Sample records for future collider experiments

  1. DEPFET detectors for future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Marinas, C.

    2015-11-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.

  2. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  3. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  4. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  5. Development of semiconductor tracking: The future linear collider case

    NASA Astrophysics Data System (ADS)

    Savoy-Navarro, Aurore

    2011-04-01

    An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring

  6. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  7. WW Physics at Future e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.

  8. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-06-15

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  9. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Stapnes, Steinar

    2017-12-18

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  10. Deciphering the MSSM Higgs mass at future hadron colliders

    DOE PAGES

    Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...

    2017-06-06

    Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less

  11. Sterile neutrino searches at future e-e+, pp and e-p colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2017-05-01

    Sterile neutrinos are among the most attractive extensions of the SM to generate the light neutrino masses observed in neutrino oscillation experiments. When the sterile neutrinos are subject to a protective symmetry, they can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them testable at planned future particle colliders. We systematically discuss the production and decay channels at electron-positron, proton-proton and electron-proton colliders and provide a complete list of the leading order signatures for sterile neutrino searches. Among other things, we discuss several novel search channels, and present a first look at the possible sensitivities for the active-sterile mixings and the heavy neutrino masses. We compare the performance of the different collider types and discuss their complementarity.

  12. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  13. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  14. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    Thomson, Mark

    2018-04-16

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  15. Future hadron colliders: From physics perspectives to technology R&D

    NASA Astrophysics Data System (ADS)

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2014-11-01

    High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.

  16. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  17. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  18. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  19. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  20. Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-02-01

    We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.

  1. Testing sterile neutrino extensions of the Standard Model at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Fischer, Oliver

    2015-05-01

    Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).

  2. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  3. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  4. DEPFET pixel detector for future e-e+ experiments

    NASA Astrophysics Data System (ADS)

    Boronat, M.; DEPFET Collaboration

    2016-04-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future e+e- collider experiments. A DEPFET sensor provides, simultaneously, position sensitive detector capabilities and in-pixel amplification by the integration of a field effect transistor on a fully depleted silicon bulk. The characterization of the latest DEPFET prototypes has proven that a comfortable signal to noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 μm. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. The close to Belle related final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the Belle II required read-out speed. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a solid candidate for the International Linear Collider (ILC). Therefore, in this paper, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future e+e- collider.

  5. Alternate approaches to future electron-positron linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, G.A.

    1998-07-01

    The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.

  6. Quartified leptonic color, bound states, and future electron–positron collider

    DOE PAGES

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...

    2017-04-04

    The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.

  7. Higgsino dark matter or not: Role of disappearing track searches at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Fukuda, Hajime; Nagata, Natsumi; Otono, Hidetoshi; Shirai, Satoshi

    2018-06-01

    Higgsino in supersymmetric standard models is known to be a promising candidate for dark matter in the Universe. Its phenomenological property is strongly affected by the gaugino fraction in the Higgsino-like state. If this is sizable, in other words, if gaugino masses are less than O (10) TeV, we may probe the Higgsino dark matter in future non-accelerator experiments such as dark matter direct searches and measurements of electric dipole moments. On the other hand, if gauginos are much heavier, then it is hard to search for Higgsino in these experiments. In this case, due to a lack of gaugino components, the mass difference between the neutral and charged Higgsinos is uniquely determined by electroweak interactions to be around 350 MeV, which makes the heavier charged state rather long-lived, with a decay length of about 1 cm. In this letter, we argue that a charged particle with a flight length of O (1) cm can be probed in disappearing-track searches if we require only two hits in the pixel detector. Even in this case, we can reduce background events with the help of the displaced-vertex reconstruction technique. We study the prospects of this search strategy at the LHC and future colliders for the Higgsino dark matter scenario. It is found that an almost pure Higgsino is indeed within the reach of the future 33 TeV collider experiments. We then discuss that the interplay among collider and non-accelerator experiments plays a crucial role in testing the Higgsino dark matter scenarios. Our strategy for disappearing-track searches can also enlarge the discovery potential of pure wino dark matter as well as other electroweak-charged dark matter candidates.

  8. COLLIDE-2: Collisions Into Dust Experiment-2

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    2002-01-01

    The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.

  9. Double elementary Goldstone Higgs boson production in future linear colliders

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2018-03-01

    The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.

  10. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  11. High-performance DIRC detector for the future Electron Ion Collider experiment

    NASA Astrophysics Data System (ADS)

    Kalicy, G.; Allison, L.; Cao, T.; Dzhygadlo, R.; Hartlove, T.; Horn, T.; Hyde, C.; Ilieva, Y.; Nadel-Turonski, P.; Park, K.; Peters, K.; Schwarz, C.; Schwiening, J.; Stevens, J.; Xi, W.; Zorn, C.

    2018-04-01

    Excellent particle identification (PID) is an essential requirement for a future Electron-Ion Collider (EIC) detector. Identification of the hadrons in the final state is critical to study how different quark flavors contribute to nucleon properties. A detector based on the Detection of Internally Reflected Cherenkov light (DIRC) principle, with a radial size of only a few cm, is a perfect solution for those requirements. The R&D process performed by the EIC PID consortium (eRD14) is focused on designing a high-performance DIRC that would extend the momentum coverage well beyond the state-of-the-art, allowing 3 standard deviations or more separation of π/K up to 6 GeV/c, e/π up to 1.8 GeV/c, and p/K up to 10 GeV/c. A key component to reach such a performance is a special 3-layer compound lens. This article describes the status of the High-Performance DIRC R&D for the EIC detector, with a focus on the detailed Monte Carlo simulation results and performance tests of the 3-layer lens.

  12. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  13. Testing B-violating signatures from exotic instantons in future colliders

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.

    2017-09-01

    We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048

  14. Physics Accomplishments and Future Prospects of the BES Experiments at the Beijing Electron-Positron Collider

    NASA Astrophysics Data System (ADS)

    Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.

    2016-10-01

    The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.

  15. ISR effects for resonant Higgs production at future lepton colliders

    DOE PAGES

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-11-04

    We study the effects of the initial state radiation on themore » $s$-channel Higgs boson resonant production at $$\\mu^+\\mu^-$$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $$h\\rightarrow b\\bar b,\\ WW^*$$. In conclusion, our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.« less

  16. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  17. Distinct signals of the gauge-Higgs unification in e+e- collider experiments

    NASA Astrophysics Data System (ADS)

    Funatsu, Shuichiro; Hatanaka, Hisaki; Hosotani, Yutaka; Orikasa, Yuta

    2017-12-01

    Effects of Kaluza-Klein excited neutral vector bosons (Z‧ bosons) in the gauge-Higgs unification on e+e- → q bar q ,ℓ+ℓ- cross sections are studied, particularly in future e+e- collider experiments with polarized beams. Significant deviations in the energy and polarization dependence in σ (μ+μ-), the lepton forward-backward asymmetry, Rb (μ) ≡ σ (b bar b) / σ (μ+μ-) and the left-right asymmetry from the standard model are predicted.

  18. Design of beam optics for the future circular collider e + e - collider rings

    DOE PAGES

    Oide, Katsunobu; Aiba, M.; Aumon, S.; ...

    2016-11-21

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have

  19. Design of beam optics for the future circular collider e + e - collider rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oide, Katsunobu; Aiba, M.; Aumon, S.

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have

  20. Design of beam optics for the future circular collider e+e- collider rings

    NASA Astrophysics Data System (ADS)

    Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.

    2016-11-01

    A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further

  1. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  2. TMDs and GPDs at a future Electron-Ion Collider

    DOE PAGES

    Ent, Rolf

    2016-06-21

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  3. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Lian-Tao; Zhang, Hao

    2017-06-01

    The discovery of unexpected properties of the Higgs boson would offer an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, (10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation. Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)

  4. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  5. Top-up injection schemes for future circular lepton collider

    NASA Astrophysics Data System (ADS)

    Aiba, M.; Goddard, B.; Oide, K.; Papaphilippou, Y.; Saá Hernández, Á.; Shwartz, D.; White, S.; Zimmermann, F.

    2018-02-01

    Top-up injection is an essential ingredient for the future circular lepton collider (FCC-ee) to maximize the integrated luminosity and it determines the design performance. In ttbar operation mode, with a beam energy of 175 GeV, the design lifetime of ∼1 h is the shortest of the four anticipated operational modes, and the beam lifetime may be even shorter in actual operation. A highly robust top-up injection scheme is consequently imperative. Various top-up methods are investigated and a number of suitable schemes are considered in developing alternative designs for the injection straight section of the collider ring. For the first time, we consider multipole-kicker off-energy injection, for minimizing detector background in top-up operation, and the use of a thin wire septum in a lepton storage ring, for maximizing the luminosity.

  6. The case for future hadron colliders from B → K (*) μ + μ - decays

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  7. Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.

    2014-05-01

    Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.

  8. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    DOE PAGES

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  9. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  10. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE PAGES

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    2017-06-01

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  11. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  12. High Energy Colliding Beams; What Is Their Future?

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  13. High Energy Colliding Beams; What Is Their Future?

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    2014-04-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  14. High Energy Colliding Beams; What Is Their Future?

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    2015-02-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  15. Fourth standard model family neutrino at future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered.more » The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.« less

  16. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  17. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less

  18. A Laser Cavity for a Future Photon Collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Moenig, K.

    2006-04-01

    Within a future photon-collider based on the infrastructure of ILC the energy of near-infrared laser photons will be boosted by Compton backscattering on a high energy electron beam to well above 100 GeV. By reason of luminosity, an extremely powerful lasersystem is required that will exceed today's state-of-the-art capabilities. An auxiliary cavity for resonantly enhancing the optical peak-power can relax demands on the power output of the laser. In this paper a possible design and the static aspects of a passive cavity are discussed.

  19. CP-violating top quark couplings at future linear e^+e^- colliders

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  20. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  1. Design study of an optical cavity for a future photon collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Mönig, K.; Will, I.

    2006-08-01

    Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.

  2. The PHOBOS experiment at the RHIC collider

    NASA Astrophysics Data System (ADS)

    Katzy, Judith M.; Back, B.; Baker, M. D.; Barton, D.; Betts, R.; Białas, A.; Budzanowski, A.; Busza, W.; Carroll, A.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Czyż, W.; Decowski, M. P.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia-Solis, E.; George, N.; Godlewski, J.; Gulbrandsen, K. H.; Gushue, S.; Halliwell, C.; Hayes, A.; Heintzelman, G.; Hołyński, R.; Holzman, B.; Jagadish, U.; Johnson, E.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Lemler, M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.; Pernegger, H.; Plesko, M.; Remsberg, L. P.; Reuter, M.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Stanskas, P. J.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Trzupek, A.; van Nieuwenhuizen, G.; Vale, C.; Verdier, R.; Wadsworth, B.; Wolfs, F.; Wosiek, B.; Woźniak, K.; Wuosmaa, A.; Wysłouch, B.; Zalewski, K.; Phobos Collaboration

    1999-12-01

    PHOBOS is one of four experiments at the Relativistic Heavy Ion Collider (RHIC), scheduled to start data collection in fall 1999. Its main goal is to collect events using minimum bias triggers. A search will then be made for interesting, and perhaps rare, classes of events that may indicate the formation of a quark gluon plasma (QGP) or the restoration of chiral symmetry. In this report we describe the PHOBOS detector design and present the first results in detector development. We will also present our expectations from the first year of operation.

  3. Probing the Higgs with angular observables at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  4. Probing the Higgs with angular observables at future e +e – colliders

    DOE PAGES

    Liu, Zhen

    2016-10-24

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  5. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  6. The VEPP-2000 electron-positron collider: First experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less

  7. Prospects for colliders and collider physics to the 1 PeV energy scale

    NASA Astrophysics Data System (ADS)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  8. The Next Linear Collider Program-News

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this

  9. Big data analytics for the Future Circular Collider reliability and availability studies

    NASA Astrophysics Data System (ADS)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  10. Dump system concepts for the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Atanasov, M.; Barnes, M. J.; Borburgh, J.; Burkart, F.; Goddard, B.; Kramer, T.; Lechner, A.; Ull, A. Sanz; Schmidt, R.; Stoel, L. S.; Ostojic, R.; Rodziewicz, J.; van Trappen, P.; Barna, D.

    2017-03-01

    The Future Circular Collider (FCC-hh) beam dump system must provide a safe and reliable extraction and dilution of the stored beam onto a dump absorber. Energy deposition studies show that damage limits of presently used absorber materials will already be reached for single bunches at 50 TeV. A fast field rise of the extraction kicker is required in order to sufficiently separate swept single bunches on the extraction protection absorbers in case of an asynchronous beam dump. In line with this demand is the proposal of a highly segmented extraction kicker system which allows for accepting a single kicker switch erratic and thus, significantly reduces the probability of an asynchronous beam dump. Superconducting septa are foreseen to limit the overall system length and power consumption. Two extraction system concepts are presented and evaluated regarding overall system length, energy deposition on absorbers, hardware requirements, radiation issues, and layout flexibility.

  11. Extracting muon momentum scale corrections for hadron collider experiments

    NASA Astrophysics Data System (ADS)

    Bodek, A.; van Dyne, A.; Han, J. Y.; Sakumoto, W.; Strelnikov, A.

    2012-10-01

    We present a simple method for the extraction of corrections for bias in the measurement of the momentum of muons in hadron collider experiments. Such bias can originate from a variety of sources such as detector misalignment, software reconstruction bias, and uncertainties in the magnetic field. The two step method uses the mean <1/p^{μ}T rangle for muons from Z→ μμ decays to determine the momentum scale corrections in bins of charge, η and ϕ. In the second step, the corrections are tuned by using the average invariant mass < MZ_{μμ }rangle of Z→ μμ events in the same bins of charge η and ϕ. The forward-backward asymmetry of Z/ γ ∗→ μμ pairs as a function of μ + μ - mass, and the ϕ distribution of Z bosons in the Collins-Soper frame are used to ascertain that the corrections remove the bias in the momentum measurements for positive versus negatively charged muons. By taking the sum and difference of the momentum scale corrections for positive and negative muons, we isolate additive corrections to 1/p^{μ}T that may originate from misalignments and multiplicative corrections that may originate from mis-modeling of the magnetic field (∫ Bṡ d L). This method has recently been used in the CDF experiment at Fermilab and in the CMS experiment at the Large Hadron Collider at CERN.

  12. Impact of the resistive wall impedance on beam dynamics in the Future Circular e+e- Collider

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Belli, E.; Zobov, M.

    2018-04-01

    The Future Circular Collider study, which aims at designing post-LHC particle accelerator options, is entering in the final stage, which foresees a conceptual design report containing the basic requirements for a hadron and a lepton collider, as well as options for an electron-proton machine. Due to the high beam intensities of these accelerators, collective effects have to be carefully analyzed. Among them, the finite conductivity of the beam vacuum chamber represents a major source of impedance for the electron-positron collider. By using numerical and analytical tools, a parametric study of longitudinal and transverse instabilities caused by the resistive wall is performed in this paper for the case of the Future Circular Collider lepton machine, by taking into account also the effects of coating, used to fight the electron cloud build up. It will be proved that under certain assumptions the coupling impedance of a two layer system does not depend on the conductivity of the coating and this property represents an important characteristic for the choice of the material itself. The results and findings of this study have an impact on the machine design in several aspects. In particular the quite low threshold of single bunch instabilities with respect to the nominal beam current and the not negligible power losses due to the resistive wall are shown, together with the necessity of a new feedback system to counteract the fast transverse coupled bunch instability. The importance of a round vacuum chamber to avoid the quadrupolar tune shift is also discussed. Finally the crucial importance of the beam pipe material coating and thickness choice for the above results is underlined.

  13. Linear polarization of gluons and photons in unpolarized collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.

    2013-10-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pairmore » production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.« less

  14. Power supply and pulsing strategies for the future linear colliders

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Göttlicher, P.; Weber, M.

    2012-02-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  15. Investigation of beam self-polarization in the future e+e- circular collider

    NASA Astrophysics Data System (ADS)

    Gianfelice-Wendt, E.

    2016-10-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e+e- Future Circular Collider (FCC-e+e-) for Z and W W physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e+e- ring are presented.

  16. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE PAGES

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  17. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  18. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  19. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  20. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE PAGES

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; ...

    2017-06-13

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  1. GUT models at current and future hadron colliders and implications to dark matter searches

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-08-01

    Grand Unified Theories (GUT) offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ) that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z‧ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z‧ mass for several GUT-models using current and future proton-proton colliders with √{ s} = 13 TeV , 33 TeV ,and 100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  2. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  3. Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders

    NASA Astrophysics Data System (ADS)

    Harris, Christopher M.

    2005-02-01

    The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

  4. Investigation of beam self-polarization in the future e + e - circular collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, E.

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  5. Investigation of beam self-polarization in the future e + e - circular collider

    DOE PAGES

    Gianfelice-Wendt, E.

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  6. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  7. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  8. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  9. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  10. Fourth workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider

    NASA Technical Reports Server (NTRS)

    Fatyga, M. (Editor); Moskowitz, B. (Editor)

    1992-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e(sup +) e(sup -) pairs in the elastic scattering of two heavy ions at the Relativistic Heavy Ion Collider (RHIC). A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  11. Spontaneous C P -violation in the simplest little Higgs model and its future collider tests: The scalar sector

    NASA Astrophysics Data System (ADS)

    Mao, Ying-nan

    2018-04-01

    We propose spontaneous C P violation in the simplest little Higgs model. In this model, the pseudoscalar field can acquire a nonzero vacuum expectation value. This leads to a mixing between the two scalars with different C P charge, which means that spontaneous C P violation occurs. It is also a connection between the composite Higgs mechanism and C P violation. Facing the experimental constraints, the model is still viable for both scenarios in which the extra scalar appears below or around the electroweak scale. We also discuss the future collider tests of C P violation in the scalar sector through measuring h2Z Z and h1h2Z' vertices (see the definitions of the particles in the text), which provide new motivations for future e+e- and p p colliders. This also shows the importance of the vector-vector-scalar- and vector-scalar-scalar-type vertices in discovering C P -violation effects in the scalar sector.

  12. Considerations on Energy Frontier Colliders after LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less

  13. Crab cavities: Past, present, and future of a challenging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less

  14. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  15. Crabbing system for an electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilla, Alejandro

    2017-05-01

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams aremore » being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing

  16. Crabbing System for an Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Castilla, Alejandro

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increas- ing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers--in one of their versions--the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing

  17. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets hasmore » also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  18. Will there be energy frontier colliders after LHC?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less

  19. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    PubMed

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  20. Linear Collider Physics Resource Book Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronan

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be

  1. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  2. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  3. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  4. Precision constraints on the top-quark effective field theory at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Durieux, G.

