oils currently produced in demonstration and semi-commercial plants have potential as a fuel for stationary power production using boilers or turbines but they require significant modification to become an acceptable transportation fuel. Catalytic upgrading of pyrolysis vapors using zeolites is a potentially promising method for removing oxygen from organic compounds and converting them to hydrocarbons. This work evaluated

Richard French; Stefan Czernik

2010-01-01

74

Potential Enhancement of Biofuel Production Through Enzymatic Biomass Degradation Activity and Biodiesel Production by Halophilic Microorganisms  

Microsoft Academic Search

\\u000a There are many economic and negative environmental impacts that need to be solved before biofuels become a viable replacement\\u000a for some of the fossil fuel demand. One environmental problem is the great amount of water required for the production of\\u000a biofuels. The use of halophilic\\/halotolerant algae can greatly reduce the amount of water required for biodiesel production.\\u000a The use of

Matthew B. Begemann; Melanie R. Mormile; Varun G. Paul; Daniel J. Vidt

75

Future Diet Scenarios and Their Effect on Regional and Global Biofuel Potential  

NASA Astrophysics Data System (ADS)

Food production has been one of the most significant ways in which humans have changed the surface of the Earth. It is projected that further intensification of agriculture will be necessary to meet a growing population and the increased demand for calories from animal products. This would require substantially more land and resources devoted to animal production. However, globally, the proportion of per capita caloric intake from animal to total caloric intake has remained relatively constant for the last 50 years at slightly above 15%. Nevertheless, there are large discrepancies across regions and through time. For example, northern European countries derive over 30% of calories from animal products, while India is under 10%; between 1961 and 2007, China's per capita consumption of animal calories has increased by over a factor of ten, while in the US, animal calorie consumption has remained constant. In general, per capita consumption of animal products is lower in developing countries than in developed countries, and it is commonly assumed that future animal product consumption will increase as developing countries become wealthier. On the other hand, wealthier countries are remaining constant or even decreasing their proportional consumption of animal calories, and this could be a different way that future diets may evolve. We create different future scenarios for calorie demand from vegetal products, beef, sheep and goat, pork, poultry, and dairy based on historical national trends and estimated income elasticities for these various food products. The extreme scenarios are one in which the world evolves to a highly vegetal calorie diet and, on the other extreme, one in which the world evolves to diets with high meat consumption. Intermediate scenarios include projections of current trends and one in which the world moves to a healthy balanced diet given current recommendations. Using DTU-GCAM, and global integrated assessment model with an included land use module, we explore the effect of these different global and regional diet scenarios on land use and biofuel potential up to the year 2095. The model economically optimizes food production for 14 different regions of the world based on their current and historical land use and land cover, using free market and free trade assumptions.

Gregg, J.; hvid, A.

2012-04-01

76

PETRO: Higher Productivity Crops for Biofuels  

SciTech Connect

PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

None

2012-01-01

77

A model for improving microbial biofuel production using a synthetic feedback loop.  

PubMed

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates. PMID:20805930

Dunlop, Mary J; Keasling, Jay D; Mukhopadhyay, Aindrila

2010-02-25

78

A model for improving microbial biofuel production using a synthetic feedback loop  

SciTech Connect

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

2011-07-14

79

Biofuels Bonanza?: Exploring community perceptions of the promises and perils of biofuels production  

Microsoft Academic Search

While the expansion of the biofuels industry has received scholarly attention with respect to environmental and food security concerns, little research has explored the impacts of biofuels industry on local communities where ethanol plants are located. Drawing on sociology of networks and flows theory to situate expansion of the industry globally, this paper uses a community case study approach to

Theresa Selfa; Laszlo Kulcsar; Carmen Bain; Richard Goe; Gerad Middendorf

2011-01-01

80

Integrated biorefineries with engineered microbes and high-value co-products for profitable biofuels production  

Microsoft Academic Search

Corn-based fuel ethanol production processes provide several advantages which could be synergistically applied to overcome\\u000a limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients,\\u000a water, and heat. The fact that several demonstration-scale biomass ethanol processes are using corn as a platform supports\\u000a this viewpoint. This report summarizes the advantages of first-generation corn-based biofuel processes

W. R. Gibbons; S. R. Hughes

2009-01-01

81

Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production  

Microsoft Academic Search

\\u000a Corn-based fuel ethanol production processes provide several ­advantages which could be synergistically applied to overcome\\u000a limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients,\\u000a water, and heat. The fact that several demonstration-scale biomass ethanol processes are using corn as a platform supports\\u000a this viewpoint. This report summarizes the advantages of first-generation corn-based biofuel processes

William Gibbons; Stephen Hughes

82

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

SciTech Connect

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08

83

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

SciTech Connect

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01

84

Production of advanced biofuels in engineered E. coli.  

PubMed

Commercial fermentation processes have long taken advantage of the synthetic power of living systems to rapidly and efficiently transform simple carbon sources into complex molecules. In this regard, the ability of yeasts to produce ethanol from glucose at exceptionally high yields has served as a key feature in its use as a fuel, but is also limited by the poor molecular properties of ethanol as a fuel such as high water miscibility and low energy density. Advances in metabolic engineering and synthetic biology allow us to begin constructing new high-flux pathways for production of next generation biofuels that are key to building a sustainable pipeline for liquid transportation fuels. PMID:23659832

Wen, Miao; Bond-Watts, Brooks B; Chang, Michelle C Y

2013-05-06

85

A new diet for yeast to improve biofuel production  

PubMed Central

In 2010, our group announced the discovery of two cellodextrin transporter families from the cellulolytic fungus Neurospora crassa. Furthermore, we demonstrated the utility of these transporters in the production of lignocellulosic biofuels. This discovery was made possible by a decision to systematically study cell wall degradation by N. crassa. The identified transport pathway has opened up a new way of thinking about microbial fermentation of hexoses as well as pentoses derived from plant cell walls. Integrating this pathway with the endogenous metabolism and signaling networks of S. cerevisiae is now a major goal of our group.

Galazka, Jonathan M

2011-01-01

86

The role of biochemical engineering in the production of biofuels from microalgae.  

PubMed

Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. PMID:20580548

Costa, Jorge Alberto Vieira; de Morais, Michele Greque

2010-06-30

87

Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts  

Microsoft Academic Search

The integration of microalgae-based biofuel and bioproducts production with wastewater treatment has major advantages for both industries. However, major challenges to the implementation of an integrated system include the large-scale production of algae and the harvesting of microalgae in a way that allows for downstream processing to produce biofuels and other bioproducts of value. Although the majority of algal production

Logan Christenson; Ronald Sims

2011-01-01

88

Production of Biofuel by Macroalgae with Preservation of Marine Resources and Environment  

Microsoft Academic Search

\\u000a Biofuel production and environment are issues of concern in the world. First, the author describes the real needs of biofuel,\\u000a and what kind of materials can serve this purpose. This is followed by the argument that under the present global circumstances,\\u000a macroalgae are the most effective raw material for biofuel production. Seaweeds are the most important in the marine ecosystem

Masahiro Notoya

89

Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production  

NASA Astrophysics Data System (ADS)

This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits. I describe how biofuel governance focuses on scientific practices that legitimize biofuel production for their capacity to marginally reduce greenhouse gas emissions, despite biofuels' agroecological consequences outside this regulatory purview. These consequences include pressure on conservation and agrienvironmental practice, which could be better supported through existing, highly effective, place-based, democratic institutions dedicated to stewarding the resources upon which agricultural livelihoods depend.

Gillon, Sean Thomas

90

Biofuel Production Initiative at Claflin University Final Report  

SciTech Connect

For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFD’s) and piping and instrumentation diagrams (P&ID’s). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

Chowdhury, Kamal

2011-07-20

91

Biofuel policies and the environment: the effects of biofuel feedstock production on climate, water quality and biodiversity  

Microsoft Academic Search

In this paper we examine the multiple environmental effects of policies promoting biofuel production from agricultural crops. We develop theoretical and empirical frameworks and provide an integrated economic and ecological modelling approach: an economic model of farmers’ decision making is combined with a biophysical model predicting the effects of farming practices on crop yields and multiple environmental effects. The analysed

Jussi E. Lankoski; Markku Ollikainen

2009-01-01

92

Effect of shifting crop production for biofuel demand on soil and water quality  

Technology Transfer Automated Retrieval System (TEKTRAN)

The effect of shifting cropping systems to dominantly corn for biofuels, in particular ethanol production, could have serious implications on soil and water quality. Proper land management for biofuels production in agriculture is critical to achieve because of maintaining the sustainability of lan...

93

Biofuels production in developing countries: assessing tradeoffs in welfare and food security  

Microsoft Academic Search

In light of the recent rise in global food prices, much of the literature on crop-based biofuel production focuses on the potential impacts on food security. Studies have identified linkages between the usage of feedstocks in biofuel production and international food price increases. In addition, these studies indicate that food prices are expected to continue to rise over the next

Mandy Ewing; Siwa Msangi

2009-01-01

94

Resource demand implications for US algae biofuels production scale-up  

Microsoft Academic Search

Photosynthetic microalgae with the potential for high biomass and oil productivities have long been viewed as a promising class of feedstock for biofuels to displace petroleum-based transportation fuels. Algae offer the additional benefits of potentially being produced without using high-value arable land and fresh water, thereby reducing the competition for those resources between expanding biofuels production and conventional agriculture. Algae

Ron Pate; Geoff Klise; Ben Wu

2011-01-01

95

A Hydrologic Model to Quantify Large Scale Biofuel Production Impact on Upper Mississippi River Basin Water Quality  

NASA Astrophysics Data System (ADS)

The projected increase in domestic ethanol production in the U.S. is expected to reduce greenhouse gas emissions, promote rural community development, and strengthen the nation’s energy security. However, its potential effect on water resources at both regional and local scales is still uncertain. Especially, changes in a large scale land use and management to produce high yield energy crops raised serious concern on its unintended potential impact on water quality and availability. This work presents a watershed modeling effort to establish a baseline condition for the Upper Mississippi River Basin, based on which impacts of conventional and cellulosic biofuel feedstock production on the region water resources will be evaluated. The watershed model was adequately calibrated and validated using eighteen years of observed water quality and stream discharge data. The model’s ability to estimate spatially and temporally varying crop growth and biomass production, which is essential to develop future biofuel productions scenarios, was evaluated based on the observed corn and soybean yields. The result validates the model ability to effectively simulate biomass productions from different bioenergy feedstock. A sensitivity analysis was further conducted to evaluate the calibrated model response to change in soil, crop properties, and fertilizer application rates associated with the expected increase in biofuel production. The results demonstrate non-linear, spatially-varying relationship among nitrate application rate, crop yield and nutrient loads, as well as soil and crop properties that are affected by increases in biofuel feedstock.

Demissie, Y. K.; Yan, E.; Wu, M.

2010-12-01

96

Your World Magazine - Biofuels: Energy for Your Future  

SciTech Connect

Policymakers have been talking for years about measures to cut back how much petroleum we use. Interest has spiked recently, with government and private companies coming together to push forward scientific research and development of alternative fuel products such as ethanol. Biotechnology is helping make alternative energy sources easier - and more affordable - to produce. Most of the world's energy needs are met with oil and natural gas, which come from fossil fuel. No one knows how long the supply can last. Biobased fuels come from natural sources that can be replaced quickly. Along with corn, there are many other grains, grasses, trees, and even agricultural wastes being investigated for their usefulness and environmental friendliness as alternative fuel sources. Careers in this emerging new field emphasize chemistry and engineering. Look into it for a potential career - it's definitely a job full of energy.

Biotechnology Institute

2006-10-01

97

Biofuels and ecoagriculture: can bioenergy production enhance landscape-scale ecosystem conservation and rural livelihoods?  

Microsoft Academic Search

Global development of the biofuel sector is proceeding rapidly, driven by national policy mandates, government subsidies, and profit opportunities for farmers, agribusiness and energy companies. To date, most investment in—and dialogue on—biofuels has focused on large-scale production of liquid transport fuels. A smaller set of efforts has explored the potential of biofuels to promote rural development by reducing energy poverty

Jeffrey C. Milder; Jeffrey A. McNeely; Seth A. Shames; Sara J. Scherr

2008-01-01

98

Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.  

PubMed

The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. PMID:20143230

Clomburg, James M; Gonzalez, Ramon

2010-02-09

99

7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel...General Provisions § 4288.137 Succession and loss of control of advanced biofuel...facilities and production. (a) Contract succession. An entity who becomes...

2013-01-01

100

Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand  

Microsoft Academic Search

This study evaluates the potential impact of increased biofuel production on the hydrology of a small watershed, Khlong Phlo, in the eastern part of Thailand. The water footprint of biofuel energy was estimated for three crops in order to identify the most water-efficient crop. The Soil and Water Assessment Tool (SWAT) model was used to evaluate the impact of land

M. S. Babel; B. Shrestha; S. R. Perret

2011-01-01

101

The impact of first-generation biofuels on the depletion of the global phosphorus reserve.  

PubMed

The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future. PMID:22351599

Hein, Lars; Leemans, Rik

2012-02-16

102

Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol  

Microsoft Academic Search

Biofuels provide a potential route to avoiding the global political instability and environmental issues that arise from reliance on petroleum. Currently, most biofuel is in the form of ethanol generated from starch or sugar, but this can meet only a limited fraction of global fuel requirements. Conversion of cellulosic biomass, which is both abundant and renewable, is a promising alternative.

Mariam B. Sticklen

2008-01-01

103

Production of bermudagrass for bio-fuels: effect of two genotypes on pyrolysis product yield  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bermudagrass is the perennial grass used as forage for livestock and harvested as hay on 10 to 15 million acres in Southern United States. It has potential as an energy crop for the production of biofuels through the lignocellulosic conversion program. Coastal was released in 1943 and was the pri...

104

Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops. A review  

Microsoft Academic Search

Transportation biofuel production in the United States is currently dominated by ethanol from the grain of maize and, to a\\u000a much lesser extent, biodiesel from soybeans. Although using these biofuels avoids many of the environmentally detrimental\\u000a aspects of petroleum-based fossil fuels, biofuel production has its own environmental costs, largely related to fossil fuel\\u000a use in converting crops to biofuels and

Jason Hill

2007-01-01

105

"Trojan Horse" strategy for deconstruction of biomass for biofuels production.  

SciTech Connect

Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James (USDA, Albany, CA); Whalen, Maureen (USDA, Albany, CA); Thilmony, Roger (USDA, Albany, CA); Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

2008-08-01

106

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.  

PubMed

The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels. PMID:18996194

Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

2008-11-10

107

Assessing regional hydrology and water quality implications of large-scale biofuel feedstock production in the Upper Mississippi River Basin.  

PubMed

A recent U.S. Department of Energy study estimated that more than one billion tons of biofuel feedstock could be produced by 2030 in the United States from increased corn yield, and changes in agricultural and forest residue management and land uses. To understand the implications of such increased production on water resources and stream quality at regional and local scales, we have applied a watershed model for the Upper Mississippi River Basin, where most of the current and future crop/residue-based biofuel production is expected. The model simulates changes in water quality (soil erosion, nitrogen and phosphorus loadings in streams) and resources (soil-water content, evapotranspiration, and runoff) under projected biofuel production versus the 2006 baseline year and a business-as-usual scenario. The basin average results suggest that the projected feedstock production could change the rate of evapotranspiration in the UMRB by approximately +2%, soil-water content by about -2%, and discharge to streams by -5% from the baseline scenario. However, unlike the impacts on regional water availability, the projected feedstock production has a mixed effect on water quality, resulting in 12% and 45% increases in annual suspended sediment and total phosphorus loadings, respectively, but a 3% decrease in total nitrogen loading. These differences in water quantity and quality are statistically significant (p < 0.05). The basin responses are further analyzed at monthly time steps and finer spatial scales to evaluate underlying physical processes, which would be essential for future optimization of environmentally sustainable biofuel productions. PMID:22827327

Demissie, Yonas; Yan, Eugene; Wu, May

2012-08-09

108

Second generation biofuels: Economics and policies  

Microsoft Academic Search

This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood\\/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of

Miguel A. Carriquiry; Xiaodong Du; Govinda R. Timilsina

2011-01-01

109

Production of Algal-Based Biofuel Using Non-Fresh Water Sources.  

National Technical Information Service (NTIS)

The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of n...

A. T. C. Sun M. D. Reno

2007-01-01

110

USING SYSTEMS MODELING TO CONSIDER BYPRODUCT GENERATION FROM BIOFUEL PRODUCTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

The bioethanol industry has been experiencing rapid growth over the last several years and is expected to continue to increase production for the foreseeable future. A vital component to the success of this industry is the sales and marketing of processing residues, which are increasingly being sol...

111

Reclaimed Water and Secondary Wastewater as Alternative Growing Media for Green Algae for Biofuel Production  

Microsoft Academic Search

The microalga Botryococcus braunii is one of many photosynthtic algae species being investigated as renewable feedstocks for production of biofuels. One key advantage of algae as biofuel feedstock, in view of the growing scarcity of fresh water worldwide, is the potential of algae to grow in low-quality water, including in the nutrient-containing effluents from wastewater-treatment plants. Indeed, algae could also

Sara S. Kuwahara; Joel L. Cuello

112

Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology  

ERIC Educational Resources Information Center

|Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

Manyele, S. V.

2007-01-01

113

Unraveling water quality and quantity effects of biofuels production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Developing a sustainable biofuels industry is crucial for several reasons, but what impact will it have on soil water quantity and quality? This popular press article for ISU alumni, teachers, middle/high school students and others is written to help them understand the complexity of this seemingly ...

114

Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.  

PubMed

The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications. PMID:21889585

Jang, Yu-Sin; Park, Jong Myoung; Choi, Sol; Choi, Yong Jun; Seung, Do Young; Cho, Jung Hee; Lee, Sang Yup

2011-08-25

115

Cost structures and life cycle impacts of algal biomass and biofuel production  

Microsoft Academic Search

Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively

Katrina Lea Christiansen

2011-01-01

116

Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery  

Microsoft Academic Search

In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid

Thiam Leng Chew; Subhash Bhatia

2008-01-01

117

Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor  

SciTech Connect

Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

None

2010-01-01

118

Biofuel Production from Catalytic Cracking of Palm Oil  

Microsoft Academic Search

Palm oil, a renewable source, has been cracked at atmospheric pressure, a reaction temperature of 450°C, and a weight hourly space velocity of 2.5 h to produce biofuel in a fixed-bed microreactor. The reaction was carried out over microporous HZSM-5 zeolite, mesoporous MCM-41, and composite micromesoporous zeolite as catalysts in order to study the influence of catalyst pore size and

OOI YEAN SANG

2003-01-01

119

Seasonal productivity of a periphytic algal community for biofuel feedstock generation and nutrient treatment  

Microsoft Academic Search

Algal biomass is a promising feedstock for biofuel production. With a high lipid content and high rate of production, algae can produce more oil on less land than traditional bioenergy crops. Algal communities can also be used to remove nutrients from impacted waters. The purpose of this study was to demonstrate the ability of an algal turf scrubber (ATS)™ to

Heather N. Sandefur; Marty D. Matlock; Thomas A. Costello

2011-01-01

120

The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils  

Microsoft Academic Search

Biofuel development has gained the attention of researchers in recent years owing to the rate of depletion of fossil fuels. Several processes are currently employed in the conventional production of different biofuels: the production of biodiesel is catalytically performed either through the transesterification of triglycerides using alcohol or the deoxygenative ecofining of triglycerides in a non-alcohol environment; bio-oil is produced

Yee Kang Ong; Subhash Bhatia

2010-01-01

121

Biofuel production and implications for land use, food production and environment in India  

Microsoft Academic Search

There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel

N. H. Ravindranath; C. Sita Lakshmi; Ritumbra Manuvie; P. Balachandra

2011-01-01

122

A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels  

PubMed Central

Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.

Park, Joshua I.; Steen, Eric J.; Burd, Helcio; Evans, Sophia S.; Redding-Johnson, Alyssa M.; Batth, Tanveer; Benke, Peter I.; D'haeseleer, Patrik; Sun, Ning; Sale, Kenneth L.; Keasling, Jay D.; Lee, Taek Soon; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Singer, Steven W.; Simmons, Blake A.; Gladden, John M.

2012-01-01

123

Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.  

PubMed

Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. PMID:24015819

Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

2013-09-05

124

Territorial level for biofuel production—Case study of an Italian region  

Microsoft Academic Search

An analysis of the biofuel production chain suggests that adapting and optimizing the whole system to an appropriate scale based on the availability of agricultural and\\/or agro-industrial biomass feedstock is needed. This study of the potential use of these biomass materials is carried out on a regional scale and, in particular, in Apulia, a region in south Italy with a

A. Paiano; G. Camaggio; G. Lagioia

2011-01-01

125

INCREASED BIOFUEL PRODUCTION IN THE COMING DECADE: TO WHAT EXTENT WILL IT AFFECT GLOBAL FRESHWATER RESOURCES?y  

Microsoft Academic Search

Irrigated agriculture accounts for 70% of global water withdrawals and therefore contributes substantially to global water scarcity. This article focuses on the impact of the increasing demand for biofuel on global water resources in the coming decade. Based on biofuel production projections for 2008 and 2017, it was estimated that currently around 1% of all water withdrawn for irrigation is

JIPPE HOOGEVEEN; JEAN-MARC FAURES; NICK VAN DE GIESSEN

126

Algal biofuels.  

PubMed

The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented. PMID:23605290

Razeghifard, Reza

2013-04-21

127

Biofuel production from crude palm oil with supercritical alcohols: comparative LCA studies.  

PubMed

A recent life cycle assessment (LCA) reported that biodiesel production in supercritical alcohols (SCA) produces a higher environmental load than the homogeneous catalytic process because an enormous amount of energy is required to recover excess alcohol. However, the excess alcohol could be dramatically reduced by increasing the operating temperature to 400°C; although the product would have to be considered as an alternative biofuel instead of biodiesel. A comparative LCA of the biodiesel production in two SCA at 300°C (C-SCA) and novel biofuel production in the same two SCA at 400°C (N-SCA) is presented. It was clear that the N-SCA process produces a dramatically reduced environmental load over that of the C-SCA process due to a lower amount of excess alcohol being used. The N-SCA process could be improved in terms of its environmental impact by changing from fossil fuel to biomass-based fuels for the steam generation. PMID:22776259

Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Piumsomboon, Pornpote; Ngamprasertsith, Somkiat

2012-06-16

128

Identification and microbial production of a terpene-based advanced biofuel  

PubMed Central

Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l?1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l?1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels.

Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D.; Lee, Taek Soon

2011-01-01

129

Production of Algal-based Biofuel from Non-fresh Water Sources  

Microsoft Academic Search

A system dynamics model is developed to assess the availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual framework is based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in

A. C. Sun; M. D. Reno

2008-01-01

130

Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production.  

PubMed

As a result of algae's promise as a renewable energy feedstock, numerous studies have used Life Cycle Assessment (LCA) to quantify the environmental performance of algal biofuels, yet there is no consensus of results among them. Our work, motivated by the lack of comprehensive uncertainty analysis in previous studies, uses a Monte Carlo approach to estimate ranges of expected values of LCA metrics by incorporating parameter variability with empirically specified distribution functions. Results show that large uncertainties exist at virtually all steps of the biofuel production process. Although our findings agree with a number of earlier studies on matters such as the need for wet lipid extraction, nutrients recovered from waste streams, and high energy coproducts, the ranges of reported LCA metrics show that uncertainty analysis is crucial for developing technologies, such as algal biofuels. In addition, the ranges of energy return on (energy) invested (EROI) values resulting from our analysis help explain the high variability in EROI values from earlier studies. Reporting results from LCA models as ranges, and not single values, will more reliably inform industry and policy makers on expected energetic and environmental performance of biofuels produced from microalgae. PMID:23237457

Sills, Deborah L; Paramita, Vidia; Franke, Michael J; Johnson, Michael C; Akabas, Tal M; Greene, Charles H; Tester, Jefferson W

2012-12-31

131

Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts.  

PubMed

The integration of microalgae-based biofuel and bioproducts production with wastewater treatment has major advantages for both industries. However, major challenges to the implementation of an integrated system include the large-scale production of algae and the harvesting of microalgae in a way that allows for downstream processing to produce biofuels and other bioproducts of value. Although the majority of algal production systems use suspended cultures in either open ponds or closed reactors, the use of attached cultures may offer several advantages. With regard to harvesting methods, better understanding and control of autoflocculation and bioflocculation could improve performance and reduce chemical addition requirements for conventional mechanical methods that include centrifugation, tangential filtration, gravity sedimentation, and dissolved air flotation. There are many approaches currently used by companies and industries using clean water at laboratory, bench, and pilot scale; however, large-scale systems for controlled algae production and/or harvesting for wastewater treatment and subsequent processing for bioproducts are lacking. Further investigation and development of large-scale production and harvesting methods for biofuels and bioproducts are necessary, particularly with less studied but promising approaches such as those involving attached algal biofilm cultures. PMID:21664266

Christenson, Logan; Sims, Ronald

2011-06-02

132

Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.  

