Science.gov

Sample records for future collider experiments

  1. Precision electroweak physics at future collider experiments

    SciTech Connect

    Baur, U.; Demarteau, M.

    1996-11-01

    We present an overview of the present status and prospects for progress in electroweak measurements at future collider experiments leading to precision tests of the Standard Model of Electroweak Interactions. Special attention is paid to the measurement of the {ital W} mass, the effective weak mixing angle, and the determination of the top quark mass. Their constraints on the Higgs boson mass are discussed.

  2. Beam dump experiment at future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Moroi, Takeo; Tanabe, Tomohiko

    2015-12-01

    We propose a new beam dump experiment at future colliders with electron (e-) and positron (e+) beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of e± beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at e+e- linear collider) significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  3. A Photon Collider Experiment based on SLC

    SciTech Connect

    Gronberg, J

    2003-11-01

    Technology for a photon collider experiment at a future TeV-scale linear collider has been under development for many years. The laser and optics technology has reached the point where a GeV-scale photon collider experiment is now feasible. We report on the photon-photon luminosities that would be achievable at a photon collider experiment based on a refurbished Stanford Linear Collider.

  4. Physics at Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Kotwal, Ashutosh

    2016-03-01

    The Large Hadron Collider has been a grand success with the discovery of the Higgs boson, with bright prospects for additional discoveries since the recent increase in collider energy and the anticipated large datasets. Big open questions such as the nature of dark matter, the origin of the matter-antimatter asymmetry in the Universe, and the theoretical puzzle of the finely-tuned parameters in the Higgs sector, demand new physics principles that extend the established Standard Model paradigm. Future circular colliders in a substantially larger tunnel can house both a high luminosity electron-positron collider for precision measurements of Higgs and electroweak parameters, as well as a very high energy proton-proton collider which can directly manifest particles associated with these new physics principles. We discuss the physics goals of these future circular colliders, and the prospects for elucidating fundamental new laws of nature that will significantly extend our understanding of the Universe. Detailed studies of the discovery potential in specific benchmark models will be presented, with implications for detector design.

  5. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  6. Future Electron-Hadron Colliders

    SciTech Connect

    Litvinenko, V.

    2010-05-23

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the

  7. High-performance DIRC detector for the future Electron Ion Collider experiment

    NASA Astrophysics Data System (ADS)

    Kalicy, G.; Allison, L.; Cao, T.; Dzhygadlo, R.; Horn, T.; Hyde, C.; Ilieva, Y.; Nadel-Turonski, P.; Park, K.; Peters, K.; Schwarz, C.; Schwiening, J.; Stevens, J.; Xi, W.; Zorn, C.

    2016-07-01

    A radially-compact subsystem providing particle identification (e/π, π/K, K/p) over a wide momentum range is an essential requirement for the central detector of an Electron-Ion Collider (EIC). With a radial size of only a few cm, a detector based on Detection of Internally Reflected Cherenkov light (DIRC) principle is a very attractive solution. The R&D undertaken by the EIC PID consortium achieved the goal of showing feasibility of a high-performance DIRC that would extend the momentum coverage well beyond state-of-the-art allowing 3σ separation of π/K up to 6 GeV/c, e/K up to 1.8 GeV/c and p/K up to 10 GeV/c. A key component to reach such a performance is a special 3-layer spherical compound lens. This article describes the status of the design and R&D for the DIRC at EIC detector, with a focus on the detailed Monte Carlo simulation results for the high-performance DIRC.

  8. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  9. B Physics at Hadron Colliders: Present and Future

    SciTech Connect

    Calvi, Marta

    2005-10-12

    An extensive program of B physics and CP violation measurements can be performed at Hadron Colliders. Results from the experiments CDF and DO at the Tevatron and prospects for future measurements from experiments at the LHC are presented here.

  10. FUTURE LEPTON COLLIDERS AND LASER ACCELERATION

    SciTech Connect

    PARSA,Z.

    2000-05-30

    Future high energy colliders along with their physics potential, and relationship to new laser technology are discussed. Experimental approaches and requirements for New Physics exploration are also described.

  11. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  12. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  13. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  14. RF pulse compression for future linear colliders

    SciTech Connect

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  15. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  16. Future high energy colliders symposium. Summary report

    SciTech Connect

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  17. Searches for new gauge bosons at future colliders

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    The search reaches for new gauge bosons at future hadron and lepton colliders are summarized for a variety of extended gauge models. Experiments at these energies will vastly improve over present limits and will easily discover a Z` and/or W` in the multi-TeV range.

  18. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  19. Searches for scalar and vector leptoquarks at future hadron colliders

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    The search reaches for both scalar(S) and vector(V) leptoquarks at future hadron colliders are summarized. In particular the authors evaluate the production cross sections of both leptoquark types at TeV33 and LHC as well as the proposed 60 and 200 TeV colliders through both quark-antiquark annihilation and gluon-gluon fusion: q{anti q},gg {r_arrow} SS,VV. Experiments at these machines should easily discover such particles if their masses are not in excess of the few TeV range.

  20. Two gauge boson physics at future colliders

    SciTech Connect

    Cahn, R.N.

    1988-05-13

    Electroweak unification suggests that there should be WW and ZZ physics analogous to {gamma}{gamma} physics. Indeed, WW and ZZ collisions will provide an opportunity to search for the Higgs boson at future high energy colliders. Cross sections in the picobarn range are predicted for Higgs boson production at the proposed 40-TeV SSC. While other states may be produced by WW and ZZ collisions, it is the Higgs boson that looms as the most attractive objective. 31 refs., 5 figs.

  1. Mass reach scaling for future hadron colliders

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas G.

    2015-04-01

    The primary goal of any future hadron collider is to discover new physics (NP) associated with a high mass scale, , beyond the range of the LHC. In order to maintain the same relative mass reach for rate-limited NP, , as increases, Richter recently reminded us that the required integrated luminosity obtainable at future hadron colliders (FHC) must grow rapidly, , in the limit of naive scaling. This would imply, e.g., a 50-fold increase in the required integrated luminosity when going from the 14 TeV LHC to a FHC with TeV, an increase that would prove quite challenging on many different fronts. In this paper we point out, due to the scaling violations associated with the evolution of the parton density functions (PDFs) and the running of the strong coupling, , that the actual luminosity necessary in order to maintain any fixed value of the relative mass reach is somewhat greater than this scaling result indicates. However, the actual values of the required luminosity scaling are found to be dependent upon the detailed nature of the NP being considered. Here we elucidate this point explicitly by employing several specific benchmark examples of possible NP scenarios and briefly discuss the (relatively weak) search impact in each case if these luminosity goals are not met.

  2. Advances in beam physics and technology: Colliders of the future

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Swapan

    1996-02-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (i.e. photons). Often, they are brought into interaction with each other (e.g. in high energy colliders) or with other forms of matter (e.g. in fixed target physics, synchrotron radiation sciences, neutron scattering experiments, laser chemistry and physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams—always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades—nonlinear dynamics, superconducting magnets and radio frequency cavities, beam instrumentation and control, novel concepts and collider paradigms, to name a few. We will illustrate this progress via a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use—the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We will close with an outline of future opportunities and outlook.

  3. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  4. Beyond standard model physics at current and future colliders

    NASA Astrophysics Data System (ADS)

    Liu, Zhen

    The Large Hadron Collider (LHC), a multinational experiment which began running in 2009, is highly expected to discover new physics that will help us understand the nature of the universe and begin to find solutions to many of the unsolved puzzles of particle physics. For over 40 years the Standard Model has been the accepted theory of elementary particle physics, except for one unconfirmed component, the Higgs boson. The experiments at the LHC have recently discovered this Standard-Model-like Higgs boson. This discovery is one of the most exciting achievements in elementary particle physics. Yet, a profound question remains: Is this rather light, weakly-coupled boson nothing but a Standard Model Higgs or a first manifestation of a deeper theory? Also, the recent discoveries of neutrino mass and mixing, experimental evidences of dark matter and dark energy, matter-antimatter asymmetry, indicate that our understanding of fundamental physics is currently incomplete. For the next decade and more, the LHC and future colliders will be at the cutting-edge of particle physics discoveries and will shed light on many of these unanswered questions. There are many promising beyond-Standard-Model theories that may help solve the central puzzles of particle physics. To fill the gaps in our knowledge, we need to know how these theories will manifest themselves in controlled experiments, such as high energy colliders. I discuss how we can probe fundamental physics at current and future colliders directly through searches for new phenomena such as resonances, rare Higgs decays, exotic displaced signatures, and indirectly through precision measurements on Higgs in this work. I explore beyond standard model physics effects from different perspectives, including explicit models such as supersymmetry, generic models in terms of resonances, as well as effective field theory approach in terms of higher dimensional operators. This work provides a generic and broad overview of the physics

  5. World lays groundwork for future linear collider

    SciTech Connect

    Feder, Toni

    2010-07-15

    With the Large Hadron Collider at CERN finally working, the particle-physics community can now afford to divide its attention between achieving LHC results and preparing for the next machine on its wish list, an electron-positron linear collider. The preparations involve developing and deciding on the technology for such a machine, the mode of its governance, and how to balance regional and global particle- and accelerator-physics programs.

  6. Far Future Colliders and Required R&D Program

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2012-06-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  7. COLLIDE-2: Collisions Into Dust Experiment-2

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    2002-01-01

    The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.

  8. Suppressing Electron Cloud in Future Linear Colliders

    SciTech Connect

    Pivi, M; Kirby, R.E.; Raubenheimer, T.O.; Le Pimpec, F.; /PSI, Villigen

    2005-05-27

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud (EC) in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a luminosity limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper discusses the state-of-the-art of the ongoing SLAC and international R&D program to study potential remedies.

  9. Aerogel Cherenkov detectors in colliding beam experiments

    NASA Astrophysics Data System (ADS)

    Danilyuk, A. F.; Kononov, S. A.; Kravchenko, E. A.; Onuchin, A. P.

    2015-05-01

    This review discusses the application of aerogel Cherenkov detectors in colliding beam experiments. Such detectors are used for charged particle identification at velocities at which other methods are ineffective. The paper examines aerogel production technology and how the aerogel optical parameters are measured. Data on threshold Cherenkov counters with direct light collection and on those using wavelength shifters are evaluated. Also presented are data on Ring Image Cherenkov detectors with single and multilayer focusing aerogel radiators.

  10. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    None

    2011-10-06

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN?s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  11. RF power generation for future linear colliders

    SciTech Connect

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  12. Cooling of electronics in collider experiments

    SciTech Connect

    Richard P. Stanek et al.

    2003-11-07

    Proper cooling of detector electronics is critical to the successful operation of high-energy physics experiments. Collider experiments offer unique challenges based on their physical layouts and hermetic design. Cooling systems can be categorized by the type of detector with which they are associated, their primary mode of heat transfer, the choice of active cooling fluid, their heat removal capacity and the minimum temperature required. One of the more critical detector subsystems to require cooling is the silicon vertex detector, either pixel or strip sensors. A general design philosophy is presented along with a review of the important steps to include in the design process. Factors affecting the detector and cooling system design are categorized. A brief review of some existing and proposed cooling systems for silicon detectors is presented to help set the scale for the range of system designs. Fermilab operates two collider experiments, CDF & D0, both of which have silicon systems embedded in their detectors. A review of the existing silicon cooling system designs and operating experience is presented along with a list of lessons learned.

  13. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  14. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  15. First Results from the Phobos Experiment at the RHIC Collider

    NASA Astrophysics Data System (ADS)

    Katzy, Judith; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Heintzelman, G. A.; Henderson, C.; Holyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kulinich, P.; Kucewicz, W.; Lin, W. T.; McLeod, D.; Manly, S.; Michalowski, J.; Mignerey, A.; Muelmenstaedt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    PHOBOS is one of the four experiments at the Relativistic Heavy Ion Collider that started colliding gold nuclei at a center of mass energy of √sNN = 56 and 130 GeV per pair of colliding nucleons in June 2000. The pseudorapidity density of primary charged particles in central collisions has been measured near mid-rapidity.

  16. Alternate approaches to future electron-positron linear colliders

    SciTech Connect

    Loew, G.A.

    1998-07-01

    The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.

  17. Physics of e(+) - e(-) colliders: Present, future and far future

    NASA Astrophysics Data System (ADS)

    Peskin, M. E.

    1984-10-01

    A lecture on e(+)-e(-) colliders contains the following: Section 2 reviews the features of e(+)-e(-) collisions according to the standard gauge theory of strong, weak, and electromagnetic interactions. This discussion reviews a few of the most important features of Ee(+)-e(-) collisions at currently accessible energies and the expectations for e(+)-e(-) reactions which produce the intermediate vector bosons Z(0) and W(+-). Section 3 reviews some of the experimental work done at the current generation of e(+)-e(-) colliders; this discussion emphasizes the search for new types of elementary particles. Section 4 is a theoretical digression, introducing a number of ideas about physics at the energy scale of 1 TeV. Section 5 discusses a number of technical aspects of electron-positron colliders designed to reach the TeV energies. Finally, Section 6 discusses various possible effects which could appear in e(+)-e(-) collisions as the result of new physics appearing at 1 TeV or above.

  18. Beam tube vacuum in future superconducting proton colliders

    SciTech Connect

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H{sub 2}. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  19. Beam tube vacuum in future superconducting proton colliders

    NASA Astrophysics Data System (ADS)

    Turner, William C.

    1995-02-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature—SSC, LHC, and ELN—are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and O, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H2. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorption experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  20. Lineshape of the Higgs boson in future lepton colliders

    NASA Astrophysics Data System (ADS)

    Jadach, S.; Kycia, R. A.

    2016-04-01

    The effect of the photon emission (initial-state radiation) in the cross section of the process of direct production of the Higgs boson in future high luminosity electron and muon colliders is calculated. It was found that the cross section at the top of the Higgs boson resonance peak is reduced by a factor 0.348 for the electron collider and 0.548 for the muon collider. A centre-of-mass energy spread of the centre-of-mass energy of 4.2 MeV (equal to the Higgs width) would reduce peak cross section further, by a factor 0.170 and 0.256 (QED and energy spread) for electron and muon beams respectively. Possible uncertainties in the resummed QED calculations are discussed. Numerical results for the lineshape cross section including QED and many values of the centre-of-mass energy spread are provided.

  1. Advances in beam physics and technology: Colliders of the future

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook.