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-\\to bW^+\\:\\bar bW^-$ process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  5. Dark spectroscopy at lepton colliders

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  6. Prospects of type-II seesaw models at future colliders in light of the DAMPE e+e- excess

    NASA Astrophysics Data System (ADS)

    Sui, Yicong; Zhang, Yongchao

    2018-05-01

    The DAMPE e+e- excess at around 1.4 TeV could be explained in the type-II seesaw model with a scalar dark mater D which is stabilized by a discrete Z2 symmetry. The simplest scenario is the annihilation D D →H++H- followed by the subsequent decay H±±→e±e±, with both the DM and triplet scalars roughly 3 TeV with a small mass splitting. In addition to the Drell-Yan process at future 100 TeV hadron colliders, the doubly charged components could also be produced at lepton colliders like ILC and CLIC in the off shell mode and mediate lepton flavor violating processes e+e-→ℓi±ℓj∓ (with i ≠j ). A wide range of parameter space of the type-II seesaw could be probed, which are well below the current stringent lepton flavor constraints.

  7. Probing GeV-scale MSSM neutralino dark matter in collider and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Duan, Guang Hua; Wang, Wenyu; Wu, Lei; Yang, Jin Min; Zhao, Jun

    2018-03-01

    Given the recent constraints from the dark matter (DM) direct detections, we examine a light GeV-scale (2-30 GeV) neutralino DM in the alignment limit of the Minimal Supersymmetric Standard Model (MSSM). In this limit without decoupling, the heavy CP-even scalar H plays the role of the Standard Model (SM) Higgs boson while the other scalar h can be rather light so that the DM can annihilate through the h resonance or into a pair of h to achieve the observed relic density. With the current collider and cosmological constraints, we find that such a light neutralino DM above 6 GeV can be excluded by the XENON-1T (2017) limits while the survivied parameter space below 6 GeV can be fully tested by the future germanium-based light dark matter detections (such as CDEX), by the Higgs coupling precison measurements or by the production process e+e- → hA at an electron-positron collider (Higgs factory).

  8. Heavy neutrino mixing and single production at linear collider

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.

    1997-02-01

    We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.

  9. Dark sequential Z ' portal: Collider and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.

    2018-02-01

    We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.

  10. The Birth of Lepton Colliders in Italy and the United States

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    2003-04-01

    In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.

  11. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  12. Interplay and characterization of Dark Matter searches at colliders and in direct detection experiments

    DOE PAGES

    Malik, Sarah A.; McCabe, Christopher; Araujo, Henrique; ...

    2015-05-18

    In our White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Furthermore, based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.

  13. Unveiling the proton spin decomposition at a future electron-ion collider

    DOE PAGES

    Aschenauer, Elke C.; Sassot, Rodolfo; Stratmann, Marco

    2015-11-24

    We present a detailed assessment of how well a future electron-ion collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton’s spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudodata and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have providedmore » evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon’s helicity distribution by the end of BNL-RHIC operations. As a result, all estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.« less

  14. High energy density physics issues related to Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  15. Lepton Flavor Violation Induced by a Neutral Scalar at Future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2018-06-01

    Many new physics scenarios beyond standard model often necessitate the existence of a (light) neutral scalar H , which might couple to the charged leptons in a flavor violating way, while evading all existing constraints. We show that such scalars could be effectively produced at future lepton colliders, either on shell or off shell depending on their mass, and induce lepton flavor violating (LFV) signals, i.e., e+e-→ℓα±ℓβ∓(+H ) with α ≠β . We find that a large parameter space of the scalar mass and the LFV couplings can be probed well beyond the current low-energy constraints in the lepton sector. In particular, a scalar-loop induced explanation of the long-standing muon g -2 anomaly can be directly tested in the on-shell mode.

  16. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  17. Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter

    NASA Astrophysics Data System (ADS)

    Chala, Mikael; Gröber, Ramona; Spannowsky, Michael

    2018-03-01

    Many composite Higgs models predict the existence of vector-like quarks with masses outside the reach of the LHC, e.g. m Q ≳ 2 TeV, in particular if these models contain a dark matter candidate. In such models the mass of the new resonances is bounded from above to satisfy the constraint from the observed relic density. We therefore develop new strategies to search for vector-like quarks at a future 100 TeV collider and evaluate what masses and interactions can be probed. We find that masses as large as ˜ 6.4 (˜9) TeV can be tested if the fermionic resonances decay into Standard Model (dark matter) particles. We also discuss the complementarity of dark matter searches, showing that most of the parameter space can be closed. On balance, this study motivates further the consideration of a higher-energy hadron collider for a next generation of facilities.

  18. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    DOE PAGES

    Artymowski, Michal; Lewicki, Marek; Wells, James D.

    2017-03-13

    Here, we consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wavemore » searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.« less

  19. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    NASA Astrophysics Data System (ADS)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  20. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    NASA Astrophysics Data System (ADS)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  1. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less

  2. Linear Collider Physics Resource Book for Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less

  3. The CMS High Level Trigger System: Experience and Future Development

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Bowen, M.; Branson, J.; Bukowiec, S.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Flossdorf, A.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hartl, C.; Hegeman, J.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Polese, G.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schwick, C.; Shpakov, D.; Simon, S.; Spataru, A. C.; Sumorok, K.

    2012-12-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  4. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  5. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-01

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.

  6. Top quark studies at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  7. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  8. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  9. Hadron collider tests of neutrino mass-generating mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  10. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    DOE PAGES

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-22

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlationsmore » between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.« less

  11. High Energy Colliders and Hidden Sectors

    NASA Astrophysics Data System (ADS)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  12. Self-sustaining charging of identical colliding particles

    NASA Astrophysics Data System (ADS)

    Siu, Theo; Cotton, Jake; Mattson, Gregory; Shinbrot, Troy

    2014-05-01

    Recent experiments have demonstrated that identical material samples can charge one another after being brought into symmetric contact. The mechanism for this charging is not known. In this article, we use a simplified one-dimensional lattice model to analyze charging in the context of agitated particles. We find that the electric field from a single weakly polarized grain can feed back on itself by polarizing its neighbors, leading to an exponential growth in polarization. We show that, by incorporating partial neutralization between neighboring polarized particles, either uniform alignment of dipoles or complex charge and polarization waves can be produced. We reproduce a polarized state experimentally using identical colliding particles and raise several issues for future study.

  13. Intense beams at the micron level for the Next Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.

  14. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  15. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE PAGES

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    2017-01-27

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  16. Gaudi Evolution for Future Challenges

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Hegner, B.; Leggett, C.

    2017-10-01

    The LHCb Software Framework Gaudi was initially designed and developed almost twenty years ago, when computing was very different from today. It has also been used by a variety of other experiments, including ATLAS, Daya Bay, GLAST, HARP, LZ, and MINERVA. Although it has been always actively developed all these years, stability and backward compatibility have been favoured, reducing the possibilities of adopting new techniques, like multithreaded processing. R&D efforts like GaudiHive have however shown its potential to cope with the new challenges. In view of the LHC second Long Shutdown approaching and to prepare for the computing challenges for the Upgrade of the collider and the detectors, now is a perfect moment to review the design of Gaudi and plan future developments of the project. To do this LHCb, ATLAS and the Future Circular Collider community joined efforts to bring Gaudi forward and prepare it for the upcoming needs of the experiments. We present here how Gaudi will evolve in the next years and the long term development plans.

  17. Exploring collider aspects of a neutrinophilic Higgs doublet model in multilepton channels

    NASA Astrophysics Data System (ADS)

    Huitu, Katri; Kärkkäinen, Timo J.; Mondal, Subhadeep; Rai, Santosh Kumar

    2018-02-01

    We consider a neutrinophilic Higgs scenario where the Standard Model is extended by one additional Higgs doublet and three generations of singlet right-handed Majorana neutrinos. Light neutrino masses are generated through mixing with the heavy neutrinos via the Type-I seesaw mechanism when the neutrinophilic Higgs gets a vacuum expectation value (VEV). The Dirac neutrino Yukawa coupling in this scenario can be sizable compared to those in the canonical Type-I seesaw mechanism owing to the small neutrinophilic Higgs VEV giving rise to interesting phenomenological consequences. We have explored various signal regions likely to provide a hint of such a scenario at the LHC as well as at future e+e- colliders. We have also highlighted the consequences of light neutrino mass hierarchies in collider phenomenology that can complement the findings of neutrino oscillation experiments.

  18. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  19. Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Magill, Stephen R.

    2005-02-01

    Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.

  20. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  1. Minimal supersymmetric B - L extension of the standard model, heavy H and light h Higgs boson production and decay at future e + e - linear colliders

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, F.; Gutierrez-Rodríguez, A.; Hernández-Ruiz, M. A.

    2017-10-01

    We study the phenomenology of the light h and heavy H Higgs boson production and decay in the context of a U(1) B - L extension of the standard model with an additional Z´ boson at future e + e - linear colliders with center-of-mass energies of √𝑠 = 500 - 3000 GeV and integrated luminosities of L = 500 - 2000 fb-1. The study includes the processes e + e - → (Z, Z´) → Zh and e + e - → (Z, Z´) → ZH, considering both the resonant and non-resonant effects. We find that the total number of expected Zh and ZH events can reach 106 and 105, respectively, which is a very optimistic scenario allowing us to perform precision measurements for both Higgs bosons h and H, as well as for the Z‧ boson in future high-energy and high-luminosity e + e - colliders.

  2. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  3. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros Tuativa, Sandra Jimena

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters

  4. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2018-05-11

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  5. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, Csaba; Conrad, Jan; Farmer, Ben

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  6. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE PAGES

    Balazs, Csaba; Conrad, Jan; Farmer, Ben; ...

    2017-10-04

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  7. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  8. Artist rendering of dust grains colliding at low speeds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  9. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    Battaglia, Marco

    2018-01-12

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  10. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  11. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  12. Physics Opportunity with an Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Patrizia

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less

  13. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  14. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE PAGES

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; ...

    2016-03-09

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  15. An optimal scheme for top quark mass measurement near the \\rm{t}\\bar{t} threshold at future \\rm{e}^{+}{e}^{-} colliders

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Wan, Xia; Wang, You-Kai

    2018-05-01

    A top quark mass measurement scheme near the {{t}}\\bar{{{t}}} production threshold in future {{{e}}}+{{{e}}}- colliders, e.g. the Circular Electron Positron Collider (CEPC), is simulated. A {χ }2 fitting method is adopted to determine the number of energy points to be taken and their locations. Our results show that the optimal energy point is located near the largest slope of the cross section v. beam energy plot, and the most efficient scheme is to concentrate all luminosity on this single energy point in the case of one-parameter top mass fitting. This suggests that the so-called data-driven method could be the best choice for future real experimental measurements. Conveniently, the top mass statistical uncertainty can also be calculated directly by the error matrix even without any sampling and fitting. The agreement of the above two optimization methods has been checked. Our conclusion is that by taking 50 fb‑1 total effective integrated luminosity data, the statistical uncertainty of the top potential subtracted mass can be suppressed to about 7 MeV and the total uncertainty is about 30 MeV. This precision will help to identify the stability of the electroweak vacuum at the Planck scale. Supported by National Science Foundation of China (11405102) and the Fundamental Research Funds for the Central Universities of China (GK201603027, GK201803019)

  16. Exposing the dark sector with future Z factories

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Lian-Tao; Wang, Xiao-Ping; Xue, Wei

    2018-05-01

    We investigate the prospects of searching dark sector models via exotic Z -boson decay at future e+e- colliders with Giga Z and Tera Z options. Four general categories of dark sector models, Higgs portal dark matter, vector-portal dark matter, inelastic dark matter, and axionlike particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model-independent study of the sensitivities of Z factories in probing exotic decays. The limits on branching ratios of the exotic Z decay are typically O (10-6- 10-8.5) for the Giga Z and O (10-7.5- 10-11) for the Tera Z , and they are compared with the projection for the high luminosity LHC. We demonstrate that future Z factories can provide its unique and leading sensitivity and highlight the complementarity with other experiments, including the indirect and direct dark matter search limits and the existing collider limits. Future Z factories will play a leading role in uncovering the hidden sector of the Universe in the future.

  17. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With themore » LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop

  18. R&D Toward a Neutrino Factory and Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  19. Studies for a Dedicated B Detector at the Fermilab Collider

    NASA Astrophysics Data System (ADS)

    McBride, Patricia

    1996-06-01

    The observation of CP violation in the B system is one of the great experimental challenges of the next decade. Several B factories are already planned, however, there will be many interesting measurements awaiting a second generation of B exeriments. Studies are being carried out to design a dedicated collider B experiment for the Tevatron at Fermilab. A dedicated B detector at a hadron collider will have a physics reach beyond that of experiments scheduled to begin operation before the end of the decade.

  20. Space-charge limitations in a collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Heimerle, M.

    Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less

  1. Design Studies and Optimization of High-Field Nb$$_3$$Sn Dipole Magnets for a Future Very High Energy PP Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, V. V.; Novitski, I.; Zlobin, A. V.

    2017-05-01

    High filed accelerator magnets with operating fields of 15-16 T based on themore » $$Nb_3Sn$$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $$Nb_3Sn$$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.« less

  2. Collider study on the loop-induced dark matter mediation

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2016-06-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  3. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  4. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  5. Signals from flavor changing scalar currents at the future colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, D.; Reina, L.; Soni, A.

    1996-11-22

    We present a general phenomenological analysis of a class of Two Higgs Doublet Models with Flavor Changing Neutral Currents arising at the tree level. The existing constraints mainly affect the couplings of the first two generations of quarks, leaving the possibility for non negligible Flavor Changing couplings of the top quark open. The next generation of lepton and hadron colliders will offer the right environment to study the physics of the top quark and to unravel the presence of new physics beyond the Standard Model. In this context we discuss some interesting signals from Flavor Changing Scalar Neutral Currents.

  6. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  7. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  8. Collider study on the loop-induced dark matter mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yuhsin, E-mail: yhtsai@umd.edu

    2016-06-21

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less

  9. CCD developments for particle colliders

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-09-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.

  10. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  11. Collider Interplay for Supersymmetry, Higgs and Dark Matter

    DOE PAGES

    Buchmueller, Oliver; Citron, M.; Ellis, J.; ...

    2015-10-01

    Here, we discuss the potential impacts on the CMSSM of future LHC runs and possible e +e – and higher-energy proton–proton colliders, considering searches for supersymmetry via /E T events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /E T searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2more » variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m 0,m 1/2 and A 0 of the CMSSM. Slepton measurements at CLIC would enable m 0 and m 1/2 to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e +e – collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.« less

  12. Next Linear Collider Home Page

    Science.gov Websites

    Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission, design ideas, and Linear Collider. line | NLC Home | NLC Technical | SLAC | mcdunn Tuesday, February 14, 2006 01:32:11 PM

  13. R&D for the Future

    NASA Astrophysics Data System (ADS)

    Hübner, Kurt; Treille, Daniel; Schulte, Daniel

    The following sections are included: * The LHC and Beyond * Accelerator Magnets with Ever-Higher Fields * Teasing Performance from Superconductors Old and New * RF Power for CLIC: Acceleration by Deceleration * The Next Energy Frontier e+e- Collider: Innovation in Detectors * Hadron Collider Detectors: A Bright and Energetic Future * References

  14. Time domain structures in a colliding magnetic flux rope experiment

    NASA Astrophysics Data System (ADS)

    Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick

    2017-10-01

    Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.

  15. Retrieval of past and future positive and negative autobiographical experiences.

    PubMed

    García-Bajos, Elvira; Migueles, Malen

    2017-09-01

    We studied retrieval-induced forgetting for past or future autobiographical experiences. In the study phase, participants were given cues to remember past autobiographical experiences or to think about experiences that may occur in the future. In both conditions, half of the experiences were positive and half negative. In the retrieval-practice phase, for past and future experiences, participants retrieved either half of the positive or negative experiences using cued recall, or capitals of the world (control groups). Retrieval practice produced recall facilitation and enhanced memory for the practised positive and negative past and future experiences. While retrieval practice on positive experiences did not impair the recall of other positive experiences, we found inhibition for negative past and future experiences when participants practised negative experiences. Furthermore, retrieval practice on positive future experiences inhibited negative future experiences. These positivity biases for autobiographical memory may have practical implications for treatment of emotional disorders.

  16. Electron density and plasma dynamics of a colliding plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less

  17. Ring Imaging Cherenkov Detector Technologies for Particle Identification in the Electron-Ion Collider Experiments

    NASA Astrophysics Data System (ADS)

    He, X.

    In the proposed Electron-Ion Collider (EIC) experiments, particle identification (PID) of the final state hadrons in the semi-inclusive deep inelastic scattering allows the measurement of flavor-dependent gluon and quark distributions inside nucleons and nuclei. The EIC PID consortium (eRD14 Collaboration) has been formed for identifying and developing PID detectors using Ring Imaging Cherenkov (RICH) techniques for the EIC experiments. A modular Ring Imaging Cherenkov (mRICH) detector has been designed for particle identification in the momentum coverage from 3 GeV/c to 10 GeV/c. The mRICH detector consists of an aerogel radiator block, a Fresnel lens, a mirror-wall and a photosensor plane. The first prototype of this detector was successfully tested at Fermi National Accelerator Laboratory in April 2016 for verifying the detector working principles. This talk will highlight the mRICH beam test results and their comparison with GEANT4-based detector simulations. An implementation of the mRICH detector concept in the Forward Angle sPHENIX spectrometer at BNL will also be mentioned in this talk.

  18. Large Hadron Collider commissioning and first operation.

    PubMed

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  19. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  20. Relic neutralino surface at a 100 TeV collider

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Martin, Adam; ...

    2015-03-11

    We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less

  1. The Next Linear Collider Program

    Science.gov Websites

    text only International Study Group (ISG) Meetings NLC Home Page NLC Technical SLAC Eleventh Linear Collider International Study Group at KEK, December 16 - 19, 2003 Tenth (X) Linear Collider International Study Group at SLAC, June, 2003 Nineth Linear Collider ,International Study Group at KEK, December 10-13

  2. Collider detection of dark matter electromagnetic anapole moments

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver

    2018-03-01

    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.

  3. Retention and application of Skylab experiment experiences to future programs

    NASA Technical Reports Server (NTRS)

    Milly, N.; Gillespie, V. G.

    1974-01-01

    Problems encountered on Skylab Experiments are listed in order that these experiences and associated recommendations might help to prevent similar problems on future programs. The criteria for selection of the data to be utilized was to identify the problem areas within the Skylab Program which would be of major significance with respect to future programs. Also, the problem had to be unique in that it would help identify to a designer/manufacturer an unforeseen or unanticipated occurrence which could cause failures, delays, or additional cost. Only those unexpected problems that may occur due to the nature of aerospace experiment environmental and operational requirements are included.