SciTech Connect

Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

2008-07-01

133

High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production.  

PubMed

To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d(-1) at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL(-1) of initial glucose and 4gL(-1) of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL(-1) to 37.6gL(-1) in the first 72h cultivation, with the DCW productivity of 12.2gL(-1)d(-1). The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL(-1)d(-1). The results showed C. sorokiniana could be a promising strain for biofuel production. PMID:23340103

Li, Tingting; Zheng, Yubin; Yu, Liang; Chen, Shulin

2012-12-14

134

Forecasting energy security impacts of biofuels using regional climate models  

NASA Astrophysics Data System (ADS)

Production of biofuels in the U.S. is growing rapidly, with corn providing the dominant feedstock for current production and corn stover potentially providing a critical feedstock source for future cellulosic ethanol production. While production of domestic biofuels is thought to improve energy security, future changes in climate may impact crop yield variability and erode the energy security benefits of biofuels. Here we examine future yield variability for corn and soy using RegCM regional climate data from NARCAPP, historical agronomic data, and statistical models of yield variability. Our simulations of historical yield anomalies using monthly temperature and precipitation data from RegCM show robust relationships to observed yield anomalies. Simulations of future yield anomalies show increased yield variability relative to historical yield variability in the region of high corn production. Since variability in energy supply is a critical concern for energy security we suggest that the climate-induced yield variability on critical biofuels feedstocks be explored more widely.

Yang, X.; Campbell, E.; Snyder, M. A.; Sloan, L.; Kueppers, L. M.

2010-12-01

135

From fields to fuels: recent advances in the microbial production of biofuels.  

PubMed

Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers. PMID:23656227

Kung, Yan; Runguphan, Weerawat; Keasling, Jay D

2012-11-05

136

The challenge of enzyme cost in the production of lignocellulosic biofuels.  

PubMed

With the aim of understanding the contribution of enzymes to the cost of lignocellulosic biofuels, we constructed a techno-economic model for the production of fungal cellulases. We found that the cost of producing enzymes was much higher than that commonly assumed in the literature. For example, the cost contribution of enzymes to ethanol produced by the conversion of corn stover was found to be $0.68/gal if the sugars in the biomass could be converted at maximum theoretical yields, and $1.47/gal if the yields were based on saccharification and fermentation yields that have been previously reported in the scientific literature. We performed a sensitivity analysis to study the effect of feedstock prices and fermentation times on the cost contribution of enzymes to ethanol price. We conclude that a significant effort is still required to lower the contribution of enzymes to biofuel production costs. PMID:22095526

Klein-Marcuschamer, Daniel; Oleskowicz-Popiel, Piotr; Simmons, Blake A; Blanch, Harvey W

2011-11-21

137

Biofuels Production by Cell-Free Synthetic Enzymatic Technology  

Microsoft Academic Search

Biomass is the only renewable resource that can provide a sufficient fraction of both future transportation fuels and renewable materials at the same time. Synthetic biology is an emerging interdisciplinary area that combines science and engineering in order to design and build novel biological functions and systems. Different from in vivo synthetic biology, cell-free in vitro synthetic biology is a

Y. H. Percival Zhang; Xinhao Ye; Yiran Wang

2008-01-01

138

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing  

Microsoft Academic Search

Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary\\u000a walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose\\u000a and lignin surrounds the cellulose component of the plant’s cell wall in order to protect the cell from enzymatic attacks.\\u000a Such resistance, along

Jae-Heung Ko; Hyun-Tae Kim; Kyung-Hwan Han

2011-01-01

139

Biofuel production in Escherichia coli : the role of metabolic engineering and synthetic biology  

Microsoft Academic Search

The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels\\u000a from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can\\u000a be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the

James M. Clomburg; Ramon Gonzalez

2010-01-01

140

Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production  

Microsoft Academic Search

The impact of ethanol and temperature on the dynamic behaviour of Saccharomyces cerevisiae in ethanol biofuel production was studied using an isothermal fed-batch process at five different temperatures. Fermentation parameters and kinetics were quantified. The best performances were found at 30 and 33°C around 120 g l -1 ethanol produced in 30 h with a slight benefit for growth at 30°C and for

A. S. Aldiguier; S. Alfenore; X. Cameleyre; G. Goma; J. L. Uribelarrea; S. E. Guillouet; C. Molina-Jouve

2004-01-01

141

Participatory emergy synthesis of integrated food and biofuel production: a case study from Brazil  

Microsoft Academic Search

Large-scale production of biofuels is increasingly touted in national policies and international trade agreements. This global\\u000a trend is particularly clear in Brazil. However, the sugarcane monocultures promoted in the country depend on a range of fossil\\u000a fuel derivates, industrial inputs, chemical fertilizers, agrochemicals, machinery, labor exploitation and various other non-renewable\\u000a resources, making it a questionable alternative to substitute fossil energy

Daniel A. BergquistOtavio; Otávio Cavalett; Torbjörn Rydberg

2012-01-01

142

Microalgae for the production of bulk chemicals and biofuels  

Microsoft Academic Search

The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the only end product from microalgae. In order to develop a more sustainable and economically

Rene H Wijffels; Maria J Barbosa; Michel H M Eppink

2010-01-01

143

Fueling the future with fungal genomics  

Microsoft Academic Search

Fungi play important roles across the range of current and future biofuel production processes. From crop\\/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols, or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale.

Igor V. Grigoriev; Daniel Cullen; Stephen B. Goodwin; David Hibbett; Thomas W. Jeffries; Christian P. Kubicek; Cheryl Kuske; Jon K. Magnuson; Francis Martin; Joseph W. Spatafora; Adrian Tsang; Scott E. Baker

2011-01-01

144

Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products.  

PubMed

Maximizing algae production in a wastewater treatment process can aid in the reduction of soluble nitrogen and phosphorus concentrations in the wastewater. If harvested, the algae-based biomass offers the added benefit as feedstock for the production of biofuels and bioproducts. However, difficulties in harvesting, concentrating, and dewatering the algae-based biomass have limited the development of an economically feasible treatment and production process. When algae-based biomass is grown as a surface attached biofilm as opposed to a suspended culture, the biomass is naturally concentrated and more easily harvested. This can lead to less expensive removal of the biomass from wastewater, and less expensive downstream processing in the production of biofuels and bioproducts. In this study, a novel rotating algal biofilm reactor (RABR) was designed, built, and tested at bench (8 L), medium (535 L), and pilot (8,000 L) scales. The RABR was designed to operate in the photoautotrophic conditions of open tertiary wastewater treatment, producing mixed culture biofilms made up of algae and bacteria. Growth substrata were evaluated for attachment and biofilm formation, and an effective substratum was discovered. The RABR achieved effective nutrient reduction, with average removal rates of 2.1 and 14.1 g m(-2) day(-1) for total dissolved phosphorus and total dissolved nitrogen, respectively. Biomass production ranged from 5.5 g m(-2) day(-1) at bench scale to as high as 31 g m(-2) day(-1) at pilot scale. An efficient spool harvesting technique was also developed at bench and medium scales to obtain a concentrated product (12-16% solids) suitable for further processing in the production of biofuels and bioproducts. PMID:22328283

Christenson, Logan B; Sims, Ronald C

2012-02-13

145

Biofuels from microbes.  

PubMed

Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. PMID:17891391

Antoni, Dominik; Zverlov, Vladimir V; Schwarz, Wolfgang H

2007-09-22

146

Microalgae-based biorefinery--from biofuels to natural products.  

PubMed

The potential for biodiesel production from microalgal lipids and for CO2 mitigation due to photoautotrophic growth of microalgae have recently been recognized. Microalgae biomass also has other valuable components, including carbohydrates, long chain fatty acids, pigments and proteins. The microalgae-based carbohydrates consist mainly of cellulose and starch without lignin; thus they can be ready carbon source for the fermentation industry. Some microalgae can produce long chain fatty acids (such as DHA and EPA) as valuable health food supplements. In addition, microalgal pigments and proteins have considerable potential for many medical applications. This review article presents comprehensive information on the current state of these commercial applications, as well as the utilization and characteristics of the microalgal components, in addition to the key factors and challenges that should be addressed during the production of these materials, and thus provides a useful report that can aid the development of an efficient microalgae-based biorefinery process. PMID:23206809

Yen, Hong-Wei; Hu, I-Chen; Chen, Chun-Yen; Ho, Shih-Hsin; Lee, Duu-Jong; Chang, Jo-Shu

2012-11-01

147

Techno-Economic Analysis of Biofuels Production Based on Gasification  

SciTech Connect

This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

2010-11-01

148

Bio-Fuel Production Assisted with High Temperature Steam Electrolysis  

SciTech Connect

Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

Grant Hawkes; James O'Brien; Michael McKellar

2012-06-01

149

Primary productivity and the prospects for biofuels in the United Kingdom  

NASA Astrophysics Data System (ADS)

Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha-1yr-1). Annual above ground production is predicted to be 165 Mt (6.9 t ha-1yr-1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.

Lawson, G. J.; Callaghan, T. V.

1983-09-01

150

Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels  

SciTech Connect

Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

2013-01-01

151

Identification of Monoraphidium contortum as a promising species for liquid biofuel production.  

PubMed

In this work, 30 microalgae strains from 17 genera were investigated in regard to biomass productivity in photoautotrophic growth conditions, lipid amount, lipid quality and biomass degradability. Six strains could be identified with robust phototrophic growth properties and high biomass productivities equal or above 300 mg l(-1) day(-1). Anaerobic fermentation of the algal biomass was most efficient for the marine members of the genera Dunaliella and Navicula, while biogas production with the freshwater strains generally resulted in lower methane yields. Monoraphidium contortum was identified as promising candidate for liquid biofuel production, characterized by high biomass productivity during maximum growth (maximum increase of 896 mg dry biomass weight (DW) l(-1) day(-1)) and a promising lipid profile. Neutral lipid production was strongly induced in M. contortum by nitrogen deficient conditions and accumulated to up to 20.4±2.2% of DW. PMID:23453981

Bogen, Christian; Klassen, Viktor; Wichmann, Julian; La Russa, Marco; Doebbe, Anja; Grundmann, Michael; Uronen, Pauliina; Kruse, Olaf; Mussgnug, Jan H

2013-02-09

152

Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin  

USGS Publications Warehouse

Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

Wu, Y.; Liu, S.

2012-01-01

153

Understanding and engineering enzymes for enhanced biofuel production.  

SciTech Connect

Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

2009-01-01

154

Impacts of Urbanization and Biofuels Production on The Price of Land in the Corn Belt: A Farm-Level Analysis  

Microsoft Academic Search

This study uses hedonic techniques to estimate the impact of urban influence, increased bio-fuels production, and environmental factors on land prices in the Corn Belt. We hypothesize that urban influence and ethanol production increase land prices on Corn Belt farms. Although not all states in the Corn Belt are entirely subject to urban influence and ethanol production impacts, some states

Richard Nehring; Kenneth Erickson; Vince Breneman; Alexandre Vialou; David Nulph

155

Electricity Production in the Future.  

National Technical Information Service (NTIS)

The report describes five technologies for electric power generation, that may be of importance for power generation in the future: solar cells, fuel cells, thermoelectric- and thermionic devices, and MHD. (ERA citation 13:050983)

J. Braun O. Lindstroem L. Lundgren D. Sigurd L. Stolt

1988-01-01

156

Trace Gas Emissions From the Production and Use of Biofuels in the African Tropics  

NASA Astrophysics Data System (ADS)

Biomass burning is an important source of many atmospheric trace gases and particles that play a significant role in regional-global, tropospheric and stratospheric chemical processes, and in the global climate. About 80% of biomass burning is thought to occur in the tropics in association with traditional land management practices and domestic biofuel use. More than 220 Tg (1 Tg = 1 x 1012 g) of fuel-wood and 11 Tg of charcoal are consumed annually for domestic heating and cooking in tropical Africa alone. Approximately 90% of the fuel-wood is consumed in open fires in rural areas. Previously, the emissions for fuel-wood fires and charcoal use and production in the tropics were known for only a limited number of chemical species. During SAFARI-2000 we conducted field experiments in remote Zambian villages and observed most of the major trace gases emitted from the production and use of biofuels using open-path Fourier transform infrared (OP-FTIR) spectroscopy, which provides an artifact-free overview of the trace gases present above several ppbv. Our OP-FTIR was deployed for several spot measurements over the course of an earthen kiln charcoal-making process and of several open wood and charcoal fires, all of which were built and tended by local inhabitants. We quantified the emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx), ammonia (NH3), non-methane hydrocarbons (NMHC), and oxygenated volatile organic compounds (OVOC). Our results also show much higher emission factors for methanol (CH3OH), acetic acid (CH3COOH), and formaldehyde (CH2O) from domestic biofuel production and use than from savanna fires in southern Africa. Thus, these year-round OVOC emissions will play an important role in the photochemistry of the troposphere and in the acidity of aerosols and precipitation especially in tropical regions.

Bertschi, I.; Yokelson, R. J.; Ward, D. E.; Christian, T. J.; Hao, W. M.

2001-12-01

157

[Life cycle assessment on oxygen biofuels].  

PubMed

Life Cycle Assessment (LCA) was used to compare energy consumption and pollutant emissions of two oxygen biofuels, ethanol and methyl ester, which were mixed with gasoline and diesel oil at levels of 10% and 30% of the biofuel. The future of oxygen-containing biofuels was analyzed and forecasted. The results show that the mixture of biofuels and petroleum products can reduce crude oil consumption, but only methyl ester alternative fuel can reduce fossil fuel consumption. Use of methyl ester mixtures would reduce NOx by 50% compared to gasoline or diesel on a life cycle basis; however, NOx would increase using ethanol. Each alternative fuel mixture reduced PM10 emissions from the vehicle and methyl ester decreased VOCs. The SO2 emissions from the fuel production processes, which account for about 80% of SO2 life cycle emissions, must be strictly controlled. PMID:16447424

Yi, Hong-hong; Zhu, Yong-qing; Wang, Jian-xin; Hao, Ji-ming

2005-11-01

158

Versatile microbial surface-display for environmental remediation and biofuels production  

SciTech Connect

Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

2008-02-14

159

Energy return on investment for algal biofuel production coupled with wastewater treatment.  

PubMed

This study presents a second-order energy return on investment analysis to evaluate the mutual benefits of combining an advanced wastewater treatment plant (WWTP) (with biological nutrient removal) with algal biofuel production. With conventional, independently operated systems, algae production requires significant material inputs, which require energy directly and indirectly, and the WWTP requires significant energy inputs for treatment of the waste streams. The second-order energy return on investment values for independent operation of the WWTP and the algal biofuels production facility were determined to be 0.37 and 0.42, respectively. By combining the two, energy inputs can be reduced significantly. Consequently, the integrated system can outperform the isolated system, yielding a second-order energy return on investment of 1.44. Combining these systems transforms two energy sinks to a collective (second-order) energy source. However, these results do not include capital, labor, and other required expenses, suggesting that profitable deployment will be challenging. PMID:23012769

Beal, Colin M; Stillwell, Ashlynn S; King, Carey W; Cohen, Stuart M; Berberoglu, Halil; Bhattarai, Rajendra P; Connelly, Rhykka L; Webber, Michael E; Hebner, Robert E

2012-09-01

160

Fuel from Wastewater - Harnessing a Potential Energy Source in Canada through the Colocation of Algae Biofuel Production to Sources of Effluent, Heat and CO2  

Microsoft Academic Search

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will

G. T. Klise; J. D. Roach; H. D. Passell; B. D. Moreland; S. J. O'Leary; P. T. Pienkos; J. Whalen

2010-01-01

161

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01

162

Biofuel Feedstock Assessment for Selected Countries  

SciTech Connect

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

2008-02-18

163

Biofuels and their By-Products: Global Economic and Environmental Implications  

Microsoft Academic Search

The biofuel industry has been rapidly growing around the world in recent years. Several papers have used general equilibrium models and addressed the economy-wide and environmental consequences of producing biofuels at a large scale. They mainly argue that since biofuels are mostly produced from agricultural sources, their effects are largely felt in agricultural markets with major land use and environmental

Farzad Thaeripour; Thomas W. Hertel; Wallace E. Tyner; Jayson F. Beckman; Dileep K. Birur

2008-01-01

164

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production  

PubMed Central

Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

2011-01-01

165

Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production.  

PubMed

A marine microalga, strain JPCC GA0024 was selected as high amount of neutral lipid producers from marine microalgal culture collection toward biofuel production. The strain was tentatively identified as Scenedesmus rubescens by 18S rDNA analysis. The growth of strain JPCC GA0024 was influenced by artificial seawater concentrations. The optimum growth of 0.79 g/l was obtained at 100% artificial seawater. The lipid accumulation reached 73.0% of dry cell weight at 100% artificial seawater without additional nutrients for 11 days. Gas chromatography/mass spectrometry analysis indicates that lipid fraction mainly contained hydrocarbons including mainly hexadecane (C(16) H(34)) and 1-docosene (C(22) H(44)). Furthermore, calorimetric analysis revealed that the energy content of strain JPCC GA0024 was 6,160 kcal/kg (25.8 MJ/kg) of calorific value, which was equivalent to the coal engery. The strain JPCC GA0024, S. rubescens, will become a promising resource that can grow as a dominant species in the seawater for the production of both liquid and solid biofuels. PMID:19475337

Matsunaga, Tadashi; Matsumoto, Mitsufumi; Maeda, Yoshiaki; Sugiyama, Hiroshi; Sato, Reiko; Tanaka, Tsuyoshi

2009-05-28

166

Optimization of Biofuel and Biochar Production from the Slow Pyrolysis of Biomass  

NASA Astrophysics Data System (ADS)

Slow pyrolysis was performed on biomass samples (i.e., energy cane and air potato) to determine the most energy efficient conditions for producing biofuel and biochar. The potential of air potato as a source of fuel and char was also investigated. Dry biomass samples of 10, 15 and 20 g were heated in a reactor at a final temperatures of 300, 450, or 600 °C, and the minimum amount of time required to complete pyrolysis was recorded. Maximum biochar yield was obtained at 300°C for both energy cane and air potato at all masses, and maximum bio-oil yield was obtained at 450°C for all samples. Pyrolysis required the least amount of time at 450°C. Bio-oil yields for air potato were slightly lower than that of energy cane, while biochar yield was slightly higher. Since air potato showed similar product yields to energy cane, this indicates it has potential to be a good feedstock for biofuel and biochar productions.

Fang, J.; Gao, B.; Nsf Reu in Water Resources

2010-12-01

167

Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate  

Microsoft Academic Search

This article analyses the current state of the debate over competition for land use, by means of an index of the main arguments in favor and against the production of liquid biofuels and the impacts on food production. Based on this index, an analytic framework is constructed to establish the causal relations indicated by the existing studies on this competition.

Régis Rathmann; Alexandre Szklo; Roberto Schaeffer

2010-01-01

168

Fermentation of glycerol and production of valuable chemical and biofuel molecules.  

PubMed

Glycerol has attracted the attention of scientific and industrial communities due to its generation in bulk quantities as a byproduct of biofuel industries. With the rapid growth of these industries in recent years, glycerol is frequently treated as a very low-value byproduct or even a waste product with a disposal cost associated to it. Glycerol is not only abundant and inexpensive but also can generate more reducing equivalents than glucose or xylose. This unique characteristic of glycerol offers a tremendous opportunity for its biological conversion to valuable products at higher yield. This review focuses on research efforts to utilize glycerol as a carbon source for the production of a variety of fuels and chemicals by both native and metabolically engineered microorganisms. PMID:23690047

Mattam, Anu Jose; Clomburg, James M; Gonzalez, Ramon; Yazdani, Syed Shams

2013-05-21

169

Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production.  

PubMed

Hydrocracking of vacuum gas oil (VGO)--vegetable oil mixtures is a prominent process for the production of biofuels. In this work both pre-hydrotreated and non-hydrotreated VGO are assessed whether they are suitable fossil components in a VGO-vegetable oil mixture as feed-stocks to a hydrocracking process. This assessment indicates the necessity of a VGO pre-hydrotreated step prior to hydrocracking the VGO-vegetable oil mixture. Moreover, the comparison of two different mixing ratios suggests that higher vegetable oil content favors hydrocracking product yields and qualities. Three commercial catalysts of different activity are utilized in order to identify a range of products that can be produced via a hydrocracking route. Finally, the effect of temperature on hydrocracking VGO-vegetable oil mixtures is studied in terms of conversion and selectivity to diesel, jet/kerosene and naphtha. PMID:19231171

Bezergianni, Stella; Kalogianni, Aggeliki; Vasalos, Iacovos A

2009-02-23

170

Spatial forecasting of switchgrass productivity under current and future climate change scenarios.  

PubMed

Evaluating the potential of alternative energy crops across large geographic regions, as well as over time, is a necessary component to determining if biofuel production is feasible and sustainable in the face of growing production demands and climatic change. Switchgrass (Panicum virgatum L.), a native perennial herbaceous grass, is a promising candidate for cellulosic feedstock production. In this study, current and future (from 2080 to 2090) productivity is estimated across the central and eastern United States using ALMANAC, a mechanistic model that simulates plant growth over time. The ALMANAC model was parameterized for representative ecotypes of switchgrass. Our results indicate substantial variation in switchgrass productivity both within regions and over time. States along the Gulf Coast, southern Atlantic Coast, and in the East North Central Midwest have the highest current biomass potential. However, these areas also contain critical wetland habitat necessary for the maintenance of biodiversity and agricultural lands necessary for food production. The southern United States is predicted to have the largest decrease in future biomass production. The Great Plains are expected to experience large increases in productivity by 2080-2090 due to climate change. In general, regions where future temperature and precipitation are predicted to increase are also where larger future biomass production is expected. In contrast, regions that show a future decrease in precipitation are associated with smaller future biomass production. Switchgrass appears to be a promising biofuel crop for the central and eastern United States, with local biomass predicted to be high (>10 Mg/ha) for approximately 50% of the area studied for each climate scenario. In order to minimize land conversion and loss of biodiversity, areas that currently have and maintain high productivity under climate change should be targeted for their long-term growth potential. PMID:23495637

Behrman, Kathrine D; Kiniry, James R; Winchell, Michael; Juenger, Thomas E; Keitt, Timothy H

2013-01-01

171

17 CFR 41.41 - Security futures products accounts.  

Code of Federal Regulations, 2013 CFR

... false Security futures products accounts. 41.41 Section 41.41 Commodity...SECURITY FUTURES PRODUCTS Customer Accounts and Margin Requirements § 41.41 Security futures products accounts. (a) Where security futures...

2013-04-01

172

Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale  

NASA Astrophysics Data System (ADS)

Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The regional-scale SWAT model was successfully run and calibrated on the ~ 5 million ha Tombigbee Watershed located in Mississippi and Alabama. Publically available datasets were used as input to the model and for calibration. To improve calibration statistics, five tree age classes (0-4 yr, 4-10 yr, 10-17 yr, 17-24 yr, 24-30 yr) were added to the model to more appropriately represent existing forested systems in the region, which are not included within the standard SWAT set-up. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels, while sustaining water quality and quantity.

Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

2011-12-01

173

The future of patent information products  

Microsoft Academic Search

The article discusses the online patent information products available at present and describes the information products which are about to be produced by the EPO or are planned for the near future. The latter include mixed mode products covering numerical and classified files on mainframe or CD-ROM. The problems of storage of 25 million documents and improvements necessary in workstations

J. Michel

1991-01-01

174

Life cycle tools for future product sustainability  

Microsoft Academic Search

There is a growing awareness of the business value of sustainable practices. Life cycle tools can be used to design and continually improve future products as well as provide bottom line cost savings, increase the recycled content and recyclability of products, and reduce or eliminate the hazardous substance content in products. Data collection and management procedures and tools as well

L. A. Przekop; S. Kerr

2004-01-01

175

Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria.  