  2. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    SciTech Connect

    2010-02-17

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  3. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    None

    2011-10-06

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  4. Relic density and future colliders: inverse problem(s)

    SciTech Connect

    Arbey, Alexandre; Mahmoudi, Farvah

    2010-06-23

    Relic density calculations are often used to constrain particle physics models, and in particular supersymmetry. We will show that the presence of additional energy or entropy before the Big-Bang nucleosynthesis can however completely change the relic density constraints on the SUSY parameter space. Therefore one should be extremely careful when using the relic density to constrain supersymmetry as it could give misleading results, especially if combined with the future collider data. Alternatively, we will also show that combining the discoveries of the future colliders with relic density calculations can shed light on the inaccessible pre-BBN dark time physics. Finally we will present SuperIso Relic, a new relic density calculator code in Supersymmetry, which incorporates alternative cosmological models, and is publicly available.

  5. High frequency planar accelerating structures for future linear colliders

    SciTech Connect

    Yu, D.; Ben-Menahem, S.; Wilson, P.; Miller, R.; Ruth, R.; Nassiri, A.

    1994-12-31

    Modern microfabrication techniques based on deep etch x-ray lithography, e.g., LIGA, can be used to produce large-aspect-ratio, metallic or dielectric, planar structures suitable for high-frequency RF acceleration of charged particle beams. Specifically, these techniques offer significant advantages over conventional manufacturing methods for future linear colliders (beyond NLC, the Next Linear Collider) because of several unique systems requirements. First, to have the required ac wall plug power within reasonable limits, such future linear colliders (5 TeV) must operate at high frequency (30 GHz). Secondly, luminosity requirements suggest the use of multi-bunch acceleration of electrons and positrons in the linear collider. Thirdly, in order to clearly discriminate physics events in the final interaction point at which electrons and positrons collide, it is required that secondary particle production from beamstrahlung be minimized. Flat electron and positron beams with a large aspect ratio will be beneficial in reducing beamstrahlung in the final focus region, but cause the beam to be more sensitive to wakefields in the vertical dimension. In principle, a flat beam can be accelerated in a planar structure with reduced wakefield in the vertical direction for the entire length of the accelerator. The LIGA process is particularly suitable for manufacturing miniaturized, planar, asymmetric cavities at high frequency. The main advantages of the LIGA process are fabrication of structures with high aspect ratio, small dimensional tolerances, and arbitrary mask shape (cross-section). Other advantages include mass-production with excellent repeatability and precision of up to an entire section of an accelerating structure consisting of a number of cells. It eliminates the need of tedious machining and brazing, for example, of individual disks and cups in conventional disk-loaded structures. Also, planar input/output couplers for the accelerating structure can be easily

  6. The Zboverline{b} couplings at future e + e - colliders

    NASA Astrophysics Data System (ADS)

    Gori, Stefania; Gu, Jiayin; Wang, Lian-Tao

    2016-04-01

    Many new physics models predict sizable modifications to the SM Zboverline{b} couplings, while the corresponding measurements at LEP and SLC exhibit some discrepancy with the SM predictions. After updating the current results on the Zboverline{b} coupling constraints from global fits, we list the observables that are most important for improving the Zboverline{b} coupling constraints and estimate the expected precision reach of three proposed future e + e - colliders, CEPC, ILC and FCC-ee. We consider both the case that the results are SM-like and the one that the Zboverline{b} couplings deviate significantly from the SM predictions. We show that, if we assume the value of the Zboverline{b} couplings to be within 68% CL of the current measurements, any one of the three colliders will be able to rule out the SM with more than 99 .9999% CL (5 σ). We study the implications of the improved Zboverline{b} coupling constraints on new physics models, and point out their complementarity with the constraints from the direct search of new physics particles at the LHC, as well as with Higgs precision measurements. Our results provide a further motivation for the construction of future e + e - colliders.

  7. Activities at Fermilab related to collider present and future

    NASA Astrophysics Data System (ADS)

    Goderre, G. P.; Holt, J.

    1992-11-01

    The long-range Fermilab program requires fully capitalizing on the world's highest energy accelerator, the Tevatron, throughout the decade of the 90's. The program calls for increasing the collider luminosity with each successive run until peak luminosities of ≳5×1031 cm-2 s-1 and integrated luminosities of ≳100 pb-1 per run are achieved, effectively doubling the mass range accessible for discovery. If the quark lies at the upper range of the mass of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program as well. In order to achieve these goals, we present a highly challenging upgrade of the present accelerator complex, called Fermilab III. In order to increase this performance level by a factor of 50, many changes are needed. Such a plan, of necessity, has modifications in almost all areas of the accelerator as the present system is reasonably optimized. (AIP)

  8. Future proton and electron colliders: Dreams for the 1990's

    SciTech Connect

    Richter, B.

    1988-10-01

    In this paper I have reviewed the possibilities for new colliders that might be available in the 1990's. One or more new proton should be available in the late-90s based on plans of Europe, the US and the USSR. The two very high energy machines, LHC and SSC, are quite expensive, and their construction will be more decided by the politicians' view on the availability of resources than by the physicists' view of the need for new machines. Certainly something will be built, but the question is when. New electron colliders beyond LEP II could be available in the late 1990's as well. Most of the people who have looked at this problem believe that at a minimum three years of RandD are required before a proposal can be made, two years will be required to convince the authorities to go ahead, and five years will be required to build such a machine. Thus the earliest time a new electron collider at high energy could be available is around 1988. A strong international RandD program will be required to meet that schedule. In the field of B factories, PSI's proposal is the first serious step beyond the capabilities of CESR. There are other promising techniques but these need more RandD. The least RandD would be required for the asymmetric storage ring systems, while the most would be required for high luminosity linear colliders. For the next decade, high energy physics will be doing its work at the high energy frontier with Tevatron I and II, UNK, SLC, LEP I and II, and HERA. The opportunities for science presented by experiments at these facilities are very great, and it is to be hoped that the pressure for funding to construct the next generation facilities will not badly affect the operating budgets of the ones we now have or which will soon be turning on. 9 refs., 12 figs., 6 tabs.

  9. TMDs and GPDs at a future Electron-Ion Collider

    DOE PAGESBeta

    Ent, Rolf

    2016-06-21

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  10. Higgs production from sterile neutrinos at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2016-04-01

    In scenarios with sterile (right-handed) neutrinos that are subject to an approximate "lepton-number-like" symmetry, the heavy neutrinos (i.e. the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings while accounting for the smallness of the light neutrinos' masses. In these scenarios, the on-shell production of heavy neutrinos and their subsequent decays into a light neutrino and a Higgs boson constitutes a hitherto unstudied resonant contribution to the Higgs production mechanism. We investigate the relevance of this resonant mono-Higgs production mechanism in leptonic collisions, including thepresent experimental constraints on the neutrino Yukawa couplings, and we determine the sensitivity of future lepton colliders to the heavy neutrinos. With Monte Carlo event sampling and a simulation of the detector response we find that, at future lepton colliders, neutrino Yukawa couplings below the percent level can lead to observable deviations from the SM and, furthermore, the sensitivity improves with higher center-of-mass energies (for identical integrated luminosities).

  11. TMDs and GPDs at a future Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Ent, Rolf

    2016-06-01

    In the U.S., an Electron-Ion Collider (EIC) of energy √{s}=20-100 GeV is under design, with two options studied at Brookhaven National Lab and Jefferson Laboratory. The recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC, coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similarly allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.

  12. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future. PMID:22253243

  13. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  14. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  15. A damping ring design for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.; Gabella, W.E.; Morton, P.L.; Lee, M.J.; Rivkin, L.Z.; Ruth, R.D.

    1989-03-01

    In this paper we present a preliminary design of a damping ring for the TeV Linear Collider (TLC), a future linear collider with an energy of 1/2 to 1 TeV in the center of mass. Because of limits on the emittance, repetition rate and longitudinal impedance, we use combined function FODO cells with wigglers in insertion regions; there are approximately 22 meters of wigglers in the 155 meter ring. The ring has a normalized horizontal emittance, including the effect of intrabeam scattering, which is less than 3 /times/ 10/sup /minus/6/ and an emittance ratio of epsilon/sub x/ approx. 100epsilon/sub y/. It is designed to damp bunches for 7 vertical damping times while operating at a repetition rate of 360 Hz. Because of these requirements on the emittance and the damping per bunch, the ring operates at 1.8 GeV and is relatively large, allowing more bunches to be damped at once. 10 refs., 5 figs., 2 tabs.

  16. Laser ion source for isobaric heavy ion collider experiment

    NASA Astrophysics Data System (ADS)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is 96Ru + 96Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  17. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions. PMID:26931981

  18. Probing charged Higgs boson couplings at a future circular hadron collider

    NASA Astrophysics Data System (ADS)

    Ćakır, I. T.; Kuday, S.; Saygın, H.; Şenol, A.; ćakır, O.

    2016-07-01

    Many of the new physics models predict a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at a future circular hadron collider (FCC-hh). With an integrated luminosity of Lint=500 fb-1 at very high energy frontier (√{s }=100 TeV ), we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1.5 TeV.

  19. DEPFET Active Pixel Detectors for a Future Linear e(+}e({-)) Collider

    NASA Astrophysics Data System (ADS)

    Alonso, O.; Casanova, R.; Dieguez, A.; Dingfelder, J.; Hemperek, T.; Kishishita, T.; Kleinohl, T.; Koch, M.; Kruger, H.; Lemarenko, M.; Lutticke, F.; Marinas, C.; Schnell, M.; Wermes, N.; Campbell, A.; Ferber, T.; Kleinwort, C.; Niebuhr, C.; Soloviev, Y.; Steder, M.; Volkenborn, R.; Yaschenko, S.; Fischer, P.; Kreidl, C.; Peric, I.; Knopf, J.; Ritzert, M.; Curras, E.; Lopez-Virto, A.; Moya, D.; Vila, I.; Boronat, M.; Esperante, D.; Fuster, J.; Garcia, I. Garcia; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M.; Gessler, T.; Kuhn, W.; Lange, S.; Munchow, D.; Spruck, B.; Frey, A.; Geisler, C.; Schwenker, B.; Wilk, F.; Barvich, T.; Heck, M.; Heindl, S.; Lutz, O.; Muller, Th.; Pulvermacher, C.; Simonis, H. J.; Weiler, T.; Krausser, T.; Lipsky, O.; Rummel, S.; Schieck, J.; Schluter, T.; Ackermann, K.; Andricek, L.; Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Koffmane, C.; Gioi, L. Li; Moll, A.; Moser, H. G.; Muller, F.; Nedelkovska, E.; Ninkovic, J.; Petrovics, S.; Prothmann, K.; Richter, R.; Ritter, A.; Ritter, M.; Simon, F.; Vanhoefer, P.; Wassatsch, A.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Scheirich, J.

    2013-04-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  20. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    SciTech Connect

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  1. 2005 Final Report: New Technologies for Future Colliders

    SciTech Connect

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  2. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  3. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  4. SLAC linear collider: the machine, the physics, and the future

    SciTech Connect

    Richter, B.

    1981-11-01

    The SLAC linear collider, in which beams of electrons and positrons are accelerated simultaneously, is described. Specifications of the proposed system are given, with calculated preditions of performance. New areas of research made possible by energies in the TeV range are discussed. (GHT)

  5. Millimeter-wave drivers for future linear colliders

    SciTech Connect

    Whittum, D.H.

    1998-04-01

    The challenges for high-gradient mm-wave drive colliders are reviewed. Requirements on power sources are examined, and a particular tube is considered for illustration. Research topics relevant to a compact 1 GeV linac are noted throughout.

  6. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  7. Photoinjectors R&D for future light sources & linear colliders

    SciTech Connect

    Piot, P.; /Northern Illinois U. /Fermilab

    2006-08-01

    Linac-driven light sources and proposed linear colliders require high brightness electron beams. In addition to the small emittances and high peak currents, linear colliders also require spin-polarization and possibly the generation of asymmetric beam in the two transverse degrees of freedom. Other applications (e.g., high-average-power free-electron lasers) call for high duty cycle and/or (e.g., electron cooling) angular-momentum-dominated electron beams. We review ongoing R&D programs aiming at the production of electron beams satisfying these various requirements. We especially discuss R&D on photoemission electron sources (with focus on radiofrequency guns) along with the possible use of emittance-manipulation techniques.

  8. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  9. A High Field Magnet Design for A Future Hadron Collider

    SciTech Connect

    Gupta, R.; Chow, K.; Dietderich, D.; Gourlay, S.; Millos, G.; McInturff, A.; Scanlan, R.

    1998-09-01

    US high energy physics community is exploring the possibilities of building a Very Large Hadron Collider (VLHC) after the completion of LHC. This paper presents a high field magnet design option based on Nb{sub 3}Sn technology. A preliminary magnetic and mechanical design of a 14-16 T, 2-in-1 dipole based on the 'common coil design' approach is presented. The computer code ROXIE has been upgraded to perform the field quality optimization of magnets based on the racetrack coil geometry. A magnet R&D program to investigate the issues related to high field magnet designs is also outlined.

  10. Fast timing and trigger Cherenkov detector for collider experiments

    NASA Astrophysics Data System (ADS)

    Grigoryev, V. A.; Kaplin, V. A.; Karavicheva, T. L.; Konevskikh, A. S.; Kurepin, A. B.; Loginov, V. A.; Melikyan, Yu A.; Morozov, I. V.; Reshetin, A. I.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, M.; Trzaska, W. H.; Tykmanov, E. M.

    2016-02-01

    Analysis of fast timing and trigger Cherenkov detector's design for its use in collider experiments is presented. Several specific requirements are taken into account - necessity of the radiator's placement as close to the beam pipe as possible along with the requirement of gapless (solid) radiator's design. Characteristics of the Cherenkov detector's laboratory prototype obtained using a pion beam at the CERN Proton Synchrotron are also presented, showing the possibility of obtaining sufficiently high geometrical efficiency along with good enough time resolution (50 ps sigma).

  11. eRHIC, the BNL design for a future Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Roser, Thomas

    2016-03-01

    With the addition of a 20 GeV polarized electron accelerator to the existing Brookhaven Relativistic Heavy Ion Collider (RHIC), the world's only high energy heavy ion and polarized proton collider, a future eRHIC facility will be able to produce polarized electron-nucleon collisions at center-of-mass energies of up to 145 GeV and cover the whole science case as outlined in the Electron-Ion Collider White Paper and endorsed by the 2015 Nuclear Physics Long Range Plan with high luminosity. The presentation will describe the eRHIC design concepts and recent efforts to reduce the technical risks of the project.

  12. Quantum Suppression of beamstrahlung for future e+e- linear collider: an evaluation of QED backgrounds

    SciTech Connect

    Xie, Ming

    1998-10-13

    Beamstrahlung at interaction point may present severe limitations on linear collider performance. The approach to reduce this effect adopted for all current designs at 0.5 TeV range in center-of-mass energy will become more difficult and less effective at higher energy. We discuss the feasibility of an alternative approach, based on an effect known as quantum suppression of beamstrahlung, for future linear colliders at multi-TeV energy.