  4. Matter, Energy, Space and Time: The International Linear Collider Physics Prospects and International Aspects

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2006-04-01

    Over the past century, physicists have sought to explain the character of the matter and energy in our universe, to show how the basic forces of nature and the building blocks of matter come about, and to explore the fabric of space and time. In the past three decades, experiments at laboratories around the world have given us a precise confirmation of the underlying theory called the standard model. These particle physics advances have a direct impact for our understanding of the structure of the universe, both at its inception in the Big Bang, and in its evolution to the present and future. The final synthesis is not yet fully clear, but we know with confidence that major discoveries expanding the standard model framework will occur at the next generation of accelerators. The Large Hadron Collider (LHC) being built at CERN will take us into the discovery realm. The proposed International Linear Collider (ILC) will extend the discoveries and provide a wealth of precision measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. A world-wide consensus has formed for a baseline ILC project at energies of 500 GeV and beyond. The choice of the superconducting technology as basis for the ILC has paved the way for a global design effort which has now taken full speed.

  5. Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.

    2015-10-01

    A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.

  6. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  7. Colliding droplets: A short film presentation

    NASA Astrophysics Data System (ADS)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  8. Colliding impulsive gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.; Halil, M.

    1977-11-28

    We formulate the problem of colliding plane gravitational waves with two polarizations as the harmonic mappings of Riemannian manifolds and construct an exact solution of the vacuum Einstein field equations describing the interaction of colliding impulsive gravitational waves which in the limit of collinear polarization reduces to the solution of Khan and Penrose.

  9. On a Possibility of the Gravitational Wave Detection at the High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Verma, Murli Manohar

    A strong follow up of a previous proposal (ICHEP, Valencia 2014) is made leading to the first experiment to observe the gravitational waves at the collision sites at the colliders such as the Large Hadron Collider at CERN. The amplitudes have been calculated with regard to the sensitivity of the detector. Compared with the standard model physics, it is shown to have a measurable impact on the particle motions and corresponds to ‘missing’ energy in form of the gravitational wave loss. This is unlike the cosmological detectors like BICEP2 etc. where the indirect B mode polarization on CMBR were masked by dust. In contrast, this experiment would be the first experiment where the energy-momentum tensor of the source can be controlled.

  10. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  11. TOPICAL REVIEW: TeV mini black hole decay at future colliders

    NASA Astrophysics Data System (ADS)

    Casanova, Alex; Spallucci, Euro

    2006-02-01

    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear

  12. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, T.; et al.

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  13. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  14. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  15. The Next Linear Collider Program

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar NLC Playpen Warning: This page is provided as a place for Comments & Suggestions | Desktop Trouble Call | Linear Collider Group at FNAL || This page was updated

  16. Error Correction for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less

  17. Future Reactor Neutrino Experiments (RRNOLD)1

    NASA Astrophysics Data System (ADS)

    Jaffe, David E.

    The prospects for future reactor neutrino experiments that would use tens of kilotons of liquid scintillator with a ∼ 50 km baseline are discussed. These experiments are generically dubbed "RRNOLD" for Radical Reactor Neutrino Oscillation Liquid scintillator Detector experiment. Such experiments are designed to resolve the neutrino mass hierarchy and make sub-percent measurements sin2θ12, Δm232 and Δm122 . RRNOLD would also be sensitive to neutrinos from other sources and have notable sensitivity to proton decay.

  18. Analysis of b quark pair production signal from neutral 2HDM Higgs bosons at future linear colliders

    NASA Astrophysics Data System (ADS)

    Hashemi, Majid; MahdaviKhorrami, Mostafa

    2018-06-01

    In this paper, the b quark pair production events are analyzed as a source of neutral Higgs bosons of the two Higgs doublet model type I at linear colliders. The production mechanism is e+e- → Z^{(*)} → HA → b{\\bar{b}}b{\\bar{b}} assuming a fully hadronic final state. The analysis aim is to identify both CP-even and CP-odd Higgs bosons in different benchmark points accommodating moderate boson masses. Due to pair production of Higgs bosons, the analysis is most suitable for a linear collider operating at √{s} = 1 TeV. Results show that in selected benchmark points, signal peaks are observable in the b-jet pair invariant mass distributions at integrated luminosity of 500 fb^{-1}.

  19. Black Holes Collide

    NASA Image and Video Library

    2017-12-08

    When two black holes collide, they release massive amounts of energy in the form of gravitational waves that last a fraction of a second and can be "heard" throughout the universe - if you have the right instruments. Today we learned that the #LIGO project heard the telltale chirp of black holes colliding, fulfilling Einstein's General Theory of Relativity. NASA's LISA mission will look for direct evidence of gravitational waves. go.nasa.gov/23ZbqoE This video illustrates what that collision might look like.

  20. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  1. Very large hadron collider (VLHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future ofmore » US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.« less

  2. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    NASA Astrophysics Data System (ADS)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  3. Nuclear structure functions at a future electron-ion collider

    DOE PAGES

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; ...

    2017-12-07

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less

  4. Nuclear structure functions at a future electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less

  5. Vanilla technicolor at linear colliders

    NASA Astrophysics Data System (ADS)

    Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco

    2011-08-01

    We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.

  6. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    Jakobs, Karl

    2018-05-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  7. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur

    2017-12-22

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  8. Search of strangelets and “forward” physics on the collider

    NASA Astrophysics Data System (ADS)

    Kurepin, A. B.

    2016-01-01

    A new stage of the collider experiments at the maximum energy of protons and nuclei at the LHC may lead to the discovery of new phenomena, as well as to confirm the effects previously observed only at very high energies in cosmic rays. A specific program of the experiments is so-called “forward” physics, i.e. the study of low-angle processes. Of the most interesting phenomena can be noted the detection in cosmic rays events called Centauro, which could be explained as the strangelets production. Centauro represent events with small multiplicity and with a strong suppression of electromagnetic component. Since the energy of the beams at the collider and kinematic parameters of the forward detectors CASTOR (CMS), TOTEM, LHCf and the ADA and ADC (ALICE) are close to the parameters and energies of abnormal events in cosmic rays, it is possible to reproduce and investigate in details these events in the laboratory.

  9. Testing the scalar sector of the twin Higgs model at colliders

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.

    2018-03-01

    We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.

  10. Luminosity geometric reduction factor from colliding bunches with different lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdu-Andres, S.

    In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.

  11. Muon collider interaction region design

    DOE PAGES

    Alexahin, Y. I.; Gianfelice-Wendt, E.; Kashikhin, V. V.; ...

    2011-06-02

    Design of a muon collider interaction region (IR) presents a number of challenges arising from low β* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can too provide an average luminosity of 10 34 cm -2s -1 with an adequate protection of magnet and detector components.

  12. Testing the scalar sector of the twin Higgs model at colliders

    DOE PAGES

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; ...

    2018-03-22

    We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less

  13. Testing the scalar sector of the twin Higgs model at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh

    We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less

  14. Design and Development of a Prototype Permanent Magnet for Focusing/Defocusing for Electron-Ion Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Bob

    Electron-ion colliders (EIC) have been identified as an ideal tool to study the next frontier of nuclear physics – the gluon force that holds the building blocks of matter together, and which is a fundamental component of the theory of Quantum Chromodynamics (QCD). Future electron-ion colliders under consideration can be based on the Energy Recovery Linac (ERL) architecture. The beam lines for this architecture could be built of the newly developed Non-Scaling Fixed Field Alternating Gradient (NS FFAG) structure, so that they can transfer multiple energies within the same aperture. This structure allows for the use of compact, economical quadupolemore » permanent magnets. In this SBIR, we propose to design and to manufacture prototype quadrupole permanent magnets of focusing/defocusing combined function for use in this beam line. For our SBIR project, we proposed to design and build the focusing/defocusing quadrupole with a gradient strength of 50 T/m and with a beam gap of 16mm. The proposed permanent magnet material is SmCo because of its higher radiation resistance as compared to NdBFe2. The use of permanent magnets will reduce the overall cost. For Phase I, we took a recent design by Dr. Dejan Trbojevic, and reran Tosca code on the design to optimize the iron yoke with respect to the thickness of SmCo. We then fabricated one prototype focusing/defocusing combined function quadruple and measured field quality dG/Go. Our plan for Phase II is that, based on our Phase I prototype experience, we shall improve the design and fabricate a production quadruple, and design and incorporate coils for skew dipoles and normal quadrupole correctors, etc. In addition, we shall fabricate enough quadrupoles for one cell. The development of quadrupole permanent magnets is of fundamental importance for there application in the future electron-ion colliders. This accelerator structure will also advance the development of muon accelerators and allow for the development of

  15. Nuclotron-Based Ion Collider Facility (nica)

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sissakian, A.; Sorin, A.

    2008-09-01

    The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).

  16. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  17. Standard Model Background of the Cosmological Collider.

    PubMed

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-06-30

    The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.

  18. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  19. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  20. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2014-04-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  1. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  2. Collider shot setup for Run 2 observations and suggestions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annala, J.; Joshel, B.

    1996-01-31

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This ismore » the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb{sup {minus}1}/week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb{sup {minus}1} for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent `components`: procedures, hardware, controls, and sociology. These components don`t directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components.« less

  3. Physics at the e⁺e⁻ linear collider

    DOE PAGES

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  4. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  5. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less

  6. Soviet Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  7. Characteristics of Early Work Experiences and Their Association with Future Employment

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella; O'Mally, Jamie

    2012-01-01

    Introduction: Early work experiences are a key predictor of future employment for transition-age youths with visual impairments. We investigated how specific characteristics of early work experiences influence future employment and whether the receipt of Supplemental Security Income (SSI) benefits is associated with early work experiences among…

  8. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Francis, K.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Calice Collaboration

    2011-10-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1×10-5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  9. Observing patchy reionization with future CMB polarization experiments

    NASA Astrophysics Data System (ADS)

    Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.

    2018-05-01

    We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.

  10. Jet Substructure at the Large Hadron Collider : Experimental Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asquith, Lily; Campanelli, Mario; Delitzsch, Chris

    Jet substructure has emerged to play a central role at the Large Hadron Collider (LHC), where it has provided numerous innovative new ways to search for new physics and to probe the Standard Model, particularly in extreme regions of phase space. In this article we focus on a review of the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments. ALICE and LHCb have been probing fragmentation functions since the start of the LHC and have also recently started studying other jet substructure techniques. It is likely that in the near future all LHC collaborationsmore » will make significant use of jet substructure and grooming techniques. Much of the work in this field in recent years has been galvanized by the Boost Workshop Series, which continues to inspire fruitful collaborations between experimentalists and theorists. We hope that this review will prove a useful introduction and reference to experimental aspects of jet substructure at the LHC. A companion overview of recent progress in theory and machine learning approaches is given in 1709.04464, the complete review will be submitted to Reviews of Modern Physics.« less

  11. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, Sandra J.; Summers, Don; Cremaldi, Lucien

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity, 100 TeV $$p\\bar{p}$$ collider with 7$$\\times$$ the energy of the LHC but only 2$$\\times$$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. A Fermilab-like $$\\bar p$$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.« less

  12. Prospects for future experiments to search for nucleon decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, D.S.; Heller, K.; LoSecco, J.

    1982-01-01

    We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modesmore » to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.« less

  13. Possible limits of plasma linear colliders

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  14. A global view on the Higgs self-coupling at lepton colliders

    DOE PAGES

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; ...

    2018-02-28

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  15. A global view on the Higgs self-coupling at lepton colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  16. Beam dynamics issues in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1989-06-01

    The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less

  17. Physics at high energy photon photon colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanowitz, M.S.

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  18. Hadron collider searches for diboson resonances

    NASA Astrophysics Data System (ADS)

    Dorigo, Tommaso

    2018-05-01

    This review covers results of searches for new elementary particles that decay into boson pairs (dibosons), performed at the CERN Large Hadron Collider in proton-proton collision data collected by the ATLAS and CMS experiments at 7-, 8-, and 13-TeV center-of-mass energy until the year 2017. The available experimental results of the analysis of final states including most of the possible two-object combinations of W and Z bosons, photons, Higgs bosons, and gluons place stringent constraints on a variety of theoretical ideas that extend the standard model, pushing into the multi-TeV region the scale of allowed new physics phenomena.

  19. Learning from Higgs physics at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Li, Honglei; Liu, Zhen; Su, Shufang; Su, Wei

    2017-12-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explore its sensitivity to new physics models at the electron-positron colliders. In particular, we study two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtain the limits on the singlet-doublet mixing angle sin θ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyze tree level effects in tan β vs. cos( β - α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtain lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compare the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  20. Learning from Higgs physics at future Higgs factories

    DOE PAGES

    Gu, Jiayin; Li, Honglei; Liu, Zhen; ...

    2017-12-29

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  1. Learning from Higgs physics at future Higgs factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jiayin; Li, Honglei; Liu, Zhen

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  2. Higgs physics at the CLIC electron-positron linear collider.

    PubMed

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  3. Compensatable muon collider calorimeter with manageable backgrounds

    DOEpatents

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  4. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-01

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  5. Right-handed charged currents in the era of the Large Hadron Collider

    DOE PAGES

    Alioli, Simone; Cirigliano, Vincenzo; Dekens, Wouter Gerard; ...

    2017-05-16

    We discuss the phenomenology of right-handed charged currents in the frame-work of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. Here, we subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments,more » that would uniquely point to right-handed charged currents.« less

  6. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  7. Probing the fermionic Higgs portal at lepton colliders

    DOE PAGES

    Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao

    2016-04-26

    Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H †Hχ¯χ. Measurements of precision electroweak S and T parameters and the e +e – → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables.more » We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less

  8. Probing the fermionic Higgs portal at lepton colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao

    Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H †Hχ¯χ. Measurements of precision electroweak S and T parameters and the e +e – → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables.more » We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less

  9. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  10. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  11. Photon collider: a four-channel autoguider solution

    NASA Astrophysics Data System (ADS)

    Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.

    2010-07-01

    The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.

  12. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeyratne, S; Ahmed, S; Barber, D

    2012-08-01

    very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 Ge

  13. Physics at the [Formula: see text] linear collider.

    PubMed

    Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H

    A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  14. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  15. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    NASA Astrophysics Data System (ADS)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  16. Numerical calculation of ion polarization in the NICA collider

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.

  17. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    NASA Astrophysics Data System (ADS)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  18. Participation in the ARGUS experiment at the DORIS Collider at DESY, Hamburg, Germany and participation in the AMY experiment at the Tristan Collider in Tsukuba, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darden, C.; Rosenfeld, C.

    1990-01-01

    This paper discusses electron-positron annihilation at high energy. This work began in 1977 with the DASP II Collaboration at the DORIS storage ring of the DESY Laboratory in Hamburg. The collaboration's first publication reported the observation of the narrow {Upsilon} resonance at 9.46 GeV, confirming the original observation of this state in proton-nucleus collisions at Fermilab. To enable investigations of the {Upsilon} family of resonances the DORIS ring was rebuilt for reliable operation at the top of its energy range where the {Upsilon} states are accessible. In addition a new detector, ARGUS, was installed at one interaction region. This papermore » also discusses the AMY Collaboration which investigates electron-positron annihilation at energies from 50 to 65 GeV. The AMY detector is in the beam of the TRISTAN collider of the KEK Laboratory in Tsukuba, Japan.« less

  19. The Standard Model from LHC to future colliders.

    PubMed

    Forte, S; Nisati, A; Passarino, G; Tenchini, R; Calame, C M Carloni; Chiesa, M; Cobal, M; Corcella, G; Degrassi, G; Ferrera, G; Magnea, L; Maltoni, F; Montagna, G; Nason, P; Nicrosini, O; Oleari, C; Piccinini, F; Riva, F; Vicini, A

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the "What Next" Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  20. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  1. Study of Higgs effective couplings at electron-proton colliders

    NASA Astrophysics Data System (ADS)

    Hesari, Hoda; Khanpour, Hamzeh; Najafabadi, Mojtaba Mohammadi

    2018-05-01

    We perform a search for beyond-the-Standard-Model (BSM) dimension-six operators relevant to the Higgs boson at the Large Hadron Electron Collider (LHeC) and the Future Circular Hadron Electron Collider (FCC-he). With a large amount of data (few ab-1 ) and collisions at the TeV scale, both LHeC and FCC-he provide excellent opportunities to search for the BSM effects. The study is done through the process e-p →h j νe , where the Higgs boson decays into a pair of b b ¯, and we consider the main sources of background processes, including a realistic simulation of detector effects. For the FCC-he case, in some signal scenarios, to obtain an efficient event reconstruction and to have a good background rejection, jet substructure techniques are employed to reconstruct the boosted Higgs boson in the final state. In order to assess the sensitivity to the dimension-six operators, a shape analysis on the differential cross sections is performed. Stringent bounds are found on the Wilson coefficients of dimension-six operators with the integrated luminosities of 1 ab-1 and 10 ab-1 , which in some cases show improvements with respect to the high-luminosity LHC results.

  2. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  3. Unavoidable trapped mode in the interaction region of colliding beams

    DOE PAGES

    Novokhatski, Alexander; Sullivan, Michael; Belli, Eleonora; ...

    2017-11-22

    Here, we discuss the nature of the electromagnetic fields excited by the beams in the beam pipe of an interaction region. In trying to find an optimum geometry for this region with a minimum of electromagnetic wave excitation, we have discovered one mode, which remains even in a very smooth geometry. This mode has a longitudinal electrical component and can be easily excited by the beam. By analyzing the structure of this mode we have found a way to absorb this mode. The work was done in connection with a proposal for a future electron-positron collider.

  4. Skyshine from the SSC (superconducting super collider) interaction regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.D.

    1987-04-01

    This report calculates the neutron fluence from collisions at the superconducting super collider. The motivation for these calculations is shielding considerations in the collision halls of the collider. (JDH)

  5. Higgs, SUSY and the standard model at /γγ colliders

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2001-10-01

    In this report, I surveyed physics potential of the γγ option of a linear e +e - collider with the following questions in mind: What new discovery can be expected at a γγ collider in addition to what will be learned at its ' parent' e +e -linear collider? By taking account of the hard energy spectrum and polarization of colliding photons, produced by Compton back-scattering of laser light off incoming e - beams, we find that a γγ collider is most powerful when new physics appears in the neutral spin-zero channel at an invariant mass below about 80% of the c.m. energy of the colliding e -e - system. If a light Higgs boson exists, its properties can be studied in detail, and if its heavier partners or a heavy Higgs boson exists in the above mass range, they may be discovered at a γγ collider. CP property of the scalar sector can be explored in detail by making use of linear polarization of the colliding photons, decay angular correlations of final state particles, and the pattern of interference with the Standard Model amplitudes. A few comments are given for SUSY particle studies at a γγ collider, where a pair of charged spinless particles is produced in the s-wave near the threshold. Squark-onium may be discovered. An e ±γ collision mode may measure the Higgs- Z-γ coupling accurately and probe flavor oscillations in the slepton sector. As a general remark, all the Standard Model background simulation tools should be prepared in the helicity amplitude level, so that simulation can be performed for an arbitrary set of Stokes parameters of the incoming photon beams.