PubMed

In view of the increasing demand for bioenergy, in this study, the techno-economic viabilities for three emerging pathways to microalgal biofuel production have been evaluated. The three processes evaluated are the hydrothermal liquefaction (HTL), oil secretion and alkane secretion. These three routes differ in their lipid extraction procedure and the end-products produced. This analysis showed that these three processes showed various advantages: possibility to convert the defatted microalgae into bio-crude via HTL thus increasing the total biodiesel yield; better energetic and environmental performance for oil secretion and an even increased net energy ratio (NER) for alkane secretion. However, great technological breakthroughs are needed before planning any scale-up strategy such as continuous wet biomass processing and heat exchange optimization for the HTL pathway and effective and sustainable excretion for both secretion pathways. PMID:23567683

Delrue, F; Li-Beisson, Y; Setier, P-A; Sahut, C; Roubaud, A; Froment, A-K; Peltier, G

2013-03-04

176

Production of Biofuel from Waste Lignocellulosic Biomass Materials Based on Energy Saving Viewpoint  

NASA Astrophysics Data System (ADS)

To develop biofuel production from waste lignocellulosic biomass materials the rice straw was selected one of renewable material and the degradation condition about pretreatment and enzymatic hydrolysis to obtain effectively fermentable sugars was investigated. Rice straw was pretreated by five kinds of methods and then the components ratio of rice straw was examined. First, the steam explosion was selected based on the degradability and the requirement energy. In addition, the best suitable combination of two cellulases to effective and economical hydrolyze was determined from the degradability of these pretreated rice straws. In the simultaneous saccharification and fermentation of the steam explosion rice straw by combining cellulase cocktail and a novel fermenting fungus, 13.2 g/L ethanol was able to product for 96 h.

Takano, Maki; Hoshino, Kazuhiro

177

Extremophiles in biofuel synthesis  

Microsoft Academic Search

The current global energy situation has demonstrated an urgent need for the development of alternative fuel sources to the continually diminishing fossil fuel reserves. Much research to address this issue focuses on the development of financially viable technologies for the production of biofuels. The current market for biofuels, defined as fuel products obtained from organic substrates, is dominated by bioethanol,

Desire Barnard; Ana Casanueva; Marla Tuffin; Donald Cowan

2010-01-01

178

Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products.  

PubMed

Petroleum-derived liquid fuels and commodities play a part in nearly every aspect of modern daily life. However, dependence on this one natural resource to maintain modern amenities has caused negative environmental and geopolitical ramifications. In an effort to replace petroleum, technologies to synthesize liquid fuels and other commodities from renewable biomass are being developed. Current technologies, however, only use a portion of plant biomass feedstocks for fuel and useful products. "Using the whole feedstock buffalo" or optimally using all portions and biochemicals present in renewable biomass will enhance the economic and environmental feasibility of biofuels and coproducts. To accomplish this optimization, greater understanding of the relationship between liquid fuel and bioproduct properties and plant chemistries is needed. Liquid fuel properties and how they relate to biochemistry and petrochemistry are discussed. Enhanced biofuel yields and high-value commodities from biomass are needed to sustainably replace petroleum-based products. Several metabolic engineering strategies are discussed. We will describe paths of possible fuel and product diversification using dedicated lignocellulosic biomass (e.g., switchgrass). PMID:21856404

Joyce, B L; Stewart, C N

2011-08-12

179

Educare: new product, new future.  

PubMed

On September 2, 1990, something very informative about the evolution of early childhood programs in the minds of people appeared in The New York Times. Perhaps only another historian of trivia would have noticed it, but it was significant. The Sunday crossword puzzle had the following cue for 4 down: "Places for day-care" (spelled, with the purist's uncertainty, with a hyphen). Even such a cautious horizontal-vertical weaver as I am did not have to wait very long before filling in the correct 10 letters: "preschools." Preschools = day-cares; day-cares = preschools. I am told that actors and authors and scientists know that they have it made when their names are required as solutions in a Times crossword puzzle. If so, perhaps we now have tangible proof that those of us have at last been heard who have urged acceptance of the concept that early childhood education (or preschool education) and child care (or day care) are really one and the same essential service operated for different lengths of time. Day care, the illegitimate child of the scientific field that gave birth to the early childhood movement, has turned out to be the only offspring sufficiently well endowed and robust to make it in the modern world. It is the only one possessing the characteristics that will enable it to take the family enterprise into the future. At this juncture, near the close of the century during which programs for young children multiplied to the point where they cannot be ignored as significant factors in family and public life, we are on the threshold of a new era.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1869626

Caldwell, B

1991-06-01

180

Life Cycle Analysis for Biofuel Pellet Production on Reclaimed Mountain Top Coal Mining Sites in Pike County, Kentucky  

Microsoft Academic Search

Mountaintop coal mining and valley filling drastically disturbs soils and removes essentially all soil organic carbon (SOC) from sites. Growing crops for biofuels on these marginal lands could be a practical way to sequester and offset carbon emissions from coal production and consumption. A life cycle model was developed to quantify the initial carbon density of the site and to

Alice Jones; Katie Young; James F. Fox; J. Campbell

2010-01-01

181

Environmental Assessment of Wood-Based Biofuel Production and Consumption Scenarios in Norway  

Microsoft Academic Search

SummaryIn Norway, the boreal forest offers a considerable resource base, and emerging technologies may soon make it commercially viable to convert these resources into low-carbon biofuels. Decision makers are required to make informed decisions about the environmental implications of wood biofuels today that will affect the medium- and long-term development of a wood-based biofuels industry in Norway. We first assess

Ryan M. Bright; Anders Hammer Strřmman; Troy R. Hawkins

2010-01-01

182

Recent advances on the production and utilization trends of bio-fuels: A global perspective  

Microsoft Academic Search

Bio-fuels are important because they replace petroleum fuels. There are many benefits for the environment, economy and consumers in using bio-fuels. Bio-oil can be used as a substitute for fossil fuels to generate heat, power and\\/or chemicals. Upgrading of bio-oil to a transportation fuel is technically feasible, but needs further development. Bio-fuels are made from biomass through thermochemical processes such

M. F. Demirbas; Mustafa Balat

2006-01-01

183

Forest Products -- Industry of the Future  

SciTech Connect

This 8-page brochure describes the partnership between the forest products industry and DOE's Office of Industrial Technologies. It highlights the benefits to industry of working with the Forest Products Industry of the Future Team to reduce energy consumption and lower costs.

NONE

2000-11-20

184

Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process.  

PubMed

Biofuels are fast advancing as a new research area to provide alternative sources of sustainable and clean energy. Recent advances in nanotechnology have sought to improve the efficiency of biofuel production, enhancing energy security. In this study, we have incorporated iron oxide nanoparticles into single-walled carbon nanotubes (SWCNTs) to produce magnetic single-walled carbon nanotubes (mSWCNTs). Our objective is to bridge both nanotechnology and biofuel production by immobilizing the enzyme, Amyloglucosidase (AMG), onto mSWCNTs using physical adsorption and covalent immobilization, with the aim of recycling the immobilized enzyme, toward useful applications in biofuel production processes. We have demonstrated that the enzyme retains a certain percentage of its catalytic efficiency (up to 40%) in starch prototype biomass hydrolysis when used repeatedly (up to ten cycles) after immobilization on mSWCNTs, since the nanotubes can be easily separated from the reaction mixture using a simple magnet. The enzyme loading, activity, and structural changes after immobilization onto mSWCNTs were also studied. In addition, we have demonstrated that the immobilized enzyme retains its activity when stored at 4 °C for at least one month. These results, combined with the unique intrinsic properties of the nanotubes, pave the way for greater efficiency in carbon nanotube-enzyme bioreactors and reduced capital costs in industrial enzyme systems. PMID:23148719

Goh, Wei Jiang; Makam, Venkata S; Hu, Jun; Kang, Lifeng; Zheng, Minrui; Yoong, Sia Lee; Udalagama, Chammika N B; Pastorin, Giorgia

2012-11-28

185

PERSPECTIVES OF BIOFUEL MARKET DEVELOPMENT IN UKRAINE  

Microsoft Academic Search

Advantages and disadvantages of subsidies for production and use of biofuel are considered. The perspectives of development of the biofuel market in Ukraine in the context of the world market for biofuel are analyzed. The following directions of strategic development of biofuel production in Ukraine were studied: a) to comply with the free market principles, b) to facilitate export of

STANISLAV BORYSOV

186

%22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.  

SciTech Connect

Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.

Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

2011-02-01

187

Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?  

Microsoft Academic Search

Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being

McGill; Ralph

2008-01-01

188

Biofuel on contaminated land  

Microsoft Academic Search

Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation \\/ removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and

Pascal Suer; Yvonne Andersson-Sköld; Sonja Blom; Paul Bardos; Marcel Polland; Thomas Track

2010-01-01

189

Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance  

Microsoft Academic Search

Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming.

Nannan Kou

2011-01-01

190

Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade  

Microsoft Academic Search

Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified

Jun Yang; Jikun Huang; Huanguang Qiu; Scott Rozelle; Mercy A. Sombilla

2009-01-01

191

A Spatial Equilibrium Model of the Impact of BioFuels Energy Policy on Grain Transportation Flows  

Microsoft Academic Search

Traffic flows in the U.S. have been affected by the substantial increase and, as of January 2009, decrease in biofuel production and use. This paper considers a framework to study the effect on grain transportation flows of the 2005 Energy Act and subsequent legislation, which mandated higher production levels of biofuels, e.g. ethanol and biodiesels. Future research will incorporate changes

Zafarbek Ahmedov; Gabriel J. Power; Dmitry V. Vedenov; Stephen W. Fuller; Bruce A. McCarl; Sharada Vadali

2009-01-01

192

De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels  

PubMed Central

Background Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.

Wan, LingLin; Han, Juan; Sang, Min; Li, AiFen; Wu, Hong; Yin, ShunJi; Zhang, ChengWu

2012-01-01

193

Unintended Environmental Consequences of a Global Biofuels Program  

NASA Astrophysics Data System (ADS)

Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but little research has been done on the consequences of an aggressive global biofuels program with advanced technologies using cellulosic feedstocks. Using a simulation modeling approach, we explore two scenarios for cellulosic biofuels production and find that with either one, biofuels could make a substantial contribution to meeting global-scale energy needs in the future, but with significant unintended environmental consequences. If forests are cleared to grow cellulosic biofuels crops, we estimate that about 105 Pg C would be released to the atmosphere as carbon dioxide and would cancel any greenhouse-gas savings from the substitution of biofuels for fossil fuels during the first half of the 21st century. Alternatively, if most cellulosic biofuels are grown on previously cleared land or land cleared of low-stature natural vegetation, we estimate that up to 30 Pg C would still be released to the atmosphere before a net greenhouse gas benefit from a global biofuels program is realized about the middle of the 21st century. With either alternative, we expect most of the world's cellulosic biofuels crops (14 to 15 million km2) to be grown on the relatively inexpensive but productive lands of the sub-tropics and tropics, with negative impacts on the biodiversity of these regions. Cellulosic biofuels may yet serve as a crucial wedge in the solution to the climate change problem, but must be deployed with caution so as not to jeopardize biodiversity, compromise ecosystems services, or undermine climate policy.

Kicklighter, D. W.; Gurgel, A. C.; Melillo, J. M.; Reilly, J.; Cronin, T. W.; Felzer, B. S.; Paltsev, S.; Schlosser, C. A.; Sokolov, A. P.

2008-12-01

194

ARE BIOFUELS RENEWABLE ENERGY SOURCES?  

Microsoft Academic Search

The objective of this study is to discuss biofuels renewability in a quantitative point of view. A comprehensive review of the energy balance literature and emergy assessment of biofuels production were carried out at the Laboratory of Ecological Engineering of the Food Engineering School at UNICAMP in order discuss these issues. From these perspective is possible to realize that biofuels

Enrique Ortega; Otávio Cavalett; Consuelo Pereira; Feni Agostinho; John Storfer

195

Biofuel subsidies and international trade  

Microsoft Academic Search

This paper explores optimal biofuel subsidies in a general equilibrium trade model. The focus is on the production of biofuels such as corn-based ethanol, which diverts corn from use as food. In the small-country case, when a Pigouvian tax on conventional fuels is in place, the optimal biofuel subsidy is zero. When the tax on crude is not available as

Subhayu Bandyopadhyay; Sumon Bhaumik; Howard J. Wall

2010-01-01

196

Biofuels : markets, targets and impacts  

Microsoft Academic Search

This paper reviews recent developments in biofuel markets and their economic, social and environmental impacts. Several countries have introduced mandates and targets for biofuel expansion. Production, international trade and investment have increased sharply in the past few years. However, several existing studies have blamed biofuels as one of the key factors behind the 2007-2008 global food crisis, although the magnitudes

Govinda R. Timilsina; Ashish Shrestha

2010-01-01

197

State of the Art and Future Trends of Bioethanol Production  

Microsoft Academic Search

With efforts to reduce global reliance on fossil fuels and lower the greenhouse gas emission, an increasing search for renewably sourced materials, which can be used as feedstock for biofuel production, is ongoing in the past few decades. At the present, ethanol is the most common alternate fuel and is already produced on a fair scale, representing a sustainable substitute

Marcos A. das Neves; Toshinori Kimura; Naoto Shimizu; Mitsutoshi Nakajima

198

Clash of the Titans: Comparing Productivity Via Radiation Use Efficiency for Two Grass Giants of the Biofuel Field  

Microsoft Academic Search

The comparative productivity of switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus) is of critical importance to the biofuel industry. The radiation use efficiency (RUE), when derived in an environment with\\u000a non-limiting soil water and soil nutrients, provides one metric of relative productivity. The objective of this study was\\u000a to compare giant Miscanthus to available switchgrass cultivars, using established

James Robert Kiniry; Mari-Vaughn V. Johnson; Steve B. Bruckerhoff; Jerry U. Kaiser; R. L. Cordsiemon; R. Daren Harmel

199

Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production  

PubMed Central

Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v) directly fermentable sugars and 15 to 35 ?mol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene), but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 ?mol/ml amino nitrogen) in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v) sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar) or up to 35% (w/v) sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results of this investigation indicate that watermelon juice, either as whole juice fermented on-site or as a waste stream from neutraceutical production, could easily integrate with other more concentrated feedstocks where it could serve as diluent, supplemental feedstock, and nitrogen supplement.

Fish, Wayne W; Bruton, Benny D; Russo, Vincent M

2009-01-01

200

The unintended energy impacts of increased nitrate contamination from biofuels production.  

PubMed

Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate. PMID:20082016

Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

2009-10-20

201

Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production.  

PubMed

Microbial oil production by heterotrophic organisms is a promising path for the cost-effective production of biofuels from renewable resources provided high conversion yields can be achieved. To this end, we have engineered the oleaginous yeast Yarrowia lipolytica. We first established an expression platform for high expression using an intron-containing translation elongation factor-1? (TEF) promoter and showed that this expression system is capable of increasing gene expression 17-fold over the intronless TEF promoter. We then used this platform for the overexpression of diacylglycerol acyltransferase (DGA1), the final step of the triglyceride (TAG) synthesis pathway, which yielded a 4-fold increase in lipid production over control, to a lipid content of 33.8% of dry cell weight (DCW). We also show that the overexpression of acetyl-CoA carboxylase (ACC1), the first committed step of fatty acid synthesis, increased lipid content 2-fold over control, or 17.9% lipid content. Next we combined the two genes in a tandem gene construct for the simultaneous coexpression of ACC1 and DGA1, which further increased lipid content to 41.4%, demonstrating synergistic effects of ACC1+DGA1 coexpression. The lipid production characteristics of the ACC1+DGA1 transformant were explored in a 2-L bioreactor fermentation, achieving 61.7% lipid content after 120h. The overall yield and productivity were 0.195g/g and 0.143g/L/h, respectively, while the maximum yield and productivity were 0.270g/g and 0.253g/L/h during the lipid accumulation phase of the fermentation. This work demonstrates the excellent capacity for lipid production by the oleaginous yeast Y. lipolytica and the effects of metabolic engineering of two important steps of the lipid synthesis pathway, which acts to divert flux towards the lipid synthesis and creates driving force for TAG synthesis. PMID:23026119

Tai, Mitchell; Stephanopoulos, Gregory

2012-09-28

202

The significance of nitrous oxide emission due to cropping of grain for biofuel production: a Swedish perspective  

NASA Astrophysics Data System (ADS)

The current regulations governing production of biofuels in the European Union require that they have to mitigate climate change, by producing >35% less greenhouse gases (GHG) than fossil fuels. There is a risk that this may not be achievable, since land use for crop production inevitably emits the potent GHG nitrous oxide (N2O), due to nitrogen fertilisation and cycling in the environment. We analyse first-generation biofuel production on agricultural land and conclude that efficient agricultural crop production resulting in a good harvest and low N2O emission can fulfil the EU standard, and is possible under certain conditions for the Swedish agricultural and bioethanol production systems. However, in years having low crop yields, and where cropping is on organic soils, total GHG emissions per unit of fuel produced can be even higher than those released by burning of fossil fuels. In general, the N2O emission size in Sweden and elsewhere in northern Europe is such that there is a >50% chance that the 35% saving requirement will not be met. Thus ecosystem N2O emissions have to be convincingly assessed. Here we compare Swedish emission data with values estimated by means of statistical models and by a global, top-down, approach; the measurements and the predictions often show higher values that would fail to meet the EU standard and thus prevent biofuel production development.

Kasimir Klemedtsson, Ĺ.; Smith, K. A.

2011-12-01

203

In Field Monitoring of Potential Detrimental Effects of Biofuels Production on Soil Quality  

NASA Astrophysics Data System (ADS)

Soil organic carbon (SOC) content is recognized as a soil quality indicator that is susceptible to degradation with tillage and with biomass removal from the soil surface. In addition to the reported benefits of leaving crop residue on the soil surface of reducing soil erosion, providing plant nutrients and reducing water losses in runoff events, biomass harvesting for energy production can negatively impact SOC. Reported values of SOC accumulation under conservation tillage systems varied widely from below zero to upwards of 1300 kg/ha/yr depending on the crop type and mean annual temperature. However, very few studies have been conducted with of no-tillage practices with concurrent management of crop residue removal. A negative impact on SOC balance has been reported with extensive biomass removal from cropping systems, but this also is dependent on mean temperature and rainfall amounts. Perennial grasses are strong candidates as a source for biofuel production. These, in turn, will entail very large monoculture fields' with no soil disturbance and extensive harvesting of residues. These conditions may degrade the soil condition by depleting soil's nutrients beyond the point of standard fertilization and reduce the SOC. Thus raising the question of sustainability and, more importantly, challenging the fundamental assertion that the entire cycle of energy production from biofuels, on balance, will reduce the levels of atmospheric carbon dioxide. To monitor soil conditions over vast areas with variable landscapes using current state-of-the-art procedures for soil sampling and analysis by dry combustion presents a formidable task that is labor intensive and time consuming. We propose to implement a new instrument for soil carbon, nitrogen and potassium monitoring in soil that is non-destructive and can be used in either stationary or continuous scanning modes of operation. The instrument senses the elements to an approximate depth of 30 cm and provides true mean values for an arbitrarily large scanned area, in a stationary mode the analyzed soil mass is larger than 200 kg. It is envisioned that the inelastic neutron scattering (INS) system would be more sensitive to changes in the soil conditions, on annual or semi-annual basis, rather than the currently employed methods that require a three or five years period. We report the results obtained with the INS system used in stationary and scanning modes and discuss its merits.

Wielopolski, L.; Torbert, A.

2008-12-01

204

Fuel for the Future: Development of New Fuels, e.g. Biofuels  

NASA Astrophysics Data System (ADS)

Whether we like it or not, climate change is to some extent affiliated with the emission of green house gasses, and specifically CO2 emissions, which are rising due to the global increased use of fossil fuels. As a result, political enthusiasm is high when it comes to implementing new initiatives aimed at better protection of the global environment. However, environmental concerns are just one aspect of the issues associated with the use of fossil fuels, since fossil fuels are a natural reserve and, therefore, a limited resource. Prognoses vary, but within the next decades the fossil fuel reserves will be exhausted leading to reduced oil production, rising oil prices, and the risk of international bellicose conflicts caused by adverse national interests. Additionally, fossil fuel as a natural reserve is unevenly distributed, meaning that a few countries possess the main energy reserve of the entire world. The incorporation of alternatives to fossil fuel into the existing fuel infrastructure is currently under intense development in the Western world, both to cut the oil dependency and to counter the depletion of oil reserves. This political enthusiasm to decrease the use of fossil fuel is emphasised by the fact that according to the International Energy Agency (IEA) more than 80% of the global primary energy consumption in 2007 accounts from fossil fuels and half of this is oil. More than 60% of the oil is used in the transport sector.

Sřrensen, Gitte; Sřrensen, Ketil Bernt; Hansen, Hans Ove; Nygaard, Sune D.

205

Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)  

ScienceCinema

Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

206

Exploiting diversity and synthetic biology for the production of algal biofuels.  

PubMed

Modern life is intimately linked to the availability of fossil fuels, which continue to meet the world's growing energy needs even though their use drives climate change, exhausts finite reserves and contributes to global political strife. Biofuels made from renewable resources could be a more sustainable alternative, particularly if sourced from organisms, such as algae, that can be farmed without using valuable arable land. Strain development and process engineering are needed to make algal biofuels practical and economically viable. PMID:22895338

Georgianna, D Ryan; Mayfield, Stephen P

2012-08-16

207

Combinatorial Solid-Phase Synthesis of 4,6-Diaryl and 4-Aryl, 6-Alkyl-1,3,5-triazines and Their Application to Efficient Biofuel Production.  

PubMed

Herein we report the solid-phase synthesis of a combinatorial aryl, alkyl-triazine library and its application to biofuel production. The combination of Grignard reactions and solid supported Suzuki coupling reactions afforded unique 120 triazine compounds with high purities and minimum purification steps. Through an unbiased phenotypic screening for improved biofuel generation in oleaginous yeast, we found one diaryl triazine derivative (E4) which increased the biolipid production up to 86%. PMID:22681245

Kim, Jaoon Y H; Lee, Jae Wook; Lee, Woo Sirl; Ha, Hyung-Ho; Vendrell, Marc; Bork, Jacqueline T; Lee, Youngsook; Chang, Young-Tae

2012-06-12

208

Measuring and moderating the water resource impact of biofuel production and trade  

NASA Astrophysics Data System (ADS)

Energy systems and water resources are inextricably linked, especially in the case of bioenergy, which can require up to three orders of magnitude more water than other energy carriers. Water scarcity already affects about 1 in 5 people globally, and stands to be exacerbated in many locales by current biofuel expansion plans. This dissertation engages with several of the analytical and governance challenges raised by this connection between bioenergy expansion and global water resources. My examination begins with an overview of important concepts in water resource analysis, followed by a review of current literature on the water impacts of most major energy pathways. I then report on a case study of ethanol fuel in California. This work employed a coupled agro-climatic and life cycle assessment (LCA) model to estimate the water resource impacts of several bioenergy expansion scenarios at a county-level resolution. It shows that ethanol production in California regularly consumes more than 1000 gallons of water per gallon of fuel produced, and that 99% of life-cycle water consumption occurs in the feedstock cultivation phase. This analysis then delves into the complexity of life cycle impact assessment for water resources. Despite improvements in water accounting methods, impact assessment must contend with the fact that different water sources are not necessarily commensurable, and that impacts depend on the state of the resource base that is drawn upon. I adapt water footprinting and LCA techniques to the bioenergy context, describing comprehensive inventory approaches and developing a process for characterizing (weighting) consumption values to enable comparison across resource bases. This process draws on metrics of water stress, accounting for environmental flow requirements, climatic variability, and non-linearity of water stress effects. My assessment framework was developed in hopes that it would be useful in managing the risks and impacts it describes. The primary actors in this governance effort are government regulators, whose policies and incentives continue to drive and to shape the expansion of the bioenergy industry. However, the ability of governments to manage the impacts of biofuels is severely constrained by their obligations under international trade law. This dissertation concludes, therefore, with a detailed investigation into relevant precedents under the General Agreement on Tariffs and Trade (GATT) and the World Trade Organization (WTO). I use these precedents to identify the policy tools that governments would be able to bring to bear in moderating the water resource impacts and myriad other environmental and social concerns raised by bioenergy expansion.

Fingerman, Kevin Robert

209

Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.  

SciTech Connect

The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

Donald D. Brown; David Savage

2012-06-30

210

RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.  