  13. Linear polarization of gluons and photons in unpolarized collider experiments

    SciTech Connect

    Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.; Buffing, Maarten G. A.; Mulders, Piet J.

    2013-10-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pair production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.

  14. New technologies for a future superconducting proton collider

    SciTech Connect

    Malamud, E.; Foster, G.W.

    1996-06-01

    New more economic approaches are required to continue the dramatic exponential rise in particle accelerator energies as represented by the well- known Livingston plot. The old idea of low-cost, low-field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) high T{sub c} superconductors operating at liquid N{sub 2} or H{sub 2} temperatures, (2) advanced tunneling technologies for small diameter, non human accessible tunnels, (3) accurate remote guidance systems for boring machine steering, (4) industrial applications of remote manipulation and robotics, and (5) digitally multiplexed electronics to minimize cables There is an opportunity for mutually beneficial partnerships between the High Energy Physics community and the commercial sector to develop the necessary technology. This will gain public support, a necessary part of the challenge of building a new, very high energy collider.

  15. Future reactor experiments

    NASA Astrophysics Data System (ADS)

    Wen, Liangjian

    2015-07-01

    The non-zero neutrino mixing angle θ13 has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  16. Future reactor experiments

    SciTech Connect

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  17. Superpartners at LHC and future colliders: predictions from constrained compactified M-theory

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Kane, Gordon L.; Zheng, Bob

    2015-07-01

    We study a realistic top-down M-theory compactification with low-scale effective Supersymmetry, consistent with phenomenological constraints. A combination of top-down and generic phenomenological constraints fix the spectrum. Three and only three superpartner channels, , χ {2/0} χ {1/±} and χ {1/+} χ {1/-} (where χ {2/0} , χ {1/±} are Wino-like), are expected to be observable at LHC-14. We also investigate the prospects of finding heavy squarks and Higgsinos at future colliders. Gluino-stop-top, gluino-sbottom-bottom associated production and first generation squark associated production should be observable at a 100 TeV collider, along with direct production of heavy Higgsinos. Within this framework the discovery of a single sparticle is sufficient to determine uniquely the SUSY spectrum, yielding a number of concrete testable predictions for LHC-14 and future colliders, and determination of M 3/2 and thereby other fundamental quantities.

  18. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  19. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    SciTech Connect

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  20. Optical injection using colliding laser pulses: experiments at LBNL

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Geddes, C. G. R.; Toth, C.; Faure, J.; van Tilborg, J.; Marcelis, B.; Esarey, E.; Schroeder, C. B.; Fubiani, G.; Shadwick, B. A.; Dugan, G.; Cary, J.; Giacone, R.

    2002-11-01

    Laser driven acceleration in plasmas has succeeded in producing electron beams containing multi-nC's of charge, with some fraction of the electrons having energies in excess of 10's of MeV's but 100 % energy spread. One of the current challenges is to produce electron beams with much reduced energy spread. We report on experimental progress in the laser triggered injection of electrons in a laser wakefield accelerator using the colliding pulse method (E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997).), (C.B. Schroeder et al., Phys. Rev. E 59, 6037 (1999).). The experiments use the l'OASIS multi-beam 10 Hz high power Ti:Al_2O3 laser system (W.P. Leemans et al., Phys. Plasmas 8, 2510 (2001).). In the present experiments, two counter propagating beams (30^rc angle) are focused onto a high density gas jet. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiments will be shown as well as comparisons with simulations.

  1. Experimental Validation of a Novel Compact Focusing Scheme for Future Energy-Frontier Linear Lepton Colliders

    NASA Astrophysics Data System (ADS)

    White, G. R.; Ainsworth, R.; Akagi, T.; Alabau-Gonzalvo, J.; Angal-Kalinin, D.; Araki, S.; Aryshev, A.; Bai, S.; Bambade, P.; Bett, D. R.; Blair, G.; Blanch, C.; Blanco, O.; Blaskovic-Kraljevic, N.; Bolzon, B.; Boogert, S.; Burrows, P. N.; Christian, G.; Corner, L.; Davis, M. R.; Faus-Golfe, A.; Fukuda, M.; Gao, J.; García-Morales, H.; Geffroy, N.; Hayano, H.; Heo, A. Y.; Hildreth, M.; Honda, Y.; Huang, J. Y.; Hwang, W. H.; Iwashita, Y.; Jang, S.; Jeremie, A.; Kamiya, Y.; Karataev, P.; Kim, E. S.; Kim, H. S.; Kim, S. H.; Kim, Y. I.; Komamiya, S.; Kubo, K.; Kume, T.; Kuroda, S.; Lam, B.; Lekomtsev, K.; Liu, S.; Lyapin, A.; Marin, E.; Masuzawa, M.; McCormick, D.; Naito, T.; Nelson, J.; Nevay, L. J.; Okugi, T.; Omori, T.; Oroku, M.; Park, H.; Park, Y. J.; Perry, C.; Pfingstner, J.; Phinney, N.; Rawankar, A.; Renier, Y.; Resta-López, J.; Ross, M.; Sanuki, T.; Schulte, D.; Seryi, A.; Shevelev, M.; Shimizu, H.; Snuverink, J.; Spencer, C.; Suehara, T.; Sugahara, R.; Takahashi, T.; Tanaka, R.; Tauchi, T.; Terunuma, N.; Tomás, R.; Urakawa, J.; Wang, D.; Warden, M.; Wendt, M.; Wolski, A.; Woodley, M.; Yamaguchi, Y.; Yamanaka, T.; Yan, J.; Yokoya, K.; Zimmermann, F.; ATF2 Collaboration

    2014-01-01

    A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.

  2. A new micro-strip tracker for the new generation of experiments at hadron colliders

    SciTech Connect

    Dinardo, Mauro E

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Z{sup o}'s or W{sup {+-}}'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  3. Search for New Physics in SHiP and at future colliders

    NASA Astrophysics Data System (ADS)

    Graverini, E.; Serra, N.; Storaci, B.

    2015-07-01

    SHiP is a newly proposed fixed-target experiment at the CERN SPS with the aim of searching for hidden particles that interact very weakly with Standard Model particles. The work presented in this document investigates SHiP's physics reach in the parameter space of the Neutrino Minimal Standard Model (νMSM), a theory that could solve most problems unexplained by the Standard Model by incorporating sterile neutrinos. A model introducing an extra U(1) symmetry in the hidden sector, providing a natural candidate for dark matter, is also explored. This work shows that the SHiP experiment can improve the sensitivity to Heavy Neutral Leptons below 2 GeV by several orders of magnitude, scanning a large part of the parameter space below the B meson mass. The remainder of the νMSM parameter space, dominated by right-handed neutrinos with masses above 2 GeV, can be explored at a future e+e- collider. Similarly, SHiP can greatly improve present constraints on U(1) dark photons.

  4. Future collider signatures of the possible 750 GeV state

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak; Ellis, John; Godbole, Rohini; Quevillon, Jérémie

    2016-03-01

    If the recent indications of a possible state Φ with mass 750 GeV decaying into two photons reported by ATLAS and CMS in LHC collisions at 13 TeV were to become confirmed, the prospects for future collider physics at the LHC and beyond would be affected radically, as we explore in this paper. Even minimal scenarios for the Φ resonance and its γγ decays require additional particles with masses ≳1/2{m}_{Φ} . We consider here two benchmark scenarios that exemplify the range of possibilities: one in which Φ is a singlet scalar or pseudoscalar boson whose production and γγ decays are due to loops of coloured and charged fermions, and another benchmark scenario in which Φ is a superposition of (nearly) degenerate CP-even and CP-odd Higgs bosons in a (possibly supersymmetric) two-Higgs doublet model also with additional fermions to account for the γγ decay rate. We explore the implications of these benchmark scenarios for the production of Φ and its new partners at colliders in future runs of the LHC and beyond, at higher-energy pp colliders and at e + e - and γγ colliders, with emphasis on the bosonic partners expected in the doublet scenario and the fermionic partners expected in both scenarios.

  5. FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect

    LUDLAM, T.

    2006-12-21

    QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the quark-hadron phase

  6. Proposing a Laser Based Beam Size Monitor for the Future Linear Collider

    SciTech Connect

    Ross, Marc C

    2001-12-10

    Compton scattering techniques for the measurement of the transverse beam size of particle beams at future linear colliders (FLC) are proposed. At several locations of the beam delivery system (BDS) of the FLC, beam spot sizes ranging from several hundreds to a few micrometers have to be measured. This is necessary to verify beam optics, to obtain the transverse beam emittance, and to achieve the highest possible luminosity. The large demagnification of the beam in the BDS and the high beam power puts extreme conditions on any measuring device. With conventional techniques at their operational limit in FLC scenarios, new methods for the detection of the transverse beam size have to be developed. For this laser based techniques are proposed capable of measuring high power beams with sizes in the micrometer range. In this paper general aspects and critical issues of a generic device are outlined and specific solutions proposed. Plans to install a laser wire experiment at an accelerator test facility are presented.

  7. Construction of block-coil high-field model dipoles for future hadron colliders

    SciTech Connect

    Blackburn, Raymond; Elliott, Tim; Henchel, William; McInturff, Al; McIntyre, Peter; Sattarov, Akhdior

    2002-08-04

    A family of high-field dipoles is being developed at Texas A&M University, as part of the program to improve the cost-effectiveness of superconducting magnet technology for future hadron colliders. The TAMU technology employs stress management, flux-plate control of persistent-current multipoles, conductor optimization using mixed-strand cable, and metal-filled bladders to provide pre-load and surface compliance. Construction details and status of the latest model dipole will be presented.

  8. Time and position resolution of the scintillator strips for a muon system at future colliders

    NASA Astrophysics Data System (ADS)

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja

    2016-07-01

    Prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  9. Studies of vertex tracking with SOI pixel sensors for future lepton colliders

    NASA Astrophysics Data System (ADS)

    Battaglia, Marco; Contarato, Devis; Denes, Peter; Liko, Dietrich; Mattiazzo, Serena; Pantano, Devis

    2012-07-01

    This paper presents a study of vertex tracking with a beam hodoscope consisting of three layers of monolithic pixel sensors in SOI technology on high-resistivity substrate. We study the track extrapolation accuracy, two-track separation and vertex reconstruction accuracy in π- Cu interactions with 150 and 300 GeV/c pions at the CERN SPS. Results are discussed in the context of vertex tracking at future lepton colliders.

  10. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE PAGESBeta

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  11. The Multi-Purpose Detector (MPD) of the collider experiment

    NASA Astrophysics Data System (ADS)

    Golovatyuk, V.; Kekelidze, V.; Kolesnikov, V.; Rogachevsky, O.; Sorin, A.

    2016-08-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study dense baryonic matter in heavy-ion collisions in the energy range up to √{s_{NN}} = 11 GeV with average luminosity of L = 1027 cm-2s-1 (for 197Au79). The experimental program at the NICA collider will be performed with the Multi-Purpose Detector (MPD). We report on the main physics objectives of the NICA heavy-ion program and present the main detector components.

  12. Photon Colliders

    SciTech Connect

    Gronberg, J

    2002-10-07

    A photon collider interaction region has the possibility of expanding the physics reach of a future TeV scale electron-positron collider. A survey of ongoing efforts to design the required lasers and optics to create a photon collider is presented in this paper.

  13. Design study of an optical cavity for a future photon collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Mönig, K.; Will, I.

    2006-08-01

    Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.

  14. Phenomenology of the Georgi-Machacek model at future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Kanemura, Shinya; Yagyu, Kei

    2016-03-01

    We study the phenomenology of the exotic Higgs bosons in the Georgi-Machacek model at future electron-positron colliders such as the International Linear Collider (ILC), assuming the collision energies of 500 GeV and 1 TeV. We show that the existence of the neutral and singly charged Higgs bosons in the 5-plet representation under the custodial S U (2 )V symmetry can be readily identified by studying various energy and invariant mass distributions of the W+W-Z final state. Moreover, their masses can be determined with sufficiently high precision to test the mass degeneracy, a feature due to the custodial symmetry of the model. A synergy between such searches at the ILC and the doubly charged Higgs search at the LHC will make the 5-plet Higgs boson study more comprehensive.

  15. DELPHES 3: a modular framework for fast simulation of a generic collider experiment

    NASA Astrophysics Data System (ADS)

    de Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M.

    2014-02-01

    The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments. [Figure not available: see fulltext.

  16. Physics of e/sup +/-e/sup -/ colliders: present, future, and far future

    SciTech Connect

    Peskin, M.E.

    1984-10-01

    The presentation of this lecture will proceed as follows: Section 2 reviews the features of e/sup +/-e/sup -/ collisions according to the standard gauge theory of strong, weak, and electromagnetic interactions. This discussion reviews a few of the most important features of e/sup +/-e/sup -/ collisions at currently accessible energies and the expectations for e/sup +/-e/sup -/ reactions which produce the intermediate vector bosons Z/sup 0/ and W/sup + -/. Section 3 reviews some of the experimental work done at the current generation of e/sup +/-e/sup -/ colliders; this discussion emphasizes the search for new types of elementary particles. Section 4 is a theoretical digression, introducing a number of ideas about physics at the energy scale of 1 TeV. Section 5 discusses (rather superficially) a number of technical aspects of electron-positron colliders designed to reach the TeV energies. Finally, Section 6 discusses various possible effects which could appear in e/sup +/-e/sup -/ collisions as the result of new physics appearing at 1 TeV or above. 41 refs., 35 figs.

  17. Production and decay of the diphoton resonance at future e+e- colliders

    NASA Astrophysics Data System (ADS)

    Ito, Hayato; Moroi, Takeo

    2016-07-01

    Motivated by the ATLAS and CMS announcements of the excesses of diphoton events, we discuss the production and decay processes of diphoton resonance at future e+e- colliders. We assume that the excess of the diphoton events at the LHC is explained by a scalar resonance decaying into a pair of photons. In such a case, the scalar interacts with standard model gauge bosons and, consequently, the production of such a scalar is possible at the e+e- colliders. We study the production of the scalar resonance via the associated production with the photon or Z , as well as via the vector-boson fusion, and calculate the cross sections of these processes. We also study the backgrounds, and discuss the detectability of the signals of scalar production with various decay processes of the scalar resonance. We also consider the case where the scalar resonance has an invisible decay mode, and study how the invisible decay can be observed at the e+e- colliders.

  18. Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.

    2014-05-01

    Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.

  19. Design considerations for the semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    NASA Astrophysics Data System (ADS)

    Pingault, A.