  6. Results of a higgs boson searches in the ATLAS and CMS experiments at the large hadron collider at energies 7 and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artamonov, A. A.; Epshteyn, V. S.; Gavrilov, V. B.

    2016-05-15

    Recent achievements of the ATLAS and CMS experiments at the Large Hadron Collider searching for a Higgs boson are summarized. A new particle with the mass of 125 GeV and properties expected for the Standard Model Higgs boson was discovered three years ago in these experiments in proton-proton collisions when analyzing part of the data taken at the centre-of-mass energies 7 TeV and 8 TeV in 2011 and 2012 year exposures. Today all the data are processed and fully analyzed. Experimental results of studies of individual Higgs boson decay channels as well as their combination to extract such properties asmore » mass, signal strength, coupling constants, spin and parity are reviewed. All experimental results are found to be compatible with the Standard Model predictions.« less

  7. 2009: A Colliding-Wind Odyssey

    NASA Astrophysics Data System (ADS)

    Fahed, R.; Moffat, A. F. J.; Zorec, J.; Eversberg, T.; Chené, A. N.; Alves, F.; Arnold, W.; Bergmann, T.; Corcoran, M. F.; Correia Viegas, N. G.; Dougherty, S. M.; Fernando, A.; Frémat, Y.; Gouveia Carreira, L. F.; Hunger, T.; Knapen, J. H.; Leadbeater, R.; Marques Dias, F.; Martayan, C.; Morel, T.; Pittard, J. M.; Pollock, A. M. T.; Rauw, G.; Reinecke, N.; Ribeiro, J.; Romeo, N.; Sánchez-Gallego, J. R.; dos Santos, E. M.; Schanne, L.; Stahl, O.; Stober, Ba.; Stober, Be.; Vollmann, K.; Williams, P. M.

    2012-12-01

    We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which experienced periastron passage of its highly elliptical 8-year orbit in January. The WR 140 campaign consisted of a unique and constructive collaboration between amateur and professional astronomers and took place at half a dozen locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory, Observatoire du Mont-Mégantic and at several small private observatories. The second campaign was on a selection of 5 short-period WR + O binaries not yet studied for colliding-wind effects: WR 12 (WN8h), WR 21 (WN5o + O7 V), WR 30 (WC6 + O7.5 V), WR 31 (WN4o + O8), and WR 47 (WN6o + O5). The campaign took place at Leoncito Observatory, Argentina, during 1 month. We provide updated values of most of these systems for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding wind geometry.

  8. Collider searches for extra dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currentlymore » probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.« less

  9. Radiative return capabilities of a high-energy, high-luminosity e + e - collider

    DOE PAGES

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; ...

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy E CM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at E CM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e +e - colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavymore » flavor spectroscopy are given.« less

  10. Collider and Detector Protection at Beam Accidents

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  11. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac

    2003-08-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinalmore » and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.« less

  12. Dark matter with flavor symmetry and its collider signature

    DOE PAGES

    Ma, Ernest; Natale, Alexander

    2014-11-20

    The notion that dark matter and standard-model matter are connected through flavor implies a generic collider signature of the type . We discuss the theoretical basis of this proposal and its verifiability at the Large Hadron Collider.

  13. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  14. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  15. Scanning Synchronization of Colliding Bunches for MEIC Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less

  16. Exploring fermionic dark matter via Higgs boson precision measurements at the Circular Electron Positron Collider

    NASA Astrophysics Data System (ADS)

    Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-03-01

    We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.

  17. High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  18. The Quirky Collider Signals of Folded Supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2008-08-01

    We investigate the collider signals associated with scalar quirks ('squirks') in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited 'squirkonium' loses energy to radiation before annihilating back into Standard Model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time-scales. The most promising annihilation channelmore » for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.« less

  19. Final muon cooling for a muon collider

    NASA Astrophysics Data System (ADS)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  20. 2009 Linear Collider Workshop of the Americas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Sally

    The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less

  1. Discovering New Light States at Neutrino Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven; /SLAC; Harnik, Roni

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovaemore » constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.« less

  2. Measurement of the inclusive jet cross section at the CERN pp collider

    NASA Astrophysics Data System (ADS)

    Arnison, G.; Albrow, M. G.; Allkofer, O. C.; Astbury, A.; Aubert, B.; Bacci, C.; Batley, J. R.; Bauer, G.; Bettini, A.; Bézaguet, A.; Bock, R. K.; Bos, K.; Buckley, E.; Bunn, J.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Cittolin, S.; Clarke, D.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Cox, G.; Dallman, D.; Dau, D.; Debeer, M.; Debrion, J. P.; Degiorgi, M.; della Negra, M.; Demoulin, M.; Denby, B.; Denegri, D.; Diciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J. D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Fince Keeler, M.; Flynn, P.; Fontaine, G.; Frey, R.; Frühwirth, R.; Garvey, J.; Gee, D.; Geer, S.; Ghesquière, C.; Ghez, P.; Ghio, F.; Giacomelli, P.; Gibson, W. R.; Giraud-Héraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Hansl-Kozanecka, T.; Haynes, W.; Haywood, S. J.; Hoffmann, H.; Holthuizen, D. J.; Homer, R. J.; Homer, R. J.; Honma, A.; Jank, W.; Jimack, M.; Jorat, G.; Kalmus, P. I. P.; Karimäri, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kienzle, W.; Kinnunen, R.; Kozanecki, W.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J. P.; Lees, J. P.; Leuchs, R.; Levegrun, S.; Lévêque, A.; Levi, M.; Linglin, D.; Locci, E.; Long, K.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, F.; McMahon, T.; Mendiburu, J.-P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.-N.; Mohammadi, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, Th.; Nandi, A.; Naumann, L.; Norton, A.; Paoluzi, L.; Pascoli, D.; Pauss, F.; Perault, C.; Piano Mortari, G.; Pietarinen, E.; Pigot, C.; Pimiä, M.; Pitman, D.; Placci, A.; Porte, J.-P.; Radermacher, E.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J. P.; Richman, J.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Roberts, C.; Ruhm, W.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Samyn, D.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Scott, W.; Shah, T. P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Sphicas, P.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szonczo, F.; Tao, C.; Ten Have, I.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; van Eijk, B.; Verecchia, P.; Vialle, J. P.; Virdee, T. S.; von der Schmitt, H.; von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H. D.; Watkins, P.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S. J.; Wulz, C.-E.; Wyatt, T.; Yvert, M.; Zacharov, I.; Zaganidis, N.; Zanello, L.; Zotto, P.

    1986-05-01

    The inclusive jet cross section has been measured in the UA1 experiment at the CERN pp Collider at centre-of-mass energies √s = 546 GeV and √s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √s is accounted for in terms of xT scaling.

  3. Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.

    PubMed

    Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels

    2017-09-06

    Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.

  4. Physics prospects of future neutrino oscillation experiments in Asia

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  5. Les Houches ''Physics at TeV Colliders 2003'' Beyond the Standard Model Working Group: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allanach, B

    2004-03-01

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 26 May-6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional modelsmore » are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. Finally, there is an update on LHC Z' studies.« less

  6. R&D of a High-Performance DIRC Detector for a Future Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Allison, Stacey Lee

    An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly flat focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.

  7. R&D of a high-performance DIRC detector for a future electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Staceu L.

    An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fractionmore » of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly at focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.« less

  8. Emerging Trends in Teacher Preparation: The Future of Field Experiences.

    ERIC Educational Resources Information Center

    Slick, Gloria Appelt, Ed.

    This is the fourth in a series of four books presenting a variety of field experience program models and philosophies that drive the programs provided to preservice teachers during their undergraduate teacher preparation. This book focuses on critical issues facing teaching education in the future, in particular field experiences. Major themes…

  9. ISR corrections to associated HZ production at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Greco, Mario; Montagna, Guido; Nicrosini, Oreste; Piccinini, Fulvio; Volpi, Gabriele

    2018-02-01

    We evaluate the QED corrections due to initial state radiation (ISR) to associated Higgs boson production in electron-positron (e+e-) annihilation at typical energies of interest for the measurement of the Higgs properties at future e+e- colliders, such as CEPC and FCC-ee. We apply the QED Structure Function approach to the four-fermion production process e+e- →μ+μ- b b bar , including both signal and background contributions. We emphasize the relevance of the ISR corrections particularly near threshold and show that finite third order collinear contributions are mandatory to meet the expected experimental accuracy. We analyze in turn the rôle played by a full four-fermion calculation and beam energy spread in precision calculations for Higgs physics at future e+e- colliders.

  10. Building the Superconducting Super Collider, 1989-1993: The Problem of Project Management

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    2011-04-01

    In attempting to construct the Superconducting Super Collider, US particle physicists faced a challenge unprecedented in the history of science. The SSC was the biggest and costliest pure scientific project ever, comparable in overall scale to the Manhattan Project or the Panama Canal - an order of magnitude larger than any previous particle accelerator or collider project. Managing such an enormous endeavor involved coordinating conventional-construction, magnet-manufacturing, and detector-building efforts costing over a billion dollars apiece. Because project-management experience at this scale did not exist within the physics community, the Universities Research Association and the US Department of Energy turned to companies and individuals from the military-industrial complex, with mixed results. The absence of a strong, qualified individual to serve as Project Manager throughout the duration of the project was a major problem. I contend that these problems in its project management contributed importantly to the SSC's 1993 demise. Research supported by NSF Award No. 823296.

  11. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    NASA Astrophysics Data System (ADS)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  12. Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas

    DOE PAGES

    Fox, W.; Park, J.; Deng, W.; ...

    2017-08-11

    Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less

  13. Fully automated precision predictions for heavy neutrino production mechanisms at hadron colliders

    NASA Astrophysics Data System (ADS)

    Degrande, Céline; Mattelaer, Olivier; Ruiz, Richard; Turner, Jessica

    2016-09-01

    Motivated by TeV-scale neutrino mass models, we propose a systematic treatment of heavy neutrino (N ) production at hadron colliders. Our simple and efficient modeling of the vector boson fusion (VBF) W±γ →N ℓ± and N ℓ±+nj signal definitions resolve collinear and soft divergences that have plagued past studies, and is applicable to other color-singlet processes, e.g., associated Higgs (W±h), sparticle (ℓ˜±νℓ˜), and charged Higgs (h±±h∓) production. We present, for the first time, a comparison of all leading N production modes, including both gluon fusion (GF) g g →Z*/h*→N νℓ (-) and VBF. We obtain fully differential results up to next-to-leading order (NLO) in QCD accuracy using a Monte Carlo tool chain linking feynrules, nloct, and madgraph5_amc@nlo. Associated model files are publicly available. At the 14 TeV LHC, the leading order GF rate is small and comparable to the NLO N ℓ±+1 j rate; at a future 100 TeV Very Large Hadron Collider, GF dominates for mN=300 - 1500 GeV , beyond which VBF takes the lead.

  14. Simulation Study of Invisible Decays of the Higgs Boson with the Circular Electron Positron Collider

    NASA Astrophysics Data System (ADS)

    Jyotishmati, Susmita

    A Higgs-like boson has been discovered by the experiments ATLAS and CMS at the LHC. We need to verify that it is the Standard Model (SM) Higgs and understand its nature. A Circular Electron Positron Collider (CEPC), has been proposed as a Higgs factory for detailed study of the Higgs boson. In this dissertation we study the feasibility of measuring the H → Invisible decays at the CEPC. Dark Matter (DM) interacts with matter by gravity, thus appears to be invisible in the CEPC experiment. If Higgs boson couples to DM it could be an important "portal" to New Physics. A Monte Carlo analysis of H → Invisible optimized to achieve high signal significance, and low backgrounds in the e +e- → ZH, Z → mu +mu- channel based on an integrated luminosity of 5 ab-1 expected for ten years run of the CEPC, is performed. Precision on the Higgs to invisible branching ratio at the input values of 0.1%(SM) and Beyond Standard Model (BSM) cases 0%, 1%, 5% and 10% is determined. Two approaches have been employed. They are the cut-based analysis and the multivariate analysis. Based on this dissertation study a baseline analysis approach is recommended for future CEPC design and studies.

  15. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.

  16. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  17. High-yield positron systems for linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less

  18. The Muon Collider as a $H/A$ factory

    DOE PAGES

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A withmore » $$m_H$$- $$m_A$$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  19. Freeze-In dark matter with displaced signatures at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Co, Raymond T.; D’Eramo, Francesco; Hall, Lawrence J.

    2015-12-11

    Dark matter, X, may be generated by new physics at the TeV scale during an early matter-dominated (MD) era that ends at temperature T{sub R}≪ TeV. Compared to the conventional radiation-dominated (RD) results, yields from both Freeze-Out and Freeze-In processes are greatly suppressed by dilution from entropy production, making Freeze-Out less plausible while allowing successful Freeze-In with a much larger coupling strength. Freeze-In is typically dominated by the decay of a particle B of the thermal bath, B→X. For a large fraction of the relevant cosmological parameter space, the decay rate required to produce the observed dark matter abundance leadsmore » to displaced signals at LHC and future colliders, for any m{sub X} in the range keV« less

  20. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  1. Novel dark matter phenomenology at colliders

    NASA Astrophysics Data System (ADS)

    Wardlow, Kyle Patrick

    While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.

  2. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.

    2016-10-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  3. Children's Predictions of Future Perceptual Experiences: Temporal Reasoning and Phenomenology

    ERIC Educational Resources Information Center

    Burns, Patrick; Russell, James

    2016-01-01

    We investigated the development and cognitive correlates of envisioning future experiences in 3.5- to 6.5-year old children across 2 experiments, both of which involved toy trains traveling along a track. In the first, children were asked to predict the direction of train travel and color of train side, as it would be seen through an arch.…

  4. Un-collided-flux preconditioning for the first order transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigley, M.; Koebbe, J.; Drumm, C.

    2013-07-01

    Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)

  5. Molecular formation in the stagnation region of colliding laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.

    2016-10-27

    The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less

  6. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  7. PREFACE: Joint IPPP Durham/Cockcroft Institute/ICFA Workshop on Advanced QED methods for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Bailey, I. R.; Barber, D. P.; Chattopadhyay, S.; Hartin, A.; Heinzl, T.; Hesselbach, S.; Moortgat-Pick, G. A.

    2009-11-01

    The joint IPPP Durham/Cockcroft Institute/ICFA workshop on advanced QED methods for future accelerators took place at the Cockcroft Institute in early March 2009. The motivation for the workshop was the need for a detailed consideration of the physics processes associated with beam-beam effects at the interaction points of future high-energy electron-positron colliders. There is a broad consensus within the particle physics community that the next international facility for experimental high-energy physics research beyond the Large Hadron Collider at CERN should be a high-luminosity electron-positron collider working at the TeV energy scale. One important feature of such a collider will be its ability to deliver polarised beams to the interaction point and to provide accurate measurements of the polarisation state during physics collisions. The physics collisions take place in very dense charge bunches in the presence of extremely strong electromagnetic fields of field strength of order of the Schwinger critical field strength of 4.4×1013 Gauss. These intense fields lead to depolarisation processes which need to be thoroughly understood in order to reduce uncertainty in the polarisation state at collision. To that end, this workshop reviewed the formalisms for describing radiative processes and the methods of calculation in the future strong-field environments. These calculations are based on the Furry picture of organising the interaction term of the Lagrangian. The means of deriving the transition probability of the most important of the beam-beam processes - Beamsstrahlung - was reviewed. The workshop was honoured by the presentations of one of the founders, V N Baier, of the 'Operator method' - one means for performing these calculations. Other theoretical methods of performing calculations in the Furry picture, namely those due to A I Nikishov, V I Ritus et al, were reviewed and intense field quantum processes in fields of different form - namely those

  8. Development of superconducting links for the Large Hadron Collider machine

    NASA Astrophysics Data System (ADS)

    Ballarino, Amalia

    2014-04-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  9. Future Circular Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    While the LHC is currently the highest energy particle accelerator ever built, nothing is forever. In this video, Fermilab’s Dr. Don Lincoln discusses a new particle accelerator currently under discussion. This accelerator will dwarf the LHC, fully 60 miles around and will accelerate protons to seven times higher energy. The project is merely in the discussion stages and it is a staggering endeavor, but it is the next natural step in our millennium long journey to understand the universe.

  10. Potential and challenges of the physics measurements with very forward detectors at linear colliders

    NASA Astrophysics Data System (ADS)

    Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration

    2016-04-01

    The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.

  11. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    NASA Astrophysics Data System (ADS)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  12. Achievements in Training of Future Technology Teachers: European Experience

    ERIC Educational Resources Information Center

    Sheludko, Inna

    2015-01-01

    The article discusses the possibilities and prospects of using the experience of training future technology teachers in European countries. Its structure and content in accordance with national traditions and European standards led to the success of the educational components of the European Higher Pedagogical School. This fact encourages local…

  13. Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2017 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) theoretical uncertainties and dataset dependence of parton distribution functions, (III) new developments in jet substructure techniques, (IV) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (V) phenomenological studies essential for comparing LHC data from Run II with theoretical predictions and projections for future measurements, and (VI) new developments in Monte Carlo event generators.

  14. Flavorful leptoquarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  15. Searches for the Standard Model Higgs boson at the Tevatron collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Wade C.; Junk, Thomas R.