PubMed

Sugarcane is a prime bioethanol feedstock. Currently, sugarcane ethanol is produced through fermentation of the sucrose, which can easily be extracted from stem internodes. Processes for production of biofuels from the abundant lignocellulosic sugarcane residues will boost the ethanol output from sugarcane per land area. However, unlocking the vast amount of chemical energy stored in plant cell walls remains expensive primarily because of the intrinsic recalcitrance of lignocellulosic biomass. We report here the successful reduction in lignification in sugarcane by RNA interference, despite the complex and highly polyploid genome of this interspecific hybrid. Down-regulation of the sugarcane caffeic acid O-methyltransferase (COMT) gene by 67% to 97% reduced the lignin content by 3.9% to 13.7%, respectively. The syringyl/guaiacyl ratio in the lignin was reduced from 1.47 in the wild type to values ranging between 1.27 and 0.79. The yields of directly fermentable glucose from lignocellulosic biomass increased up to 29% without pretreatment. After dilute acid pretreatment, the fermentable glucose yield increased up to 34%. These observations demonstrate that a moderate reduction in lignin (3.9% to 8.4%) can reduce the recalcitrance of sugarcane biomass without compromising plant performance under controlled environmental conditions. PMID:22924974

Jung, Je Hyeong; Fouad, Walid M; Vermerris, Wilfred; Gallo, Maria; Altpeter, Fredy

2012-08-24

211

Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.  

PubMed

The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. PMID:21924606

Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

2011-08-24

212

Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production.  

PubMed

The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660

Verbeke, Tobin J; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V; Fristensky, Brian; Levin, David B; Sparling, Richard

2013-03-26

213

Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production  

PubMed Central

The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript.

Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard

2013-01-01

214

Agrigenomics for Microalgal Biofuel Production: An Overview of Various Bioinformatics Resources and Recent Studies to Link OMICS to Bioenergy and Bioeconomy.  

PubMed

Abstract Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production. PMID:24044362

Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar

2013-09-17

215

Present and Future IGS Ionospheric Products  

NASA Astrophysics Data System (ADS)

The purpose of this paper is, on one hand, to show the present performance of the combined final and rapid IGS global ionosphere maps (GIMs), and on the other hand to inform the geodetic community on new product - predicted IGS GIMs. In addition, information on future development of IGS ionospheric products will be also presented. Nowadays, the Ionosphere Working Group of IGS generates three types of ionospheric products: final, rapid and predicted, respectively. There are currently four IGS Associate Analysis Centres (IAACs) for the ionospheric products: CODE (Center for Orbit Determination in Europe, University of Berne, Switzerland), ESA/ESOC (European Space Operations Center of ESA, Darmstadt, Germany), JPL (Jet Propulsion Laboratory, Pasadena, U.S.A) and gAGE/UPC (Technical University of Catalonia, Barcelona, Spain). These centres provide ionosphere maps computed with different approaches. Their maps are uploaded to IGS Ionosphere Product Coordinator, who computes official IGS combined products. Since January 2008, this coordination is carried out by the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland). The IGS GIMs are provided in Ionosphere Exchange (IONEX) format with spatial resolution of 5.0 degrees in longitude and 2.5 degrees in latitude, and temporal resolution of 2 hours. Latency of the final and rapid GIMs is 10 days and 1 day, respectively. In November 2009, the IGS Iono WG started to generate predicted ionospheric products 1 and 2 days in advance (requested for ESA's SMOS mission). These new IGS products are currently based on predicted ionosphere maps prepared by UPC and ESA. During period of more than 10 years of continuous IGS ionosphere operation, the techniques used by the IAACs and the strategies of combination have improved in such a way that the combined IGS GIMs are now significantly more accurate and robust. Future plans include, among others, increasing temporal resolution to 1 hour and studies on taking advantage of COSMIC occultation data.

Krankowski, Andrzej; Wielgosz, Pawel; Hernández-Pajares, Manuel; García-Rigo, Alberto

2010-05-01

216

Biofuels combustion.  

PubMed

This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly. PMID:23298249

Westbrook, Charles K

2013-01-04

217

EXPANDING THE ROLE OF SYSTEMS MODELING: CONSIDERING BYPRODUCT GENERATION FROM BIOFUEL PRODUCTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

The bioethanol industry has been experiencing rapid growth over the last several years and is expected to continue to increase production for the foreseeable future. A vital component to the success of this industry is the sales and marketing of processing residues, which are primarily sold as drie...

218

Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.  

SciTech Connect

The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

2012-06-07

219

Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes  

PubMed Central

Increased demand for corn grain as an ethanol feedstock is altering U.S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem service that is strongly influenced by local landscape structure. Here, we estimate the value of natural biological control of the soybean aphid, a major pest in agricultural landscapes, and the economic impacts of reduced biocontrol caused by increased corn production in 4 U.S. states (Iowa, Michigan, Minnesota, and Wisconsin). For producers who use an integrated pest management strategy including insecticides as needed, natural suppression of soybean aphid in soybean is worth an average of $33 ha?1. At 2007–2008 prices these services are worth at least $239 million y?1 in these 4 states. Recent biofuel-driven growth in corn planting results in lower landscape diversity, altering the supply of aphid natural enemies to soybean fields and reducing biocontrol services by 24%. This loss of biocontrol services cost soybean producers in these states an estimated $58 million y?1 in reduced yield and increased pesticide use. For producers who rely solely on biological control, the value of lost services is much greater. These findings from a single pest in 1 crop suggest that the value of biocontrol services to the U.S. economy may be underestimated. Furthermore, we suggest that development of cellulosic ethanol production processes that use a variety of feedstocks could foster increased diversity in agricultural landscapes and enhance arthropod-mediated ecosystem services.

Landis, Douglas A.; Gardiner, Mary M.; van der Werf, Wopke; Swinton, Scott M.

2008-01-01

220

Different Effects of Corn Ethanol and Switchgrass-Based Biofuels on Soil Erosion and Nutrients Loads in the Iowa River Basin  

Microsoft Academic Search

Biofuels have become important alternative energy resources and their use is likely to expand in the foreseeable future. The expansion of corn-based ethanol production has resulted in a tightening of the global corn supply-and-demand balance. Perennial grasses such as switchgrass (Panicum virgatum) are also being considered as candidates for biofuel feedstocks. Expansion of biofuel production will generate diverse impacts on

Y. Wu; S. Liu

2010-01-01

221

Nutrient management studies in biofuel cropping systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

222

Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production  

Microsoft Academic Search

Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20–50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The

T. Mutanda; D. Ramesh; S. Karthikeyan; S. Kumari; A. Anandraj; F. Bux

2011-01-01

223

Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimisation through productive resources maximisation  

Microsoft Academic Search

Life Cycle Analyses (LCA) are used to compare biofuels to fossil fuels. These analyses are made according to the ISO 14040-43 standards, which using a defined unit compare mass and energy balances for two or more comparison objects.In Spain, the Spanish government Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, has performed two LCA's in order to compare ethanol and

Fernando Hernández Sobrino; Carlos Rodríguez Monroy; José Luís Hernández Pérez

2011-01-01

224

Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach  

Microsoft Academic Search

Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for

Bobban G. Subhadra

2010-01-01

225

Impacts of the production and consumption of biofuels on stratospheric ozone  

NASA Astrophysics Data System (ADS)

Biofuels are becoming increasingly popular sources of renewable energy as economic pressures and environmental consequences encourage the use of alternatives to fossil fuels. However, growing crops destined for use as biofuels incurs large N2O emissions associated with the use of nitrogen-based fertilizers. Besides being a greenhouse gas, N2O is also the primary source of stratospheric NOx (NO + NO2) which leads to stratospheric ozone depletion. In this paper, the potential effects on the ozone layer of a large-scale shift away from fossil fuel use to biofuels consumption over the 21st century are examined. Under such a scenario, global-mean column ozone decreases by 2.6 DU between 2010 and 2100 in contrast to a 0.7 DU decrease under a control simulation (the IPCC SRES B1 scenario for greenhouse gases) and a 9.1 DU increase under the more commonly used SRES A1B scenario. Two factors cause the decrease in ozone in the biofuels simulation: 1) large N2O emissions lead to faster rates of the ozone-depleting NOx cycles and; 2) reduced CO2 emissions (due to less fossil fuel burning) lead to relatively less stratospheric cooling over the 21st century, which decreases ozone abundances. Reducing CO2 emissions while neglecting to reduce N2O emissions could therefore be damaging to the ozone layer.

Revell, Laura E.; Bodeker, Greg E.; Huck, Petra E.; Williamson, Bryce E.

2012-05-01

226

Biofuel contribution to mitigate fossil fuel CO2 emissions: Comparing sugar cane ethanol in Brazil with corn ethanol and discussing land use for food production and deforestation  

Microsoft Academic Search

This paper compares the use of sugar cane and corn for the production of ethanol, with a focus on global warming and the current international debate about land use competition for food and biofuel production. The indicators used to compare the products are CO2 emissions, energy consumption, sugar cane coproducts, and deforestation. The life cycle emission inventory as a methodological

Luiz Pinguelli Rosa; Christiano Pires de Campos; Maria Silvia Muylaert de Araujo

2009-01-01

227

Methane production from glycolate excreting algae as a new concept in the production of biofuels.  

PubMed

It is the aim of the present work to introduce a new concept for methane production by the interaction of a glycolate-excreting alga (Chlamydomonas reinhardtii) and methanogenic microbes operating in separate compartments within one photobioreactor. This approach requires a minimum number of metabolic steps to convert light energy to methane thereby reducing the energetic and financial costs of biomass formation, harvest and refinement. In this feasibility study it is shown that the physiological limitations for sustained glycolate production can be circumvented by the use of C. reinhardtii mutants whose carbon concentrating mechanisms or glycolate dehydrogenase are suppressed. The results also demonstrate that methanogenic microbes are able to thrive on glycolate as single carbon source for a long time period, delivering biogas composed of CO(2)/methane with only very minor contamination. PMID:22850169

Günther, Anja; Jakob, Torsten; Goss, Reimund; König, Swetlana; Spindler, Daniel; Räbiger, Norbert; John, Saskia; Heithoff, Susanne; Fresewinkel, Mark; Posten, Clemens; Wilhelm, Christian

2012-07-09

228

Microbial biosurfactants production, applications and future potential.  

PubMed

Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential. PMID:20424836

Banat, Ibrahim M; Franzetti, Andrea; Gandolfi, Isabella; Bestetti, Giuseppina; Martinotti, Maria G; Fracchia, Letizia; Smyth, Thomas J; Marchant, Roger

2010-04-28

229

Viscous effects in the acoustic manipulation of algae for biofuel production  

Microsoft Academic Search

Microalgae are emerging as a promising source for environmentally friendly biofuels. Acoustic manipulation of algal cells\\u000a using standing waves is a relatively new method for dewatering and\\/or sorting algae harvests. Recent work in the field has\\u000a shown that acoustic dewatering methods may be more efficient and economical than traditional methods. Optimization of acoustic\\u000a algal cell manipulation requires a knowledge of

Cara A. C. Leckey; Mark K. Hinders

230

Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production  

Microsoft Academic Search

Energy crises, global warming, and climatic changes call for technological and commercial advances in manufacturing high-quality\\u000a transportation fuels from unconventional feedstocks. Microalgae is one of the most promising sources of biofuels due to the\\u000a high yields attained per unit area and because it does not displace food crops. Neochloris oleabundans (Neo) microalga is an important promising microbial source of single-cell

Luísa Gouveia; Ana Evangelista Marques; Teresa Lopes da Silva; Alberto Reis

2009-01-01

231

Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production  

Microsoft Academic Search

Global demand for bio-fuels continues unabated. Rising concerns over environmental pollution and global warming have encouraged\\u000a the movement to alternate fuels, the world ethanol market is projected to reach 86 billion litres this year. Bioethanol is\\u000a currently produced from land-based crops such as corn and sugar cane. A continued use of these crops drives the food versus\\u000a fuel debate. An

Stefan Kraan

232

Microalgae biofuel potentials (review).  

PubMed

With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable. PMID:22586908

Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

233

Fueling the Future with Fungal Genomics  

SciTech Connect

Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current and future advances made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass and fermentation of sugars to ethanol, hydrocarbon biofuels and renewable chemicals.

Grigoriev, Igor V.; Cullen, Daniel; Hibbett, David; Goodwin, Stephen B.; Jeffries, Thomas W.; Kubicek, Christian P.; Kuske, Cheryl; Magnuson, Jon K.; Martin, Francis; Spatafora, Joey; Tsang, Adrian; Baker, Scott E.

2011-04-29

234

Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw  

PubMed Central

Background Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost. Results The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11?mm. Conclusion This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.

2012-01-01

235

Biofuels: Potential Production Capacity, Effects on Grain and Livestock Sectors, and Implications for Food Prices and Consumers  

Microsoft Academic Search

We examined four evolution paths of the biofuel sector using a partial equilibrium world agricultural sector model in CARD that includes the new RFS in the 2007 EISA, a two-way relationship between fossil energy and biofuel markets, and a new trend toward corn oil extraction in ethanol plants. At one extreme, one scenario eliminates all support to the biofuel sector

Dermot J. Hayes; Bruce A. Babcock; Jacinto F. Fabiosa; Simla Tokgoz; Amani E. Elobeid; Tun-Hsiang Yu; Fengxia Dong; Chad E. Hart; Eddie C. Chavez; Suwen Pan; Miguel A. Carriquiry; Jerome Dumortier

2009-01-01

236

Ethanol in the Environment: A Critical Review of Its Roles as a Natural Product, a Biofuel, and a Potential Environmental Pollutant  

Microsoft Academic Search

Ethanol has long been known as a natural product of fermentation and an important industrial chemical. Recently it has been recognized as a useful biofuel. However, the overview of the global environmental cycle of ethanol in vegetation, wetlands, the ocean and the atmosphere has so far been neglected. Ethanol is a key product of higher plants under oxygen-deficient conditions, and

Wayne V. Kirstine; Ian E. Galbally

2012-01-01

237

Ethanol in the Environment ? A Critical Review of its Roles as a Natural Product, a Biofuel and a Potential Environmental Pollutant  

Microsoft Academic Search

Ethanol has long been known as a natural product of fermentation and an important industrial chemical. Recently it has been recognised as a useful biofuel. However, the overview of the global environmental cycle of ethanol in vegetation, wetlands, the ocean and the atmosphere has so-far been neglected. Ethanol is a key product of higher plants under oxygen-deficient conditions, and the

WAYNE V. KIRSTINE; IAN E. GALBALLY

2011-01-01

238

Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the 'photanol' approach.  

PubMed

For a sustainable energy future, the development of efficient biofuel production systems is an important prerequisite. Here we describe an approach in which basic reactions from phototrophy are combined in single organisms with key metabolic routes from chemotrophic organisms, with C(3) sugars as Glyceraldehyde-3-phosphate as the central linking intermediate. Because various metabolic routes that lead to the formation of a range of short-chain alcohols can be used in this approach, we refer to it as the photanol approach. Various strategies can be explored to optimize this biofuel production strategy. PMID:19480951

Hellingwerf, K J; Teixeira de Mattos, M J

2009-02-13

239

Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds.  

PubMed

Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas. PMID:18653962

Shilton, A N; Mara, D D; Craggs, R; Powell, N

2008-01-01

240

Biofuels and sustainability in Africa  

Microsoft Academic Search

The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over

Bamikole Amigun; Josephine Kaviti Musango; William Stafford

2011-01-01

241

Overview on Biofuels from a European Perspective  

ERIC Educational Resources Information Center

|In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

Ponti, Luigi; Gutierrez, Andrew Paul

2009-01-01

242

Assessing deforestation from biofuels: Methodological challenges  

Microsoft Academic Search

In this article, we attempt to find the spatial relations between deforestation and biofuel production at global level by analyzing available global deforestation and biofuels data, and find that, for a variety of reasons relating to data availability and its characteristics, and the way biofuels are produced, this task is extremely difficult if not virtually impossible. Then we bring down

Yan Gao; Margaret Skutsch; Rudi Drigo; Pablo Pacheco; Omar Masera

2011-01-01

243

World Biofuels Study  

SciTech Connect

This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

Alfstad,T.

2008-10-01

244

Feedstock handling and processing effects on biochemical conversion to biofuels  

SciTech Connect

Abating the dependence of the United States on foreign oil by reducing oil consumption and increasing biofuels usage will have far-reaching global effects. These include reduced greenhouse gas emissions and an increased demand for biofuel feedstocks. To support this increased demand, cellulosic feedstock production and conversion to biofuels (e.g. ethanol, butanol) is being aggressively researched. Thus far, research has primarily focused on optimizing feedstock production and ethanol conversion, with less attention given to the feedstock supply chain required to meet cost, quality, and quantity goals. This supply chain comprises a series of unit operations from feedstock harvest to feeding the conversion process. Our objectives in this review are (i) to summarize the peer-reviewed literature on harvest-to-reactor throat variables affecting feedstock composition and conversion to ethanol; (ii) to identify knowledge gaps; and (iii) to recommend future steps.

Daniel Inman; Nick Nagle; Jacob Jacobson; Erin Searcy; Allison Ray

2001-10-01

245

Utilization of macro-algae for enhanced CO 2 fixation and biofuels production: Development of a computing software for an LCA study  

Microsoft Academic Search

A Life Cycle Assessment study was carried out for evaluating the potential of utilizing marine biomass for energy production. Macro-algae obtained from the Adriatic and Jonian seas have been selected and tested for our initial case. Different techniques (supercritical CO2, organic solvents, and pyrolysis) were utilized in this study for the extraction of biofuel. Supercritical CO2 appears to be the

Michele ArestaT; Angela Dibenedetto; Grazia Barberio

2005-01-01

246

Combinatorial Design of a Highly Efficient Xylose-Utilizing Pathway in Saccharomyces cerevisiae for the Production of Cellulosic Biofuels  

PubMed Central

Balancing the flux of a heterologous metabolic pathway by tuning the expression and properties of the pathway enzymes is difficult, but it is critical to realizing the full potential of microbial biotechnology. One prominent example is the metabolic engineering of a Saccharomyces cerevisiae strain harboring a heterologous xylose-utilizing pathway for cellulosic-biofuel production, which remains a challenge even after decades of research. Here, we developed a combinatorial pathway-engineering approach to rapidly create a highly efficient xylose-utilizing pathway for ethanol production by exploring various combinations of enzyme homologues with different properties. A library of more than 8,000 xylose utilization pathways was generated using DNA assembler, followed by multitiered screening, which led to the identification of a number of strain-specific combinations of the enzymes for efficient conversion of xylose to ethanol. The balancing of metabolic flux through the xylose utilization pathway was demonstrated by a complete reversal of the major product from xylitol to ethanol with a similar yield and total by-product formation as low as 0.06 g/g xylose without compromising cell growth. The results also suggested that an optimal enzyme combination depends on not only the genotype/phenotype of the host strain, but also the sugar composition of the fermentation medium. This combinatorial approach should be applicable to any heterologous pathway and will be instrumental in the optimization of industrial production of value-added products.

Kim, Byoungjin; Du, Jing; Eriksen, Dawn T.

2013-01-01

247

Assessment of the Projected One Billion Ton Biomass for Cellulosic Biofuel Production and Its Potential Implications on Regional Water Quality and Availability  

NASA Astrophysics Data System (ADS)

The DOE and USDA joint study, also commonly referred as the "Billion-Ton" study, assessed the cellulosic feedstock resources potential in the U.S. for producing second generation biofuel to replace 30 percent of the country's transportation fuels by year 2030. The available resource is expected to come from changing cropping pattern, increasing crop yield, harvesting agricultural and forest wood residues, and developing energy crops. Such large-scale changes in land use and crop managements are likely to affect the associated water quality and resources at both regional and local scales. To address the water sustainability associated with the projected biomass production in the Upper Mississippi River Basin (UMRB), we have developed a SWAT watershed model that simulate the changes in water quality (nitrogen, phosphorus, and soil erosion) and resources (soil water content, evapotranspiration, and runoff) of the region due to future biomass production scenario estimated by the Billion-Ton study. The scenario is implemented by changing the model inputs and parameters at subbasin and hydrologic response unit levels, as well as by improving the SWAT model to represent spatially varying crop properties. The potential impacts on water quality and water availability were compared with the results obtained from a baseline simulation which represents current watershed conditions and existing level of feedstock production. The basin level results suggested mixed effects on the water quality. The projected large-scale biomass production scenario is expected to decrease loadings of total nitrogen and nitrate in the streams while increase total phosphorus and suspended sediment. Results indicate an increase in the rate of evapotranspiration and a decrease in the soil water content and in surface runoff. discharge to the streams. The impacts at the subbasin or local scale varies spatially and temporally depending on the types of land use change, their locations, and crop managements, suggesting needs to further optimize the sustainable biomass production from water resource perspective at both regional and local levels.

Demissie, Y. K.; Yan, E.; Wu, M.

2011-12-01

248

Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii.  

PubMed

This study investigated the changes in the fatty acid content and composition in the nitrogen-starved Chlamydomonas reinhardtii starchless mutant, BAF-J5, grown at different temperatures. The optimal temperature for vegetative growth under nitrogen sufficient conditions was found to be 32 °C. Shifting temperature from 25 to 32 °C, in conjunction with nitrogen starvation, resulted in BAF-J5 storing the maximum quantity of fatty acid (76% of dry cell weight). Shifting to temperatures lower than 25 °C, reduced the total amount of stored fatty acid content and increased the level of desaturation in the fatty acids. The optimal fatty acid composition for biodiesel was at 32 °C. This study demonstrates how a critical environmental factor, such as temperature, can modulate the amount and composition of fatty acids under nitrogen deprivation and reduce the requirement for costly refining of biofuels. PMID:23138068

James, Gabriel O; Hocart, Charles H; Hillier, Warwick; Price, G Dean; Djordjevic, Michael A

2012-10-11

249

Shifting Lands: Exploring Kansas Farmer Decision-Making in an Era of Climate Change and Biofuels Production  

NASA Astrophysics Data System (ADS)

While farming has been the subject of frequent critical analysis with respect to its environmental impacts, including its greenhouse gas emissions, there has been relatively little consideration of the potentially positive role of agriculture in responding to a future greatly influenced by climate change. One possible realm for agriculture to contribute successfully to this future is through biofuels cultivation. This paper uses the state of Kansas as an example to examine factors that are influencing farmer decision-making during a time of heightened debates about climate and energy. Drawing on interviews with key informants and Kansas farmers, we apply and refine a conceptual model for understanding farmer decisions. We find that farmers have largely positive perceptions of the natural environment. Climate change, especially, is not a salient concern at this time. Factors that appear most likely to influence farmer decisions to adopt a new practice include the relative advantage of that practice and the ability to learn about and discuss it through existing social networks. Successful policy incentives must provide farmers with a continued sense of both independence and contribution to greater societal good.

White, Stacey Swearingen; Selfa, Theresa

2013-02-01

250

Sugar industry in China: R & D and policy initiatives to meet sugar and biofuel demand of future  

Microsoft Academic Search

The sugar industry in China is becoming increasingly important both domestically and internationally because of its rapid\\u000a development. Significant progress has been achieved not only in sugar production, but also in the integrated utilization,\\u000a developments such as productions of sugar-based products and cane by-products, and environment-friendly management of vinasse.\\u000a Production of luquid fuel (ethanol) from sugarcane is also gaining much

Yang-Rui Li; Yuan-An Wei

2006-01-01

251

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q.  

PubMed

Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of 22.8?, initial pH of 6.7, and inoculum density of 1.2 × 10(8) cells/ml. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAMQ can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment. PMID:23801252

Xie, Tonghui; Liu, Jing; Du, Kaifeng; Liang, Bin; Zhang, Yongkui

2013-10-28

252

Use of algae as biofuel sources  

Microsoft Academic Search

The aim of this study is to investigate the algae production technologies such as open, closed and hybrid systems, production costs, and algal energy conversions. Liquid biofuels are alternative fuels promoted with potential to reduce dependence on fossil fuel imports. Biofuels production costs can vary widely by feedstock, conversion process, scale of production and region. Algae will become the most

Ayhan Demirbas

2010-01-01

253

Comparing life cycle assessments of different biofuel options.  

PubMed

Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition. PMID:23490811

Kendall, Alissa; Yuan, Juhong

2013-03-13

254

Midwest U.S. Landscape Change to 2020 Driven by Biofuel Mandates  

EPA Science Inventory

Meeting future biofuel targets set by the 2007 Energy Independence and Security Act (EISA), without a loss of animal feedstock or grain for human consumption, will require a substantial increase in production of corn. The Midwest, which has the highest overall crop production ap...