    2016-07-01

    The first technological SDHCAL prototype having been successfully tested, a new phase of R&D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2 m2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  20. Testing the handedness of a heavy {ital W}{prime} at future hadron colliders

    SciTech Connect

    Cvetic, M.; Langacker, P.; Liu, J.

    1994-03-01

    We show that the associated production {ital pp}{r_arrow}{ital W}{prime}{ital W} and the rare dec at future hadron colliders. For {ital M}{sub {ital W}{prime}}{similar_to}(1--3) TeV they would allow a clean determination on whether the {ital W}{prime} couples to {ital V}{minus}{ital A} or {ital V}+{ital A} currents. As an illustration a model in which the {ital W}{prime}{sup {plus_minus}} couples only to {ital V}{minus}{ital A} currents is contrasted with the left-right-symmetric models which involve {ital V}+{ital A} currents.

  1. Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders

    NASA Astrophysics Data System (ADS)

    Jung, Sunghoon; Wells, James D.

    2014-04-01

    Discovery of the Higgs boson and lack of discovery of superpartners in the first run at the LHC are both predictions of split supersymmetry with thermal dark matter. We discuss what it would take to find gluinos at hadron supercolliders, including the LHC at 14 TeV center-of-mass energy, and future pp colliders at 100 TeV and 200 TeV. We generalize the discussion by reexpressing the search capacity in terms of the gluino to lightest superpartner mass ratio and apply results to other scenarios, such as gauge mediation and mirage mediation.

  2. Helicity parton distributions at a future electron-ion collider: A quantitative appraisal

    NASA Astrophysics Data System (ADS)

    Aschenauer, Elke C.; Stratmann, Marco; Sassot, Rodolfo

    2012-09-01

    We present a quantitative assessment of the impact a future electron-ion collider will have on determinations of helicity quark and gluon densities and their contributions to the proton spin. Our results are obtained by performing a series of global QCD analyses at next-to-leading order accuracy based on realistic sets of pseudo-data for the inclusive and semi-inclusive deep-inelastic scattering of longitudinally polarized electrons and protons at different, conceivable center-of-mass system energies.

  3. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  4. Electron density and plasma dynamics of a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-01

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH2 at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ṡ 1015 cm-3 for a single accelerated plasma and a maximum value of ≈2.6 ṡ 1016 cm-3 for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  5. Preservation of Ultra Low Emittances Using Adiabatic Matching in Future Plasma Wakefield-based Colliders

    SciTech Connect

    Gholizadeh, Reza; Muggli, Patric; Katsouleas, Tom; Mori, Warren

    2009-01-22

    The Plasma Wakefield Accelerator is a promising technique to lower the cost of the future high energy colliders by offering orders of magnitude higher gradients than the conventional accelerators. It has been shown that ion motion is an important issue to account for in the extreme regime of ultra high energies and ultra low emittances, characteristics of future high energy collider beams. In this regime, the transverse electric field of the beam is so high that in simulations, the plasma ions cannot be considered immobile at the time scale of electron plasma oscillation, thereby leading to a nonlinear focusing force. Therefore, the transverse emittance of a beam will not be preserved under these circumstances. However, we show that matched profile in case of a nonlinear focusing force still exists and can be derived from Vlasov equation. Furthermore, we introduce a plasma section that can reduce the emittance growth by adiabatically reducing the ion mass and hence increasing the nonlinear term in the focusing force. Simulation results are presented.

  6. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  7. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  8. Diffractive ρ production at small x in future electron–ion colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Navarra, F. S.; Spiering, D.

    2016-09-01

    The future electron–ion (eA) collider is expected to probe the high energy regime of the quantum chromodynamics (QCD), with the exclusive vector meson production cross section being one of the most promising observables. In this paper we complement previous studies of exclusive processes presenting a comprehensive analysis of diffractive ρ production at small x. We compute the coherent and incoherent cross sections taking into account non-linear QCD dynamical effects and considering different models for the dipole–proton scattering amplitude and vector meson wave function. The dependence of these cross sections on the energy, photon virtuality, nuclear mass number and squared momentum transfer is analysed in detail. Moreover, we compare the non-linear predictions with those obtained in the linear regime. Finally, we also estimate the exclusive photon, J/{{\\Psi }} and ϕ production and compare with the results obtained for ρ production. Our results demonstrate that the analysis of diffractive ρ production in future electron–ion colliders will be important in understanding the non-linear QCD dynamics.

  9. Tau physics at p[bar p] colliders

    SciTech Connect

    Konigsberg, J. . High Energy Physics Lab.)

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments.

  10. Tau physics at p{bar p} colliders

    SciTech Connect

    Konigsberg, J.

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments.

  11. Aspects of perturbative QCD at a 100 TeV future hadron collider

    NASA Astrophysics Data System (ADS)

    Bothmann, Enrico; Ferrarese, Piero; Krauss, Frank; Kuttimalai, Silvan; Schumann, Steffen; Thompson, Jennifer

    2016-08-01

    In this paper we consider particle production at a future circular hadron collider with 100 TeV center-of-mass energy within the Standard Model, and in particular their QCD aspects. Accurate predictions for these processes pose severe theoretical challenges related to large hierarchies of scales and possible large multiplicities of final-state particles. We investigate scaling patterns in multijet-production rates allowing to extrapolate predictions to very high final-state multiplicities. Furthermore, we consider large-area QCD jets and study the expectation for the mean number of subjets to be reconstructed from their constituents and confront these with analytical resummed predictions and with the expectation for boosted hadronic decays of top quarks and W bosons. We also discuss the validity of Higgs effective field theory in making predictions for Higgs-boson production in association with jets. Finally, we consider the case of new physics searches at such a 100 TeV hadron-collider machine and discuss the expectations for corresponding Standard-Model background processes.

  12. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    SciTech Connect

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  13. Beyond Higgs couplings: probing the Higgs with angular observables at future e + e - colliders

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; Wang, Kechen

    2016-03-01

    We study angular observables in the {e}+{e}-to ZHto {ell}+{ell}-boverline{b} channel at future circular e + e - colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy sqrt{s}=240 GeV and 5 (30) ab-1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the "blind spot" in indirect limits on supersymmetric scalar top partners.

  14. Sensitivities of prospective future e + e - colliders to decoupled new physics

    NASA Astrophysics Data System (ADS)

    Ellis, John; You, Tevong

    2016-03-01

    We explore the indirect sensitivities to decoupled new physics of prospective precision electroweak measurements, triple-gauge-coupling measurements and Higgs physics at future e + e - colliders, with emphasis on the ILC250 and FCC-ee. The Standard Model effective field theory (SM EFT) is adopted as a model-independent approach for relating experimental precision projections to the scale of new physics, and we present prospective constraints on the Wilson coefficients of dimension-6 operators. We find that in a marginalised fit ILC250 EWPT measurements may be sensitive to new physics scales Λ = {O}(10) TeV, and FCC-ee EWPT measurements may be sensitive to Λ = {O}(30) TeV. The prospective sensitivities of Higgs and TGC measurements at the ILC250 (FCC-ee) are to Λ = {O}(1) TeV Λ = {O}(2) TeV).

  15. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    SciTech Connect

    Assmann, R

    2004-06-08

    and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.

  16. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  17. Fourth workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider

    NASA Technical Reports Server (NTRS)

    Fatyga, M. (Editor); Moskowitz, B. (Editor)

    1992-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e(sup +) e(sup -) pairs in the elastic scattering of two heavy ions at the Relativistic Heavy Ion Collider (RHIC). A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  18. Overview of results from the Fermilab fixed target and collider experiments

    SciTech Connect

    Montgomery, H.E.

    1997-06-01

    In this paper we present a review of recent QCD related results from Fermilab fixed target and collider experiments. Topics covered range from structure functions through W/Z production, heavy quark production and jet angular distributions. We also include the current state of knowledge about leptoquark pair production in hadronic collisions.

  19. Ground motion optimized orbit feedback design for the future linear collider

    NASA Astrophysics Data System (ADS)

    Pfingstner, J.; Snuverink, J.; Schulte, D.

    2013-03-01

    The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources.

  20. A strong electroweak sector at future {mu}{sup +}{mu}{sup {minus}} colliders

    SciTech Connect

    Casalbuoni, R.; Dominici, D.; Casalbuoni, R.; De Curtis, S.; Dominici, D.; Deandrea, A.; Casalbuoni, R.; Gatto, R.; Gunion, J.F.

    1998-08-01

    We discuss the prospects for detecting at a muon collider the massive new vector resonances V and light pseudo-Nambu-Goldstone bosons {ital P} of a typical strongly interacting electroweak sector (as represented by the BESS model). Expected sensitivities to V{close_quote}s at a high energy collider are evaluated and the excellent prospects for discovering {ital P}{close_quote}s via scanning at a low energy collider are delineated. {copyright} {ital 1998 American Institute of Physics.}

  1. Potential performance for Pb-Pb, p -Pb, and p -p collisions in a future circular collider

    NASA Astrophysics Data System (ADS)

    Schaumann, Michaela

    2015-09-01

    The hadron collider studied in the future circular collider (FCC) project could operate with protons and lead ions in similar operation modes as the LHC. In this paper the potential performances in lead-lead, proton-lead, and proton-proton collisions are investigated. Based on average lattice parameters, the strengths of intrabeam scattering and radiation damping are evaluated and their effect on the beam and luminosity evolution is presented. Estimates for the integrated luminosity per fill and per run are given, depending on the turnaround time. Moreover, the beam-beam tune shift and bound free pair production losses in heavy-ion operation are addressed.

  2. SNiPER: an offline software framework for non-collider physics experiments

    NASA Astrophysics Data System (ADS)

    Zou, J. H.; Huang, X. T.; Li, W. D.; Lin, T.; Li, T.; Zhang, K.; Deng, Z. Y.; Cao, G. F.

    2015-12-01

    SNiPER (Software for Non-collider Physics ExpeRiments) has been developed based on common requirements from both nuclear reactor neutrino and cosmic ray experiments. The design and implementation of SNiPER is described in this proceeding. Compared to the existing offline software frameworks in the high energy physics domain, the design of SNiPER is more focused on execution efficiency and flexibility. SNiPER has an open structure. User applications are executed as plug-ins based on it. The framework contains a compact kernel for software components management, event execution control, job configuration, common services, etc. Some specific features are attractive to non-collider physics experiments.

  3. Status report of a high luminosity muon collider and future research and development plans

    SciTech Connect

    Palmer, R.B.; Tollestrup, A.; Sessler, A.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity {mu}{sup +}{mu}{sup -} colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Finally, we present an R & D plan to determine whether such machines are practical, and, if they are, lead to the construction of a 0.5 TeV demonstration by 2010, and to a 4 TeV collider by the year 2020.

  4. Unveiling the proton spin decomposition at a future electron-ion collider

    DOE PAGESBeta

    Aschenauer, Elke C.; Sassot, Rodolfo; Stratmann, Marco

    2015-11-24

    We present a detailed assessment of how well a future electron-ion collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton’s spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudodata and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have providedmore » evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon’s helicity distribution by the end of BNL-RHIC operations. As a result, all estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.« less

  5. Unveiling the proton spin decomposition at a future electron-ion collider

    SciTech Connect

    Aschenauer, Elke C.; Sassot, Rodolfo; Stratmann, Marco

    2015-11-24

    We present a detailed assessment of how well a future electron-ion collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton’s spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudodata and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have provided evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon’s helicity distribution by the end of BNL-RHIC operations. As a result, all estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.

  6. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE PAGESBeta

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; Wang, Kechen

    2016-03-09

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  7. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    SciTech Connect

    Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K.; Kirby, R.E.; Kuekan, B.; Lipari, J.J.; Munro, M.; Olszewski, J.; Raubenheimer, T.O.; Seeman, J.; Smith, B.; Spencer, C.M.; Wang, L.; Wittmer, W.; Celata, C.M.; Furman, M.A.; /SLAC /LBL, Berkeley

    2008-07-03

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.

  8. A New Chicane Experiment in PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    SciTech Connect

    Pivi, M. T.; Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K.; Kirby, R.E.; Kuekan, B.; Lipari, J.J.; Munro, M.; Olszewski, J.; Raubenheimer, T.O.; Seeman, J.; Spencer, C.M.; Wang, L.; Wittmer, W.; Celata, C.M.; Furman, M.A.; Smith, B.

    2008-06-11

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.

  9. Transition Radiation Detector in the D0 colliding beam experiment at Fermilab

    SciTech Connect

    Piekarz, H.

    1995-04-01

    The construction, operation and response of the Transition Radiation Detector (TRD) at DO colliding beam experiment at Fermilab are presented. The use of the TRD signal to enhance electron identification and hadronic rejection in the multiparticle background characteristic for the antiproton-proton interactions at the center-of-mass energy of 1.8 TeV is also described and results are discussed.

  10. Precision muon tracking detectors and read-out electronics for operation at very high background rates at future colliders

    NASA Astrophysics Data System (ADS)

    Kortner, O.; Kroha, H.; Nowak, S.; Richter, R.; Schmidt-Sommerfeld, K.; Schwegler, Ph.

    2016-07-01

    The experience of the ATLAS MDT muon spectrometer shows that drift-tube chambers provide highly reliable precision muon tracking over large areas. The ATLAS muon chambers are exposed to unprecedentedly high background of photons and neutrons induced by the proton collisions. Still higher background rates are expected at future high-energy and high-luminosity colliders beyond HL-LHC. Therefore, drift-tube detectors with 15 mm tube diameter (30 mm in ATLAS), optimised for high rate operation, have been developed for such conditions. Several such full-scale sMDT chambers have been constructed with unprecedentedly high sense wire positioning accuracy of better than 10 μm. The chamber design and assembly methods have been optimised for large-scale production, reducing considerably cost and construction time while maintaining the high mechanical accuracy and reliability. Tests at the Gamma Irradiation Facility at CERN showed that the rate capability of sMDT chambers is improved by more than an order of magnitude compared to the MDT chambers. By using read-out electronics optimised for high counting rates, the rate capability can be further increased.

  11. Studies of strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders

    SciTech Connect

    Barklow, T.L.

    1994-08-01

    Methods of studying strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders are reviewed. Specifically, we review precision measurements of triple gauge boson vertex parameters and the rescattering of longitudinal W bosons in the process e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}}. Quantitative estimates of the sensitivity of each technique to strong electroweak symmetry breaking are included.

  12. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  13. PROCEEDINGS OF THE 1983 DPF WORKSHOP ON COLLIDER DETECTORS: PRESENT CAPABILITIES AND FUTURE POSSIBILITIES, FEB. 28 - MARCH 4, 1983.