    During Run II of the Tevatron collider, which took place from 2001 until 2011, the CDF and D0 detectors each collected approximately 10 fb -1 of collision data at a center-of-mass energy of . This dataset allowed for tests for the presence of the SM Higgs boson in the mass range 90-200 GeV in the production modes gg → H, W/ZH, vector-boson fusion, and H, with H decay modes H → , H → W +W -, H → τ +τ -, H → γγ, and H → ZZ. This chapter summarizes the search methods and the results of themore » Higgs boson search at the Tevatron. The increased sophistication of the analysis techniques as the collider run progressed is discussed, covering the strategies used over time to improve the sensitivity and breadth of the analyses. Using the full Tevatron data sample for both experiments, the combined Higgs search in all channels observes an excess consistent with the predicted SM Higgs boson signal with mass of 125 GeV, with a significance of 3.0 standard deviations above the background prediction.« less

  16. Chandra Locates Mother Lode of Planetary Ore in Colliding Galaxies

    NASA Astrophysics Data System (ADS)

    2004-01-01

    NASA's Chandra X-ray Observatory has discovered rich deposits of neon, magnesium, and silicon in a pair of colliding galaxies known as The Antennae. When the clouds in which these elements are present cool, an exceptionally high number of stars with planets should form. These results may foreshadow the fate of the Milky Way and its future collision with the Andromeda Galaxy. "The amount of enrichment of elements in The Antennae is phenomenal," said Giuseppina Fabbiano of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. at a press conference at a meeting of the American Astronomical Society in Atlanta, Ga. "This must be due to a very high rate of supernova explosions in these colliding galaxies." Fabbiano is lead author of a paper on this discovery by a team of U.S. and U.K. scientists that will appear in an upcoming issue of The Astrophysical Journal Letters. When galaxies collide, direct hits between stars are extremely rare, but collisions between huge gas clouds in the galaxies can trigger a stellar baby boom. The most massive of these stars race through their evolution in a few million years and explode as supernovas. Heavy elements manufactured inside these stars are blown away by the explosions and enrich the surrounding gas for thousands of light years. "The amount of heavy elements supports earlier studies that indicate there was a very high rate of relatively recent supernovas, 30 times that of the Milky Way," according to collaborator Andreas Zezas of the CfA. Animation of Colliding Galaxies Animation of Colliding Galaxies The supernova violence also heats the gas to millions of degrees Celsius. This makes much of the matter in the clouds invisible to optical telescopes, but it can be observed by an X-ray telescope. Chandra data revealed for the first time regions of varying enrichment in the galaxies – in one cloud magnesium and silicon are 16 and 24 times as abundant as in the Sun. "These are the kinds of elements that

  17. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  18. Endovascular Neurosurgery: Personal Experience and Future Perspectives.

    PubMed

    Raymond, Jean

    2016-09-01

    From Luessenhop's early clinical experience until the present day, experimental methods have been introduced to make progress in endovascular neurosurgery. A personal historical narrative, spanning the 1980s to 2010s, with a review of past opportunities, current problems, and future perspectives. Although the technology has significantly improved, our clinical culture remains a barrier to methodologically sound and safe innovative care and progress. We must learn how to safely practice endovascular neurosurgery in the presence of uncertainty and verify patient outcomes in real time. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Influence of outcome valence in the subjective experience of episodic past, future, and counterfactual thinking.

    PubMed

    De Brigard, Felipe; Giovanello, Kelly S

    2012-09-01

    Recent findings suggest that our capacity to imagine the future depends on our capacity to remember the past. However, the extent to which episodic memory is involved in our capacity to think about what could have happened in our past, yet did not occur (i.e., episodic counterfactual thinking), remains largely unexplored. The current experiments investigate the phenomenological characteristics and the influence of outcome valence on the experience of past, future and counterfactual thoughts. Participants were asked to mentally simulate past, future, and counterfactual events with positive or negative outcomes. Features of their subjective experiences during each type of simulation were measured using questionnaires and autobiographical interviews. The results suggest that clarity and vividness were higher for past than future and counterfactual simulations. Additionally, emotional intensity was lower for counterfactual simulations than past and future simulations. Finally, outcome valence influenced participants' judgment of probability for future and counterfactual simulations. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The first colliders: AdA, VEP-1 and Princeton-Stanford

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    The idea of exploring collisions in the center-of-mass system to fully exploit the energy of the accelerated particles had been given serious consideration by the Norwegian engineer and inventor Rolf Wideröe, who applied for a patent on the idea in 1943 (and got the patent in 1953 [1]) after considering the kinematic advantage of keeping the center of mass at rest to produce larger momentum transfers. Describing this advantage, G. K. O'Neill, one of the collider pioneers, wrote in 1956 [2]: "... as accelerators of higher and higher energy are built, their usefulness is limited by the fact that the energy available for creating new particles is measured in the center-of-mass system of the target nucleon and the bombarding particle. In the relativistic limit, this energy rises only as the square root of the accelerator energy. However, if two particles of equal energy traveling in opposite directions could be made to collide, the available energy would be twice the whole energy of one particle ... " Therefore, no kinetic energy is wasted by the motion of the center of mass of the system, and the available reaction energy ER = 2Ebeam (while a particle with the same energy Ebeam colliding with another particle of the mass m at rest produces only ER = (2Ebeamm)1/2 in the extreme relativistic case). One can also add that the colliders are "cleaner" machines with respect to the fixed-target ones since the colliding beams do not interact with the target materials. The other advantage is that it is much easier to organize collisions of beams composed of matter-antimatter particles, like in electron-positron and proton-antiproton colliders...

  1. From the past to the future: Integrating work experience into the design process.

    PubMed

    Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal

    2017-01-01

    Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.

  2. Photon structure studied at an electron ion collider

    DOE PAGES

    Chu, X.; Aschenauer, E. C.; Lee, J. H.; ...

    2017-10-30

    We report that a future electron ion collider (EIC) will be able to provide collisions of polarized electrons with protons and heavy ions over a wide range of center-of-mass energies (20 GeV to 140 GeV) at an instantaneous luminosity of 10 33 - 10 34cm -2s -1. One of its promising physics programs is the study of the partonic structure of quasireal photons. Measuring dijets in quasireal photoproduction events, one can effectively access the underlying parton dynamics of the photons. In this paper, we discuss the feasibility of tagging resolved photon processes and measuring the dijet cross section as a function of jet transverse momentum in the range of 0.01 < xmore » $$rec\\atop{γ}$$ < 1 at an EIC. Finally, it will be shown that both unpolarized and polarized parton distributions in the photon can be extracted, and that the flavor of the parton can be tagged at an EIC.« less

  3. Governance of the International Linear Collider Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, B.; /Oxford U.; Barish, B.

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describesmore » the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency

  4. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  5. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  6. Get Real: Effects of Repeated Simulation and Emotion on the Perceived Plausibility of Future Experiences

    ERIC Educational Resources Information Center

    Szpunar, Karl K.; Schacter, Daniel L.

    2013-01-01

    People frequently imagine specific interpersonal experiences that might occur in their futures. The present study used a novel experimental paradigm to examine the influence of repeated simulation of future interpersonal experiences on subjective assessments of plausibility for positive, negative, and neutral events. The results demonstrate that…

  7. Future Outlook: Experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoichiro

    2008-11-01

    The personal view for the next to the next neutrino detector, the ultimate experiment, is discussed. Considering the size, cost and head winds against the basic science, the ultimate experiment will be the only experiment in the world. Here two such experiments one for the neutrino oscillation and the other for the double beta decay were discussed. The ultimate experiment needs to include a bread and butter science and to have a discovery potential for an unexpected phenomenon. There are many technical challenges and international co-operations are absolutely necessary.

  8. Charge recombination in the muon collider cooling channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernow, R. C.; Palmer, R. B.

    2012-12-21

    The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

  9. Multiplicity fluctuations and collective flow in small colliding systems

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  10. Signatures of doubly-charged Higgsinos at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, D. A.; Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg; Frank, M.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

  11. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE PAGES

    Fischer, W.; Gu, X.; Altinbas, Z.; ...

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  12. A plasma lens for a linear collider final focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norem, J.; Cline, D.B.; Cole, B.

    High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.

  13. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and testmore » results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less

  14. A Data Handling System for Modern and Future Fermilab Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illingworth, R. A.

    2014-01-01

    Current and future Fermilab experiments such as Minerva, NOνA, and MicroBoone are now using an improved version of the Fermilab SAM data handling system. SAM was originally used by the CDF and D0 experiments for Run II of the Fermilab Tevatron to provide file metadata and location cataloguing, uploading of new files to tape storage, dataset management, file transfers between global processing sites, and processing history tracking. However SAM was heavily tailored to the Run II environment and required complex and hard to deploy client software, which made it hard to adapt to new experiments. The Fermilab Computing Sector hasmore » progressively updated SAM to use modern, standardized, technologies in order to more easily deploy it for current and upcoming Fermilab experiments, and to support the data preservation efforts of the Run II experiments.« less

  15. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  16. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  17. Radiation protection and environmental management at the relativistic heavy ion collider.

    PubMed

    Musolino, S V; Briggs, S L; Stevens, A J

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy hadron accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon or protons at 250 GeV/c. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. Because there are only a few other high energy particle accelerators like RHIC in the world, the rules promulgated in the US Code of Federal Regulations under the Atomic Energy Act, State regulations, or international guidance documents do not cover prompt radiation from accelerators to govern directly the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance tor the design of radiation shielding. Environmental Management at RHIC is accomplished through the ISO 14001 Environmental Management System. The applicability, benefits, and implementation of ISO 14001 within the framework of a large research accelerator complex are discussed in the paper.

  18. Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders

    NASA Astrophysics Data System (ADS)

    Azatov, Aleksandr; Galloway, Jamison

    2013-01-01

    In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.

  19. Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)

    NASA Astrophysics Data System (ADS)

    Haug, F.; LHeC Study Team, The

    2012-06-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.

  20. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    ERIC Educational Resources Information Center

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  1. New Experiments with Antiprotons

    NASA Astrophysics Data System (ADS)

    Kaplan, D. M.

    2011-12-01

    Fermilab operates the world's most intense antiproton source. Recently proposed experiments can use those antiprotons either parasitically during Teva-tron Collider running or after the Tevatron Collider finishes in about 2011. For example, the annihilation of 8 GeV antiprotons might make the world's most intense source of tagged D0 mesons, and thus the best near-term opportunity to study charm mixing and search for new physics via its CP-violation signature. Other possible precision measurements include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's first measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons could yield a broad physics program at Fermilab in the post-Tevatron era.

  2. Structure of bicomponent particles synthesized from colliding metal clusters

    NASA Astrophysics Data System (ADS)

    Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.

    2017-12-01

    Here, based on a molecular dynamics simulation with many-body interaction potentials, we consider several scenarios of the formation of bicomponent particles from colliding clusters in an electrical explosion of Cu and Ni wires. The data suggest that the structure of bicomponent particles depends largely on the explosion time of one wire with respect to the other and on the phase state of colliding clusters. Diagrams are presented demonstrating the dynamics of bicomponent particles with block structure synthesized from crystalline Ni and molten Cu clusters.

  3. LHC collider phenomenology of minimal universal extra dimensions

    NASA Astrophysics Data System (ADS)

    Beuria, Jyotiranjan; Datta, AseshKrishna; Debnath, Dipsikha; Matchev, Konstantin T.

    2018-05-01

    We discuss the collider phenomenology of the model of Minimal Universal Extra Dimensions (MUED) at the Large hadron Collider (LHC). We derive analytical results for all relevant strong pair-production processes of two level 1 Kaluza-Klein partners and use them to validate and correct the existing MUED implementation in the fortran version of the PYTHIA event generator. We also develop a new implementation of the model in the C++ version of PYTHIA. We use our implementations in conjunction with the CHECKMATE package to derive the LHC bounds on MUED from a large number of published experimental analyses from Run 1 at the LHC.

  4. Professional Experience: Learning from the Past to Build the Future

    ERIC Educational Resources Information Center

    Le Cornu, Rosie

    2016-01-01

    The title of the 2014 Australian Teacher Education Association (ATEA) conference was "Teacher Education, An Audit: Building a platform for future engagement." One of the conference themes was "Professional Experience: What works? Why?" I seized upon this theme and the title of the conference as it afforded me an opportunity to…

  5. Illuminating dark photons with high-energy colliders

    NASA Astrophysics Data System (ADS)

    Curtin, David; Essig, Rouven; Gori, Stefania; Shelton, Jessie

    2015-02-01

    High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ ZZ D →4 ℓ, and in Drell-Yan events, pp→ Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4 ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ɛ ≳ 9 × 10-4 (4 × 10-4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ɛ ≳ 10-9 - 10-6 (10-10 - 10-7) for the mass range by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ɛ as low as 3 × 10-2. Sensitivity can be improved by up to a factor of ˜ 2 with HL-LHC data, and an additional factor of ˜ 4 with ILC/GigaZ data.

  6. The data acquisition and reduction challenge at the Large Hadron Collider.

    PubMed

    Cittolin, Sergio

    2012-02-28

    The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.

  7. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1996-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing andmore » test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less

  8. Collider signatures of flavorful Higgs bosons

    DOE PAGES

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; ...

    2016-12-30

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarksmore » can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H ± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.« less

  9. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  10. The future cost of electrical energy storage based on experience rates

    NASA Astrophysics Data System (ADS)

    Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.

    2017-08-01

    Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.

  11. Exploring the sensitivity of current and future experiments to θ⊙

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati

    2003-06-01

    The first results from the KamLAND experiment in conjunction with the global solar neutrino data have demonstrated the striking ability to constrain the Δm2⊙ (Δm221) very precisely. However the allowed range of θ⊙ (θ12) did not change much with the inclusion of the KamLAND results. In this paper we probe if future data from KamLAND can increase the accuracy of the allowed range in θ⊙ and conclude that even after 3 kton yr of statistics and with the most optimistic error estimates, KamLAND may find it hard to significantly improve the bounds on the mixing angle obtained from the solar neutrino data. We discuss the θ12 sensitivity of the survival probabilities in matter (vacuum) as relevant for the solar (KamLAND) experiments. We find that the presence of matter effects in the survival probabilities for 8B neutrinos gives the solar neutrino experiments SK and SNO an edge over KamLAND, as far as θ12 sensitivity is concerned, particularly near the maximal mixing. Among solar neutrino experiments we identify SNO as a most promising candidate for constraining θ12 and make a projected sensitivity test for the mixing angle by reducing the error in the neutral current measurement at SNO. Finally, we argue that the most accurate bounds on θ12 can be achieved in a reactor experiment, if the corresponding baseline and energy can be tuned to a minimum in the survival probability. We propose a new reactor experiment that can give the value of tan2θ12 to within 14%. We also discuss the future Borexino and LowNu experiments.

  12. Innovative Approach to the Organization of Future Social Workers' Practical Training: Foreign Experience

    ERIC Educational Resources Information Center

    Polishchuk, Vira; Slozanska, Hanna

    2014-01-01

    Innovative approaches to practical training of future social workers in higher educational establishments have been defined. Peculiarities of foreign experience of social workers' practical training in higher educational establishments have been analyzed. Experience of organizing practice for bachelor students studying at "Social Work"…

  13. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (I.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  14. Lessons from the GP-B Experience for Future Fundamental Physics Missions in Space

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    Gravity Probe B launched in April 2004 and completed its science data collection in September 2005, with the objective of sub-milliarcsec measurement of two General Relativistic effects on the spin axis orientation of orbiting gyroscopes. Much of the technology required by GP-B has potential application in future missions intended to make precision measurements. The philosophical approach and experiment design principles developed for GP-B are equally adaptable to these mission concepts. This talk will discuss GP-B's experimental approach and the technological and philosophical lessons learned that apply to future experiments in fundamental physics. Measurement of fundamental constants to high precision, probes of short-range forces, searches for equivalence principle violations, and detection of gravitational waves are examples of concepts and missions that will benefit kern GP-B's experience.

  15. High Luminosity 100 TeV Proton-Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, S. J.; Acosta, J. G.; Cremaldi, L. M.

    2016-10-01

    The energy scale for new physics is known to be in the multi-TeV range, signaling the potential need for a collider beyond the LHC. Amore » $$10^{34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored. Prior engineering studies for 233 and 270 km circumference tunnels were done for Illinois dolomite and Texas chalk signaling manageable tunneling costs. At a $$p\\bar{p}$$ the cross section for high mass states is of order 10x higher with antiproton collisions, where antiquarks are directly present rather than relying on gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets, because lower beam currents can produce the same rare event rates. In our design the increased momentum acceptance (11 $$\\pm$$ 2.6 GeV/c) in a Fermilab-like antiproton source is used with septa to collect 12x more antiprotons in 12 channels. For stochastic cooling, 12 cooling systems would be used, each with one debuncher/momentum equalizer ring and two accumulator rings. One electron cooling ring would follow. Finally antiprotons would be recycled during runs without leaving the collider ring, by joining them to new bunches with synchrotron damping.« less

  16. Two-photon production of leptons at hadron colliders in semielastic and elastic cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by

    The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.

  17. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; ...

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  18. Selection of the elastic scattering events in interactions of the NICA colliding proton (deuteron) beams

    NASA Astrophysics Data System (ADS)

    Sharov, Vasily

    2017-03-01

    The features of the kinematics of elastic pp (dd) scattering in the collider system, as well as some issues concerning registration and selection of elastic scattering events in the NICA colliding beams are considered. Equality and the opposite direction of the scattered particle momenta provide a powerful selection criterion for elastic collisions. Variants of the organization of the trigger signal for recording tracks of secondary particles and DAQ system are given. The estimates of the characteristics of elastic NN processes are obtained from available dσ/dΩCM data for the elastic pp and np scattering. The paper presents examples of simulations using the Monte-Carlo of elastic pp scattering in the colliding proton beams and quasi-elastic np scattering in the colliding deuteron beams and evaluates the outputs of these processes at the NICA collider.

  19. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  20. Using Data from the Large Hadron Collider in the Classroom

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy

    2017-01-01

    Now is an exciting time for physics students, because they have access to technology and experiments all over the world that were unthinkable a generation ago. Therefore, now is also the ideal time to bring these experiments into the classroom, so students can see what cutting edge science looks like, both in terms of the underlying physics and in terms of the technology used to gather data. With the continued running of the Large Hadron Collider at CERN, and the lab's continued dedication to providing open, worldwide access to their data, there is a unique opportunity for students to use these data in a manner very similar to how it's done in the particle physics community. In this session, we will explore ways for students to analyze real data from the CMS experiment at the LHC, plot these data to discover patterns and signals, and use these plots to determine quantities such as the invariant masses of the W, Z and Higgs bosons. Furthermore, we will show how such activities already fit well into standard introductory physics classes, and can in fact enhance already-existing lessons in the topics of momentum, kinematics, energy and electromagnetism.

  1. Evaluations and Future Plans After Casual Sexual Experiences: Differences Across Partner Type.

    PubMed

    Wesche, Rose; Claxton, Shannon E; Lefkowitz, Eva S; van Dulmen, Manfred H M

    2017-03-24

    Casual sexual relationships and experiences (CSREs) are common among emerging adults, and their diversity may contribute to variability in their associations with mental health and future romantic relationship development. The present research used multiple regression analyses to examine how CSRE type (casual dating, friends with benefits [FWB], or booty call/one-night stand) is associated with short-term outcomes of these experiences, including positive and negative evaluations, plans to start a romantic relationship with a CSRE partner, and general plans for future CSREs. College students and non-college-attending emerging adults (N = 192, 80% female, mean age = 22.09 years) reported on recent sexual encounters through daily diaries collected around an alcohol consumption holiday. Individuals with casual dating partners evaluated their experiences more positively and/or less negatively than individuals with booty calls/one-night stands; these associations were moderated by gender and sexual behavior type. Individuals with casual dating partners were more oriented toward pursuing a romantic relationship with their partners than individuals with FWB or booty calls/one-night stands. However, no association was found between CSRE type and plans for future CSREs in general. Results highlight the diversity of CSREs and suggest that casual dating may be more rewarding than FWB and booty calls/one-night stands, particularly for women.