255

Biofuels for the gas turbine: A review  

Microsoft Academic Search

Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy

K. K. Gupta; A. Rehman; R. M. Sarviya

2010-01-01

256

In-Situ Hydraulic Conductivities of Soils and Anomalies at a Future Biofuel Production Site  

NASA Astrophysics Data System (ADS)

Forested hillslopes of the Upper Coastal Plain at the Savannah River Site, SC, feature a shallow clay loam argillic layer with low median saturated hydraulic conductivity. Observations from a grid of shallow, maximum-rise piezometers indicate that perching on this clay layer is common. However, flow measurements from an interflow-interception trench indicate that lateral flow is rare and most soil water percolates through the clay layer. We hypothesize that the lack of frequent lateral flow is due to penetration of the clay layer by roots of pine trees. We used ground penetrating radar (GPR) to map the soil structure and potential anomalies, such as root holes, down to two meters depth at three 10×10-m plots. At each plot, a 1×10-m trench was later back-hoe excavated along a transect that showed the most anomalies on the GPR maps. Each trench was excavated at 0.5-m intervals until the clay layer was reached (two plots were excavated to a final depth of 0.875 m and the third plot was excavated to a final depth of 1.0 m). At each interval, compact constant-head permeameters (CCHPs) were used to measure in-situ hydraulic conductivities in the clay-loam matrix and in any visually apparent anomalies. Conductivity was also estimated using a second 1×10-m transect of CCHP measurements taken within randomly placed augur holes. Additional holes targeted GPR anomalies. The second transect was created in case the back-hoe impacted conductivity readings. High-conductivity anomalies were also visually investigated by excavating with a shovel. Photographs of soil wetness were taken at visually apparent anomalies with a multispectral camera. We discovered that all visually apparent anomalies found are represented on the GPR maps, but that not all of the predicted anomalies on the GPR maps are visually apparent. We discovered that tree root holes create anomalies, but that there were also many conductivity anomalies that could not be visually distinguished from low-conductivity soil.

Williamson, M. F.; Jackson, C. R.; Hale, J. C.; Sletten, H. R.

2010-12-01

257

Cellulosic biofuels.  

PubMed

The development of sustainable, low-carbon, liquid fuels from cellulosic biomass will require advances in many areas of science and engineering. This review describes the major topics of enquiry concerning cellulosic biofuels with an emphasis on those areas of research and development that include research problems of interest to plant biologists. PMID:19014348

Carroll, Andrew; Somerville, Chris

2009-01-01

258

Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.  

PubMed

This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre. PMID:23306273

Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

2013-01-01

259

Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production.  

PubMed

Mass cultivation of microalgae for biofuel production depends heavily on the performance of the microalgae strains used. In this study, 60 algae-like microorganisms collected from different sampling sites in Minnesota were examined using multi-step screening and acclimation procedures to select high-lipid producing facultative heterotrophic microalgae strains capable of growing on concentrated municipal wastewater (CMW) for simultaneous energy crop production and wastewater treatment. Twenty-seven facultative heterotrophic microalgae strains were found, among which 17 strains were proved to be tolerant to CMW. These 17 top-performing strains were identified through morphological observation and DNA sequencing as Chlorella sp., Heynigia sp., Hindakia sp., Micractinium sp., and Scenedesmus sp. Five strains were chosen for other studies because of their ability to adapt to CMW, high growth rates (0.455-0.498 d(-1)) and higher lipid productivities (74.5-77.8 mg L(-1)d(-1)). These strains are considered highly promising compared with other strains reported in the literature. PMID:21546246

Zhou, Wenguang; Li, Yecong; Min, Min; Hu, Bing; Chen, Paul; Ruan, Roger

2011-04-20

260

Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production.  

PubMed

Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins. PMID:20463892

Sun, Junsong; Hopkins, Robert C; Jenney, Francis E; McTernan, Patrick M; Adams, Michael W W

2010-05-06

261

Heterologous Expression and Maturation of an NADP-Dependent [NiFe]-Hydrogenase: A Key Enzyme in Biofuel Production  

PubMed Central

Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins.

Jenney, Francis E.; McTernan, Patrick M.; Adams, Michael W. W.

2010-01-01

262

Systems analysis and futuristic designs of advanced biofuel factory concepts.  

SciTech Connect

The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

2007-10-01

263

Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels  

PubMed Central

Background The isopentenols, including isoprenol and prenol, are excellent alternative fuels. However, they are not compounds largely accumulated in natural organism. The need for the next generation of biofuels with better physical and chemical properties impels us to develop biosynthetic routes for the production of isoprenol and prenol from renewable sugar. In this study, we use the heterogenous mevalonate-dependent (MVA) isoprenoid pathway for the synthesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) intermediates, and then convert IPP and DMAPP to isoprenol and prenol, respectively. Results A mevalonate titer of 1.7 g/L was obtained by constructing an efficient MVA upper pathway in engineered E. coli. Different phosphatases and pyrophosphatases were investigated for their abilities in hydrolyzing the IPP and DMAPP. Consequently, ADP-ribose pyrophosphatase was found to be an efficient IPP and DMAPP hydrolase. Moreover, ADP-ribose pyrophosphatase from Bacillus subtilis (BsNudF) exhibited a equivalent substrate specificity towards IPP and DMAPP, while ADP-ribose pyrophosphatase from E. coli (EcNudF) presented a high substrate preference for DMAPP. Without the expression of any phosphatases or pyrophosphatases, a background level of isopentenols was synthesized. When the endogenous pyrophosphatase genes (EcNudF and yggV) that were capable of enhancing the hydrolyzation of the IPP and DMAPP were knocked out, the background level of isopentenols was still obtained. Maybe the synthesized IPP and DMAPP were hydrolyzed by some unknown hydrolases of E. coli. Finally, 1.3 g/L single isoprenol was obtained by blocking the conversion of IPP to DMAPP and employing the BsNudF, and 0.2 g/L ~80% prenol was produced by employing the EcNudF. A maximal yield of 12% was achieved in both isoprenol and prenol producing strains. Conclusions To the best of our knowledge, this is the first successful report on high-specificity production of isoprenol and prenol by microbial fermentation. Over 1.3 g/L isoprenol achieved in shake-flask experiments represents a quite encouraging titer of higher alcohols. In addition, the substrate specificities of ADP-ribose pyrophosphatases were determined and successfully applied for the high-specificity synthesis of isoprenol and prenol. Altogether, this work presents a promising strategy for high-specificity production of two excellent biofuels, isoprenol and prenol.

2013-01-01

264

Biotechnological production of gluconic acid: future implications  

Microsoft Academic Search

Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical,\\u000a and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives\\u000a is currently restricted because of high prices:

Om V. Singh; Raj Kumar

2007-01-01

265

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31

266

Predicting Agricultural Management Influence on Long-Term Soil Organic Carbon Dynamics: Implications for Biofuel Production  

SciTech Connect

Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1 19 C), precipitation (402 973 mm), and SOC (5.89 33.58 g SOC kg 1) at the LTE sites were significantly related (r 2 = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks

Gollany, H. T. [USDA ARS; Rickman, R. W. [USDA ARS; Albrecht, S. L. [USDA ARS; Liang, Y. [University of Arkansas; Kang, Shujiang [ORNL; Machado, S. [Oregon State University, Corvallis

2011-01-01

267

Biofuels program summary. Volume 2: Research summaries  

NASA Astrophysics Data System (ADS)

The Federal government has supported research on biomass technology and energy from municipal waste since 1975. Separate research programs were conducted until 1985 when the two were merged into biofuels and municipal waste technology to take advantage of their many similarities in conversion requirements and research needs. The purpose of the biofuels program is to provide focus, direction, coordination, and funding for the development of technologies that produce tailored energy crops and convert these crops and wastes to fuels. The FY 1989 program includes research on the production (growth) of biomass and its conversion to fuels. Research on biomass production involves the development and use of genetically improved trees and grasses specifically for their energy conversion characteristics (terrestrial energy crops). The Biofuels Program Summary is prepared each year and consists of a two-volume reference set describing the technological advances, current projects, and future research and development (R and D) directions of the program. This volume (Volume 2-Research Summaries) is a compilation of detailed descriptions of the R and D projects performed by the national laboratories and their subcontractors from industry, universities, and nonprofit research institutions.

1990-01-01

268

Environmental implications of jatropha biofuel from a silvi-pastoral production system in central-west Brazil.  

PubMed

We present a life cycle assessment of synthetic paraffinic kerosene produced from Jatropha curcas. The feedstock is grown in an intercropping arrangement with pasture grasses so that Jatropha is coproduced with cattle. Additional innovations are introduced including hybrid seeds, detoxification of jatropha seedcake, and cogeneration. Two fuel pathways are examined including a newly developed catalytic decarboxylation process. Sensitivities are examined including higher planting density at the expense of cattle production as well as 50% lower yields. Intercropping with pasture and detoxifying seedcake yield coproducts that are expected to relieve pressure on Brazil's forests and indirectly reduce environmental impacts of biofuel production. Other innovations also reduce impacts. Results of the baseline assessment indicate that innovations would reduce impacts relative to the fossil fuel reference scenario in most categories including 62-75% reduction in greenhouse gas emissions, 64-82% reduction in release of ozone depleting chemicals, 33-52% reduction in smog-forming pollutants, 6-25% reduction in acidification, and 60-72% reduction in use of nonrenewable energy. System expansion, which explicitly accounts for avoided deforestation, results in larger improvements. Results are robust across allocation methodologies, improve with higher planting density, and persist if yield is reduced by half. PMID:23713609

Bailis, Rob; Kavlak, Goksin

2013-06-26

269

Sustainable cement production-present and future  

SciTech Connect

Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

Schneider, M., E-mail: sch@vdz-online.de [VDZ, Duesseldorf (Germany); Romer, M.; Tschudin, M. [Holcim Group Support Ltd, Holderbank (Switzerland); Bolio, H. [CEMEX, Monterrey (Mexico)

2011-07-15

270

Global Trends on the Processing of Biofuels  

Microsoft Academic Search

The aim of the present paper is to investigate bio-fuels produced from biomass materials by thermochemical and biochemical methods and the utilization trends of the products in the world. Bio-fuels are liquid or gaseous fuels made from plant matter and residues, such as agricultural crops, municipal wastes and agricultural and forestry by-products. Liquid bio-fuels being considered world over fall into

Mustafa Balat

2008-01-01

271

Biofuel Residues\\/Wastes: Ban or Boon?  

Microsoft Academic Search

Biofuel production generates significant amounts of low-value residues and wastes. This results in concern over sustainability of biofuel industry and its impact on environment. Bioconversion offers opportunities for economic utilization of biofuel residues and wastes with concomitant remediation of wastes. Due to their characteristics, these residues\\/wastes can serve as low-cost substrates for bioconversion to high-value products. Attempts have been made

SAOHARIT NITAYAVARDHANA; SAMIR KUMAR KHANAL

2011-01-01

272

Biofuel Residues\\/Wastes: Ban or Boon?  

Microsoft Academic Search

Biofuel production generates significant amounts of low-value residues and wastes. This results in concern over the sustainability of the biofuel industry and its impact on the environment. Bioconversion offers opportunities for the economic utilization of biofuel residues and wastes with concomitant remediation of wastes. Due to their characteristics, these residues\\/wastes can serve as low-cost substrates for bioconversion to high-value products.

SAOHARIT NITAYAVARDHANA; SAMIR KUMAR KHANAL

2012-01-01

273

Future prospects for production of methanol and hydrogen from biomass  

Microsoft Academic Search

Technical and economic prospects of the future production of methanol and hydrogen from biomass have been evaluated. A technology review, including promising future components, was made, resulting in a set of promising conversion concepts. Flowsheeting models were made to analyse the technical performance. Results were used for economic evaluations. Overall energy efficiencies are around 55% HHV for methanol and around

Carlo N Hamelinck

2002-01-01

274

Plastid biotechnology for crop production: present status and future perspectives  

PubMed Central

The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed.

Daniell, Henry

2012-01-01

275

Biorefineries for biofuel upgrading: A critical review  

Microsoft Academic Search

This study reviews the biofuel valorization facilities as well as the future importance of biorefineries. Biomass can be converted into useful biofuels and bio-chemicals via biomass upgrading and biorefinery technologies. A biorefinery is a facility that integrates biomass conversion processes to produce fuels, power, and chemicals from biomass. Biomass upgrading processes include fractionation, liquefaction, pyrolysis, hydrolysis, fermentation, and gasification. Upgraded

M. Fatih Demirbas

2009-01-01

276

Four myths surrounding U.S. biofuels  

Microsoft Academic Search

The rapid growth of biofuels has elicited claims and predictions concerning the current and future role of these fuels in the U.S. vehicle-fuel portfolio. These assertions are at times based on a false set of assumptions concerning the biofuel's market related to the petroleum and agricultural commodities markets, and the nonmarket consequences of our automobile driving. As an aid in

M. Wetzstein; H. Wetzstein

2011-01-01

277

Algae as a sustainable energy source for biofuel production in Iran: A case study  

Microsoft Academic Search

Algae can be converted directly into energy, such as biodiesel, bioethanol and biomethanol and therefore can be a source of renewable energy. There is a growing interest for biodiesel production from algae because of its higher yield non-edible oil production and its fast growth that does not compete for land with food production. About 50% of algae weight is oil

Gholamhassan Najafi; Barat Ghobadian; Talal F. Yusaf

2011-01-01

278

Genetic Engineering of Allergens: Future Therapeutic Products  

Microsoft Academic Search

Genetic engineering of allergens for specific immunotherapy should aim at the production of modified molecules with reduced IgE-binding epitopes (hypoallergens), while preserving structural motifs necessary for T cell recognition (T cell epitopes) and for induction of IgG antibodies reactive with the natural allergen (blocking antibodies). Common approaches for engineering of hypoallergens usually require knowledge of T and B cell epitopes

Fátima Ferreira; Michael Wallner; Heimo Breiteneder; Arnulf Hartl; Josef Thalhamer; Christof Ebner

2002-01-01

279

17 CFR 41.23 - Listing of security futures products for trading.  

Code of Federal Regulations, 2013 CFR

...Security Futures Products § 41.23 Listing of security futures products for trading. (a) Initial listing of products for trading. To list new security futures products for trading, a designated contract market shall submit to...

2013-04-01

280

Mitigating Land Use Changes From Biofuel Expansion: An Assessment of Biofuel Feedstock Yield Potential in APEC Economies  

Microsoft Academic Search

The emerging biofuel sector has drawn great interest as an alternative source of fuel for transportation. The expansion of biofuels greatly impacts world agricultural markets, since currently, the primary feedstocks for ethanol and biodiesel production are field crops and their derived products. There is great interest in the potential of countries to expand their biofuel sectors through increased production of

Amani E. Elobeid; Simla Tokgoz; Tun-Hsiang Yu

2009-01-01

281

Fuel from Wastewater - Harnessing a Potential Energy Source in Canada through the Co-location of Algae Biofuel Production to Sources of Effluent, Heat and CO2  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the “production” footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada’s NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model. Joint activities in algal biofuel research involving Sandia National Labs, NREL, and Canada’s NRC are supported by the U.S. - Canada Clean Energy Dialogue Secretariat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Klise, G. T.; Roach, J. D.; Passell, H. D.; Moreland, B. D.; O'Leary, S. J.; Pienkos, P. T.; Whalen, J.

2010-12-01

282

Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis  

Microsoft Academic Search

In this study, the energy balance of two microalgae-to-biofuel concepts, one via a so called “dry route” (oil extraction from dried algae) and one via a “wet route” (oil extraction in the water phase), are assessed. Both routes are intended to convert the chemical energy contained in the microalgae into high-value biofuels with minimal fossil energy consumption. The analysis shows

Lixian Xu; Jan A. M. Withag; Gerrit Brem; Sascha Kersten

2011-01-01

283

The future of sustainable food production.  

PubMed

By the year 2050, the number of people on Earth is expected to increase from the current 6.7 to 9.2 billion. What is the best way to produce enough food to feed all these people? If we continue with current farming practices, vast amounts of wilderness will be lost, millions of birds and billions of insects will die, farm workers will be at increased risk for disease, and the public will lose billions of dollars as a consequence of environmental degradation. Clearly, there must be a better way to resolve the need for increased food production with the desire to minimize its impact. PMID:20388151

Ronald, Pamela; Adamchak, Raoul

2010-03-01

284

Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses.  

PubMed

Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil. PMID:23032611

Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

2012-09-20

285

Phylogenomic Study of Lipid Genes Involved in Microalgal Biofuel Production--Candidate Gene Mining and Metabolic Pathway Analyses  

PubMed Central

Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil.

Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

2012-01-01

286

Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture.  

PubMed

Clostridium acetobutylicum was metabolically engineered to produce a biofuel consisting of an isopropanol/butanol/ethanol mixture. For this purpose, different synthetic isopropanol operons were constructed and introduced on plasmids in a butyrate minus mutant strain (C. acetobutylicum ATCC 824 ?cac15?upp?buk). The best strain expressing the isopropanol operon from the thl promoter was selected from batch experiments at pH 5. By further optimizing the pH of the culture, a biofuel mixture with almost no by-products was produced at a titer, a yield and productivity never reached before, opening the opportunities to develop an industrial process for alternative biofuels with Clostridial species. Furthermore, by performing in vivo and in vitro flux analysis of the synthetic isopropanol pathway, this flux was identified to be limited by the [acetate](int) and the high Km of CoA-transferase for acetate. Decreasing the Km of this enzyme using a protein engineering approach would be a good target for improving isopropanol production and avoiding acetate accumulation in the culture medium. PMID:23541907

Dusséaux, Simon; Croux, Christian; Soucaille, Philippe; Meynial-Salles, Isabelle

2013-03-26

287

A ROADMAP FOR SUSTAINABLE ADVANCED BIOFUEL FEEDSTOCK PRODUCTION IN THE MID-SOUTH  

Technology Transfer Automated Retrieval System (TEKTRAN)

Although various studies exist that deal with the production of bioenergy crops, a number of aspects of bioenergy feedstock production (feedstock choice, natural resource availability, available infrastructure, etc.) are strongly influenced by the region in which the feedstock is produced and proces...

288

Membrane processes for alcohol-water separation: Improving the energy efficiency of biofuel production  

EPA Science Inventory

The economics and environmental impact of producing fuels and chemicals biologically can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol an...

289

The Controlled Eutrophication Process; Microalgae for Biofuels Production and Fertilizer Recycling at the Salton Sea, California  

Microsoft Academic Search

obtain field data quantifying and demonstrating algal and fish productivity, algal harvestability, and waste N and P recovery in this innovative high rate culture facility designed for by-product recovery. Nutrient inputs currently eutrophying the Salton Sea may be recovered using 4,000 acres of CEP units producing an algal sludge that may be blended with waste paper to be fermented into

D. E. Brune; H. W. Yen; G. Schwartz; J. R. Benemann; M. J. Massingill; J. C. Van Olst; J. A. Carlberg

290

Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems  

PubMed Central

Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

Huang, Wei-Dong; Zhang, Y-H Percival

2011-01-01

291

Generating Phenotypic Diversity in a Fungal Biocatalyst to Investigate Alcohol Stress Tolerance Encountered during Microbial Cellulosic Biofuel Production  

PubMed Central

Consolidated bioprocessing (CBP) of lignocellulosic biomass offers an alternative route to renewable energy. The crop pathogen Fusarium oxysporum is a promising fungal biocatalyst because of its broad host range and innate ability to co-saccharify and ferment lignocellulose to bioethanol. A major challenge for cellulolytic CBP-enabling microbes is alcohol inhibition. This research tested the hypothesis that Agrobacterium tumefaciens - mediated transformation (ATMT) could be exploited as a tool to generate phenotypic diversity in F. oxysporum to investigate alcohol stress tolerance encountered during CBP. A random mutagenesis library of gene disruption transformants (n=1,563) was constructed and screened for alcohol tolerance in order to isolate alcohol sensitive or tolerant phenotypes. Following three rounds of screening, exposure of select transformants to 6% ethanol and 0.75% n-butanol resulted respectively in increased (?11.74%) and decreased (?43.01%) growth compared to the wild –type (WT). Principal component analysis (PCA) quantified the level of phenotypic diversity across the population of genetically transformed individuals and isolated candidate strains for analysis. Characterisation of one strain, Tr. 259, ascertained a reduced growth phenotype under alcohol stress relative to WT and indicated the disruption of a coding region homologous to a putative sugar transporter (FOXG_09625). Quantitative PCR (RT-PCR) showed FOXG_09625 was differentially expressed in Tr. 259 compared to WT during alcohol-induced stress (P<0.05). Phylogenetic analysis of putative sugar transporters suggests diverse functional roles in F. oxysporum and other filamentous fungi compared to yeast for which sugar transporters form part of a relatively conserved family. This study has confirmed the potential of ATMT coupled with a phenotypic screening program to select for genetic variation induced in response to alcohol stress. This research represents a first step in the investigation of alcohol tolerance in F. oxysporum and has resulted in the identification of several novel strains, which will be of benefit to future biofuel research.

Hennessy, Rosanna C.; Doohan, Fiona; Mullins, Ewen

2013-01-01

292

Generating Phenotypic Diversity in a Fungal Biocatalyst to Investigate Alcohol Stress Tolerance Encountered during Microbial Cellulosic Biofuel Production.  

PubMed

Consolidated bioprocessing (CBP) of lignocellulosic biomass offers an alternative route to renewable energy. The crop pathogen Fusarium oxysporum is a promising fungal biocatalyst because of its broad host range and innate ability to co-saccharify and ferment lignocellulose to bioethanol. A major challenge for cellulolytic CBP-enabling microbes is alcohol inhibition. This research tested the hypothesis that Agrobacterium tumefaciens - mediated transformation (ATMT) could be exploited as a tool to generate phenotypic diversity in F. oxysporum to investigate alcohol stress tolerance encountered during CBP. A random mutagenesis library of gene disruption transformants (n=1,563) was constructed and screened for alcohol tolerance in order to isolate alcohol sensitive or tolerant phenotypes. Following three rounds of screening, exposure of select transformants to 6% ethanol and 0.75% n-butanol resulted respectively in increased (?11.74%) and decreased (?43.01%) growth compared to the wild -type (WT). Principal component analysis (PCA) quantified the level of phenotypic diversity across the population of genetically transformed individuals and isolated candidate strains for analysis. Characterisation of one strain, Tr. 259, ascertained a reduced growth phenotype under alcohol stress relative to WT and indicated the disruption of a coding region homologous to a putative sugar transporter (FOXG_09625). Quantitative PCR (RT-PCR) showed FOXG_09625 was differentially expressed in Tr. 259 compared to WT during alcohol-induced stress (P<0.05). Phylogenetic analysis of putative sugar transporters suggests diverse functional roles in F. oxysporum and other filamentous fungi compared to yeast for which sugar transporters form part of a relatively conserved family. This study has confirmed the potential of ATMT coupled with a phenotypic screening program to select for genetic variation induced in response to alcohol stress. This research represents a first step in the investigation of alcohol tolerance in F. oxysporum and has resulted in the identification of several novel strains, which will be of benefit to future biofuel research. PMID:24147009

Hennessy, Rosanna C; Doohan, Fiona; Mullins, Ewen

2013-10-16

293

Biofuels: biomolecular engineering fundamentals and advances.  

PubMed

The biological production of fuels from renewable sources has been regarded as a feasible solution to the energy and environmental problems in the foreseeable future. Recently, the biofuel product spectrum has expanded from ethanol and fatty acid methyl esters (biodiesel) to other molecules, such as higher alcohols and alkanes, with more desirable fuel properties. In general, biosynthesis of these fuel molecules can be divided into two phases: carbon chain elongation and functional modification. In addition to natural fatty acid and isoprenoid chain elongation pathways, keto acid-based chain elongation followed by decarboxylation and reduction has been explored for higher alcohol production. Other issues such as metabolic balance, strain robustness, and industrial production process efficiency have also been addressed. These successes may provide both scientific insights into and practical applications toward the ultimate goal of sustainable fuel production. PMID:22432571

Li, Han; Cann, Anthony F; Liao, James C

2010-01-01

294

Rural sector adapting to climate change - effects on future production  

Microsoft Academic Search

In this presentation we argue that there is growing evidence that Australia's climate will continue to change in the foreseeable future in ways that adversely affect agricultural production, requiring immediate and significant adaptation strategies. Most of the available evidence suggests that agricultural production is likely to be reduced by drier and warmer conditions projected for many of Australia's agricultural regions.