    SciTech Connect

    Loken Ed, S.C.; Nemethy Ed, P.

    1983-04-01

    It is useful before beginning our work here to restate briefly the purpose of this workshop in the light of the present circumstances of elementary particle physics in the U.S. The goal of our field is easily stated in a general way: it is to reach higher center of mass energies and higher luminosities while employing more sensitive and more versatile event detectors, all in order to probe more deeply into the physics of elementary particles. The obstacles to achieving this goal are equally apparent. Escalating costs of construction and operation of our facilities limit alternatives and force us to make hard choices among those alternatives. The necessity to be highly selective in the choice of facilities, in conjunction with the need for increased manpower concentrations to build accelerators and mount experiments, leads to complex social problems within the science. As the frontier is removed ever further, serious technical difficulties and limitations arise. Finally, competition, much of which is usually healthy, now manifests itself with greater intensity on a regional basis within our country and also on an international scale. In the far ({ge}20 yr) future, collaboration on physics facilities by two or more of the major economic entities of the world will possibly be forthcoming. In the near future, we are left to bypass or overcome these obstacles on a regional scale as best we can. The choices we face are in part indicated in the list of planned and contemplated accelerators shown in Table I. The facilities indicated with an asterisk pose immediate questions: (1) Do we need them all and what should be their precise properties? (2) How are the ones we choose to be realized? (3) What is the nature of the detectors to exploit those facilities? (4) How do we respond to the challenge of higher luminosity as well as higher energy in those colliders? The decision-making process in this country and elsewhere depends on the answers to these technical questions

  14. Neutrino physics at muon colliders

    SciTech Connect

    King, B.J.

    1998-03-01

    An overview is given of the neutrino physics potential of future muon storage rings that use muon collider technology to produce, accelerate and store large currents of muons. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring.

  15. Laboratory Magnetic Reconnection Experiments with Colliding, Magnetized Laser-Produced Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Fox, W. R., II; Bhattacharjee, A.; Deng, W.; Moissard, C.; Germaschewski, K.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Hu, S.; Nilson, P.

    2014-12-01

    We present results from experiments and simulations of magnetic reconnection between colliding plumes of laser-produced plasma. In the experiments, which open up a new experimental regime for reconnection study, bubbles of high-temperature, high-density plasma are created by focusing lasers down to sub-millimeter-scale spots on a plastic or metal foil, ionizing the foil into hemispherical bubbles that expand supersonically off the surface of the foil. If multiple bubbles are created at small separation, the bubbles expand into one another, and the embedded magnetic fields (either self-generated or externally imposed) are squeezed together and reconnect. We will review recent experiments, which have observed magnetic field annihilation, outflow jets, particle energization, and the formation of elongated current sheets. We compare the results against experiments with unmagnetized plumes, which observe the Weibel instability as the two plumes collide and interact. Particle-in-cell simulations of the strongly driven reconnection in these experiments show fast reconnection due to two-fluid effects, flux pile-up, and plasmoid formation, and show particle energization by reconnection.

  16. Laboratory experiments on cluster/aerosol formation by colliding ablation plumes

    NASA Astrophysics Data System (ADS)

    Hirooka, Y.; Tanaka, K. A.; Sato, H.; Ishihara, K.; Sunahara, A.

    2010-08-01

    First-of-a-kind experiments on cluster/aerosol formation by colliding ablation plumes have been conducted, radiating Al, Cu and C with 3ω-YAG laser at power densities between 2~30 J/cm2/pulse. Visible spectroscopy indicates that the excitation light intensities of Cu and Al plumes are not necessarily be doubled in collision, but can rather be weakened due to atomic and molecular reactions. For colliding C plumes, Swan band radiation has been observed, indicative of C2 and/or C2+ formation, and ion mass spectrometry has identified Cn+-clusters, including C+, C2+, C3+, C4+ and C5+. From ICCD camera observations, C plumes generated at power densities above ~15 J/cm2/pulse tend to split into two components with respective velocities, only the slow component of which appears to be interactive to form clusters. Nano structures like CNT have been identified in deposits from colliding C plumes.

  17. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  18. Gyroharmonic converter as a high power cm-wavelength rf source for future e--e+ colliders

    NASA Astrophysics Data System (ADS)

    Hirshfield, J. L.; Ganguly, A. K.; Wang, Changbiao

    1995-07-01

    The principles governing gyroharmonic conversion for production of high-power cm-wavelength rf power to drive a future e--e+ collider are reviewed. Results of projected performance of the Yale 14.28 GHz converter are presented, as predicted using a seamless slow-time-scale simulation code that follows the beam particles through a cyclotron autoresonance acceleration region, through an rf absorbing drift tube, and through a fifth-harmonic traveling-wave output section. Approximate scaling relations are developed to give converter parameters with power levels appropriate for collider applications. Possible means to control beam quality, and thus to retain good converter efficiency, are described. A single-beam, multiple-source converter concept is suggested that may make unnecessary more than one gun and gun modulator to supply a large number of accelerator rf feeds.

  19. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  20. Detector systems for future HEP experiments

    SciTech Connect

    Savoy-Navarro, Aurore

    1998-02-01

    Some thoughts are presented on the development of detector systems for future high energy physics experiments. These systems must be able to achieve simultaneous, reliable, high-efficiency identification and measurement of all objects that make up an 'event'. This will require a world-wide collaborative effort, an active research and development program, and an upgrade of challenging running experiments. (AIP)

  1. Constraining fundamental physics with future CMB experiments

    SciTech Connect

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-15

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  2. Higgs bosons production and decay at future e + e ‑ linear colliders as a probe of the B–L model

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, F.; Gutiérrez-Rodríguez, A.; Hernández-Ruíz, M. A.

    2016-09-01

    We study the phenomenology of the light and heavy Higgs boson production and decay in the context of a U{(1)}{{B}-{{L}}} extension of the standard model with an additional Z\\prime boson at future {e}+{e}- linear colliders with center-of-mass energies of \\sqrt{s}=500\\unicode{8211}3000\\text{ GeV} and integrated luminosities of { L }=500-2000{{fb}}-1. The study includes the processes {e}+{e}-\\to (Z,Z\\prime )\\to {Zh} and {e}+{e}-\\to (Z,Z\\prime )\\to {ZH}, considering both the resonant and non-resonant effects. We find that the total number of expected Zh and ZH events can reach 909, 124 and 97, 487, respectively, which is a very optimistic scenario and thus it would be possible to perform precision measurements for both Higgs bosons h and H, as well as for the Z\\prime boson in future high-energy and high-luminosity {e}+{e}- colliders experiments. Our study complements other studies on the B–L model and on the Higgs-strahlung processes {e}+{e}-\\to (Z,Z\\prime )\\to {Zh} and {e}+{e}-\\to (Z,Z\\prime )\\to {ZH}.

  3. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-05-07

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  4. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S.M.; Anderson, D.E.; Eylon, S.; Henestroza, E.; Vanecek, D.L.; Yu, S.S.; Westenskow, G.A.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1{percent} energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented. {copyright} {ital 1999 American Institute of Physics.}

  5. Relativistic-klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Anderson, D E; Eylon, S; Henestroza, E; Houck, T L; Lidia, M; Vanecek, D L; Westenskow, G A; Yu, S S

    1998-10-05

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2&A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  6. Future Reactor Neutrino Experiments (RRNOLD)1

    NASA Astrophysics Data System (ADS)

    Jaffe, David E.

    The prospects for future reactor neutrino experiments that would use tens of kilotons of liquid scintillator with a ∼ 50 km baseline are discussed. These experiments are generically dubbed "RRNOLD" for Radical Reactor Neutrino Oscillation Liquid scintillator Detector experiment. Such experiments are designed to resolve the neutrino mass hierarchy and make sub-percent measurements sin2θ12, Δm232 and Δm122 . RRNOLD would also be sensitive to neutrinos from other sources and have notable sensitivity to proton decay.

  7. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  8. Detector systems for future HEP experiments

    SciTech Connect

    Savoy-Navarro, A.

    1998-02-01

    Some thoughts are presented on the development of detector systems for future high energy physics experiments. These systems must be able to achieve simultaneous, reliable, high-efficiency identification and measurement of all objects that make up an {open_quotes}event.{close_quotes} This will require a world-wide collaborative effort, an active research and development program, and an upgrade of challenging running experiments. (AIP)

  9. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  10. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    SciTech Connect

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  11. Colliding pulse injection experiments in non-collinear geometryfor controlled laser plasma wakefield acceleration of electrons

    SciTech Connect

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans,Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler,D.; Cary, J.R.

    2007-06-25

    An optical injection scheme for a laser-plasma basedaccelerator which employs a non-collinear counter-propagating laser beamto push background electrons in the focusing and acceleration phase viaponderomotive beat with the trailing part of the wakefield driver pulseis discussed. Preliminary experiments were performed using a drive beamof a_0 = 2.6 and colliding beam of a_1 = 0.8 both focused on the middleof a 200 mu m slit jet backed with 20 bar, which provided ~; 260 mu mlong gas plume. The enhancement in the total charge by the collidingpulse was observed with sharp dependence on the delay time of thecolliding beam. Enhancement of the neutron yield was also measured, whichsuggests a generation of electrons above 10 MeV.

  12. Rotating black holes at future colliders. III. Determination of black hole evolution

    SciTech Connect

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-06-15

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes.

  13. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders.

    PubMed

    Cimino, R; Baglin, V; Schäfers, F

    2015-12-31

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable. PMID:26764998

  14. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    NASA Astrophysics Data System (ADS)

    Cimino, R.; Baglin, V.; Schäfers, F.

    2015-12-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  15. The CMS High Level Trigger System: Experience and Future Development

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Bowen, M.; Branson, J.; Bukowiec, S.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Flossdorf, A.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hartl, C.; Hegeman, J.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Polese, G.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schwick, C.; Shpakov, D.; Simon, S.; Spataru, A. C.; Sumorok, K.

    2012-12-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  16. Performance Results of Assembled Sensor Plane Prototypes for Special Forward Calorimeters at Future E+E Colliders

    NASA Astrophysics Data System (ADS)

    Novgorodova, O.; Aguilar, J. A.; Kulis, S.; Zawiejski, L.; Chrzaszcz, M.; Henschel, H.; Lohmann, W.; Schuwalow, S.; Afanaciev, K.; Ignatenko, A.; Kollowa, S.; Levy, I.; Idzik, M.

    2012-08-01

    The FCAL Collaboration prepared two sensor plane prototypes for the Luminosity Calorimeter (LumiCal) and Beam Calorimeter (BeamCal) for a future linear collider detector. For both several challenges appeared. The luminosity measurement has to be done with a precision of 10-3, requiring LumiCal to be a precision device. BeamCal has to operate in a harsh radiation environment and needs radiation hard sensors. Two sensor technologies are considered - Si sensors for LumiCal and GaAs:Cr for BeamCal. A full chain comprising a sensor, fan-out and front-end ASIC was successfully studied in the lab and in a 4.5 GeV electron beam at DESY. Performance parameters like Charge Collection Efficiency (CCE), the Signal to Noise ratio (SIN) were measured. In a second beam test the readout is completed by a multi-channel ADC chip and data concentrator.

  17. Recent results from the CDF (Collider Detector at Fermilab) experiment at the Tevatron proton-antiproton collider

    SciTech Connect

    Geer, S. . High Energy Physics Lab.)

    1989-09-01

    Recent results from the CDF experiment are described. The Standard Model gives a good description of jet production, and W/Z production and decay. There is no evidence yet for the top quark, for fourth generation quarks, or for deviations from the Standard Model ascribable to quark substructure, supersymmetric particles, or heavy additional W-like or Z-like bosons. Limits are given where applicable. A search for a light Higgs Boson is also described. 11 refs., 24 figs.

  18. Issues and experience with controlling beam loss at the Tevatron collider

    SciTech Connect

    Annala, Gerald; /Fermilab

    2007-07-01

    Controlling beam loss in the Tevatron collider is of great importance because of the delicate nature of the cryogenic magnet system and the collider detectors. Maximizing the physics potential requires optimized performance as well as protection of all equipment. The operating history of the Tevatron has significantly influenced the way losses are managed. The development of beam loss management in the Tevatron will be presented.

  19. Single production of excited neutrinos at future e{sup +}e{sup -}, ep and pp colliders

    SciTech Connect

    Cakir, O.; Cakir, I. Tuerk; Kirca, Z.

    2004-10-01

    We study the potential of the linear collider (LC) with {radical}(s)=0.5 TeV, linac-ring type ep collider (LCxLHC) with {radical}(s)=3.74 TeV, and the large hadron collider (LHC) with {radical}(s)=14 TeV to search for excited neutrinos through transition magnetic type couplings with gauge bosons. The excited neutrino signal and corresponding backgrounds are studied in detail to obtain accessible mass limits and couplings for these three types of colliders.

  20. Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics

    SciTech Connect

    Beltran, Maria; Hooper, Dan; Kolb, Edward W.; Krusberg, Zosia A. C.

    2009-08-15

    Despite compelling arguments that significant discoveries of physics beyond the standard model are likely to be made at the Large Hadron Collider, it remains possible that this machine will make no such discoveries, or will make no discoveries directly relevant to the dark matter problem. In this article, we study the ability of astrophysical experiments to deduce the nature of dark matter in such a scenario. In most dark matter studies, the relic abundance and detection prospects are evaluated within the context of some specific particle physics model or models (e.g., supersymmetry). Here, assuming a single weakly interacting massive particle constitutes the Universe's dark matter, we attempt to develop a model-independent approach toward the phenomenology of such particles in the absence of any discoveries at the Large Hadron Collider. In particular, we consider generic fermionic or scalar dark matter particles with a variety of interaction forms, and calculate the corresponding constraints from and sensitivity of direct and indirect detection experiments. The results may provide some guidance in disentangling information from future direct and indirect detection experiments.

  1. Future Directions for the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R.; Pegasus Team

    1999-11-01

    The PEGASUS Toroidal Experiment is uniquely poised to explore the tokamak/spheromak transition regime in the near future. To this end, a new low-inductance toroidal field coil set will allow transient exploration of the Ip/ITF > 3 regime and associated plasma relaxation phenomena. The addition of a transformer and inline inductor to the ohmic power supply will increase the pulse length to 0.03-0.05 s and will couple 5-10x the present power to the plasma. The High Harmonic Fast Wave (HHFW) antenna is complete and installation is planned for Fall 1999. The power supplies for the HHFW system have been tested up to 0.7 MW into dummy loads with future upgrades to 2 MW. Poloidal current injection via plasma guns is being tested for generating non-inductive target plasmas, thus reducing startup volt second consumption. If successful, a coaxial array of plasma guns will be used to initiate and drive the startup plasma, achieving non-inductive plasma currents 0.1-0.2 MA. Investigation of the viability of Electron Bernstein Wave heating in overdense ST plasmas is also planned, and may lead to an alternative method of non-inductive current ramp and sustainment.