  2. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    NASA Astrophysics Data System (ADS)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.

  3. The discovery of the Higgs boson at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  4. Physics at a 100 TeV pp Collider: Standard Model Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangano, M. L.; Zanderighi, G.; Aguilar Saavedra, J. A.

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  5. Electrophysiological experiments in microgravity: lessons learned and future challenges.

    PubMed

    Wuest, Simon L; Gantenbein, Benjamin; Ille, Fabian; Egli, Marcel

    2018-01-01

    Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.

  6. Promising diphoton signals of the little radion at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, H.; McElmurry, T; Soni, A.

    2010-12-28

    In little Randall-Sundrum models, the bulk couplings of the radion to massless gauge fields can yield a greatly enhanced diphoton signal at hadron colliders. We examine the implications of the Tevatron data for the little radion and also show that the 7 TeV run at the Large Hadron Collider will have an impressive reach in this channel. The diphoton signal is crucial in the search for a light radion, or the dual dilaton, and can potentially probe the ultraviolet scale of the theory.

  7. Colliding Winds in Symbiotic Binary Systems. I. Analytic and Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Kenny, H. T.; Taylor, A. R.

    2005-01-01

    We present new formulations of binary colliding wind models appropriate to symbiotic star systems. The derived models differ from previous formulations in assuming mixing of the shocked material from both incoming streams, rather than postulating a self-sustaining contact discontinuity. The CWb model (colliding winds, binary) extends the work of Girard and Willson by the derivation of an adiabatic temperature, the consideration of radiative cooling, the inclusion of thermal pressures in the incoming winds, and the treatment of interaction shells of finite thickness and density. The finite thickness of the interaction shell allows for calculation of its radiative intensity distribution. The CWc model (colliding winds, concentric) is a similar extension of the model of Kwok, Purton, and Fitzgerald. It is derived in a manner parallel to that of the CWb model, thereby facilitating a unification of the two models. A unified model is desired since wind collisions in symbiotic systems should include aspects of both CWb and CWc interactions. Two examples of model applications are presented: a comparison of the flux densities arising from colliding winds (CWb model) with those arising from the ionization of the surrounding medium (STB model) in the galactic population of symbiotic stars, and model imaging of the symbiotic nova HM Sge.

  8. New collider scheme at LBL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, H.G.

    1984-07-01

    This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann.

  9. Children's predictions of future perceptual experiences: Temporal reasoning and phenomenology.

    PubMed

    Burns, Patrick; Russell, James

    2016-11-01

    We investigated the development and cognitive correlates of envisioning future experiences in 3.5- to 6.5-year old children across 2 experiments, both of which involved toy trains traveling along a track. In the first, children were asked to predict the direction of train travel and color of train side, as it would be seen through an arch. Children below 5 years typically failed the task, while performance on it was associated with performance on a "before/after" comprehension task in which order-of-mention in a sentence had to be mapped to a video of 2 actions (after McCormack & Hanley, 2011). In the second train task children were asked to predict the content of a doll's visual experience at the terminal point of a train's transit, based on the tint of a doll's spectacles and the direction of travel (toward or away). Again, success under 5 years of age was very rare and performance was associated with performance on the before/after task. This time there was a strong association with mental rotation skill. We conclude that the consistent association with before/after reasoning suggests that future-envisioning depends upon certain temporal-order concepts being in place. The inconsistent association with mental rotation suggests that envisioning can be achieved phenomenologically, but that its role is only explicit when the question explicitly concerns the content of a visual field. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Production Cross-Section Estimates for Strongly-Interacting Electroweak-Symmetry Breaking Sector Resonances at Particle Colliders

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Guo, Feng-Kun; Llanes-Estrada, Felipe J.

    2015-12-01

    We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W±L, ZL, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e-e+ (or potentially a μ-μ+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these WLWL rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by Spanish Grants Universidad Complutense UCM:910309 and Ministerio de Economia y Competitividad MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by the Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China through Funds Provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005)

  11. Model Experiment of Two-Dimentional Brownian Motion by Microcomputer.

    ERIC Educational Resources Information Center

    Mishima, Nobuhiko; And Others

    1980-01-01

    Describes the use of a microcomputer in studying a model experiment (Brownian particles colliding with thermal particles). A flow chart and program for the experiment are provided. Suggests that this experiment may foster a deepened understanding through mutual dialog between the student and computer. (SK)

  12. The ERL-based Design of Electron-Hadron Collider eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptitsyn, Vadim

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (more » $$L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($$L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.« less

  13. Status and perspectives of neutrino physics at present and future experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliarone, Carmine Elvezio, E-mail: pagliarone@unicas.it, E-mail: carmine.pagliarone@lngs.infn.it; Laboratori Nazionali del Gran Sasso

    2016-03-25

    Neutrino Physics and Dark Matter searches play a crucial role in nowadays Particle and Astroparticle Physics. The present review paper will describe general properties of neutrinos and neutrino mass phenomenology (Dirac and Majorana masses). Space will be dedicated to the experimental attempts to answer the question of the neutrino mass hierarchy. We will give, then, a short review of the results of part of the experiments that have been running so far. We will also shortly summarize future experiments that plan to explore this very wide scientific area.

  14. A collider observable QCD axion

    DOE PAGES

    Dimopoulos, Savas; Hook, Anson; Huang, Junwu; ...

    2016-11-09

    Here, we present a model where the QCD axion is at the TeV scale and visible at a collider via its decays. Conformal dynamics and strong CP considerations account for the axion coupling strongly enough to the standard model to be produced as well as the coincidence between the weak scale and the axion mass. The model predicts additional pseudoscalar color octets whose properties are completely determined by the axion properties rendering the theory testable.

  15. Polarized muon beams for muon collider

    NASA Astrophysics Data System (ADS)

    Skrinsky, A. N.

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance.

  16. Experiments in free shear flows: Status and needs for the future

    NASA Technical Reports Server (NTRS)

    Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.

    1973-01-01

    Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.

  17. Commissioning of the Electron-Positron Collider VEPP-2000 after the Upgrade

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Belikov, O.; Berkaev, D.; Gorchakov, K.; Zharinov, Yu.; Zemlyanskii, I.; Kasaev, A.; Kirpotin, A.; Koop, I.; Lysenko, A.; Motygin, S.; Perevedentsev, E.; Prosvetov, V.; Rabusov, D.; Rogovskii, Yu.; Senchenko, A.; Timoshenko, M.; Shatilov, D.; Shatunov, P.; Shvarts, D.

    2018-05-01

    The VEPP-2000 electron-positron collider has been operating at BINP since 2010. Applying the concept of round colliding beams allows us to reach the record value of the beam-beam parameter, ξ 0.12. The VEPP-2000 upgrade, including the connection to the new BINP Injection Complex, the improvement of the BEP booster, and the BEP-VEPP-2000 transfer channels for operation at 1 GeV, substantially increases the installation luminosity. Data collection is in progress.

  18. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickles, Anne

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protonsmore » and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.« less

  19. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  20. Multiple Parton Interactions in p$$bar{p}$$ Collisions in D0 Experiment at the Tevatron Collider (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovanov, Georgy

    The thesis is devoted to the study of processes with multiple parton interactions (MPI) in a ppbar collision collected by D0 detector at the Fermilab Tevatron collider at sqrt(s) = 1.96 TeV. The study includes measurements of MPI event fraction and effective cross section, a process-independent parameter related to the effective interaction region inside the nucleon. The measurements are done using events with a photon and three hadronic jets in the final state. The measured effective cross section is used to estimate background from MPI for WH production at the Tevatron energy

  1. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    DOE PAGES

    de Blas, J.; Ciuchini, M.; Franco, E.; ...

    2016-12-27

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  2. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Blas, J.; Ciuchini, M.; Franco, E.

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  3. Technology for the Future: In-Space Technology Experiments Program, part 1

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.

  4. Imaging Calorimeter: What Have We Learned So Far

    NASA Astrophysics Data System (ADS)

    Xia, Lei

    Particle Flow Algorithms (PFAs) have been applied to existing detectors to improve the measurement of hadronic jets in colliding beam experiments. For future experiments, such as a TeV lepton collider, detector concepts optimized for the application of PFAs are being developed. These concepts require so-called imaging calorimeters, with unprecedented granularity. We will review the various recent developments of such highly granular calorimeters.

  5. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  6. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  7. Challenges for MSSM Higgs searches at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela S.; /Fermilab; Menon, A.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising.more » On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.« less

  8. Particle flow oriented electromagnetic calorimeter optimization for the circular electron positron collider

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.

    2018-03-01

    The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.

  9. Design and performance of an electromagnetic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Zaborowska, A.

    2018-03-01

    The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.

  10. Mexican American Seventh Graders' Future Work and Family Plans: Associations with Cultural Experiences and Adjustment

    ERIC Educational Resources Information Center

    Cansler, Emily; Updegraff, Kimberly A.; Simpkins, Sandra D.

    2012-01-01

    We describe Mexican American seventh graders' expectations for future work and family roles and investigate links between patterns of future expectations and adolescents' cultural experiences and adjustment. Adolescents participated in home interviews and a series of seven nightly phone calls. Five unique patterns of adolescents' future…

  11. What to do on spring break? The role of predicted, on-line, and remembered experience in future choice.

    PubMed

    Wirtz, Derrick; Kruger, Justin; Napa Scollon, Christie; Diener, Ed

    2003-09-01

    When individuals choose future activities on the basis of their past experiences, what guides those choices? The present study compared students' predicted, on-line, and remembered spring-break experiences, as well as the influence of these factors on students' desire to take a similar vacation in the future. Predicted and remembered experiences were both more positive-and, paradoxically, more negative-than on-line experiences. Of key importance, path analyses revealed that remembered experience, but neither on-line nor anticipated experience, directly predicted the desire to repeat the experience. These results suggest that although on-line measures may be superior to retrospective measures for approximating objective experience, retrospective measures may be superior for predicting choice.

  12. Design study of an YBCO-coated beam screen for the super proton-proton collider bending magnets

    NASA Astrophysics Data System (ADS)

    Gan, Pingping; Zhu, Kun; Fu, Qi; Li, Haipeng; Lu, Yuanrong; Easton, Matt; Liu, Yudong; Tang, Jingyu; Xu, Qingjin

    2018-04-01

    In order to reduce the beam impedance and refrigeration power dramatically, we have designed a high temperature superconductor (HTS) coated beam screen to screen the cold chamber walls of the super proton-proton collider bending magnets from beam-induced heat loads. It employs an absorber, inspired by the future circular collider studies, to absorb the immense synchrotron radiation power of 12.8 W/m emitted from the 37.5 TeV proton beams. Such a structure has the advantage of decreasing the electron cloud effect and improving the beam vacuum. We have compared the critical magnetic field and current density and accessibility of two potential HTS materials for the beam screen, TlBa2Ca2Cu3O9-δ (Tl-1223) and Yttrium Barium Copper Oxide (YBCO) and finally chose YBCO for coating. The beam screen is tentatively designed to work at 55-70 K because of the limited development of the YBCO material. The thermal analysis with oxygen cooling fluid indicates that the YBCO conductor can maintain its superconductivity even if the synchrotron radiation hits the YBCO-coated surface and the mechanical analysis shows that the structure has the ability to resist the Lorenz force during magnet quenches.

  13. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  14. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  15. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  16. High baryon densities in heavy ion collisions at energies attainable at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  17. Extending DART to meet the data acquisition needs of future experiments at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Pordes, R.; Barsotti, E.

    1995-10-01

    The DART project at Fermilab is a major collaboration to develop a data acquisition system for multiple experiments. The initial implementation of DART has concentrated on providing working data acquisition systems for the (now eight) collaborating experiments in the next Fixed Target Run. In this paper we discuss aspects of the architecture of DART and how these will allow it to be extended to meet the expected needs of future experiments at Fermilab. We also discuss some ongoing developments within the Fermilab Computing Division towards these new implementations.

  18. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

    NASA Astrophysics Data System (ADS)

    Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot

    2017-09-01

    Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.

  19. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  20. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Magallon, D.; Rempe, J.; Wilkins, C.; Pierre, J.; Marquié, C.; Eymery, S.; Morice, R.

    2010-09-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 K to 3380 K. This sensor, which uses the temperature dependence of the acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) capability of measuring a temperature profile from multiple sensors on a single probe and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high-temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. With new developments of alternative materials, this instrument may be used in a wide range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this article summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages, and drawbacks are outlined and future prospects for long-term high-temperature irradiation experiments are discussed.

  1. Physics with e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less

  2. Strong Electroweak Symmetry Breaking in the Large Hadron Collider Era

    NASA Astrophysics Data System (ADS)

    Evans, Jared Andrew

    2011-12-01

    With the Large Hadron Collider collecting data, both the pursuit of novel detection techniques and the exploration of new ideas are more important than ever. Novel detection techniques are essential in order for the community to garner the most worth from the machine. New ideas are needed both to expand the boundaries of what could be observed and to foster the creative mindset of the community that moves particle physics into fascinating, and often unexpected, directions. Discovering whether electroweak symmetry is broken strongly or weakly is one of the most pressing questions to be answered. Exploring the possibility of strong electroweak symmetry breaking is the topic of this work. The first of two major sectors in this work concerns the theory of conformal technicolor. We present the low energy minimal model for conformal technicolor and verify that it can satisfy current constraints from experiment. We will also provide a UV completion for this model, which realistically extends the sector with high-energy supersymmetry. Two complete models of flavor are presented. This is the first example of a complete, consistent model of strong electroweak symmetry breaking. The second of the two sectors discusses experimental signatures arising in a large class of general technicolor models at the Large Hadron Collider. The possible existence of narrow scalar states that can be produced via gluon-gluon fusion is first discussed. These states can decay into exotic final states of multiple electroweak gauge bosons, third generation particles and even light composite Higgs particles. A two Higgs doublet model is proposed as an effective way to model these exciting states. Lastly, we discuss the array of possible final states and their possible discovery.

  3. Tracking colliding cells in vivo microscopy.

    PubMed

    Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C

    2011-08-01

    Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.

  4. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  5. Anomalous quartic couplings in W+W- gamma production at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Leil, G. A.; Stirling, W. J.

    1995-04-01

    We study the process $e^+e^- \\rightarrow W^+W^- \\gamma$ at high-energy $e^+ e^-$ colliders to investigate the effect of genuine quartic $W^+W^-\\gamma\\gamma$ and $W^+W^- Z\\gamma$ anomalous couplings on the cross section. Deviations from the Standard Model predictions are quantified. We show how bounds on the anomalous couplings can be improved by choosing specific initial state helicity combinations. The dependence of the anomalous contributions on the collider energy is studied.

  6. Electron Lenses for the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less

  7. Higgs boson production at hadron colliders at N3LO in QCD

    NASA Astrophysics Data System (ADS)

    Mistlberger, Bernhard

    2018-05-01

    We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.

  8. J/{psi} Polarization from Fixed-Target to Collider Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccioli, Pietro; Woehri, Hermine K.; Lourenco, Carlos

    Magnitude and 'sign' of the measured J/{psi} polarization crucially depends on the reference frame used in the data analysis: a full understanding of the polarization phenomenon requires measurements reported in two 'orthogonal' frames, such as the Collins-Soper and helicity frames. Moreover, the azimuthal anisotropy can be, in certain frames, as significant as the polar one. The seemingly contradictory results reported by the experiments E866, HERA-B, and CDF can be consistently described assuming that the most suitable axis for the measurement is along the direction of the relative motion of the colliding partons, and that directly produced J/{psi}'s are longitudinally polarizedmore » at low momentum and transversely polarized at high momentum. We make specific predictions that can be tested on existing CDF data and by LHC measurements, which should show a full transverse polarization for direct J/{psi}'s of p{sub T}>25 GeV/c.« less

  9. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  10. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  11. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  12. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    NASA Astrophysics Data System (ADS)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed

  13. Robustness of dark matter constraints and interplay with collider searches for New Physics

    NASA Astrophysics Data System (ADS)

    Arbey, A.; Boudaud, M.; Mahmoudi, F.; Robbins, G.

    2017-11-01

    We study the implications of dark matter searches, together with collider constraints, on the phenomenological MSSM with neutralino dark matter and focus on the consequences of the related uncertainties in some detail. We consider, inter alia, the latest results from AMS-02, Fermi-LAT and XENON1T. In particular, we examine the impact of the choice of the dark matter halo profile, as well as the propagation model for cosmic rays, for dark matter indirect detection and show that the constraints on the MSSM differ by one to two orders of magnitude depending on the astrophysical hypotheses. On the other hand, our limited knowledge of the local relic density in the vicinity of the Earth and the velocity of Earth in the dark matter halo leads to a factor 3 in the exclusion limits obtained by direct detection experiments. We identified the astrophysical models leading to the most conservative and the most stringent constraints and for each case studied the complementarities with the latest LHC measurements and limits from Higgs, SUSY and monojet searches. We show that combining all data from dark matter searches and colliders, a large fraction of our supersymmetric sample could be probed. Whereas the direct detection constraints are rather robust under the astrophysical assumptions, the uncertainties related to indirect detection can have an important impact on the number of the excluded points.

  14. Lessons learned from the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, N.

    The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.

  15. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1992-01-01

    This presentation is designed to relate some of the experiences of the Scientific Computing Division at NCAR dealing with the 'data problem'. A brief history and a development of some basic Mass Storage System (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. There is discussion of future MSS needs for future computing environments.

  16. Jet Topics: Disentangling Quarks and Gluons at Colliders

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Thaler, Jesse

    2018-06-01

    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from the data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z -plus-jet sample. While jet topics are defined directly from hadron-level multidifferential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.

  17. BM@N and MPD experiments at NICA

    NASA Astrophysics Data System (ADS)

    Kekelidze, Vladimir; Kolesnikov, Vadim; Sorin, Alexander

    2018-02-01

    The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range = 4 - 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.

  18. Analytical approach to chromatic correction in the final focus system of circular colliders

    DOE PAGES

    Cai, Yunhai

    2016-11-28

    Here, a conventional final focus system in particle accelerators is systematically analyzed. We find simple relations between the parameters of two focus modules in the final telescope. Using the relations, we derive the chromatic Courant-Snyder parameters for the telescope. The parameters are scaled approximately according to (L*/βmore » $$*\\atop{y}$$)δ, where L* is the distance from the interaction point to the first quadrupole, β$$*\\atop{y}$$ the vertical beta function at the interaction point, and δ the relative momentum deviation. Most importantly, we show how to compensate its chromaticity order by order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles. The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path forward to 4% in the future.« less

  19. Teaching Future Middle Level Educators to Craft Learning Activities That Enhance Young Adolescent Creativity

    ERIC Educational Resources Information Center

    Hilton, Jason T.