H. Meinke; Mark Howden; Andries Potgieter; Daniel Rodriguez

295

Some political issues related to future special nuclear materials production  

Microsoft Academic Search

The Federal Government must take action to assure the future adequate supply of special nuclear materials for nuclear weapons. Existing statutes permit the construction of advanced defense production reactors and the reprocessing of commercial spent fuel for the production of special materials. Such actions would not only benefit the US nuclear reactor manufacturers, but also the US electric utilities that

Peaslee; A. T. Jr

1981-01-01

296

Biofuels from algae for sustainable development  

Microsoft Academic Search

Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global

M. Fatih Demirbas

2011-01-01

297

The Impact of First and Second Generation Biofuels on Global Agricultural Production, Trade and Land Use  

Microsoft Academic Search

This paper assesses the global and sectoral implications of the growing demand for bio-based inputs for energy and fuel production. More specifically, the purpose of this paper is to assess the global and sectoral implications of policy initiatives in different countries or regions (e.g. the U.S., the EU, Canada, South Africa or Japan) to enhance bioenergy demand and production in

Martin Banse; Hans van Meijl; Geert Woltjer

298

Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations  

Microsoft Academic Search

There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great\\u000a potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies\\u000a required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped.\\u000a Microalgae offer several advantages over traditional

Patrick J. McGinn; Kathryn E. Dickinson; Shabana Bhatti; Jean-Claude Frigon; Serge R. Guiot; Stephen J. B. O’Leary

299

Making Fuels from Wastes and Crops. Biofuels Technology in Britain.  

National Technical Information Service (NTIS)

The production and use of biofuels is one of the most promising ways of exploiting renewable energy sources in the United Kingdom. A detailed assessment of the various biofuels technologies recently carried out for the Department of Energy suggests that, ...

1988-01-01

300

Food Security and Biofuels Development: The Case of China  

Microsoft Academic Search

Biofuels production is expanding rapidly all over the world, driven by rising crude oil prices, the desire of countries to be energy independent, and concerns about climate change. As developed countries, especially the United States, are expanding biofuels production, developing countries are expanding their biofuels industries as well, to power their growing economies. However, developing countries must address the food

Fengxia Dong

2007-01-01

301

Boundless Biofuels? Between Environmental Sustainability and Vulnerability  

Microsoft Academic Search

Biofuels currently appear to be one of the major controversies in the agriculture\\/environment nexus, not unlike genetically modified organisms. While some countries (such as Brazil) have for quite some time supported successful large-scale programmes to improve the production and consumption of biofuels, policy-makers and research institutions in most developed and developing countries have only recently turned their attention to biofuels.

Arthur P. J. Mol

2007-01-01

302

Perspective assessment of algae-based biofuel production using recycled nutrient sources: the case of Japan.  

PubMed

In this study, an upper limit in the solar energy conversion efficiency which can be translated to a maximum potential algal yield of a large-scale culture is calculated based on the algal productivity model in which light and nutrient are made the growth rate limiting factors, and taking the design characteristics of the cultivation system into account. Our results indicate that for the production of low-cost biodiesel within the limits of the wastewater quality standards, that the culturing of high lipid content algae within a raceway pond would provide an appropriate solution for manufacturing biodiesel from algae. However, due to inefficient sunlight utilization and due to the large amount of fertilizer required in raceway ponds, a greater effluent recycle rate would have to be implemented to reduce the amount of fertilizer discharge to meet the wastewater quality standards and to maximize the attainable productivity of algal biomass. PMID:23228517

Wang, Tunyen; Yabar, Helmut; Higano, Yoshiro

2012-11-01

303

Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste  

SciTech Connect

In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

Hedman, Bjoern [Chemistry Department, Environmental Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: bjorn.hedman@chem.umu.se; Burvall, Jan [Unit for Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, Box 4097, SE-904 03 Umeaa (Sweden); Nilsson, Calle [NBC Defence, NBC Analysis, The Swedish Defence Research Agency, SE-901 82 Umeaa (Sweden); Marklund, Stellan [Chemistry Department, Environmental Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)

2005-07-01

304

Bioprocessing for biofuels.  

PubMed

While engineering of new biofuels pathways into microbial hosts has received considerable attention, innovations in bioprocessing are required for commercialization of both conventional and next-generation fuels. For ethanol and butanol, reducing energy costs for product recovery remains a challenge. Fuels produced from heterologous aerobic pathways in yeast and bacteria require control of aeration and cooling at large scales. Converting lignocellulosic biomass to sugars for fuels production requires effective biomass pretreatment to increase surface area, decrystallize cellulose and facilitate enzymatic hydrolysis. Effective means to recover microalgae and extract their intracellular lipids remains a practical and economic bottleneck in algal biodiesel production. PMID:22033175

Blanch, Harvey W

2011-10-25

305

Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production.  

PubMed

Algae cultivation is the essential basis for microalgal biofuel production. Soluble algal products (SAP) are significant obstacle to large-scale, high-cell-density cultivation processes. SAP accumulation during batch cultivation of Scenedesmus sp. LX1 (a unique strain accumulating lipid substantially while growing fast under low-nutrient conditions) with different initial nitrogen concentrations (7.4-34.0mgNL(-1)) was investigated. The SAP content varied in the range of 3.4-17.4mgDOCL(-1) at stationary phase, with average yield per cell of 0.5-2.5pgDOCcell(-1). High SAP accumulation up to 15.2-17.4mgDOCL(-1) were observed with initial nitrogen above 20.2mgNL(-1). The maximum SAP production rate per unit culture volume (r(SAP)) was 2.6mgDOC(Ld)(-1) and that per cell (?(SAP)) was 1.5pgDOC(celld)(-1). The r(SAP) increased with cell growth rate and decreased with cell density linearly. The SAP accumulation was majorly due to the release of growth-associated products. PMID:22322147

Yu, Yin; Hu, Hong-Ying; Li, Xin; Wu, Yin-Hu; Zhang, Xue; Jia, Sheng-Lan

2011-11-15

306

Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production  

Microsoft Academic Search

Grain compositional components impacting barley (Hordeum vulgare L.) use in food, feed and fuel products, must be combined with improved agronomic traits to produce a commercially viable barley cultivar. Little current information is available on grain composition and variability among winter barley genotypes. This study was conducted to determine the variability among modern hulled and hulless winter barley genotypes in

Carl Griffey; Wynse Brooks; Michael Kurantz; Wade Thomason; Frank Taylor; Don Obert; Robert Moreau; Rolando Flores; Miryeong Sohn; Kevin Hicks

2010-01-01

307

Nutrient and water requirements for elephantgrass production as a bio-fuel feedstock  

Technology Transfer Automated Retrieval System (TEKTRAN)

Elephantgrass (Pennisetum purpureum Schumacher) is a tall tropical bunch grass that produces high enough yields to being considered an excellent bio-energy feedstock for the lower South. However, previous studies have shown that production is not sustainable without fertilizer application and adequ...

308

Increasing algal biofuel production using Nannocholropsis oculata cultivated with anaerobically and aerobically treated swine wastewater.  

PubMed

For mass production of Nannocholropsis oculata, a cheap nutrition source such as swine wastewater is required. The use of a combination of anaerobically/aerobically treated swine wastewater (AnATSW) was compared to artificial 3×f/2 medium in terms of algal growth rate and oil content. For microalgae cultured in 0-50% (v/v) AnATSW, a biomass of 0.94-3.22 g L(-1) was reached in 5 days. For microalgae cultured in 3×f/2 medium with vitamins, the lipid productivity was 0.122 g L(-1) d(-1) although its oil content reached 48.9%. Culturing N. oculata in 0-50% AnATSW resulted in an optimal lipid productivity of 0.035-0.177 g L(-1) d(-1). Only vitamins improved algal production of more oxidatively stable compositions of unsaturated oils. These oils were similar to the chemical structure of rapeseed oil based on analysis of the bis-allylic-position-equivalent value (30.64-46.13) and the iodine value (90.5-117.46). These oils were similar to coal based on the calculated low-heating-value of 17.6-22.9 MJ/kg. PMID:23422305

Wu, Pei-Fen; Teng, Jui-Chin; Lin, Yun-Huin; Hwang, Sz-Chwun John

2013-01-29

309

Peanut pod, seed, and oil yield for biofuel following conventional and organic production systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Increase in demand for organic peanut (Arachis hypogaea L.) makes it increasingly necessary to develop organic methods in their production. Corn gluten meal (CGM) and vinegar are materials used in organic weed control. These were used alone, or in conjunction with cultivation, to evaluate their ef...

310

Indirect measurements of Brachiaria brizantha cv. Marandu fermentable cell wall sugars for second generation biofuels production.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Results of a study conducted to evaluate the possibility of using IVDMD values of B. brizantha cv. Marandu to predict cell wall sugars that would be available in a biorefinery for ethanol production are reported. The study was conducted based on the similarity between rumen enzymes and those used i...

311

A spatially explicit techno-economic model of bioenergy and biofuels production in California  

Microsoft Academic Search

This study presents a spatially explicit techno-economic Bioenergy Siting Model (BSM) of the bioenergy production system in California. The model describes the bioenergy system in terms of facility siting and size, conversion technology, feedstock profile, and feedstock supply chain configuration for the year 2015. The BSM expands upon previous bioenergy siting work by optimizing the system using spatially explicit feedstock

P. W. Tittmann; N. C. Parker; Q. J. Hart; B. M. Jenkins

2010-01-01

312

Radionuclide concentration in fuels and ash products from biofuel heating plants.  

National Technical Information Service (NTIS)

The activity concentration of the radionuclides K-40, Ac-228, Pa-234, Mn-54, Co-60, Zr-95, Ru-106, Ag-110m, Sb-125, Cs-134, Cs-137, and Ce-144 have been investigated in peat wood chips and ash products from 13 Swedish district heating plants during the wi...

B. Erlandsson R. Hedvall S. Mattsson

1995-01-01

313

An integrated renewable energy park approach for algal biofuel production in United States  

Microsoft Academic Search

Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and

Bobban Subhadra; Mark Edwards

2010-01-01

314

The Roundtable on Sustainable Biofuels: plant scientist input needed.  

PubMed

The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion. PMID:19595624

Haye, Sébastien; Hardtke, Christian S

2009-07-15

315

PRODUCTION OF BIOFUEL FROM SOFT SHELL OF PISTACHIO (PISTACIA VERA L.)  

Microsoft Academic Search

Soft shell of pistachio (Pistacia veraL.) pyrolysis experiments were performed in a fixed-bed reactor to produce bio-oil. The effects of temperature, heating rate, and sweep gas (N2) flow rates on the yields and compositions of products were investigated. Pyrolysis runs were performed using reactor temperatures between 350° and 500°C with heating rates of 15° and 50°C\\/min. Nitrogen flow rates varied

?lknur Demiral; Nurdilek Gülmezo?lu Atilgan; Sevgi ?ensöz

2008-01-01

316

Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance  

Microsoft Academic Search

This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass:\\u000a energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies,\\u000a and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the\\u000a total sugar recovery divided by total energy consumption for pretreatment, should be used to

J. Y. Zhu; Xuejun Pan; Ronald S. Zalesny Jr

2010-01-01

317

Cs137 in fuels and ash products from biofuel power plants in Sweden  

Microsoft Academic Search

The activity concentrations of Cs-137 in peat, wood chips and ash products from 13 Swedish district heating plants have been investigated during the winter seasons of 1986\\/87, 1988\\/89, 1989\\/90 and 1990\\/91. There is a significant decrease in the activity concentration of Cs-137 in the fuel which was especially pronounced between the first two seasons after the Chernobyl accident. In spite

Sören Mattsson

1996-01-01

318

Energy resources' utilization in organic and conventional vineyards: Energy flow, greenhouse gas emissions and biofuel production  

Microsoft Academic Search

An energy analysis, in conventional and organic vineyards, combined with ethanol production and greenhouse gas emissions, is useful in evaluating present situation and deciding best management strategies. The objective of this study was to evaluate the differences in the energy flow between organic and conventional vineyards in three locations, to calculate CO2, CH4 and N2O-emissions based on the used fossil

Stefanos E. Kavargiris; Andreas P. Mamolos; Constantinos A. Tsatsarelis; Anna E. Nikolaidou; Kiriaki L. Kalburtji

2009-01-01

319

Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.  

PubMed

Using marginal agricultural lands to grow energy crops for biofuel feedstocks is a promising option to meet the biofuel needs in populous China without causing further food shortages or environmental problems. Here we quantify the effects of growing switchgrass and Miscanthus on Chinese marginal agricultural lands on biomass production and carbon emissions with a global-scale biogeochemical model. We find that the national net primary production (NPP) of these two biofuel crops are 622 and 1546 g C m(-2) yr(-1), respectively, whereas the NPP of food crops is about 600 g C m(-2) yr(-1) in China. The net carbon sink over the 47 Mha of marginal agricultural lands across China is 2.1 Tg C yr(-1) for switchgrass and 5.0 Tg C yr(-1) for Miscanthus. Soil organic carbon is estimated to be 10 kg C m(-2) in both biofuel ecosystems, which is equal to the soil carbon levels of grasslands in China. In order to reach the goal of 12.5 billion liters of bioethanol in 2020 using crop biomass as biofuel feedstocks, 7.9-8.0 Mha corn grain, 4.3-6.1 Mha switchgrass, or 1.4-2.0 Mha Miscanthus will be needed. Miscanthus has tremendous potential to meet future biofuel needs, and to benefit CO(2) mitigation in China. PMID:22085109

Qin, Zhangcai; Zhuang, Qianlai; Zhu, Xudong; Cai, Ximing; Zhang, Xiao

2011-11-28

320

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

SciTech Connect

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01

321

Synergetic sustainability enhancement via current biofuel infrastructure: waste-to-energy concept for biodiesel production.  

PubMed

The concept of waste-to-energy (WtE) with regards to the utilization of byproducts from the bioethanol industry (e.g., distiller's dried grain with solubles: DDGS) was employed to enhance the renewability of biodiesel, which would be an initiative stage of a biorefinery due to the conjunction between bioethanol and biodiesel. For example, DDGS is a strong candidate for use as a biodiesel feedstock due to the tremendous amount that is regularly generated. On the basis of an estimation of possible lipid recovery from DDGS, ?30% of the biodiesel feedstock demand in 2010 could be supported by the total DDGS generation in the same year. Considering the future expansion of the bioethanol industry up to 2020, the possible lipid recovery from DDGS would provide more than 6 times the biodiesel feedstock demand in 2010. In order to enhance the renewability of biodiesel, the transformation of lipid extracted from DDGS into fatty acid ethyl ester (FAEE) via a noncatalytic transesterification reaction under ambient pressure was investigated in this work. The newly introduced method reported here enables the combination of the esterification of free fatty acids (FFAs) and the transesterification of triglycerides into a single step. This was achieved in the presence of a porous material (i.e., charcoal), and the optimal conditions for transformation into biodiesel via this noncatalytic method were assessed at the fundamental level. PMID:23410120

Kwon, Eilhann; Yi, Haakrho; Jeon, Young Jae

2013-02-22

322

Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System  

PubMed Central

The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems.

Alguacil, Maria del Mar; Torrecillas, Emma; Hernandez, Guillermina; Roldan, Antonio

2012-01-01

323

Biosynthesis of hydroxycinnamate conjugates: Implications for sustainable biomass and biofuel production  

SciTech Connect

Hydroxycinnamic acids constitute a large class of phenylpropanoid metabolites that are distributed ubiquitously in terrestrial plants. They occur most frequently as esters, amides or glycosides within the cytosol, the particular subcellular compartments such as the vacuole or the cell wall. Hydroxycinnamate conjugates play a vital role in the plant's growth and development and in its defense responses against biotic- and abiotic-stresses. Furthermore, the incorporation of hydroxycinnamate conjugates into the cell wall is a major factor attenuating the wall's biodegradability. Understanding the biosyntheses of hydroxycinnamate conjugates and its molecular regulation may well facilitate the sustainable production of cell wall biomass, and the efficient conversion of lignocellulosic materials. This paper reviews our current molecular and biochemical understandings on the formation of several classes of hydroxycinnamate esters and amides, including the soluble conjugates and the 'wall-bound' phenolics. It also discusses the emerging biotechnological applications in manipulating hydroxycinnamates to improve the degradability of the cell wall biomass and enhance the production of valuable chemicals and biomaterials.

Liu C. J.

2010-09-01

324

Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal  

Technology Transfer Automated Retrieval System (TEKTRAN)

Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

325

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

NASA Astrophysics Data System (ADS)

Fossil fuels have been the major source for liquid transportation fuels for ages. However, decline in oil reserves and environmental concerns have raised a lot of interest in alternative and renewable energy sources. One promising alternative is the conversion of plant biomass into ethanol. The primary biomass feed stocks currently being used for the ethanol industry have been food based biomass (corn and sugar cane). However, interest has recently shifted to replace these traditional feed-stocks with more abundant, non-food based cellulosic biomass such as agriculture wastes (corn stover) or crops (switch grass). The use of cellulosic biomass as feed stock for the production of ethanol via bio-chemical routes presents many technical challenges not faced with the use of corn or sugar-cane as feed-stock. Recently, a new process called consolidated Bio-processing (CBP) has been proposed. This process combines simultaneous saccharification of lignocellulose with fermentation of the resulting sugars into a single process step mediated by a single microorganism or microbial consortium. Although there is no natural microorganism that possesses all properties of lignocellulose utilization and ethanol production desired for CBP, some bacteria and fungi exhibit some of the essential traits. The yeast Saccharomyces cerevisiae is the most attractive host organism for the usage of this strategy due to its high ethanol productivity at close to theoretical yields (0.51g ethanol/g glucose consumed), high osmo- and ethanol- tolerance, natural robustness in industrial processes, and ease of genetic manipulation. Introduction of the cellulosome, found naturally in microorganisms, has shown new directions to deal with recalcitrant biomass. In this case enzymes work in synergy in order to hydrolyze biomass more effectively than in case of free enzymes. A microbial consortium has been successfully developed, which ensures the functional assembly of minicellulosome on the yeast surface composed of four yeast populations. These yeast populations include: one displaying scaffoldin on its surface and three populations secreting three different cellulases in the medium to hydrolyze the cellulose. The modular nature of the consortium system allows for the fine-tuning of each population by changing their initial inoculum ratio, thereby optimizing the cellulose hydrolysis and hence ethanol production. When comparing the optimized consortium with equal ratio consortium, the optimized one produced almost double the amount of ethanol (1.87 g/l) with a yield of 0.475 g ethanol/g cellulose. To further evaluate the feasibility of using consortium for CBP, it was grown at very low optical density (OD) under anaerobic conditions. Under stressful conditions like low OD and no oxygen, the consortium system was proficient in assembling the cellulosome on its surface and growing on the PAS-avicel as sole carbon source and concomitantly producing ethanol with a yield of 87% of the theoretical value. For the dynamic study of yeast consortium system, quantitative real time PCR was used to enumerate the individual yeast population in the mixed culture. At the end of the cultivation, ratios of each population in this consortium maintained similar number as the initial inoculums ratios, which further confirms the consortium system is suitable for the application of CBP.

Goyal, Garima

326

Cofactome analyses reveal enhanced flux of carbon into oil for potential biofuel production.  

PubMed

To identify the underlying molecular basis of carbon partitioning between starch and oil we conducted 454 pyrosequencing, followed by custom microarrays to profile gene expression throughout endosperm development, of two closely related oat cultivars that differ in oil content at the expense of starch as determined by several approaches including non-invasive magnetic resonance imaging. Comparative transcriptome analysis in conjunction with metabolic profiling displays a close coordination between energy metabolism and carbon partitioning pathways, with increased demands for energy and reducing equivalents in kernels with a higher oil content. These studies further expand the repertoire of networks regulating carbon partitioning to those involved in metabolism of cofactors, suggesting that an elevated supply of cofactors, here called cofactomes, contribute to the allocation of higher carbon pools for production of oils and storage proteins. These data highlight a close association between cofactomes and carbon partitioning, thereby providing a biotechnological target for conversion of starch to oil. PMID:21615570

Hayden, Daniel M; Rolletschek, Hardy; Borisjuk, Ljudmilla; Corwin, Jason; Kliebenstein, Daniel J; Grimberg, Asa; Stymne, Sten; Dehesh, Katayoon

2011-07-21

327

The path to next generation biofuels: successes and challenges in the era of synthetic biology.  

PubMed

Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184

Dellomonaco, Clementina; Fava, Fabio; Gonzalez, Ramon

2010-01-20

328

The path to next generation biofuels: successes and challenges in the era of synthetic biology  

PubMed Central

Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels.

2010-01-01

329

Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO 2 fixation and biofuel production  

Microsoft Academic Search

This paper reports experimental measurements of the radiation characteristics of green algae used for carbon dioxide fixation via photosynthesis. The generated biomass can be used to produce not only biofuels but also feed for animal and food supplements for human consumptions. Particular attention was paid to three widely used species namely Botryococcus braunii, Chlorella sp., and Chlorococcum littorale. Their extinction

Halil Berberoglu; Pedro S. Gomez; Laurent Pilon

2009-01-01

330

Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products.  

PubMed

Process design and economic analysis of a biorefinery for the treatment of citrus wastes (CW) at different capacities was carried out. The CW is hydrolyzed using dilute sulfuric acid and then further processed to produce limonene, ethanol and biogas. The total cost of ethanol for base case process with 100,000 tons/year CW capacity was calculated as 0.91 USD/L, assuming 10 USD/ton handling and transportation cost of CW to the plant. However, this price is sensitive to the plant capacity. With constant price of methane and limonene, changing the plant capacity from 25,000 to 400,000 tons CW per year results in reducing ethanol costs from 2.55 to 0.46 USD/L in an economically feasible process. In addition, the ethanol production cost is sensitive to the transportation cost of CW. Increasing this cost from 10 to 30 USD/ton for the base case results in increasing the ethanol costs from 0.91 to 1.42 USD/L. PMID:20488693

Lohrasbi, Mehdi; Pourbafrani, Mohammad; Niklasson, Claes; Taherzadeh, Mohammad J

2010-05-21

331

European energy security: The future of Norwegian natural gas production  

Microsoft Academic Search

The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has on several occasions communicated that Norwegian gas production will continue to increase within the next decade by 25-40% from today's level of about 99 billion cubic meters

Bengt Söderbergh; Kristofer Jakobsson; Kjell Aleklett

332

Synergies between bio- and oil refineries for the production of fuels from biomass.  

PubMed

As petroleum prices continue to increase, it is likely that biofuels will play an ever-increasing role in our energy future. The processing of biomass-derived feedstocks (including cellulosic, starch- and sugar-derived biomass, and vegetable fats) by catalytic cracking and hydrotreating is a promising alternative for the future to produce biofuels, and the existing infrastructure of petroleum refineries is well-suited for the production of biofuels, allowing us to rapidly transition to a more sustainable economy without large capital investments for new reaction equipment. This Review discusses the chemistry, catalysts, and challenges involved in the production of biofuels. PMID:17610226

Huber, George W; Corma, Avelino

2007-01-01

333

Stakeholder perceptions of biofuels from microalgae  

Microsoft Academic Search

In this paper we focus on stakeholder views around the development of advanced biofuels from microalgae. Research for the development of microalgal-derived biofuels was initiated by the US Department of Energy (DOE) more than 30 years ago. However, interest in this eco-innovation has been growing significantly over the last five years in various countries. The high productivity of algae indicates

Christian Oltra

2011-01-01

334

Biofuels coproducts tolerance and toxicology for ruminants.  

PubMed

The rapid growth of the biofuels industry in the Midwest in the past 10 years has created an increased supply of corn coproduct feed for animals. This article discusses the tolerance and toxicology of biofuels coproducts in ruminants, including polioencephalomalacia, sulfur toxicosis, sulfur metabolism, mycotoxins, antibiotic residue, and biodiesel by-product toxicosis. PMID:21575771

Ensley, Steve

2011-07-01

335

Biofuels and Fisheries: Risks and Opportunities .  

EPA Science Inventory

A rapidly developing biofuels industry in the U.S. and around the globe poses novel environmental challenges and opportunities, with implications for teh health and sustainability of fisheries. Changes in land uses and agricultural practices for production of biofuel feedstocks ...

336

Biofuels and the conundrum of sustainability.  