  2. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-01

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  3. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    SciTech Connect

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-15

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH{sub 2} with 2.8% H{sub 2} served as the discharge medium. H{sub 2} was chosen in order to observe the broadening of the H{sub β} emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 10{sup 16} cm{sup −3}. Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  4. Future ultraviolet experiments, including FUSE/COLUMBUS

    NASA Technical Reports Server (NTRS)

    Boggess, A.

    1984-01-01

    Several new facilities for ultraviolet astronomy are under construction or study for launch within the coming decade. These include the Hubble Space Telescope to be launched in 1986 with instruments for spectroscopy, imaging, and photopolarimetry in the ultraviolet; the ASTRO Spacelab payload, also to be launched in 1986 with a similar range of instrumentation; STARLAB, a combined Canadian, Australian and U.S. mission concentrating primarily on imagery; and the Far Ultraviolet Spectroscopic Explorer (FUSE), which was renamed COLUMBUS. COLUMBUS is currently under study by NASA and ESA as a future joint mission for spectroscopic studies of astrophysical plasmas covering a temperature range from approximately 10 to the 3rd power to approximately 10 to the 7th power k. In order to achieve this objective, the optics should be optimized for wavelengths below 1200 Angstroms, with a total wavelength range from approximately 2000 to approximately 100 Angstroms. The operational concept will be based on experience with IUE, but changes in communications techniques since IUE was designed suggest some interesting new approaches to observing.

  5. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  6. Fast feedback for linear colliders

    SciTech Connect

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-05-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies.

  7. Future Trends for ``i-Learning'' Experiences

    NASA Astrophysics Data System (ADS)

    Elia, Gianluca; Poce, Antonella

    This chapter aims at shaping possible directions along with imagining the development and the evolution of the “i-Learning” paradigm. Specifically, three interdependent classes of future trends are depicted: technology-related trends and organization-related trends.

  8. K (transverse) jet algorithms in hadron colliders: The D0 experience

    SciTech Connect

    V. Daniel Elvira

    2002-12-05

    D0 has implemented and studied a k{sub {perpendicular}} jet algorithm for the first time in a hadron collider. The authors have submitted two physics results for publication: the subjet multiplicity in quark and gluon jets and the central inclusive jet cross section measurements. A third result, a measurement of thrust distributions in jet events, is underway. A combination of measurements using several types of algorithms and samples taken at different center-of-mass energies is desirable to understand and distinguish with higher accuracy between instrumentation and physics effects.

  9. An AGS experiment to test bunching for the proton driver of the muon collider.

    SciTech Connect

    Norem, J.

    1998-04-27

    The proton driver for the muon collider must produce short pulses of protons in order to facilitate muon cooling and operation with polarized beams. In order to test methods of producing these bunches they have operated the AGS near transition and studied procedures which involved moving the transition energy {gamma} to the beam energy. They were able to produce stable bunches with RMS widths of {sigma} = 2.2-2.7 ns for longitudinal bunch areas of {minus}1.5 V-s, in addition to making measurements of the lowest two orders of the momentum compaction factor.

  10. Exotic colliders

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    The motivation, feasibility and potential for two unconventional collider concepts - the Gamma-Gamma Collider and the Muon Collider - are described. The importance of the development of associated technologies such as high average power, high repetition rate lasers and ultrafast phase-space techniques are outlined.

  11. Developing future plant experiments for spaceflight

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1990-01-01

    Experiments are described which were designed to support the constructing and using clinostats for studies of microgravity effects and for measuring photosynthesis and respiration in plants in clinostat experiments. Particular attention is given to the development and testing a clinostat for rotating the Space Shuttle Mid-Deck Locker Plant Growth Unit (PGU), a sealed chamber for plan growth and gas exchange measurements on a clinostat, and a porous tube plant nutrient delivery system for the PGU. Design diagrams of these items are presented together with the results of tests.

  12. Future Challenges for Double Beta Decay Experiments

    NASA Astrophysics Data System (ADS)

    Elliott, Steven

    2015-10-01

    Neutrino oscillation experiments have shown that at least one neutrino has a mass greater than 50 meV. In the inverted hierarchy pattern of neutrino masses, one would expect an effective Majorana neutrino mass of 15 meV or greater. This fact has led to a strong resurgence of interest in neutrinoless double beta decay experiments that can reach this mass target. If this rare nuclear decay process exists it would demonstrate that Lepton number conservation is violated, that neutrinos are their own anti-particles and the decay rate would give an indication of the neutrino mass. This presentation will summarize the double beta decay experimental program with a focus on the technical challenges that will be faced.

  13. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  14. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  15. Muon collider progress

    SciTech Connect

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  16. Model-independent measurement of the e^{{+}}e- → HZ cross section at a future e^{{+}}e- linear collider using hadronic Z decays

    NASA Astrophysics Data System (ADS)

    Thomson, M. A.

    2016-02-01

    A future e+ e- collider, such as the ILC or CLIC, would allow the Higgs sector to be probed with a precision significantly beyond that achievable at the High-Luminosity LHC. A central part of the Higgs programme at an e+ e- collider is the model-independent determination of the absolute Higgs couplings to fermions and to gauge bosons. Here the measurement of the e+ e- → H Z Higgsstrahlung cross section, using the recoil mass technique, sets the absolute scale for all Higgs coupling measurements. Previous studies have considered \\upsigma (e+ e- → H Z) with Z → {ℓ} + {ℓ} - , where {ℓ} = e, {\\upmu } . In this paper it is shown for the first time that a near model-independent recoil mass technique can be extended to the hadronic decays of the Z boson. Because the branching ratio for Z → q {overline{q}} is approximately ten times greater than for Z → {ℓ} + {ℓ} - , this method is statistically more powerful than using the leptonic decays. For an integrated luminosity of 500 fb^{-1} at a centre-of-mass energy of √{s} =350 GeV at CLIC, \\upsigma (e+ e- → H Z) can be measured to {± }1.8 % using the hadronic recoil mass technique. A similar precision is found for the ILC operating at √{s} =350 GeV. The centre-of-mass dependence of this measurement technique is discussed, arguing for the initial operation of a future linear collider at just above the top-pair production threshold.

  17. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  18. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    SciTech Connect

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-05-12

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered.

  19. When Rubrics Collide: One Undergraduate Writing Tutor's Experience Negotiating Faculty and Institutional Assessments

    ERIC Educational Resources Information Center

    Martin, Kelli

    2013-01-01

    This article recounts one undergraduate writing tutor's experience helping a fellow peer navigate an institutional assessment rubric that seemed to contrast the assessment criteria provided by the student's instructor. This article presents a reflection on that experience, framed by Hutchings, Huber, and Ciccone's (2011) work on…

  20. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  1. Muon Colliders and Neutrino Factories *

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate O(1021) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  2. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    NASA Astrophysics Data System (ADS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  3. A search for B_S0 oscillations at the Tevatron collider experiment D0

    SciTech Connect

    Krop, Dan N.; /Indiana U.

    2007-04-01

    We present a search for B{sub S}{sup 0} oscillations using semileptonic B{sub S} {yields} D{sub s}{mu}X (D{sub S} {yields} K{sub S}{sup 0}K). The data were collected using the D0 detector from events produced in {radical}s = 1.96 TeV proton-antiproton collisions at the Fermilab Tevatron. The Tevatron is currently the only place in the world that produces B{sub S}{sup 0} mesons and will be until early 2008 when the Large Hadron Collider begins operating at CERN. One of the vital ingredients for the search for B s oscillations is the determination of the flavor of the B{sub S}{sup 0} candidate (B{sub S}{sup 0} or {bar B}{sub S}{sup 0} ) at the time of its production, called initial state flavor tagging. We develop an likelihood based initial state flavor tagger that uses objects on the side of the event opposite to the reconstructed B meson candidate. To improve the performance of this flavor tagger, we have made it multidimensional so that it takes correlations between discriminants into account. This tagging is then certified by applying it to sample of semimuonic B{sup (0,+)} decays and measuring the well-known oscillation frequency {delta}m{sub d}. We obtain {delta}m{sub d} = 0.486 {+-} 0.021 ps{sup -1}, consistent with the world average. The tagging performance is characterized by the effective efficiency, {epsilon}D{sup 2} = (1.90 {+-} 0.41)%. We then turn to the search for B{sub S}{sup 0} oscillations in the above-named channel. A special two-dimensional mass fitting procedure is developed to separate kinematic reflections from signal events. Using this mass fitting procedure in an unbinned likelihood framework, we obtain a 95% C.L. of {Delta}m{sub s} > 1.10 ps{sup -1} and a sensitivity of 1.92 ps-1. This result is combined with other analyzed B{sub S}{sup 0} decay channels at D0 to obtain a combined 95% C.L. of {Delta}m{sub s} > 14.9 ps-1 and a sensitivity of 16.5 ps-1. The corresponding log likelihood scan has a preferred value of {Delta}m{sub s} = 19 ps-1

  4. Three-dimensional triplet tracking for LHC and future high rate experiments

    NASA Astrophysics Data System (ADS)

    Schöning, A.

    2014-10-01

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. Full tracks can be reconstructed step-wise by connecting hit triplet combinations from different layers, thus heavily reducing the combinatorial problem and accelerating track linking. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space points. With the advent of relatively cheap and industrially available CMOS-sensors the construction of highly granular full scale pixel tracking detectors seems to be possible also for experiments at LHC or future high energy (hadron) colliders. In this paper tracking performance studies for full-scale pixel detectors, including their optimisation for 3D-triplet tracking, are presented. The results obtained for different types of tracker geometries and different reconstruction methods are compared. The potential of reducing the number of tracking layers and - along with that - the material budget using this new tracking concept is discussed. The possibility of using 3D-triplet tracking for triggering and fast online reconstruction is highlighted.

  5. When Worlds Collide: Identity, Culture and the Lived Experiences of Research When "Teaching-Led"

    ERIC Educational Resources Information Center

    Sharp, John G.; Hemmings, Brian; Kay, Russell; Callinan, Carol

    2015-01-01

    This article presents detailed findings from the qualitative or interpretive phase of a mixed-methods case study focusing on the professional identities and lived experiences of research among six lecturers working in different capacities across the field of education in a "teaching-led" higher education institution. Building upon the…

  6. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    SciTech Connect

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  7. The Pixel Detector of the ATLAS experiment for Run 2 of the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Oide, H.

    2014-12-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of the LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface in order to equip it with new service quarter panels, to repair modules, and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed at a radius of 3.3 cm in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance is expected to improve through the reduction of pixel size. As well, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system were adopted. An overview of the IBL project as well as the experience in its construction is presented, focusing on adopted technologies, module and staves production, qualification of assembly procedure, integration of staves around the beam pipe, and commissioning of the detector.

  8. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    SciTech Connect

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  9. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    SciTech Connect

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; McCabe, Christopher

    2015-01-09

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: mDM, Mmed , gDM and gq, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.

  10. Results from colliding magnetized plasma jet experiments executed at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.

    2015-11-01

    The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.

  11. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    DOE PAGESBeta

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; McCabe, Christopher

    2015-01-09

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: mDM, Mmed , gDM and gq, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establishmore » an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.« less

  12. Prospects for future experiments to search for nucleon decay

    SciTech Connect

    Ayres, D.S.; Heller, K.; LoSecco, J.; Mann, A.K.; Marciano, W.; Shrock, R.E.; Thornton, R.K.

    1982-01-01

    We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modes to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.

  13. Professional Experience: Learning from the Past to Build the Future

    ERIC Educational Resources Information Center

    Le Cornu, Rosie

    2016-01-01

    The title of the 2014 Australian Teacher Education Association (ATEA) conference was "Teacher Education, An Audit: Building a platform for future engagement." One of the conference themes was "Professional Experience: What works? Why?" I seized upon this theme and the title of the conference as it afforded me an opportunity to…

  14. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  15. Physics at hadron colliders: Experimental view

    SciTech Connect

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs.

  16. Neutrino alternatives for missing energy events at colliders

    SciTech Connect

    Chang, Spencer; Gouvea, Andre de

    2009-07-01

    If the dark matter consists of a weakly interacting massive particle, it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable weakly interacting massive particles is characterized by hard scattering events with large missing transverse energy. Here we emphasize and discuss the fact that the discovery of events inconsistent with the standard model with large missing transverse energy need not point to the existence of new, collider-stable particles. We explore an alternative explanation where the only sources of missing transverse energy are standard model neutrinos. We present concrete examples of such scenarios, focusing on supersymmetric models with R-parity violation. We also discuss means of differentiating neutrino missing energy signals from the production of new collider-stable particles. These include both model-dependent signals, such as particle tags and flavor counts, as well as model-independent tests that attempt to measure the missing particle mass.

  17. Search for the Production of Gluinos and Squarks with the CDF II Experiment at the Tevatron Collider

    SciTech Connect

    De Lorenzo, Gianluca

    2010-05-19

    sbottom decays exclusively as $\\tilde{b}$1 → b$\\tilde{x}$10. The expected signal for direct sbottom pair production is characterized by the presence of two jets of hadrons from the hadronization of the bottom quarks and E=T from the two LSPs in the final state. The events are selected with large ET and two energetic jets in the final state, and at least one jet is required to be associated with a b quark. The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% CL exclusion limits on production cross sections and sbottom and neutralino masses in the given MSSM scenario. Cross sections down to 0.1 pb are excluded for the sbottom mass range considered. Sbottom masses up to 230 GeV/c2 are excluded at 95% CL for neutralino masses below 70 GeV/c2. This analysis increases the previous CDF limit by more than 40 GeV/c2. The sensitivity of both the inclusive and the exclusive search is dominated by systematic effects and the results of the two analyses can be considered as conclusive for CDF Run II. With the new energy frontier of the newly commissioned Large Hadron Collider in Geneva, the experience from Tevatron will be of crucial importance in the developing of effective strategies to search for SUSY in the next era of particle physics experiments.

  18. Muon Collider

    SciTech Connect

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  19. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    SciTech Connect

    Bass, Matthew

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  20. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect

    Frances M. Marshall

    2005-04-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  1. The Effect of Wedge Angle on the Evolution of a Stagnation Layer in a Colliding Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Fallon, C.; Hayden, P.; Walsh, N.; Kennedy, E. T.; Costello, J. T.