    2016-01-01

    As social and academic forces begin to collide for young adolescents at the beginning of the middle level experience, students experience an unfortunate drop in their creativity. Appropriately trained middle level teachers have the potential to lessen this problem through the use of carefully selected open-ended learning activities that increase…

  20. Suppression of high-pT hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong

    2011-09-01

    The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.

  1. Digital Natives: Back to the Future of Microworlds in a Corporate Learning Organization

    ERIC Educational Resources Information Center

    Cabanero-Johnson, Paz Susan; Berge, Zane

    2009-01-01

    Purpose: The purpose of this paper is to provide description and an analysis of two worlds colliding where real-world roles or ideas play out in a virtual dimension. Inhabited by digital natives, the virtual world in a learning organization is a journey back to the future of microworlds where the only limitation is one's imagination.…

  2. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.; White, Martin; Williams, Anthony G.

    2017-08-01

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. We discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  3. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  4. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    DOE PAGES

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.; ...

    2017-08-23

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  5. Commercial associative memory performance for applications in track-based triggers at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Webster, Jordan

    2017-01-01

    Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.

  6. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  7. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  8. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  9. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE PAGES

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...

    2018-03-15

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  10. The impact of negative childbirth experience on future reproductive decisions: A quantitative systematic review.

    PubMed

    Shorey, Shefaly; Yang, Yen Yen; Ang, Emily

    2018-06-01

    The aim of this study was to systematically retrieve, critique and synthesize available evidence regarding the association between negative childbirth experiences and future reproductive decisions. A child's birth is often a joyous event; however, there is a proportion of women who undergo negative childbirth experiences that have long-term implications on their reproductive decisions. A systematic review of quantitative studies was undertaken using Joanna Briggs Institute's methods. A search was carried out in CINAHL Plus with Full Text, Embase, PsycINFO, PubMed, Scopus and Web of Science from January 1996 - July 2016. Studies that fulfilled the inclusion criteria were assessed by two independent reviewers using the Joanna Briggs Institute's Critical Appraisal Tools. Data were extracted under subheadings adapted from the institute's data extraction forms. Twelve studies, which examined either one or more influences of negative childbirth experiences, were identified. The included studies were either cohort or cross-sectional designs. Five studies observed positive associations between prior negative childbirth experiences and decisions to not have another child, three studies found positive associations between negative childbirth experiences and decisions to delay a subsequent birth and six studies concluded positive associations between negative childbirth experiences and maternal requests for caesarean section in subsequent pregnancies. To receive a holistic understanding on negative childbirth experiences, a suitable definition and validated measuring tools should be used to understand this phenomenon. Future studies or reviews should include a qualitative component and/or the exploration of specific factors such as cultural and regional differences that influence childbirth experiences. © 2018 John Wiley & Sons Ltd.

  11. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

    2011-01-01

    This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

  12. System-size independence of directed flow measured at the BNL relativistic heavy-ion collider.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kumar, A; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yang, Y Y; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-12-19

    We measure directed flow (v_{1}) for charged particles in Au+Au and Cu+Cu collisions at sqrt[s_{NN}]=200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p_{t}), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v_{1} in different collision systems, and investigate possible explanations for the observed sign change in v_{1}(p_{t}).

  13. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  14. Mexican American 7th Graders’ Future Work and Family Plans: Associations with Cultural Experiences and Adjustment

    PubMed Central

    Cansler, Emily; Updegraff, Kimberly A.; Simpkins, Sandra D.

    2011-01-01

    We describe Mexican American 7th graders’ expectations for future work and family roles and investigate links between patterns of future expectations and adolescents’ cultural experiences and adjustment. Adolescents participated in home interviews and a series of seven nightly phone calls. Five unique patterns of adolescents’ future expectations were identified (N = 246): Career Oriented, Independent, Family Oriented, Early, and Inconsistent. Career Oriented adolescents had the highest socioeconomic status and contact with the U.S. (e.g., generation status) whereas Family Oriented adolescents had the lowest. Cultural orientations, values, and involvement also varied across groups. For example, Career Oriented adolescents reported significantly higher familism values compared to Inconsistent adolescents. Clusters also differed on adjustment: Career Oriented and Family Oriented adolescents reported higher parental warmth and less risky behavior compared to Independent and Inconsistent adolescents. Findings underscore the multi-faceted nature of adolescents’ future expectations and the diversity in cultural experiences among Mexican origin youth. PMID:23338812

  15. Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor

    NASA Astrophysics Data System (ADS)

    Hirooka, Y.; Sato, H.; Ishihara, K.; Yabuuchi, T.; Tanaka, K. A.

    2014-02-01

    Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108-10 W cm-2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.

  16. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less

  17. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Dimri, A. P.

    2018-04-01

    Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations

  18. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  19. The TOTEM Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    TOTEM Collaboration; Anelli, G.; Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M. G.; Berardi, V.; Berretti, M.; Boccone, V.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Capurro, F.; Catanesi, M. G.; Catastini, P. L.; Cecchi, R.; Cerchi, S.; Cereseto, R.; Ciocci, M. A.; Cuneo, S.; Da Vià, C.; David, E.; Deile, M.; Dimovasili, E.; Doubrava, M.; Eggert, K.; Eremin, V.; Ferro, F.; Foussat, A.; Galuška, M.; Garcia, F.; Gherarducci, F.; Giani, S.; Greco, V.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Joram, C.; Kalliopuska, J.; Kaplon, J.; Kašpar, J.; Kundrát, V.; Kurvinen, K.; Lacroix, J. M.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodriguez, F. Lucas; Macina, D.; Macrí, M.; Magazzù, C.; Magazzù, G.; Magri, A.; Maire, G.; Manco, A.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Perrot, A.-L.; Österberg, K.; Paoletti, R.; Pedreschi, E.; Petäjäjärvi, J.; Pollovio, P.; Quinto, M.; Radermacher, E.; Radicioni, E.; Rangod, S.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Tazzioli, A.; Torazza, D.; Trovato, A.; Trummal, A.; Turini, N.; Vacek, V.; Van Remortel, N.; Vinš, V.; Watts, S.; Whitmore, J.; Wu, J.

    2008-08-01

    The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3.1 <= |η| <= 6.5, and Roman Pot stations will be placed at distances of ±147 m and ±220 m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.

  20. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  1. Baseline dental plaque activity, mutans streptococci culture, and future caries experience in children.

    PubMed

    Hallett, Kerrod B; O'Rourke, Peter K

    2013-01-01

    The purpose of this study was to evaluate a chairside caries risk assessment protocol utilizing a caries prediction instrument, adenosine triphosphate (ATP) activity in dental plaque, mutans streptococci (MS) culture, and routine dental examination in five- to 10-year-old children at two regional Australian schools with high caries experience. Clinical indicators for future caries were assessed at baseline examination using a standardized prediction instrument. Plaque ATP activity was measured directly in relative light units (RLU) using a bioluminescence meter, and MS culture data were recorded. Each child's dentition was examined clinically and radiographically, and caries experience was recorded using enamel white spot lesions and decayed, missing, and filled surfaces for primary and permanent teeth indices. Univariate one-way analysis of variance between selected clinical indicators, ATP activity, MS count at baseline, and future new caries activity was performed, and a generalized linear model for prediction of new caries activity at 24 months was constructed. Future new caries activity was significantly associated with the presence of visible cavitations, reduced saliva flow, and orthodontic appliances at baseline (R(2)=0.2, P<.001). Baseline plaque adenosine triphosphate activity and mutans streptococci counts were not significantly associated with caries activity at 24 months.

  2. Colliding Magnetic Flux Ropes and Quasi-Separatrix Layers in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Lawrence, Eric Eugene

    An experimental study of the dynamics of colliding magnetic flux ropes and the magnetic reconnection that occurs during these collisions is presented. A magnetic flux rope is a bundle of twisted magnetic field lines that is ubiquitous in space and solar plasmas. The flux ropes are created in the Large Plasma Device (LAPD) using two heated lanthanum hexaboride (LaB6) cathodes that inject currents into the background plasma. The currents are initially parallel to the background magnetic field. The azimuthal field of each current together with the background axial field create helical twisted flux ropes. It is found that the flux ropes rotate in time (corkscrew) and collide with each other. During a collision, antiparallel magnetic fields can undergo magnetic reconnection. When these collisions occur, we observe current layers flowing in the opposite direction of the injected current, a signatuare of reconnection. Analysis of the three-dimensional magnetic field lines shows the existence of quasi-separatrix layers (QSLs). These are regions in the magnetic configuration where there are large spatial gradients in the connectivity of field line footpoints in the boundary surfaces. QSLs are thought to be favorable sites for magnetic reconnection. It is shown that the location and shape of the QSL is similar to what is seen in simulations of merging flux ropes. Furthermore, the field line structure of the QSL is similar to that of a twisted hyperbolic flux tube (HFT). An HFT is a type of QSL that has been shown to be a preferred site for current sheet formation in simulations of interacting coronal loops. The HFT in this experiment is found to be generally near the reverse current layers, although the agreement is not perfect. Looking at the time evolution of the QSL, we find that the QSL cross-sectional area grows and contracts at the same time that the flux ropes collide and that the reverse current layers appear. Analysis of the field line motion shows that, during

  3. Space debris protection: A standard procedure in future?

    NASA Astrophysics Data System (ADS)

    Yasaka, Tetsuo

    2003-08-01

    The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris. Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left unprotected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.

  4. Space Debris Protection: A Standard Procedure in Future?

    NASA Astrophysics Data System (ADS)

    Yasaka, Tetsuo

    2002-01-01

    The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris.Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left un-protected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.

  5. Testing the electroweak phase transition in scalar extension models at lepton colliders

    NASA Astrophysics Data System (ADS)

    Cao, Qing-Hong; Huang, Fa-Peng; Xie, Ke-Pan; Zhang, Xinmin

    2018-01-01

    We study the electroweak phase transition in three scalar extension models beyond the Standard Model. Assuming new scalars are decoupled at some heavy scale, we use the covariant derivative expansion method to derive all of the dimension-6 effective operators, whose coefficients are highly correlated in a specific model. We provide bounds to the complete set of dimension-6 operators by including the electroweak precision test and recent Higgs measurements. We find that the parameter space of strong first-order phase transitions (induced by the | H{| }6 operator) can be probed extensively in Zh production at future electron-positron colliders. QHC and KPX are supported in part by the National Science Foundation of China(11175069, 11275009, 11422545), XZ and FPH are supported by the NSFC (11121092, 11033005, 11375202) and also by the CAS Pilot-B program. FPH is also supported by the China Postdoctoral Science Foundation (2016M590133, 2017T100108)

  6. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less

  7. Learning to visually perceive the relative mass of colliding balls in globally and locally constrained task ecologies.

    PubMed

    Jacobs, D M; Runeson, S; Michaels, C F

    2001-10-01

    Novice observers differ from each other in the kinematic variables they use for the perception of kinetic properties, but they converge on more useful variables after practice with feedback. The colliding-balls paradigm was used to investigate how the convergence depends on the relations between the candidate variables and the to-be-perceived property, relative mass. Experiment 1 showed that observers do not change in the variables they use if the variables with which they start allow accurate performance. Experiment 2 showed that, at least for some observers, convergence can be facilitated by reducing the correlations between commonly used nonspecifying variables and relative mass but not by keeping those variables constant. Experiments 3a and 3b further demonstrated that observers learn not to rely on a particular nonspecifying variable if the correlation between that variable and relative mass is reduced.

  8. Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Greg

    In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.

  9. Management system for the SND experiments

    NASA Astrophysics Data System (ADS)

    Pugachev, K.; Korol, A.

    2017-09-01

    A new management system for the SND detector experiments (at VEPP-2000 collider in Novosibirsk) is developed. We describe here the interaction between a user and the SND databases. These databases contain experiment configuration, conditions and metadata. The new system is designed in client-server architecture. It has several logical layers corresponding to the users roles. A new template engine is created. A web application is implemented using Node.js framework. At the time the application provides: showing and editing configuration; showing experiment metadata and experiment conditions data index; showing SND log (prototype).

  10. Technology for the Future: In-Space Technology Experiments Program, part 2

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.

  11. Freeze-In dark matter with displaced signatures at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.

    2015-12-01

    Dark matter, X, may be generated by new physics at the TeV scale during an early matter-dominated (MD) era that ends at temperature T{sub R} || TeV. Compared to the conventional radiation-dominated (RD) results, yields from both Freeze-Out and Freeze-In processes are greatly suppressed by dilution from entropy production, making Freeze-Out less plausible while allowing successful Freeze-In with a much larger coupling strength. Freeze-In is typically dominated by the decay of a particle B of the thermal bath, B → X. For a large fraction of the relevant cosmological parameter space, the decay rate required to produce the observed dark matter abundance leadsmore » to displaced signals at LHC and future colliders, for any m{sub X} in the range keV  < m{sub X} < m{sub B} and for values of m{sub B} accessible to these colliders. This result applies whether the early MD era arises after conventional inflation, when T{sub R} is the usual reheat temperature, or is a generic MD era with an alternative origin. In the former case, if m{sub X} is sufficiently large to be measured from kinematics, the reheat temperature T{sub R} can be extracted. Our result is independent of the particular particle physics implementation of B → X, and can occur via any operator of dimension less than 8 (4) for a post-inflation (general MD) cosmology. An interesting example is provided by DFS axion theories with TeV-scale supersymmetry and axino dark matter of mass GeV to TeV, which is typically overproduced in a conventional RD cosmology. If B is the higgsino, h-tilde , Higgs, W and Z particles appear at the displaced decays, h-tilde  →  h-tilde  a, Z ã and h-tilde {sup ±} → W{sup ±} ã. The scale of axion physics, f, is predicted to be in the range (3×10{sup 8}—10{sup 12}) GeV and, over much of this range, can be extracted from the decay length.« less

  12. Observation of snake resonances at Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, M.; Ahrens, L.; Alekseev, I.G.

    2010-09-27

    The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discovered by Lee and Tepikian. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protonsmore » collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonances is also presented.« less

  13. Neutron dosimetry at a high-energy electron-positron collider

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  14. Collider effects of unparticle interactions in multiphoton signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Frank, Mariana; Turan, Ismail

    2009-12-01

    A new model of physics, with a hidden conformal sector which manifests itself as an unparticle coupling to standard model particles effectively through higher dimensional operators, predicts strong collider signals due to unparticle self-interactions. We perform a complete analysis of the most spectacular of these signals at the hadron collider, pp(p){yields}{gamma}{gamma}{gamma}{gamma} and {gamma}{gamma}gg. These processes can go through the three-point unparticle self-interactions as well as through some s and t channel diagrams with one and/or two unparticle exchanges. We study the contributions of individual diagrams classified with respect to the number of unparticle exchanges and discuss their effect on themore » cross sections at the Tevatron and the LHC. We also restrict the Tevatron bound on the unknown coefficient of the three-point unparticle correlator. With the availability of data from the Tevatron, and the advent of the data emerging from the LHC, these interactions can provide a clear and strong indication of unparticle physics and distinguish this model from other beyond the standard model scenarios.« less

  15. Experiment on infrared radiation characteristic of colloid Fe/Al thermite

    NASA Astrophysics Data System (ADS)

    Zhen, Jian-wei; Li, Jin-ming; Guo, Meng-meng; Liu, Guo-qing; Wang, Guo-dong

    2016-01-01

    The Fe/Al thermite was made as bulk material. Mixed proportion with liquid energetic colloid, the Fe/Al thermite was made to be collid Fe/Al thermite combustible agent. Then, combustion test sample was got. The combustion process and the infrared radiation characteristic of colloid Fe/Al thermite was experiment by thermal infrared imager. It was showed that collid Fe/Al thermite combustible agent had better infrared radiation characteristic. It could be as based agentia of infrared decoy with the characteristic of persistent and wide spectral range.

  16. Design of the large hadron electron collider interaction region

    NASA Astrophysics Data System (ADS)

    Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.

    2015-11-01

    The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  17. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  18. Recent and future liquid metal experiments on homogeneous dynamo action and magnetic instabilities

    NASA Astrophysics Data System (ADS)

    Stefani, Frank; Gerbeth, Gunter; Giesecke, Andre; Gundrum, Thomas; Kirillov, Oleg; Seilmayer, Martin; Gellert, Marcus; Rüdiger, Günther; Gailitis, Agris

    2011-10-01

    The present status of the Riga dynamo experiment is summarized and the prospects for its future exploitation are evaluated. We further discuss the plans for a large-scale precession driven dynamo experiment to be set-up in the framework of the new installation DRESDYN (DREsden Sodium facility for dynamo and thermohydraulic studies) at Helmholtz-Zentrum Dresden-Rossendorf. We report recent investigations of the magnetorotational instability and the Tayler instability and sketch the plans for another large-scale liquid sodium facility devoted to the combined study of both effects.

  19. Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, Michael

    2013-10-01

    Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.

  20. A prioritized set of physiological measurements for future spaceflight experiments

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A set of desired experimental measurements to be obtained in future spaceflights in four areas of physiological investigation are identified. The basis for identifying the measurements was the physiological systems analysis performed on Skylab data and related ground-based studies. An approach for prioritizing the measurement list is identified and discussed with the use of examples. A prioritized measurement list is presented for each of the following areas; cardiopulmonary, fluid-renal and electrolyte, hematology and immunology, and musculoskeletal. Also included is a list of interacting stresses and other factors present in spaceflight experiments whose effects may need to be quantified.

  1. Rare top quark decays at a 100 TeV proton-proton collider: t → bWZ and t→ hc

    NASA Astrophysics Data System (ADS)

    Papaefstathiou, Andreas; Tetlalmatzi-Xolocotzi, Gilberto

    2018-03-01

    We investigate extremely rare top quark decays at a future proton-proton collider with centre-of-mass energy of 100 TeV. We focus on two decay modes: radiative decay with a Z boson, t → b WZ, and flavour-changing neutral decay with a Higgs boson, t → h c, the former being kinematically suppressed with a branching ratio of O(10^{-6}) (Altarelli et al., Phys Lett B 502:125-132, 2001), and the latter highly loop-suppressed, with a branching ratio of O(10^{-15}) (Aguilar-Saavedra, Acta Phys Polon B 35:2695-2710, 2004). We find that t → b WZ will be very challenging to observe in top quark pair production, even within well-motivated beyond-the-standard model scenarios. For the mode t→ h c we find a stronger sensitivity than that obtained by any future LHC measurement by at least one order of magnitude.