PubMed

Sustainable energy is the problem of the 21st century. If biofuels want to be part of the solution they must accept a degree of scrutiny unprecedented in the development of a new industry. That is because sustainability deals explicitly with the role of biofuels in ensuring the well-being of our planet, our economy, and our society both today and in the future. Life cycle assessment (LCA) has been the standard framework for assessing sustainability of biofuels. These assessments show that corn ethanol has a marginally lower fossil energy and greenhouse gas footprint compared to petroleum fuel. Sugarcane ethanol and some forms of biodiesel offer substantially lower footprints. New biofuels may offer low footprints. The science of LCA is being stretched to its limits as policy makers consider direct and indirect effects of biofuels on global land and water resources, global ecosystems, air quality, public health, and social justice. PMID:19553101

Sheehan, John J

2009-06-22

337

Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of VermontâÂ?Â?s Energy Needs  

SciTech Connect

The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund�s (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont�s dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy�s Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization� the Biofuels Center of North Carolina�in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm�s proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC�s proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a �Cow Power� biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont�s pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

Scott Sawyer; Ellen Kahler

2009-05-31

338

The Economics of a Blend Mandate for Biofuels  

Microsoft Academic Search

A biofuel blend mandate may increase or decrease consumer fuel prices with endogenous oil prices, depending on relative supply elasticities. Biofuel tax credits always reduce fuel prices. Tax credits result in lower fuel prices than under a mandate for the same level of biofuel production. If tax credits are implemented alongside mandates, then tax credits subsidize fuel consumption instead of

Harry de Gorter; David R. Just

2009-01-01

339

The Economics of a Blend Mandate for Biofuels  

Microsoft Academic Search

A biofuel blend mandate may increase or decrease consumer fuel prices with endogenous oil prices, depending on relative supply elasticities. Biofuel tax credits always reduce fuel prices. Tax credits result in lower fuel prices than under a mandate for the same level of biofuel production. If tax credits are implemented alongside mandates, then tax credits subsidize fuel consumption instead of

Harry de Gorter; David R. Just

2008-01-01

340

How much hope should we have for biofuels?  

Microsoft Academic Search

This paper revisits the recent developments in biofuel markets and their economic, social and environmental impacts. Several countries have introduced mandates and targets for biofuel expansion. Production, international trade and investment have increased sharply in the last few years. However, some analysts linked biofuels to the 2007–2008 global food crisis. Existing studies diverge on the magnitude of the projected long-term

Govinda R. Timilsina; Ashish Shrestha

2011-01-01

341

The future of veterinary medicine in poultry production.  

PubMed

The poultry industry is a highly complex food-animal production system. Its success is dependent upon sophisticated techniques and systems to ensure disease prevention and product quality. Poultry veterinarians play a key role in the overall business and are typically the only individuals within poultry companies who are involved in the entire production process, including production management, health management, product quality, nutrition, and economics. Preparing veterinarians to work effectively in the poultry industry can no longer be accomplished within the DVM instructional program. Post-DVM training programs specializing in poultry medicine are now producing the veterinarians entering the North American poultry industry. Regionalization of training in poultry medicine has already taken place. These training programs are very important to food animal production in North America; in the future, they must be nurtured and supported in order to remain able to supply the veterinary workforce for our dynamic poultry industry. PMID:17220484

Glisson, John R; Hofacre, Charles L

2006-01-01

342

Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels  

SciTech Connect

This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

2012-01-01

343

Biofuels from Microalgae and Seaweeds  

SciTech Connect

8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

2010-03-01

344

Development of Cellulosic Biofuels  

ScienceCinema

Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics. His talk was presented June 20, 2007.

345

Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.  

PubMed

Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply. PMID:20163088

Bright, Ryan M; Strřmman, Anders Hammer

2010-04-01

346

Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity  

USGS Publications Warehouse

In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R. B.; Hicks, Matthew B.

2010-01-01

347

European energy security: The future of Norwegian natural gas production  

Microsoft Academic Search

The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has communicated that Norwegian gas production will increase by 25–40% from today's level of about 99 billion cubic meters (bcm)\\/year. This article shows that only a 20–25% growth

Bengt Söderbergh; Kristofer Jakobsson; Kjell Aleklett

2009-01-01

348

Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal.  

PubMed

Acetone butanol ethanol (ABE) was produced in an integrated continuous one-stage fermentation and gas stripping product recovery system using Clostridium beijerinckii BA101 and fermentation gases (CO(2) and H(2)). In this system, the bioreactor was fed with a concentrated sugar solution (250-500 g L(-1) glucose). The bioreactor was bled semi-continuously to avoid accumulation of inhibitory chemicals and products. The continuous system was operated for 504 h (21 days) after which the fermentation was intentionally terminated. The bioreactor produced 461.3 g ABE from 1,125.0 g total sugar in 1 L culture volume as compared to a control batch process in which 18.4 g ABE was produced from 47.3 g sugar. These results demonstrate that ABE fermentation can be operated in an integrated continuous one-stage fermentation and product recovery system for a long period of time, if butanol and other microbial metabolites in the bioreactor are kept below threshold of toxicity. PMID:22729675

Ezeji, Thaddeus Chukwuemeka; Qureshi, Nasib; Blaschek, Hans Peter

2012-06-23

349

Biofuels, Greenhouse Gases and Climate Change  

Microsoft Academic Search

\\u000a Biofuels are fuels produced from biomass, mostly in liquid form, within a time frame sufficiently short to consider that their\\u000a feedstock (biomass) can be renewed, contrarily to fossil fuels. This paper reviews the current and future biofuel technologies,\\u000a and their development impacts (including on the climate) within given policy and economic frameworks. Current technologies\\u000a make it possible to provide first

Cécile Bessou; Fabien Ferchaud; Benoît Gabrielle; Bruno Mary

350

Biofuel, Economics, and Society  

NSDL National Science Digital Library

Biofuels may be an important economic contributor in the coming decades. Proper biofuel management can provide economical, more environmentally friendly fuel worldwide; decrease world poverty; decrease food insecurity; and increase the environmental performance of the agricultural sector.

Daniel De La Torre Ugarte (Department of Agricultural Economics of the University of Tennessee;)

2010-03-11

351

An Outlook on Microalgal Biofuels  

Microsoft Academic Search

Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration programs are being carried out to develop the technology needed to expand

R. H. Wijffels; M. J. Barbosa

2010-01-01

352

Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics  

ERIC Educational Resources Information Center

|Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

Montefrio, Marvin Joseph F.

2012-01-01

353

Microalgae as a Feedstock for Biofuels  

Microsoft Academic Search

\\u000a This review explains the potential use of the so-called “green coal” for biofuel production. A comparison between microalgae\\u000a and other crops is given, and their advantages are highlighted. The production of biofuels from microalgae biomass is described,\\u000a such as the use of algae extracts (e.g. biodiesel from oil, bioethanol from starch), processing the whole biomass (e.g. biogas\\u000a from anaerobic digestion,

Luisa Gouveia

354

Future Climate Impacts on Bay Area Rangeland Forage Production  

NASA Astrophysics Data System (ADS)

The San Francisco Bay Area is a highly heterogeneous region in climate, topography, and habitats, as well as in its political and economic interests. Downscaled projections of global climate models enable the fine-scale analysis necessary for conservation and climate adaptation planning across such a diverse area. Successful conservation strategies must consider various current and future competing demands for the land, and should pay special attention to the dominant non-urban land-use in the Bay Area: livestock grazing. Maintaining the viability of rangelands provides an economic incentive for the preservation of open space. Climate models suggest that forage production in Bay Area rangelands may be enhanced by future conditions in most years, at least in terms of peak standing crop. However, the timing of production is as important as its peak, and altered precipitation patterns could mean delayed germination, resulting in shorter growing seasons. An increase in the frequency of extremely dry years also increases the uncertainty of forage availability. These shifts in forage production will affect the economic viability of rangelands in the Bay Area.

Chaplin-Kramer, R.

2011-12-01

355

Isolation, Preliminary Characterization and Preliminary Assessment of Scale-Up Potential of Photosynthetic Microalgae for the Production of Both Biofuels and Bio-Active Molecules in the U.S. and Canada: Cooperative Research and Development Final Report, CRADA Number CRD-10-372  

SciTech Connect

Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, as well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.

Pienkos, P.

2012-09-01

356

Algal biofuels: challenges and opportunities.  

PubMed

Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. PMID:23499181

Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

2013-02-09

357

Biofuels from algae: challenges and potential  

PubMed Central

Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.

Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

2011-01-01

358

Biofuels from algae: challenges and potential.  

PubMed

Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

2010-09-01

359

Europe report discloses biofuels' embarrassing secret  

SciTech Connect

According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

NONE

2010-06-15

360

Cropping systems with corn residue production levels sufficient to maintain or even improve soil organic carbon levels and allow partial removal for biofuel production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Increasing energy demands and prices, declining petroleum reserves, and political instability in oil-rich areas of the world, all call for greater use of domestically produced biofuels. Recent reports concluded that US agriculture and forest lands have the capacity to produce immense amounts of plan...

361

Engineering microbes for tolerance to next-generation biofuels  

PubMed Central

A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

2011-01-01

362

17 CFR 240.6h-1 - Settlement and regulatory halt requirements for security futures products.  

Code of Federal Regulations, 2010 CFR

...2009-04-01 false Settlement and regulatory halt requirements for security futures products...240.6h-1 Settlement and regulatory halt requirements for security futures products...lists the security. (3) Regulatory halt means a delay, halt, or...

2009-04-01

363

17 CFR 240.6h-1 - Settlement and regulatory halt requirements for security futures products.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 false Settlement and regulatory halt requirements for security futures products...240.6h-1 Settlement and regulatory halt requirements for security futures products...lists the security. (3) Regulatory halt means a delay, halt, or...

2010-04-01

364

Midwest U.S. landscape change to 2020 driven by biofuel mandates.  

PubMed

Meeting future biofuel targets set by the 2007 Energy Independence and Security Act (EISA) will require a substantial increase in production of corn. The Midwest, which has the highest overall crop production capacity, is likely to bear the brunt of the biofuel-driven changes. In this paper, we set forth a method for developing a possible future landscape and evaluate changes in practices and production between base year (BY) 2001 and biofuel target (BT) 2020. In our BT 2020 Midwest landscape, a total of 25 million acres (1 acre = 0.40 ha) of farmland was converted from rotational cropping to continuous corn. Several states across the Midwest had watersheds where continuous corn planting increased by more than 50%. The output from the Center for Agriculture and Rural Development (CARD) econometric model predicted that corn grain production would double. In our study we were able to get within 2% of this expected corn production. The greatest increases in corn production were in the Corn Belt as a result of conversion to continuous corn planting. In addition to changes to cropping practices as a result of biofuel initiatives we also found that urban growth would result in a loss of over 7 million acres of productive farmland by 2020. We demonstrate a method which successfully combines economic model output with gridded land cover data to create a spatially explicit detailed classification of the landscape across the Midwest. Understanding where changes are likely to take place on the landscape will enable the evaluation of trade-offs between economic benefits and ecosystem services allowing proactive conservation and sustainable production for human well-being into the future. PMID:22471072

Mehaffey, Megan; Smith, Elizabeth; Van Remortel, Rick

2012-01-01

365

Life Cycle Assessment for Biofuels  

EPA Science Inventory

A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

366

Future Opportunities in Production Agriculture-Energy from Farm Land Evaluation of Perennial Herbaceous Biomass Energy Crops in North Dakota  

Microsoft Academic Search

A biorefinery is a processing and conversion facility that efficiently separates biomass feedstock into individual components and converts these components into marketplace products, including biofuels, biopower, and bioproducts. Biorefinery technologies, such as biochemical conversion (fermentation), thermochemical conversion (gasification and fast pyrolysis), and hybrid thermochemical and biochemical technologies, are currently being developed and will be placed in commercial production by 2009

Ezra Aberle; D. K. Lee; Blaine Schatz; Paul Nyren

367

Biofuels and the need for additional carbon  

NASA Astrophysics Data System (ADS)

Use of biofuels does not reduce emissions from energy combustion but may offset emissions by increasing plant growth or by reducing plant residue or other non-energy emissions. To do so, biofuel production must generate and use 'additional carbon', which means carbon that plants would not otherwise absorb or that would be emitted to the atmosphere anyway. When biofuels cause no direct land use change, they use crops that would grow regardless of biofuels so they do not directly absorb additional carbon. All potential greenhouse gas reductions from such biofuels, as well as many potential emission increases, result from indirect effects, including reduced crop consumption, price-induced yield gains and land conversion. If lifecycle analyses ignore indirect effects of biofuels, they therefore cannot properly find greenhouse gas reductions. Uncertainties in estimating indirect emission reductions and increases are largely symmetrical. The failure to distinguish 'additional' carbon from carbon already absorbed or withheld from the atmosphere also leads to large overestimates of global bioenergy potential. Reasonable confidence in greenhouse gas reductions requires a precautionary approach to estimating indirect effects that does not rely on any single model. Reductions can be more directly assured, and other adverse indirect effects avoided, by focusing on biofuels from directly additional carbon.

Searchinger, Timothy D.

2010-04-01

368

Biofuel from "humified" biomass  

NASA Astrophysics Data System (ADS)

In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do not look forward to obtain a mature OM for which the carbon loss would be too important. The global analysis of the biomass OM during biodegradation using infrared spectroscopy (DRIFTS) confirms "humification". Indeed the relative intensity of bands associated to aromatics increase relatively to those associated to aliphatics[2] [3]. The molecular study of lipids and humic fractions was realised using mass spectrometry (GC/MS), pyrolysis (Py-GC/MS) and thermodesorption (Headspace-GC/MS). The decrease in lipids indicates a high biodegradation. Amongst volatile organic compounds (COVs), the isoprenoid C18 ketone which is probably produced from biodegradation of phytol is observed in all our samples. The organic matter obtained after biodegradation is stable (resistant to biodegradation) and humified but still rich in carbon. The characterisation of bacterial biomarkers will help us to specify and thus to optimize biotransformation mechanisms. [1] A. Dermirbas and Al, Progress in energy and combustion science, 33 (2007), 1 - 18. [2] P. Castaldi and Al, Waste Management, 25 (2005), 213 - 217. [3] Mr. Crube and Al, Geoderma, 130 2006, 1573 - 1586.

Kpogbemabou, D.; Lemée, L.; Amblčs, A.

2009-04-01

369

Biofuels in China  

NASA Astrophysics Data System (ADS)

The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

370

Essays concerning the cellulosic biofuel industry  

NASA Astrophysics Data System (ADS)

Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts (CRDs). Incorporating location-specific biomass supply conditions creates unique and important economic tradeoffs within each CRD that have important impacts on the potential supply and distribution of U.S. cellulosic biofuel production.

Rosburg, Alicia Sue

371

World oil and gas resources-future production realities  

SciTech Connect

Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

Masters, C.D.; Root, D.H.; Attanasi, E.D. (U.S. Geological Survey, Reston, VA (US))

1990-01-01

372

Climate effects of biofuels: measuring some key parameters  

Microsoft Academic Search

Many of the recent changes in the global food system have been associated, directly or indirectly, with a rapid expansion of biofuel production. One of the main scientific challenges associated with these changes is to understand the effects on the climate system, and in particular whether there are hotspots where biofuel production is especially good or bad for climate protection.

D. Lobell; E. Campbell; L. Fernandez; S. Loarie; M. Georgescu; G. Asner; C. Field

2008-01-01

373

Life cycle assessment of cellulosic and advanced biofuel crops  

Technology Transfer Automated Retrieval System (TEKTRAN)

Estimating the carbon intensity of biofuel production is important in order to meet greenhouse gas (GHG) targets set by government policy. Nitrous oxide emissions are the largest source and soil carbon the largest sink of GHGs for determining the carbon intensity of biofuels during their production ...

374

Environmental performance of algal biofuel technology options.  

PubMed

Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels. PMID:22324757

Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

2012-02-10

375

RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane.  

PubMed

The agronomic performance, cell wall characteristics and enzymatic saccharification efficiency of transgenic sugarcane plants with modified lignin were evaluated under replicated field conditions. Caffeic acid O-methyltransferase (COMT) was stably suppressed by RNAi in the field, resulting in transcript reduction of 80%-91%. Along with COMT suppression, total lignin content was reduced by 6%-12% in different transgenic lines. Suppression of COMT also altered lignin composition by reducing syringyl units and p-coumarate incorporation into lignin. Reduction in total lignin by 6% improved saccharification efficiency by 19%-23% with no significant difference in biomass yield, plant height, stalk diameter, tiller number, total structural carbohydrates or brix value when compared with nontransgenic tissue culture-derived or transgenic control plants. Lignin reduction of 8%-12% compromised biomass yield, but increased saccharification efficiency by 28%-32% compared with control plants. Biomass from transgenic sugarcane lines that have 6%-12% less lignin requires approximately one-third of the hydrolysis time or 3- to 4-fold less enzyme to release an equal or greater amount of fermentable sugar than nontransgenic plants. Reducing the recalcitrance of lignocellulosic biomass to saccharification by modifying lignin biosynthesis is expected to greatly benefit the economic competitiveness of sugarcane as a biofuel feedstock. PMID:23551338

Jung, Je Hyeong; Vermerris, Wilfred; Gallo, Maria; Fedenko, Jeffrey R; Erickson, John E; Altpeter, Fredy

2013-04-02

376

Future electricity production methods. Part 1: Nuclear energy  

NASA Astrophysics Data System (ADS)

The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

Nifenecker, Hervé

2011-02-01

377

Modelling of maize production in Croatia: present and future climate  

PubMed Central

SUMMARY Maize is one of the most important agricultural crops in Croatia, and was selected for research of the effect of climate warming on yields. The Decision Support System for the Agrotechnology Transfer model (DSSAT) is one of the most utilized crop–weather models in the world, and was used in this paper for the investigation of maize growth and production in the present and future climate. The impact of present climate on maize yield was studied using DSSAT 4.0 with meteorological data from the Zagreb–Maksimir station covering the period 1949–2004. Pedological, physiological and genetic data from a 1999 field maize experiment at the same location were added. The location is representative of the continental climate in central Croatia. The linear trends of model outputs and the non-parametric Mann–Kendall test indicate that the beginning of silking has advanced significantly by 1·4 days/decade since the mid-1990s, and maturity by 4·5 days/decade. It also shows a decrease in biomass by 122 kg/ha and in maize yield by 216 kg/ha in 10 years. Estimates of the sensitivity of maize growth and yield in future climates were made by changing the initial weather and CO2 conditions of the DSSAT 4.0 model according to the different climatic scenarios for Croatia at the end of the 21st century. Changed climate suggests increases in global solar radiation, minimal temperature and maximal temperature (×1·07, 2 and 4°C, respectively), but a decrease in the amount of precipitation (×0·92), compared with weather data from the period 1949–2004. The reduction of maize yield was caused by the increase in minimal and maximal temperature and the decrease in precipitation amount, related to the present climate, is 6, 12 and 3%, respectively. A doubling of CO2 concentration stimulates leaf assimilation, but maize yield is only 1% higher, while global solar radiation growth by 7% increases evapotranspiration by 3%. Simultaneous application of all these climate changes suggested that the maize growth period would shorten by c. 1 month and maize yield would decrease by 9%, with the main reason for maize yield reduction in Croatia being due to extremely warm conditions in the future climate.

VUCETIC, V.

2011-01-01

378

Modelling of maize production in Croatia: present and future climate.  

PubMed

Maize is one of the most important agricultural crops in Croatia, and was selected for research of the effect of climate warming on yields. The Decision Support System for the Agrotechnology Transfer model (DSSAT) is one of the most utilized crop-weather models in the world, and was used in this paper for the investigation of maize growth and production in the present and future climate. The impact of present climate on maize yield was studied using DSSAT 4.0 with meteorological data from the Zagreb-Maksimir station covering the period 1949-2004. Pedological, physiological and genetic data from a 1999 field maize experiment at the same location were added. The location is representative of the continental climate in central Croatia. The linear trends of model outputs and the non-parametric Mann-Kendall test indicate that the beginning of silking has advanced significantly by 1·4 days/decade since the mid-1990s, and maturity by 4·5 days/decade. It also shows a decrease in biomass by 122 kg/ha and in maize yield by 216 kg/ha in 10 years.Estimates of the sensitivity of maize growth and yield in future climates were made by changing the initial weather and CO(2) conditions of the DSSAT 4.0 model according to the different climatic scenarios for Croatia at the end of the 21st century. Changed climate suggests increases in global solar radiation, minimal temperature and maximal temperature (×1·07, 2 and 4°C, respectively), but a decrease in the amount of precipitation (×0·92), compared with weather data from the period 1949-2004. The reduction of maize yield was caused by the increase in minimal and maximal temperature and the decrease in precipitation amount, related to the present climate, is 6, 12 and 3%, respectively. A doubling of CO(2) concentration stimulates leaf assimilation, but maize yield is only 1% higher, while global solar radiation growth by 7% increases evapotranspiration by 3%. Simultaneous application of all these climate changes suggested that the maize growth period would shorten by c. 1 month and maize yield would decrease by 9%, with the main reason for maize yield reduction in Croatia being due to extremely warm conditions in the future climate. PMID:22505771

Vu?eti?, V

2010-11-16

379

Sustainability of biofuels and bioproducts: socio-economic impact assessment  

Microsoft Academic Search

Many countries worldwide are increasingly engaging in the promotion of biomass production for industrial\\u000auses such as biofuels and bioproducts (chemicals, bioplastics, etc.). Until today, mainly biofuels were supported by\\u000aEuropean policies, but support for bioproducts is still lacking behind. Thus, also the public sustainability debate\\u000aconcentrated on biofuels, but so far not on bioproducts. Driven by the strong public

D. Rutz; J. A. J. van Eijck

2011-01-01

380

Biofuels for sustainable transportation  

SciTech Connect

Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

Neufeld, S.

2000-05-23

381

Energetic and Environmental Impacts Related to Transport and Assembling Processes in ABiogas Production Plant from Marine Macroalgae (FP7 Project BioWALK4Biofuels)  

NASA Astrophysics Data System (ADS)

GHG emissions, eutrophication and energy dependence are problems that the EU has to face in the near future. The BioWALK4Biofuels project aims to find a common response to these challenges, taking advantage of spontaneous biological processes: the growth of algae and anaerobic digestion of biomass. This project is being built thanks to European funding under the 7th Framework Programme. To evaluate the results obtained, a first LCA study was carried out that, as regards the data on infrastructure and on the assembly of the plant, refers to data supplied by manufacturers, while the study of algal growth was made on the basis of a model of cultivation that takes account of the aspects that most affect this key process among all the ones that cooperate in the whole plant. The electricity and heat produced through a co-generator fueled by biogas produced from algal biomass, according to this study, are responsible for GHG emissions reduced by 52% compared to traditional technologies. The biogas produced during the 4 years of the project allows the substitution of 85 tonnes of oil equivalent (toe).

Cappelli, Andrea; Gigli, Emanuele; Muzi, Luca; Renda, Roberto; Simoni, Silvano

2010-01-01

382

Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.  

PubMed

Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. PMID:23376514

Li, Ruopu; Merchant, James W

2013-01-31

383

The spatial and temporal shifts of biofuel production in the ecosystem-level carbon and water dynamics in the central plains of US  

NASA Astrophysics Data System (ADS)

The grasslands of the central plains US are the leading producer of wheat, sorghum and a significant amount of corn and soybean. By linking the food production and energy cycles, increasing demand for ethanol, biodiesel, and food, not only regional ecosystems are altered by the influences of Land-Use Land-Cover (LULC), but it is also a challenge for us to gain more knowledge about the carbon balance on fuel and food. In order to ascertain the impacts of changing LULC on carbon and water dynamics, more specifically, to examine the impacts of altering current land cover to increase biofuel production in this region, we used Normalized Difference Vegetation Index (NDVI) data and precipitation record for the period from 1982 to 2003 to show the temporal dynamics associated with different landcover types as a function of location along the mean precipitation gradient; and then employed Biome-BGC model to estimate key carbon fluxes and storage pools associated with each of the different landcover classes, as well as the fluxes resulting from landcover changes. Results show an increasing trend of NDVI is from the west to the east, which agreed with the spatial distribution of precipitation, however due to some of LULC types are grown by irrigation, precipitation is not the main effect for vegetation development in west portion. However, overall within the study area, indicated by the temporal distributed plots of wavelet analysis for NDVI and precipitation, vegetation dynamics is obviously affected by long-term regional climatic factors, i.e. precipitation, not by short-term or individual local factors instead. On the other hand, by inputting actual land cover and interpolated meteorological data, as well as important ecosystem variables that govern carbon dynamics, we can better define the impacts of biofuel productions; moreover, this ecosystem carbon cycling simulation by Bio-BGC model illustrates that the extent of those landcover responses depend not only on the rate of changes in local environmental factors, but also on site-specific conditions such as regional climate and soil depth.

Lin, P.; Brunsell, N. A.

2011-12-01

384

17 CFR 41.25 - Additional conditions for trading for security futures products.  

Code of Federal Regulations, 2013 CFR

17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01... Additional conditions for trading for security futures products. 41.25 Section 41.25 Commodity and Securities Exchanges COMMODITY FUTURES TRADING...

2013-04-01

385

In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.  