    2014-11-01

    Colliding plasmas are steadily gaining significance in hohlraum studies, pulsed laser deposition and laser-induced breakdown spectroscopy for a number of reasons, not least the levels of control they o.er over the properties of the slab of plasma that accumulates at the collision front, i.e. the stagnation layer. We present here some results of a time and space resolved optical-spectroscopic study of colliding plasmas formed at the front surfaces of flat and inclined Cu slab targets as a function of the wedge angle between them for angles ranging from 100° to 180° (i.e., laterally colliding plasmas). Presented here are the kinetics of atomic/ionic spatial distributions throughout the stagnation layers, both of which have been found to vary significantly with wedge angle.

  2. Solar neutrino experiments: recent results and future prospects

    NASA Astrophysics Data System (ADS)

    Chen, M. C.

    2011-09-01

    Recent results from the SNO and Borexino solar neutrino experiments have pushed the observation of solar neutrinos to lower energies. Borexino's measurement of the rate of 7Be solar neutrinos demonstrates that the survival probability for solar neutrinos below 1 MeV is larger than for the 8B solar neutrinos, consistent with our expectation for neutrino propagation affected by matter. On the other hand, by looking at lower energy 8B solar neutrinos, SNO (and also Borexino) do not see the predicted rise in the survival probability and there is even a hint that the survival probability drops to a lower value. Future solar neutrino experiments, in particular the SNO+ experiment, will look at this question by making precision measurements of the survival probability of the pep solar neutrinos (1.44 MeV energy).

  3. Crab cavities: Past, present, and future of a challenging device

    SciTech Connect

    Wu, Q.

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).

  4. A prioritized set of physiological measurements for future spaceflight experiments

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A set of desired experimental measurements to be obtained in future spaceflights in four areas of physiological investigation are identified. The basis for identifying the measurements was the physiological systems analysis performed on Skylab data and related ground-based studies. An approach for prioritizing the measurement list is identified and discussed with the use of examples. A prioritized measurement list is presented for each of the following areas; cardiopulmonary, fluid-renal and electrolyte, hematology and immunology, and musculoskeletal. Also included is a list of interacting stresses and other factors present in spaceflight experiments whose effects may need to be quantified.

  5. Future Facilities Summary

    SciTech Connect

    Albert De Roeck, Rolf Ent

    2009-10-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium –or perhaps far– future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  6. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Nakamura, K.; Geddes, C.; Michel, P.; Schroeder, C.; Esarey, E.; Leemans, W.

    2006-10-01

    A method for controlled injection of electrons into a plasma wakefield relying on colliding laser pulses [1] has been proposed a decade ago to produce high quality relativistic electron beams with energy spread below 1% and normalized emittances < 1 micron from a laser wakefield accelerator (LWFA). The original idea uses three pulses in which one pulse excites the plasma wake and a trailing laser pulse collides with a counterpropagating one to form a beat pattern that boosts background electrons to catch the plasma wave. Another, two-beam off-axis injection method [2] with crossing angles varying from 180 to 90 degrees avoids having optical elements on the path of the electron beam and has been studied at the LOASIS facility of LBNL as a viable method for laser triggered injection. It allows low dark current operation with controllable final beam energy and low energy spread. Here, we report on progress of electron optical injection via the two-beam non-collinear colliding pulse scheme using multi-terawatt Ti:Sapphire laser beams (45 fs, 100s of mJ) focused onto a Hydrogen gas plume. Experimental results indicate that electron beam properties are affected by the second beam. *This work is supported by DoE under contract DE-AC02-05CH11231. [1] E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997) [2] G. Fubiani, Phys. Rev. E 70, 016402 (2004)

  7. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  8. CHARM 2010: Experiment summary and future charm facilities

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  9. Neglecting primordial non-Gaussianity threatens future cosmological experiment accuracy

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Carbone, Carmelita; Fedeli, Cosimo; Moscardini, Lauro

    2015-02-01

    Future galaxy redshift surveys aim at probing the clustering of the cosmic large-scale structure with unprecedented accuracy, thus complementing cosmic microwave background experiments in the quest to deliver the most precise and accurate picture ever of our Universe. Analyses of such measurements are usually performed within the context of the so-called vanilla Λ CDM model—the six-parameter phenomenological model which, for instance, emerges from best fits against the recent data obtained by the Planck satellite. Here, we show that such an approach is prone to subtle systematics when the Gaussianity of primordial fluctuations is concerned. In particular, we demonstrate that, if we neglect even a tiny amount of primordial non-Gaussianity—fully consistent with current limits—we shall introduce spurious biases in the reconstruction of cosmological parameters. This is a serious issue that must be properly accounted for in view of accurate (as well as precise) cosmology.

  10. Quantum-beamsstrahlung laser collider

    SciTech Connect

    Tajima, T.; Chattopadyay, S.; Xie, M.

    1997-11-01

    An e{sup +}e{sup {minus}} linear collider at energies beyond a TeV runs into a problem of severe beamsstrahlung, characterized by {Upsilon} on the order of unity (and beyond). In the regime of extremely high {Upsilon} the beamsstrahlung may be largely suppressed due to the quantum effect. In the design of an e{sup +}e{sup {minus}} collider there are two ways to satisfy the collider physics constraints. One is to decrease the number of particles per bunch (and thus to increase the repetition rate) and the other is to decrease the longitudinal bunch length. The former approach can limit {Upsilon}, while the latter boosts it. (It may be useful to reevaluate the future collider parameters in view of this.) The laser wakefield driver for a collider in comparison with the microwave driver naturally offers a very short bunch length, which is appropriate for the latter collider option. The authors show that this choice of collider design with a short bunch length and high {Upsilon} has advantages and provide sample design parameters at 5 TeV. Such sample design parameters challenge them in a number of fronts, such as the preservation of high quality bunches, efficient high repetition rate lasers, etc. The collision point physics simulated by the CAIN code shows a surprisingly well preserved luminosity spectrum.

  11. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

    2011-01-01

    This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

  12. Kaonic 3He and 4He measurements in the SIDDHARTA experiment at the DAΦNE collider

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Curceanu (Petrascu), C.; d'Uffizi, A.; Fiorini, C.; Frizzi, T.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Zmeskal, J.

    2012-12-01

    The SIDDHARTA collaboration measured kaonic 3He and 4He 3d → 2p X-rays with gaseous targets at the DAΦNE e+e- collider. The 2p-state strong-interaction shifts and widths were precisely determined by using 144 high-resolution silicon drift detectors. The shift of K-4He is in good agreement with theoretical calculations and consistent with the recent experimental result of KEK-PS E570. The shift of K-3He is also determined for the first time. The newly determined widths are in agreement with optical model calculations.

  13. Unlocking the secrets of the kaon-nucleon/nuclei interactions at low-energies: The SIDDHARTA(-2) and the AMADEUS experiments at the DAΦNE collider

    NASA Astrophysics Data System (ADS)

    Curceanu, C.; Bazzi, M.; Beer, G.; Berucci, C.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; d'Uffizi, A.; Fiorini, C.; Frizzi, T.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Ponta, T.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Zmeskal, J.

    2013-09-01

    The DAΦNE electron-positron collider at the Laboratori Nazionali di Frascati of INFN has made available a unique quality low-energy negative kaons “beam”, which is being used to unlock the secrets of the kaon-nucleon/nuclei interactions at low energies by the SIDDHARTA(-2) and the AMADEUS experiments. SIDDHARTA has already performed unprecedented precision measurements of kaonic atoms, and is being presently upgraded, as SIDDHARTA-2, to approach new frontiers. The AMADEUS experiment already started a data taking with a dedicated carbon target, plans to perform in the coming years precision measurements on kaon-nuclei interactions at low-energies, in particular to study the possible formation of kaonic nuclei and the Λ(1405). The two experiments are briefly presented in this paper.

  14. Recent Results and Future Plans from the A4 Experiment

    NASA Astrophysics Data System (ADS)

    Deconinck, Wouter; A4 Collaboration

    2011-04-01

    In the A4 experiment at the MAMI facility in Mainz, Germany, we use the parity-violating asymmetry present in the scattering of longitudinally polarized electrons from unpolarized protons or deuterons to measure the strangeness contribution to the electromagnetic form factors of the nucleon. The A4 experiment uses a PbF2 calorimeter that can be positioned in the forward or backward direction to measure the electrons scattered in a liquid hydrogen or deuterium target. Recent results for the proton at a momentum transfer Q2 = 0 . 23 GeV2 /c2 and the ongoing analysis of the data at Q2 = 0 . 61 GeV2 /c2 will be discussed. Future plans include the measurement of the strangeness form factor at Q2 = 0 . 1 GeV2 /c2 with the current detector to a twice higher precision than the currently available data, and a high precision measurement at an even lower Q2 with an upgraded polarimeter and detector.

  15. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  16. Stable massive particles at colliders

    SciTech Connect

    Fairbairn, M.; Kraan, A.C.; Milstead, D.A.; Sjostrand, T.; Skands, P.; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  17. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  18. B physics at hadron colliders

    SciTech Connect

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  19. International Workshop on Linear Colliders 2010

    ScienceCinema

    None

    2011-10-06

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  20. Effects of momentum conservation and flow on angular correlations observed in experiments at the BNL Relativistic Heavy Ion Collider

    SciTech Connect

    Pratt, Scott; Schlichting, Soeren; Gavin, Sean

    2011-08-15

    Correlations of azimuthal angles observed at the Relativistic Heavy Ion Collider have gained great attention due to the prospect of identifying fluctuations of parity-odd regions in the field sector of QCD. Whereas the observable of interest related to parity fluctuations involves subtracting opposite-sign from same-sign correlations, the STAR collaboration reported the same-sign and opposite-sign correlations separately. It is shown here how momentum conservation combined with collective elliptic flow contributes significantly to this class of correlations, although not to the difference between the opposite- and same-sign observables. The effects are modeled with a crude simulation of a pion gas. Although the simulation reproduces the scale of the correlation, the centrality dependence is found to be sufficiently different in character to suggest additional considerations beyond those present in the pion gas simulation presented here.

  1. Improved LHCD simulation model and implication for future experiments

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wallace, G.; Baek, S.; Bonoli, P.; Faust, I.; Parker, R.; Labombard, B.; White, A.; Wukitch, S.

    2015-11-01

    The simulation model for LHCD using the raytracing/FokkerPlanck (GENRAY/CQL3D) code has been improved. Including realistic 2D SOL profiles resolves the discrepancy previously observed at high density (ne > 1 ×1020m-3). Impact of nonlinear interaction in front of the launcher is investigated. It is shown that the distortion of launch n| | spectrum is rather small (up to 10% of injected power). These simulation results suggest that improvement of current drive observed on Alcator C-Mod is indeed caused by realizing preferable SOL plasma profiles. Implication of these results to future experiments will be discussed. In order to minimize edge parasitic losses, realizing high single pass absorption and reducing prompt losses in front of launcher are both crucial. The advantage of LH launch from low field side (LFS) and high field side (HFS) is compared in this regards. A compact LH launcher suitable to test LH wave launch from HFS on a small scale device is designed and its plasma coupling characteristic will be presented. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  2. Observational Definition of Future AGN Echo-Mapping Experiments

    NASA Technical Reports Server (NTRS)

    Collier, Stefan; Peterson, Bradley M.; Horne, Keith

    2001-01-01

    We describe numerical simulations we have begun in order to determine the observational requirements for future echo-apping experiments. We focus on two particular problems: (1) determination of the structure and kinematics of the broad-line region through emission- line reverberation mapping, and (2) detection of interband continuum lags that may be used as a probe of the continuum source, presumably a temperature-stratified accretion disk. Our preliminary results suggest the broad-line region can be reverberation-mapped to good precision with spectra of signal-to-noise ratio per pixel S/N approx. = 30, time resolution (Delta)t approx. = 0.1 day, and duration of about 60 days (which is a factor of three larger than the longest time scale in the input models); data that meet these requirements do not yet exist. We also find that interband continuum lags of approx. greater than 0.5 days can be detected at approx. greater than 95% confidence with at least daily observations for about 6 weeks, or rather more easily and definitively with shorter programs undertaken with satellite-based observatories. The results of these simulations show that significant steps forward in multiwavelength monitoring will almost certainly require dedicated facilities.

  3. Rotation and internal dynamics of Mars from future geodesy experiments

    NASA Astrophysics Data System (ADS)

    Dehant, V.; Folkner, W.; Chicarro, A.

    2009-09-01

    The LaRa (Lander Radioscience) experiment on the lander platform of the ExoMars mission (the Humboldt Payload) on the surface of Mars is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and the Earth over at least one third of a Martian year. We have set up a design for LaRa and realized a breadboard. Complementary to LaRa, in the future network-science Mars-NEXT mission, there will be radio links between other landers at the surface of Mars and the orbiter and a radio link between the orbiter and the Earth. The Mars-NEXT mission to Mars addresses different fields of investigation, of which an important part is related to planetary rotation and interior structure as for LaRa. With the objectives to determine interior properties of Mars as well as angular momentum changes induced by CO2 sublimation/condensation process, we have simulated these Doppler measurements and developed a strategy for reaching these goals.

  4. Normothermic donor heart perfusion: current clinical experience and the future.

    PubMed

    Messer, Simon; Ardehali, Abbas; Tsui, Steven

    2015-06-01

    Following the first successful heart transplant in 1967, more than 100,000 heart transplants have been carried out worldwide. These procedures have mostly relied on cold ischaemic preservation of the donor heart because this simple technique is inexpensive and relatively reliable. However, the well-known limitations of cold ischaemic preservation imposes significant logistical challenges to heart transplantation which put a ceiling on the immediate success on this life-saving therapy, and limits the number of donor hearts that can be safely transplanted annually. Although the theoretical advantages of normothermic donor heart perfusion have been recognised for over a century, the technology to transport donor hearts in this state has only been developed within the last decade. The Organ Care System (OCS) which is designed and manufactured by TransMedics Inc. is currently the only commercially available device with this capability. This article reviews the history of normothermic heart perfusion and the clinical experience with the TransMedics OCS to date. We have also attempted to speculate on the future possibilities of this innovative and exciting technology. PMID:24853906

  5. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    ERIC Educational Resources Information Center

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  6. Neutrino physics at a muon collider

    SciTech Connect

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed.

  7. Speaking from Experience--"The Supervisor of the (Near) Future"

    ERIC Educational Resources Information Center

    Terry, George R.