  2. Forming Communicative Competence of Future TESOL Teachers by Microteaching (Based on British Experience)

    ERIC Educational Resources Information Center

    Bidyuk, Natalya

    2017-01-01

    The article deals with the analysis of the process of forming communicative competence of future TESOL students by means of microteaching based on the experience of leading British higher education institutions. It has been specified that the phenomenon of communicative competence in scientific discourse originated in the 1960s and connected with…

  3. Zeroth-order design report for the next linear collider. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that themore » NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.« less

  4. Rigidizable Inflatable Get-Away-Special Experiment (RIGEX) Post Flight Analysis, Ground Testing, Modeling, and Future Applications

    DTIC Science & Technology

    2009-03-01

    applications. RIGEX was an Air Force Institute of Technology graduate-student-built Space Shuttle cargo bay experiment intended to heat and inflate...suggestions for future experiments and applications are provided. RIGEX successfully accomplished its mission statement by validating the heating and...Inflatable/Rigidizable Solar Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6. RIGEX Student Involvement

  5. When Waves Collide: Future Conflict

    DTIC Science & Technology

    1995-01-01

    predictions merely guesswork, and forecasts often nothing more than co- herent fiction masquerading as fact.2 Trends and megatrends , which are linear...transportation, on-site inspection, and environmental cleanup—including radi- ological, chemical, and biological —as well as enforcement of the

  6. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  7. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  8. Model-independent determination of the triple Higgs coupling at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping

    2018-03-01

    The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.

  9. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, Robert P.

    2007-12-12

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, themore » discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.« less

  10. Collider bias in trauma comparative effectiveness research: the stratification blues for systematic reviews.

    PubMed

    Del Junco, Deborah J; Bulger, Eileen M; Fox, Erin E; Holcomb, John B; Brasel, Karen J; Hoyt, David B; Grady, James J; Duran, Sarah; Klotz, Patricia; Dubick, Michael A; Wade, Charles E

    2015-05-01

    Collider bias, or stratifying data by a covariate consequence rather than cause (confounder) of treatment and outcome, plagues randomised and observational trauma research. Of the seven trials of prehospital hypertonic saline in dextran (HSD) that have been evaluated in systematic reviews, none found an overall between-group difference in survival, but four reported significant subgroup effects. We hypothesised that an avoidable type of collider bias often introduced inadvertently into trauma comparative effectiveness research could explain the incongruous findings. The two most recent HSD trials, a single-site pilot and a multi-site pivotal study, provided data for a secondary analysis to more closely examine the potential for collider bias. The two trials had followed the a priori statistical analysis plan to subgroup patients by a post-randomisation covariate and well-established surrogate for bleeding severity, massive transfusion (MT), ≥ 10 unit of red blood cells within 24h of admission. Despite favourable HSD effects in the MT subgroup, opposite effects in the non-transfused subgroup halted the pivotal trial early. In addition to analyzing the data from the two trials, we constructed causal diagrams and performed a meta-analysis of the results from all seven trials to assess the extent to which collider bias could explain null overall effects with subgroup heterogeneity. As in previous trials, HSD induced significantly greater increases in systolic blood pressure (SBP) from prehospital to admission than control crystalloid (p=0.003). Proportionately more HSD than control decedents accrued in the non-transfused subgroup, but with paradoxically longer survival. Despite different study populations and a span of over 20 years across the seven trials, the reported mortality effects were consistently null, summary RR=0.99 (p=0.864, homogeneity p=0.709). HSD delayed blood transfusion by modifying standard triggers like SBP with no detectable effect on survival

  11. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satogata, Todd J.; Gamage, Randika

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  12. Usage of machine learning for the separation of electroweak and strong Zγ production at the LHC experiments

    NASA Astrophysics Data System (ADS)

    Petukhov, A. M.; Soldatov, E. Yu

    2017-12-01

    Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variables from ATLAS/CMS 8 TeV Zγ experimental analyses were improved using machine learning techniques. New selection variables were also tested. The expected significance of separation for LHC experiments conditions at the second datataking period (Run2) and 120 fb-1 amount of data reaches more than 5σ. Future experimental observation of electroweak Zγ production can also lead to the observation physics beyond Standard Model.

  13. B+ L violation at colliders and new physics

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Reimitz, Peter; Sakurai, Kazuki; Tamarit, Carlos

    2018-04-01

    Chiral electroweak anomalies predict baryon ( B) and lepton ( L) violating fermion interactions, which can be dressed with large numbers of Higgs and gauge bosons. The estimation of the total B + L-violating rate from an initial two-particle state — potentially observable at colliders — has been the subject of an intense discussion, mainly centered on the resummation of boson emission, which is believed to contribute to the cross-section with an exponential function of the energy, yet with an exponent (the "holy-grail" function) which is not fully known in the energy range of interest. In this article we focus instead on the effect of fermions beyond the Standard-Model (SM) in the polynomial contributions to the rate. It is shown that B + L processes involving the new fermions have a polynomial contribution that can be several orders of magnitude greater than in the SM, for high centre-of-mass energies and light enough masses. We also present calculations that hint at a simple dependence of the holy grail function on the heavy fermion masses. Thus, if anomalous B + L violating interactions are ever detected at high-energy colliders, they could be associated with new physics.

  14. Future Time Perspective, Past Experiences, and Negotiation of Food Use Patterns among the Aged.

    ERIC Educational Resources Information Center

    Shifflett, Peggy A.

    1987-01-01

    Reports findings of an in-depth study of how aged persons negotiated both externally and internally motivated food habit changes. Findings suggested certain past experiences, in conjunction with a negative or positive view of the future, resulted in varying levels of compliance with special diets. (Author)

  15. PODIO: An Event-Data-Model Toolkit for High Energy Physics Experiments

    NASA Astrophysics Data System (ADS)

    Gaede, F.; Hegner, B.; Mato, P.

    2017-10-01

    PODIO is a C++ library that supports the automatic creation of event data models (EDMs) and efficient I/O code for HEP experiments. It is developed as a new EDM Toolkit for future particle physics experiments in the context of the AIDA2020 EU programme. Experience from LHC and the linear collider community shows that existing solutions partly suffer from overly complex data models with deep object-hierarchies or unfavorable I/O performance. The PODIO project was created in order to address these problems. PODIO is based on the idea of employing plain-old-data (POD) data structures wherever possible, while avoiding deep object-hierarchies and virtual inheritance. At the same time it provides the necessary high-level interface towards the developer physicist, such as the support for inter-object relations and automatic memory-management, as well as a Python interface. To simplify the creation of efficient data models PODIO employs code generation from a simple yaml-based markup language. In addition, it was developed with concurrency in mind in order to support the use of modern CPU features, for example giving basic support for vectorization techniques.

  16. Reconciling Intuitive Physics and Newtonian Mechanics for Colliding Objects

    ERIC Educational Resources Information Center

    Sanborn, Adam N.; Mansinghka, Vikash K.; Griffiths, Thomas L.

    2013-01-01

    People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to…

  17. Top++: A program for the calculation of the top-pair cross-section at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Mitov, Alexander

    2014-11-01

    We present the program Top++ for the numerical evaluation of the total inclusive cross-section for producing top quark pairs at hadron colliders. The program calculates the cross-section in (a) fixed order approach with exact next-to-next-to leading order (NNLO) accuracy and (b) by including soft-gluon resummation for the hadronic cross-section in Mellin space with full next-to-next-to-leading logarithmic (NNLL) accuracy. The program offers the user significant flexibility through the large number (29) of available options. Top++ is written in C++. It has a very simple to use interface that is intuitive and directly reflects the physics. The running of the program requires no programming experience from the user.

  18. Reducing risk where tectonic plates collide

    USGS Publications Warehouse

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  19. The future of PanDA in ATLAS distributed computing

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  20. Learning with the ATLAS Experiment at CERN

    ERIC Educational Resources Information Center

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  1. Observations of beam losses due to bound-free pair production in a heavy-ion collider.

    PubMed

    Bruce, R; Jowett, J M; Gilardoni, S; Drees, A; Fischer, W; Tepikian, S; Klein, S R

    2007-10-05

    We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the CERN Large Hadron Collider when it operates with (208)Pb(82+) ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the BNL Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon (63)Cu(29+) ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beam pipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.

  2. Deposition of nanocomposite Cu-TiO2 using heterogeneous colliding plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Thareja, Raj K.; Singh, Ravi Pratap; Costello, John T.

    2018-03-01

    The formation of CuTiO2 nanocomposites has been observed in an experiment in which laser plasma plumes of Cu and Ti collide and stagnate in an oxygen atmosphere. The inherent advantage of this technique lies in its simplicity and flexibility where laser, target composition and geometry along with ambient atmosphere are all controllable parameters through which the stoichiometry of the deposited nanocomposites may be selected. The experiment has been performed at three oxygen ambient pressures 10-4, 10-2, 100 mbar and we observe its effect on stoichiometry, and morphology of the deposited nanocomposites. Here, we show how the stoichiometry of deposited nanocomposites can be readily controlled by changing just one parameter, namely the ambient oxygen pressure. The different peaks of photoluminescence spectra λ =390{ nm}( {E=3.18{ eV}} ) corresponding to the anatase phase of TiO2, along with the peaks at λ = 483 nm ( E = 2.56 eV) and 582 nm ( E = 2.13 eV) of deposited nanocomposites, shows the doping/blending effect on the band gaps which may potentially be of value in solar cell technology. The technique can, in principle, be extended to include nanocomposites of other materials making it potentially more widely applicable.

  3. nuSTORM and A Path to a Muon Collider

    DOE PAGES

    Adey, David; Bayes, Ryan; Bross, Alan; ...

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ +μ - collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30more » years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ +μ -collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We review activities with experiments using polarized protons and polarized antiprotons at Fermilab for future high-energy spin physics we describe an experimental program with polarized collider at RHIC.

  5. The Time Evolution of Eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Madura, T. I.; Grobe, J. H.; Corcoran, M. F.

    2011-01-01

    We report new HST/STIS observations that map the high-ionization forbidden line emission in the inner arc second of Eta Car, the first that fully image the extended wind-wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54-year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blue-shifted emission (-400 to -200 km/s is symmetric and elongated along the northeast-southwest axis, while the red-shifted emission (+ 100 to +200 km/s) is asymmetric and extends to the north-northwest. Comparison to synthetic images generated from a 3-D dynamical model strengthens the 3-D orbital orientation found by Madura et al. (2011), with an inclination i = 138 deg, argument of periapsis w = 270 deg, and an orbital axis that is aligned at the same P A on the sky as the symmetry axis of the Homunculus, 312 deg. We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system. Plain-Language Abstract: With HST, we resolved the interacting winds of the binary, Eta Carinae. With a 3-D model, we find the binary orbit axis is aligned to the Homunculus axis. This suggests a connection between the binary and Homunculus ejection mechanism.

  6. Informal Science Experience, Attitudes, Future Interest in Science, and Gender of High-Ability Students: An Exploratory Study.

    ERIC Educational Resources Information Center

    Joyce, Beverly A.; Farenga, Stephen J.

    1999-01-01

    Examines specific science-related attitudes, informal science-related experiences, future interest in science, and gender of young high-ability students (n=111) who completed the Test of Science Related Attitudes (TOSRA), the Science Experience Survey (SES), and the Course Selection Sheet (CSS). Develops two regression models to predict the number…

  7. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  8. FutureCoast: "Listen to your futures"

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Eklund, K.; Thacher, S.; Orlove, B. S.; Diane Stovall-Soto, G.; Brunacini, J.; Hernandez, T.

    2014-12-01

    Two science-arts approaches are emerging as effective means to convey "futurethinking" to learners: systems gaming and experiential futures. FutureCoast exemplifies the latter: by engaging participants with voicemails supposedly leaking from the cloud of possible futures, the storymaking game frames the complexities of climate science in relatable contexts. Because participants make the voicemails themselves, FutureCoast opens up creative ways for people to think about possibly climate-changed futures and personal ways to talk about them. FutureCoast is a project of the PoLAR Partnership with a target audience of informal adult learners primarily reached via mobile devices and online platforms. Scientists increasingly use scenarios and storylines as ways to explore the implications of environmental change and societal choices. Stories help people make connections across experiences and disciplines and link large-scale events to personal consequences. By making the future seem real today, FutureCoast's framework helps people visualize and plan for future climate changes. The voicemails contributed to FutureCoast are spread through the game's intended timeframe (2020 through 2065). Based on initial content analysis of voicemail text, common themes include ecosystems and landscapes, weather, technology, societal issues, governance and policy. Other issues somewhat less frequently discussed include security, food, industry and business, health, energy, infrastructure, water, economy, and migration. Further voicemail analysis is examining: temporal dimensions (salient time frames, short vs. long term issues, intergenerational, etc.), content (adaptation vs. mitigation, challenges vs. opportunities, etc.), and emotion (hopeful, resigned, etc. and overall emotional context). FutureCoast also engaged audiences through facilitated in-person experiences, geocaching events, and social media (Tumblr, Twitter, Facebook, YouTube). Analysis of the project suggests story

  9. Black Holes and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava

    2011-12-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film ``Angels and Demons.'' In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society1 website featured an article on BH formation at the LHC.2 This article examines some aspects of mini BHs and explores the possibility of their detection at the LHC.

  10. Color-Sextet Quark Productions at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidekazu; Watanabe, Isamu

    Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.

  11. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  12. Collider Signal II:. Missing ET Signatures and Dark Matter Connection

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2010-08-01

    These lectures give an overview of aspects of missing ET signatures from new physics at the LHC, along with their important connection to dark matter physics. Mostly, I will concentrate on supersymmetric (SUSY) sources of ɆT, but will also mention Little Higgs models with T-parity (LHT) and universal extra dimensions (UED) models with KK-parity. Lecture 1 covers SUSY basics, model building and spectra computation. Lecture 2 addresses sparticle production and decay mechanisms at hadron colliders and event generation. Lecture 3 covers SUSY signatures at LHC, along with LHT and UED signatures for comparison. In Lecture 4, I address the dark matter connection, and how direct and indirect dark matter searches, along with LHC collider searches, may allow us to both discover and characterize dark matter in the next several years. Finally, the interesting scenario of Yukawa-unified SUSY is examined; this case works best if the dark matter turns out to be a mixture of axion/axino states, rather than neutralinos.

  13. Higgs and Bottom Quarks Associated Production at High Energy Colliders in the Littlest Higgs Model with T-Parity

    NASA Astrophysics Data System (ADS)

    Hou, Biao-Feng; Zhang, Hua-Ying; Bi, Heng-Heng

    2018-03-01

    In the littlest Higgs Model with T-parity, we discuss the Higgs production in association with bottom quarks at the LHC and future electron-positron collider. We calculate the cross sections of production channels pp\\to b\\bar{b}H, b\\bar{b}\\to H and bg → bH at 14 TeV LHC and the cross sections of production channel {e}+{e}-\\to b\\bar{b}H in (un)polarized beams at the lowest order. In order to investigate the observability, we display some typical final state distributions in the Higgs to diphoton channel. Supported by the National Natural Science Foundation of China (NNSFC) under Grant No. 11405047 and the Startup Foundation for Doctors of Henan Normal University under Grant No. qd15207

  14. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE PAGES

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...

    2018-03-20

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  15. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  16. Reviews Exhibitions: Collider: Step inside the World's Greatest Experiment Equipment: Hero Steam Turbine Classroom Video: Most of Our Universe is Missing Book: Serving the Reich Book: Breakthrough to CLIL for Physics Book: The Good Research Guide Apps: Popplet Web Watch Apps

    NASA Astrophysics Data System (ADS)

    2014-03-01

    WE RECOMMEND Collider: step inside the world's greatest experiment A great exhibition at the Science Museum in London Hero Steam Turbine Superb engine model gets up to 2500 rpm Most of Our Universe is Missing BBC video explores the dark truth Serving the Reich Science and morality in Nazi Germany The Good Research Guide A non-specialist book for teachers starting out in education research WORTH A LOOK Breakthrough to CLIL for Physics A book based on a physics curriculum for non-English students WEB WATCH Electric cycles online: patterns of use APPS The virtual laboratory advances personal skills

  17. The Large Hadron Collider, a personal recollection

    NASA Astrophysics Data System (ADS)

    Evans, Lyndon

    2014-03-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report [1], which gives a detailed description of the machine as it was built and comprehensive references. A more popular description of the LHC and its detectors can be found in [2]. Instead, this is a more personal account of the project from approval to commissioning, describing some of the main technologies and some of the trials and tribulations encountered in bringing this truly remarkable machine alive.

  18. Light flavon signals at electron-photon colliders

    NASA Astrophysics Data System (ADS)

    Muramatsu, Yu; Nomura, Takaaki; Shimizu, Yusuke; Yokoya, Hiroshi

    2018-01-01

    Flavor symmetries are useful to realize fermion flavor structures in the standard model (SM). In particular, the discrete A4 symmetry is used to realize lepton flavor structures, and some scalars—called flavons—are introduced to break this symmetry. In many models, flavons are assumed to be much heavier than the electroweak scale. However, our previous work showed that a flavon mass around 100 GeV is allowed by experimental constraints in the A4 symmetric model with a residual Z3 symmetry. In this paper, we discuss collider searches for such a light flavon φT. We find that electron-photon collisions at the International Linear Collider have advantages for searching for these signals. In electron-photon collisions, flavons are produced as e-γ →l-φT and decay into two charged leptons. Then, we analyze signals of the flavor-conserving final state τ+τ-e- and the flavor-violating final states τ+μ-μ- and μ+τ-τ- by carrying out numerical simulations. For the former final state, SM background can be strongly suppressed by imposing cuts on the invariant masses of final-state leptons. For the latter final states, SM background is extremely small, because in the SM there are no such flavor-violating final states. We then find that sufficient discovery significance can be obtained, even if flavons are heavier than the lower limits from flavor physics.

  19. Protection of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Assmann, R.; Carlier, E.; Dehning, B.; Denz, R.; Goddard, B.; Holzer, E. B.; Kain, V.; Puccio, B.; Todd, B.; Uythoven, J.; Wenninger, J.; Zerlauth, M.

    2006-11-01

    The Large Hadron Collider (LHC) at CERN will collide two counter-rotating proton beams, each with an energy of 7 TeV. The energy stored in the superconducting magnet system will exceed 10 GJ, and each beam has a stored energy of 362 MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450 GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failure extends from apms to a few minutes—failures must be detected sufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.

  20. Calorimetry at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Repond, José

    2007-03-01

    The physics potential of the International Linear Collider depends critically on the jet energy resolution of its detector. Detector concepts are being developed which optimize the jet energy resolution, with the aim of achieving σjet=30%/√{Ejet}. Under the assumption that Particle Flow Algorithms (PFAs), which combine tracking and calorimeter information to reconstruct the energy of hadronic jets, can provide this unprecedented jet energy resolution, calorimeters with very fine granularity are being developed. After a brief introduction outlining the principles of PFAs, the current status of various calorimeter prototype construction projects and their plans for the next few years will be reviewed.