PubMed

The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14? helices and 9? sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production. PMID:23496307

Misra, Namrata; Panda, Prasanna Kumar

2013-03-15

386

Food Aid and Biofuels: The Effects of Biofuel Policies on Procurement and Delivery  

Microsoft Academic Search

The food-aid community almost unanimously condemns policies that encourage crop production for fuel. Both food-aid donors and recipients are concerned that biofuels will increase foodgrain prices and leave donors unable to meet commitments. The effects of biofuel-induced higher cereal prices on food-aid recipients are complicated functions of several factors, each of which must be considered in an analysis of the

Ryan T. Cardwell; William A. Kerr

2009-01-01

387

Individual Papers from Biofuels, bioenergy, and bioproducts from ...  

Treesearch

Jan 12, 2010 ... Use of marginal land and water to maximize biofuel production. ... after corn silage on biomass production, water quality, and soil nutrient status. .... Populus root system morphology during phytoremediation of landfill leachate.

388

Biofuels News, Vol. 3, No. 1 (Spring/Summer 2000).  

National Technical Information Service (NTIS)

This is the Newsletter for DOE Biofuels Program. Articles are presented on collection and use of corn stover for bioethanol production, the state workshop program on ethanol, and a subcontract to Genencor for improvement of cellulase enzyme production.

H. Brown

2000-01-01

389

Biofuels News, Vol. 3, No. 1 (Spring/Summer 2000)  

SciTech Connect

This is the Newsletter for DOE Biofuels Program. Articles are presented on collection and use of corn stover for bioethanol production, the state workshop program on ethanol, and a subcontract to Genencor for improvement of cellulase enzyme production.

Brown, H.

2000-08-15

390

Biomass-derived syngas fermentation into biofuels: Opportunities and challenges  

Microsoft Academic Search

The conversion of biomass-derived synthesis gas (or syngas in brief) into biofuels by microbial catalysts (such as Clostridium ljungdahlii, Clostridium autoethanogenum, Acetobacterium woodii, Clostridium carboxidivorans and Peptostreptococcus productus) has gained considerable attention as a promising alternative for biofuel production in the recent past. The utilization of the whole biomass, including lignin, irrespective of biomass quality, the elimination of complex pre-treatment

Pradeep Chaminda Munasinghe; Samir Kumar Khanal

2010-01-01

391

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

Microsoft Academic Search

This study describes how some biofuels are produced, emphasizing agricultural production systems, and considers what is needed in order to measure and communicate environmental performance, and gives examples of how this might be done. We describe a set of seven uses of a Green Biofuels Index, from a wholly market-driven implementation through a set of increasingly intrusive regulatory approaches. We

Brian T. Turner; Richard J. Plevin; Michael OHare; Alexander E. Farrell

2007-01-01

392

Modeling Biofuels Expansion in a Changing Global Environment  

Microsoft Academic Search

This paper examines the impact of declining energy prices on biofuels production and use and its implications to agricultural commodity markets. It uses PEATSim, a dynamic partial equilibrium, multi-commodity, multi-country global trade model of the agriculture sector to analyze the interaction between biofuel, crop and livestock sectors. The ability of countries to achieve their energy goals will be affected by

May Peters; Agapi Somwaru; James M. Hansen; Ralph Seeley; Steve Dirkse

2009-01-01

393

The Impact of Biofuels Policy on Agribusiness Stock Prices  

Microsoft Academic Search

Corn markets are important for many industries. These include the seed, fertilizer, meat production\\/processing and agricultural machinery sectors, all of which are highly concentrated. Oligopoly theory suggests that corn input and field equipment suppliers likely benefit from policies that support corn markets, such as U.S. biofuels policy, while meat companies likely lose. This study investigates the impact of biofuels policy

Fatma Sine Tepe; Xiaodong Du; David A. Hennessy

2010-01-01

394

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)  

SciTech Connect

In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

Not Available

2011-09-01

395

Wind versus Biofuels for Addressing Climate, Health, and Energy  

SciTech Connect

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Jacobson, Mark Z.

2007-01-29

396

Wind versus Biofuels for Addressing Climate, Health, and Energy  

ScienceCinema

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

397

Wind vs. Biofuels: Addressing Climate, Health and Energy  

ScienceCinema

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

398

Hawaii Algal Biofuel.  

National Technical Information Service (NTIS)

This report investigates the feasibility and affordability of producing algae-derived biofuel in Hawaii for military aviation. The authors evaluated methods for cultivation of algae, investigated the processes necessary to locally refine bio-oil into bio-...

D. Bridges D. Janicek G. Affandy J. Martin Q. Daniels

2013-01-01

399

Biofuels workshop II. Proceedings.  

National Technical Information Service (NTIS)

This publication contains the presentations held in the Biofuels workshop II, arranged by the Finnish Ministry of Trade and Industry and the United States Department of Energy. The scope of the second workshop included all aspects of research and developm...

E. Alakangas

1993-01-01

400

Production of Butanol (a Biofuel) from Agricultural Residues: Part II - Use of Corn Stover and Switchgrass Hydrolysates  

Technology Transfer Automated Retrieval System (TEKTRAN)

Acetone butanol ethanol (ABE or AB, or solvent) was produced from hydrolyzed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 gL**-1 total ABE. In this experiment, an AB yield and productivity of 0.41 and 0.31 g...

401

A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System  

ERIC Educational Resources Information Center

|A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms…

Krauskopf, Sara

2010-01-01

402

Effects of Increased Biofuel Blending on Demand for Biomass, Food Production and Commodity Prices in Eastern Germany  

Microsoft Academic Search

Renewable resources are gaining importance in modern society due to their expected positive effects on agriculture, the environment and the economy. To support renewable energy from biomass the EU promotes the cultivation of energy crops. A spatial equilibrium model is applied based on the concept of maximizing net welfare, to provide information whether energy crop production competes with food production

Heiko Zeller; Anna Maria Haring; Armen Khachatryan

2009-01-01

403

Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review  

Microsoft Academic Search

The need for clean and environmental friendly fuels is leading the world to the production of biofuels and replacing conventional fuels by them. Second generation biofuels derived from lignocellulosic feedstocks tackle the drawbacks posed by the so-called first generation ones regarding feedstock availability and competition with the food industries. Thermochemical conversion of biomass to biofuels is a promising alternative route

T. Damartzis; A. Zabaniotou

2011-01-01

404

Meeting the Mandate for Biofuels: Implications for Land Use, Food and Fuel Prices  

Microsoft Academic Search

Biofuel production is being promoted through various policies such as mandates and tax credits. This paper uses a dynamic, spatial, multi-market equilibrium model, Biofuel and Environmental Policy Analysis Model (BEPAM), to estimate the effects of these policies on cropland allocation, food and fuel prices, and the mix of biofuels from corn and cellulosic feedstocks over the 2007-2022 period. We find

Xiaoguang Chen; Haixiao Huang; Madhu Khanna; Hayri Onal

2011-01-01

405

Meeting the Mandate for Biofuels: Implications for Land Use, Food, and Fuel Prices  

Microsoft Academic Search

Biofuel production is being promoted through various policies such as mandates and tax credits. This paper uses a dynamic, spatial, multi-market equilibrium model, Biofuel and Environmental Policy Analysis Model (BEPAM), to estimate the effects of these policies on cropland allocation, food and fuel prices, and the mix of biofuels from corn and cellulosic feedstocks over the 2007-2022 period. We find

Xiaoguang Chen; Haixiao Huang; Madhu Khanna; Hayri Onal

2011-01-01

406

Global Implications of U.S. Biofuels Policies in an Integrated Partial and General Equilibrium Framework  

Microsoft Academic Search

With the increasing research interests in biofuels, global implications of biofuels production have been generally examined either in a partial equilibrium (PE) or general equilibrium (GE) frameworks. Though both of these approaches have unique strengths, they also suffer from many limitations due to complexity of addressing all the relevant aspects of biofuels. In this paper we have exploited the strengths

Dileep K. Birur; Robert H. Beach; Thomas W. Hertel; Bruce A. McCarl

2010-01-01

407

Indirect land use change emissions related to EU biofuel consumption: an analysis based on historical data  

Microsoft Academic Search

Biofuels have recently been promoted in policies as a way to reduce greenhouse gas emissions from the transport sector. However, biofuel production in itself also induces emissions directly as well as indirectly. This paper presents an explicit calculation of indirect land use change (ILUC) emissions from EU biofuel consumption. The approach includes a straightforward methodology for quantifying ILUC, based on

Koen P. Overmars; Elke Stehfest; Jan P. M. Ros; Anne Gerdien Prins

2011-01-01

408

Solar Energy - An Option for Future Energy Production  

ERIC Educational Resources Information Center

|Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)|

Glaser, Peter E.

1972-01-01

409

Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland—Dealing with the uncertainties  

Microsoft Academic Search

One way to reduce greenhouse gas emissions from the transportation sector is to replace fossil fuels by biofuels. However, production of biofuels also generates greenhouse gas emissions. Energy and greenhouse gas balances of transportation biofuels suitable for large-scale production in Finland have been assessed in this paper. In addition, the use of raw materials in electricity and\\/or heat production has

S. Soimakallio; T. Mäkinen; T. Ekholm; K. Pahkala; H. Mikkola; T. Paappanen

2009-01-01

410

Cost-effective CO 2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies  

Microsoft Academic Search

Bioenergy is regarded as cost-effective option to reduce CO2 emissions from fossil fuel combustion. Among newly developed biomass conversion technologies are biomass integrated gas combined cycle plants (BIGCC) as well as ethanol and methanol production based on woody biomass feedstock. Furthermore, bioenergy systems with carbon capture and storage (BECS) may allow negative CO2 emissions in the future. It is still

Johannes Schmidt; Sylvain Leduc; Erik Dotzauer; Georg Kindermann; Erwin Schmid

2010-01-01

411

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

SciTech Connect

Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

2011-07-13

412

Natural products and combinatorial chemistry: back to the future.  

PubMed

The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics. PMID:15183325

Ortholand, Jean-Yves; Ganesan, A

2004-06-01

413

Plant natural products: back to the future or into extinction?  

PubMed

Natural product substances have historically served as the most significant source of new leads for pharmaceutical development. However, with the advent of robotics, bioinformatics, high throughput screening (HTS), molecular biology-biotechnology, combinatorial chemistry, in silico (molecular modeling) and other methodologies, the pharmaceutical industry has largely moved away from plant derived natural products as a source for leads and prospective drug candidates. Can, or will, natural products ever recapture the preeminent position they once held as a foundation for drug discovery and development? The challenges associated with development of natural products as pharmaceuticals are illustrated by the Taxol story. Several misconceptions, which constrain utilization of plant natural products, for discovery and development of pharmaceuticals, are addressed to return natural products to the forefront. PMID:17574638

McChesney, James D; Venkataraman, Sylesh K; Henri, John T

2007-06-14

414

Biofuels, greenhouse gases and climate change. A review  

Microsoft Academic Search

Biofuels are fuels produced from biomass, mostly in liquid form, within a time frame sufficiently short to consider that their\\u000a feedstock (biomass) can be renewed, contrarily to fossil fuels. This paper reviews the current and future biofuel technologies,\\u000a and their development impacts (including on the climate) within given policy and economic frameworks. Current technologies\\u000a make it possible to provide first

Cécile Bessou; Fabien Ferchaud; Benoît Gabrielle; Bruno Mary

2011-01-01

415

Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of VermontâÂ?Â?s Energy Needs  

Microsoft Academic Search

The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund�s (VSJF) biomass-to-biofuels;\\u000amarket development program. Vermont is a small state with a large petroleum dependency;\\u000afor transportation (18th in per capita petroleum consumption) and home heating (55% of all;\\u000ahouseholds use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont�s;\\u000adependency on petroleum through the

Scott Sawyer; Ellen Kahler

2009-01-01

416

Productivity costs in economic evaluations: past, present, future.  

PubMed

Productivity costs occur when the productivity of individuals is affected by illness, treatment, disability or premature death. The objective of this paper was to review past and current developments related to the inclusion, identification, measurement and valuation of productivity costs in economic evaluations. The main debates in the theory and practice of economic evaluations of health technologies described in this review have centred on the questions of whether and how to include productivity costs, especially productivity costs related to paid work. The past few decades have seen important progress in this area. There are important sources of productivity costs other than absenteeism (e.g. presenteeism and multiplier effects in co-workers), but their exact influence on costs remains unclear. Different measurement instruments have been developed over the years, but which instrument provides the most accurate estimates has not been established. Several valuation approaches have been proposed. While empirical research suggests that productivity costs are best included in the cost side of the cost-effectiveness ratio, the jury is still out regarding whether the human capital approach or the friction cost approach is the most appropriate valuation method to do so. Despite the progress and the substantial amount of scientific research, a consensus has not been reached on either the inclusion of productivity costs in economic evaluations or the methods used to produce productivity cost estimates. Such a lack of consensus has likely contributed to ignoring productivity costs in actual economic evaluations and is reflected in variations in national health economic guidelines. Further research is needed to lessen the controversy regarding the estimation of health-related productivity costs. More standardization would increase the comparability and credibility of economic evaluations taking a societal perspective. PMID:23620213

Krol, Marieke; Brouwer, Werner; Rutten, Frans

2013-07-01

417

Designing Sustainable Supply Chains for Biofuels  

EPA Science Inventory

Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

418

Climate change, biofuels, and global food security  

Microsoft Academic Search

There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops.

Kenneth G Cassman

2007-01-01

419

Integrated Product and Process Design: Current Practices and Future Directions  

Microsoft Academic Search

The University of Florida's Integrated Product and Process Design (IPPD) program is an exemplary model of university-industry collaboration. IPPD features multidisciplinary teams of engineering and business students developing authentic products and processes for industry project sponsors. Each team is led by a faculty coach and is supported by a liaison engineer from the project sponsor. The program has flourished over

R. Keith Stanfill

420

Modeling pathogen growth in meat products: future challenges  

Microsoft Academic Search

Meat products are perishable foods and unless stored under proper conditions spoil quickly. In addition, if pathogens are present, meat products may become hazardous for consumers. Pathogens such as Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. can grow and cause illness by the ingestion of the bacterial cells, therefore, assurance of meat safety and quality is of utmost importance.

Eyal Shimoni; Theodore P. Labuzay

2000-01-01

421

Future electricity production methods. Part 1: Nuclear energy  

Microsoft Academic Search

The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at

Hervé Nifenecker

2011-01-01

422

BIOFUELS, CLIMATE POLICY, AND WATER MANAGEMENT: ASSESSING POLICY-INDUCED SHIFTS ON AGRICULTURE’S EXTENSIVE AND INTENSIVE MARGINS  

Microsoft Academic Search

Biofuel expansion efforts and climate mitigation policy could fundamentally alter land management trends in U.S. agriculture and forestry (AF) by mandating biofuel feedstock production and providing incentives for greenhouse gas (GHG) emissions reduction and carbon sequestration from terrestrial sources. Research has shown that biofuel expansion can alter commodity markets, induce agricultural land expansion, and intensify production. Meanwhile, GHG mitigation efforts

Justin Scott Baker; Brian C. Murray; Bruce A. McCarl

2011-01-01

423

Fluid dairy product quality and safety: looking to the future.  

PubMed

The fiercely competitive nature of the US beverage industry will drive the fluid milk sector of the dairy industry to improve product quality and shelf life to enable dairy beverages to compete with innovative new introductions as well as with currently popular shelf-stable products. The recent substantial growth in the volume of flavored milk sales specifically suggests that attention is needed to improve these products. Further, increasing public awareness and regulatory attention directed toward food safety issues highlight the need for the dairy industry to proactively address and eliminate emerging food safety issues that may negatively impact the image of dairy products. Shelf life and sensory profiles of high temperature short time pasteurized fluid milk products are presented, illustrating the need for greater attention to controlling contaminating microorganisms in processed fluid milk products. Bacterial spoilage patterns of flavored versus unflavored milks are compared, and suggestions are presented for extending flavored product shelf lives. Strategies currently applied to extend shelf life are reviewed. Food safety issues facing the dairy industry are presented within the context of an overview of foodborne illnesses in the United States. The pressing need to determine thermal resistance characteristics of Mycobacterium paratuberculosis is described. PMID:11210019

Boor, K J

2001-01-01

424

Role of genetically engineered animals in future food production.  

PubMed

Genetically engineered (GE) animals are likely to have an important role in the future in meeting the food demand of a burgeoning global population. There have already been many notable achievements using this technology in livestock, poultry and aquatic species. In particular, the use of RNA interference (RNAi) to produce virus-resistant animals is a rapidly-developing area of research. However, despite the promise of this technology, very few GE animals have been commercialised. This review aims to provide information so that veterinarians and animal health scientists are better able to participate in the debate on GE animals. PMID:23438464

McColl, K A; Clarke, B; Doran, T J

2013-03-01

425

New approaches in silicon production and recycling for sustainable future  

NASA Astrophysics Data System (ADS)

Key prerequisites for the accelerated development of chemistry of silicones are considered in the context of the significance of organosilicon polymers for sustainable future. The principal trends in this field during the past two decades are analyzed and the quantum leap that occurred in the control of the structures and selective synthesis of macromolecules is pointed out. The problems of research into silicones are defined and the most promising approaches to the solution of these problems aimed at more active involvement of such systems into various areas of practical activity are demonstrated. The bibliography includes 166 references.

Muzafarov, A. M.; Bystrova, A. V.; Vasilenko, N. G.; Ignat'eva, G. M.

2013-07-01

426

Studying Production Technology for the World of the Future  

ERIC Educational Resources Information Center

|After tracing the evolving concept of production technology during the past century the authors define its divisions as construction, manufacturing, and processing, and talk about recent developments in the field, with implications for education. (MF)|

Pinder, Charles A.; Ritz, John M.

1977-01-01

427

Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy  

Microsoft Academic Search

Domestic biomass fuels (biofuels) were recently estimated to be the second largest source of carbon emissions from global biomass burning. Wood and charcoal provide approximately 90% and 10% of domestic energy in tropical Africa. In September 2000, we used open-path Fourier transform infrared (OP-FTIR) spectroscopy to quantify 18 of the most abundant trace gases emitted by wood and charcoal cooking

Isaac T. Bertschi; Robert J. Yokelson; Darold E. Ward; Ted J. Christian; Wei Min Hao

2003-01-01

428

Biofuels News--Winter 2001, Vol. 4, No. 1  

SciTech Connect

Newsletter for the DOE Biofuels Program. Articles on collaborative projects with USDA, and OIT. Contains an interview with Doug Kaempf, co-director of the National Biobased Products and Bioenergy Coordination Office.

Tuttle, J.H.

2001-04-16

429

Environmental indicators of biofuel sustainability : What about context?  

EPA Science Inventory

Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. These indicators include measures of soil quality, water quality and quantity, greenhouse...

430

National Geo-Database for Biofuel Simulations and Regional Analysis.  

National Technical Information Service (NTIS)

The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The...

D. H. Manowitz R. Sahajpal R. C. Izaurralde X. Zhang

2012-01-01

431

Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources.  

PubMed

Ethanol production from direct cellulose fermentation has mainly been described as a strictly anaerobic process. The use of air-tolerant organisms or consortia for this process would reduce the need for prereduction of the medium and also permit continuous feed of aerobic feedstock. To this end, moderately thermophilic (60 °C) consortia of fermentative, cellulolytic bacteria were enriched from 3 distinct environments (manure, marsh, and rotten wood) from a farm in southeast Saskatchewan, Canada. Community phenotypic and metabolic profiles were characterized. Selection methods included direct plating under an aerobic atmosphere and repeated passaging; the methods were designed to select for robust, stable aerotolerant cellulose-degrading communities. Several of the isolated communities exhibited an increase in total cellulose degradation and total ethanol yield when compared with a monoculture of Clostridium thermocellum DSMZ 1237. Owing to stringent selection conditions, low diversity enrichments were found, and many appeared to be binary cultures via density gradient gel electrophoresis analysis. On the basis of 16S rRNA gene sequencing, aerobic conditions selected for a mix of organisms highly related to C. thermocellum and Geobacillus species, while anaerobic conditions led to the development of consortia containing strains related to C. thermocellum with strains from either the genus Geobacillus or the genus Thermoanaerobacter. The presence of a Geobacillus-like species appeared to be a prerequisite for aerotolerance of the cellulolytic enrichments, a highly desired phenotype in lignocellulosic consolidated bioprocessing. PMID:24102221

Wushke, Scott; Levin, David B; Cicek, Nazim; Sparling, Richard

2013-08-29

432

Toward the design of sustainable biofuel landscapes: A modeling approach  

NASA Astrophysics Data System (ADS)

Biofuel crops have emerged as promising feedstocks for advanced bioenergy production in the form of cellulosic ethanol and biodiesel. However, large-scale deployment of biofuel crops for energy production has the potential to conflict with food production and generate a myriad of environmental outcomes related to land and water resources (e.g., decreases in soil carbon storage, increased erosion, altered runoff, deterioration in water quality). In order to anticipate the possible impacts of biofuel crop production on food production systems and the environment and contribute to the design of sustainable biofuel landscapes, we developed a spatially-explicit integrated modeling framework (SEIMF) aimed at understanding, among other objectives, the complex interactions among land, water, and energy. The framework is a research effort of the DOE Great Lakes Bioenergy Research Center. The SEIMF has three components: (1) a GIS-based data analysis system, (2) the biogeochemical model EPIC (Environmental Policy Integrated Climate), and (3) an evolutionary multi-objective optimization algorithm for examining trade-offs between biofuel energy production and ecosystem responses. The SEIMF was applied at biorefinery scale to simulate biofuel production scenarios and the yield and environmental results were used to develop trade-offs, economic and life-cycle analyses. The SEIMF approach was also applied to test the hypothesis that growing perennial herbaceous species on marginal lands can satisfy a significant fraction of targeted demands while avoiding competition with food systems and maintaining ecosystem services.

Izaurralde, R. C.; Zhang, X.; Manowitz, D. H.; Sahajpal, R.

2011-12-01

433

[Advanced biofuel-oriented engineering of fatty acid pathway: a review].  

PubMed

Biofuel is in high demand as an alternative energy source for petroleum and diesel. Fatty acid-based biofuel has higher energy density and better compatibility with existing infrastructures. Microbial fatty acid biosynthetic pathway is important to develop biofuel. In this article, recent progresses on the modification and reconstruction of fatty acid metabolism for the production of biofuel were reviewed, with a focus on micro-diesel, long chain fatty alcohol and alkane. Problems, solutions and directions for further development of fatty acid-based biofuel were also discussed in the respect of synthetic biology. PMID:22117509

Zhou, Yongjin J; Zhao, Zongbao K

2011-09-01

434

Risk analysis of possible environmental change and future crop production in South Australia  

Microsoft Academic Search

The potential impact of future environmental change (climate change plus pCO2 change) on wheat production in Roseworthy, South Australia, was assessed in a view of risk by using the APSIM wheat model. Possible future environmental change scenarios for 2080 were generated from the output of 9 climate models including GCMs (General Circulation Models) and RCMs (Regional Climate Models), historical climate

Qunying Luo; Bill Bellotti; Brett Bryan; Martin Williams

2003-01-01

435

The Future of Small Telescopes In The New Millennium. Volume I - Perceptions, Productivities, and Policies  

Microsoft Academic Search

An invaluable reference for any student, scientist or administrator, using small telescopes for research. An essential collection of data and opinions for those charged with setting scientific and funding priorities. This three-volume set, The Future of Small Telescopes in the New Millennium details the essential roles that small telescopes should play in 21st century science and how their future productivity

T. D. Oswalt

2003-01-01

436

Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation  

SciTech Connect

The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

2011-08-14

437

Present and future prospects for entomopathogenic nematode products  

Microsoft Academic Search

Entomopathogenic nematodes in the genera Steinernema and Heterorhabditis have emerged as excellent candidates for biological control of insect pests. Attributes making the nematodes ideal biological insecticides include their broad host range, high virulence, safety for nontarget organisms and high efficacy in favourable habitats. Progress achieved in liquid fermentation, formulation stability and application strategy has allowed nematode?based products to become competitive

Ramon Georgis

1992-01-01

438

Hydrogen Production From Water Electrolysis: Current Status and Future Trends  

Microsoft Academic Search

This paper reviews water electrolysis technologies for hydrogen production and also surveys the state of the art of water electrolysis integration with renewable energies. First, attention is paid to the thermodynamic and electrochemical processes to better understand how electrolysis cells work and how they can be combined to build big electrolysis modules. The electrolysis process and the characteristics, advantages, drawbacks,

Alfredo Ursua; Luis M. Gandia; Pablo Sanchis

2012-01-01

439

PRODUCTION AND PROCESSING OF METALS: THEIR DISPOSAL AND FUTURE RISKS  

EPA Science Inventory

This report describes the various wastes streams that are generated during the production and processing of both metals and nonmetals. The waste streams created by these techniques are presented as well as many of the current disposal practices used for these wastes. The potentia...

440