    1977-01-01

    Notes that for supervisors to do their jobs effectively, methods of supervision now as well as in the future will have to become attuned to new social and environmental conditions. After describing five characteristics which will differentiate future work groups from present work groups, supervisory ethics and effective motivation are discussed.…

  8. Update to Proposal for an Experiment to Measure Mixing, CP Violation and rare Decays in Charm and Beauty Particle Decays at the Fermilac Collider - BTeV

    SciTech Connect

    Butler, Joel; Stone, Sheldon

    2002-03-01

    We have been requested to submit an update of the BTe V plan to the Fermilab Physics Advisory Committee, where to save money the detector has only one arm and there is no new interaction region magnet construction planned. These are to come from a currently running collider experiment at the appropriate time. The "Physics Case" section is complete and updated with the section on the "New Physics" capabilites of BTe V greatly expanded. We show that precise measurments of rare flavor-changing neutral current processes and CP violation are and will be complementary to the Tevatron and LHC to unraveling the electroweak breaking puzzle. We include a revised summary of the physics sensitivities for the one-arm detector, which are not simply taking our proposal numbers and dividing by two, because of additional improvements. One important change resulted from an improved understanding of just how important the RJCH detector is to muon and electron identification, that we can indeed separate electrons from pions and muons from pions, especially at relatively large angles beyond the physical appature of the EM calorimeter or the Muon Detector. This is documented in the "Physics Sensitivities" section. The section on the detector includes the motivation for doing band c physics at a hadron collider, and shows the changes in the detector since the proposal based on our ongoing R&D program. We do not here include a detailed description of the entire detector. That is available in the May, 2000 proposal.2 We include a summary of our R&D activities for the entire experiment. Finally, we also include a fully updated cost estimate for the one-arm system.

  9. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  10. An Afterburner at the ILC: The Collider Viewpoint

    SciTech Connect

    Raubenheimer, Tor O.

    2004-12-07

    The concept of a high-gradient plasma wakefield accelerator is considered as an upgrade path for the International Linear Collider, a future linear collider. Basic parameters are presented based on those developed for the SLC 'Afterburner'. Basic layout considerations are described and the primary concerns related to the collider operation are discussed.

  11. An Afterburner at the ILC: The Collider Viewpoint

    SciTech Connect

    Raubenheimer, T

    2004-09-01

    The concept of a high-gradient plasma wakefield accelerator is considered as an upgrade path for the International Linear Collider, a future linear collider. Basic parameters are presented based on those developed for the SLC ''Afterburner.'' Basic layout considerations are described and the primary concerns related to the collider operation are discussed.

  12. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    NASA Astrophysics Data System (ADS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  13. MIGHTY MURINES: NEUTRINO PHYSICS AT VERY HIGH ENERGY MUON COLLIDERS

    SciTech Connect

    KING,B.J.

    2000-05-05

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10{sup 8} B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements {vert_bar}V{sub ub}{vert_bar} and {vert_bar}V{sub cb}{vert_bar} and, possibly, the first measurements of {vert_bar}V{sub td}{vert_bar} in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as

  14. Probing strongly-interacting electroweak dynamics through W{sup +}W{sup {minus}}/ZZ ratios at future e{sup +}e{sup {minus}} colliders

    SciTech Connect

    Barger, V.; Cheung, K.; Han, T.; Phillips, R.J.N.

    1995-01-01

    The authors point out that the ratio of W{sup +}W{sup {minus}} {yields} W{sup +}W{sup {minus}} and W{sup +}W{sup {minus}} {yields} ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the CM energy region {radical}s{sub ww} {approx_gt} 1 TeV where vector boson scattering may well become strong. They suggest ways in which this ratio can be extracted at a 1.5 TeV e{sup +}e{sup {minus}} linear collider, using W{sup {+-}}, Z {yields} jj hadronic decays and relying on dijet mass resolution to provide statistical discrimination between W{sup {+-}} and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass about 1 TeV and are complementary to studies via the direct channel e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}} for the vector and non-resonant cases. With an integrated luminosity of 200 fb{sup {minus}1}, the signals obtained are statistically significant. Comparison with a study of e{sup {minus}}e{sup {minus}} {yields} {nu}{nu}W{sup {minus}}W{sup {minus}} process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e{sup +}e{sup {minus}} linear collider and possible higher energy {mu}{sup +}{mu}{sup {minus}} colliders, are also presented.

  15. Top quark physics: Future measurements

    SciTech Connect

    Frey, R.; Vejcik, S.; Berger, E.L.

    1997-04-04

    The authors discuss the study of the top quark at future experiments and machines. Top`s large mass makes it a unique probe of physics at the natural electroweak scale. They emphasize measurements of the top quark`s mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  16. Top quark physics: Future Measurements

    SciTech Connect

    Frey, Raymond; Gerdes, David; Jaros, John; Vejcik, Steve; Berger, Edmond L.; Chivukula, R. Sekhar; Cuypers, Frank; Drell, Persis S.; Fero, Michael; Hadley, Nicholas; Han, Tao; Heinson, Ann P.; Knuteson, Bruce; Larios, Francisco; Miettinen, Hannu; Orr, Lynne H.; Peskin, Michael E.; Rizzo, Thomas; Sarid, Uri; Schmidt, Carl; Stelzer, Tim; Sullivan, Zack

    1996-12-31

    We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  17. Experimental Study of W Z Intermediate Bosons Associated Production with the CDF Experiment at the Tevatron Collider

    SciTech Connect

    Pozzobon, Nicola; /Pisa U.

    2007-09-01

    Studying WZ associated production at the Fermilab Tevatron Collider is of great importance for two main reasons. On the one hand, this process would be sensitive to anomalies in the triple gauge couplings such that any deviation from the value predicted by the Standard Model would be indicative of new physics. In addition, by choosing to focus on the final state where the Z boson decays to b{bar b} pairs, the event topology would be the same as expected for associated production of a W and a Standard Model light Higgs boson (m{sub H} {approx}< 135 GeV) which decays into b{bar b} pairs most of times. The process WH {yields} W b{bar b} has an expected {sigma} {center_dot} B about five times lower than WZ {yields} Wb{bar b} for m{sub H} {approx_equal} 120 GeV. Therefore, observing this process would be a benchmark for an even more difficult search aiming at discovering the light Higgs in the WH {yields} Wb{bar b} process. After so many years of Tevatron operation only a weak WZ signal was recently observed in the full leptonic decay channel, which suffers from much less competition from background. Searching for the Z in the b{bar b} decay channel in this process is clearly a very challenging endeavour. In the work described in this thesis, WZ production is searched for in a final state where the W decays leptonically to an electron-neutrino pair or a muon-neutrino pair, with associated production of a jet pair consistent with Z decays. A set of candidate events is obtained by applying appropriate cuts to the parameters of events collected by wide acceptance leptonic triggers. To improve the signal fraction of the selected events, an algorithm was used to tag b-flavored jets by means of their content of long lived b-hadrons and corrections were developed to the jet algorithm to improve the b-jet energy resolution for a better reconstruction of the Z mass. In order to sense the presence of a signal one needs to estimate the amount of background. The relative content of

  18. Results from hadron colliders

    SciTech Connect

    Pondrom, L.G. )

    1990-12-14

    The present status of hadron collider physics is reviewed. The total cross section for {bar p} + p has been measured at 1.8 TeV: {sigma}{sub tot} = 72.1 {plus minus} 3.3 mb. New data confirm the UA2 observation of W/Z {yields} {bar q}q. Precision measurements of M{sub W} by UA2 and CDF give an average value M{sub W} = 80.13 {plus minus} 0.30 GeV/c{sup 2}. When combined with measurements of M{sub Z} from LEP and SLC this number gives sin{sup 2}{theta}{sub W} = 0.227 {plus minus} 0.006, or m{sub top} = 130{sub {minus}60}{sup +40} GeV/c{sup 2} from the EWK radiative correction term {Delta}r. Evidence for hadron colliders as practical sources of b quarks has been strengthened, while searches for t quarks have pushed the mass above M{sub W}: m{sub top} > 89 GeV/c{sup 2} 95% cl (CDF Preliminary). Searches beyond the standard model based on the missing E{sub T} signature have not yet produced any positive results. Future prospects for the discovery of the top quark in the range m{sub top} < 200 GeV/c{sup 2} look promising. 80 refs., 35 figs., 7 tabs.

  19. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.; /Fermilab

    2009-07-01

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  20. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.

    2010-03-30

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  1. Robots in PSE G's nuclear plants - experience and future projections

    SciTech Connect

    Roman, H.T. )

    1992-01-01

    Since the cleanup at Three Mile Island Unit 2 utilities have used robots, specifically teleoperated devices, to save significant human exposure, reduce plant downtime, and improve plant operations. Early work has centered on plant inspection, surveillance, and monitoring tasks, with future efforts likely to be directed toward operation and maintenance tasks. Public Service Electric Gas (PSE G) Company has been a pioneer in the application of this technology, gaining worldwide recognition for its work. PSE G's leadership role in this technology and their nationally recognized Applied Robotics Technology (ART) Facility has served as a model for the national and international utility industries. This paper very briefly explores the growth in utility robotic applications; discusses in detail PSE G's use of robotic devices; examines the role of the ART Facility in PSE G's success; and projects the potential role of robots in the power plant of the future.

  2. Contribution of inverse gluon emission to QCD corrections to the Drell-Yan process for experiments at the large hadron collider (LHC)

    SciTech Connect

    Zykunov, V. A.

    2011-01-15

    The contributions of inverse gluon emission to the lowest order QCD corrections to the Drell-Yan process for future experiments at LHC are calculated. The use of fully differential cross sections makes it possible to apply readily the results of these calculations for experimental purposes (in correcting data from future experiments at LHC). It is shown analytically that the present results are independent of the quark mass. A numerical analysis of respective radiative effects is performed by means of the READY FORTRAN code with allowance for the experimental cuts used at the Compact Muon Solenoid (CMS) detector.

  3. Neutrino mass ordering in future neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jue

    2016-06-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double beta decays, we present a detailed quantitative analysis on the prospect of resolving neutrino mass ordering in the next generation 76Ge-type experiments.

  4. Chronovisor - A Dream of the Future or Real Experiments?

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2006-10-01

    This book, entirely dedicated to the legends concerning "chronovision", is divided into three main parts: a) discussion and criticism of the alleged experiments carried out by father Pellegrino Ernetti; b) in depth study of the "neutrino space theory" by father and physicist Luigi Borello; c) discussion and criticism concerning alleged experiments carried out in the field of chronovision in the past and in recent years, using several methods.

  5. Get Real: Effects of Repeated Simulation and Emotion on the Perceived Plausibility of Future Experiences

    ERIC Educational Resources Information Center

    Szpunar, Karl K.; Schacter, Daniel L.

    2013-01-01

    People frequently imagine specific interpersonal experiences that might occur in their futures. The present study used a novel experimental paradigm to examine the influence of repeated simulation of future interpersonal experiences on subjective assessments of plausibility for positive, negative, and neutral events. The results demonstrate that…

  6. CERN's Large Hadron Collider project

    NASA Astrophysics Data System (ADS)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  7. Designing a future Conditions Database based on LHC experience

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Formica, A.; Gallas, E. J.; Govi, G.; Lehman Miotto, G.; Pfeiffer, A.

    2015-12-01

    Starting from the experience collected by the ATLAS and CMS experiments in handling condition data during the first LHC run, we present a proposal for a new generation of condition databases, which could be implemented by 2020. We will present the identified relevant data flows for condition data and underline the common use cases that lead to a joint effort for the development of a new system. Condition data is needed in any scientific experiment. It includes any ancillary data associated with primary data taking such as detector configuration, state or calibration or the environment in which the detector is operating. Condition data typically reside outside the primary data store for various reasons (size, complexity or availability) and are best accessed at the point of processing or analysis (including for Monte Carlo simulations). The ability of any experiment to produce correct and timely results depends on the complete and efficient availability of needed conditions for each stage of data handling. Therefore, any experiment needs a condition data architecture which can not only store conditions, but deliver the data efficiently, on demand, to potentially diverse and geographically distributed set of clients. The architecture design should consider facilities to ease conditions management and the monitoring of its conditions entry, access and usage.

  8. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.

    2012-01-01

    The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).

  9. Status and future of the tritium plasma experiment

    SciTech Connect

    Causey, R.A.; Buchenauer, D.; Taylor, D.; Harbin, W.; Anderl, B.

    1995-10-01

    The Tritium Plasma Experiment (TPE) has been recently upgraded and relocated at the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory. The first tritium plasma in the upgraded system was achieved on May 11, 1995. TPE is a unique facility devoted to experiments on the migration and retention of tritium in fusion reactor materials. This facility is now capable of delivering 100 to 200 eV tritons at a level of 1 A/cm{sup 2} to a 5 mm diameter sample, similar to that expected for the divertor of the International Thermonuclear Experimental Reactor (ITER). An aggressive research plan has been established, and experiments are expected to begin in June of 1995. 4 figs.

  10. ALPs at colliders

    NASA Astrophysics Data System (ADS)

    Mimasu, Ken; Sanz, Verónica

    2015-06-01

    New pseudo-scalars, often called axion-like particles (ALPs), abound in model-building and are often associated with the breaking of a new symmetry. Traditional searches and indirect bounds are limited to light axions, typically in or below the KeV range for ALPs coupled to photons. We present collider bounds on ALPs from mono-γ, tri-γ and mono-jet searches in a model independent fashion, as well as the prospects for the LHC and future machines. We find that they are complementary to existing searches, as they are sensitive to heavier ALPs and have the capability to cover an otherwise inaccessible region of parameter space. We also show that, assuming certain model dependent correlations between the ALP coupling to photons and gluons as well as considering the validity of the effective description of ALP interactions, mono-jet searches are in fact more suitable and effective in indirectly constraining ALP scenarios.

  11. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  12. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing

    1993-04-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  13. Present Status and Future Perspectives of the NEXT Experiment

    DOE PAGESBeta

    Gómez Cadenas, J. J.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; et al

    2014-01-01

    NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the136Xe isotope. It is under construction in the Laboratorio Subterráneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.

  14. EURECA mission control experience and messages for the future

    NASA Technical Reports Server (NTRS)

    Huebner, H.; Ferri, P.; Wimmer, W.

    1994-01-01

    EURECA is a retrievable space platform which can perform multi-disciplinary scientific and technological experiments in a Low Earth Orbit for a typical mission duration of six to twelve months. It is deployed and retrieved by the NASA Space Shuttle and is designed to support up to five flights. The first mission started at the end of July 1992 and was successfully completed with the retrieval in June 1993. The operations concept and the ground segment for the first EURECA mission are briefly introduced. The experiences in the preparation and the conduction of the mission from the flight control team point of view are described.

  15. The dark penguin shines light at colliders

    NASA Astrophysics Data System (ADS)

    Primulando, Reinard; Salvioni, Ennio; Tsai, Yuhsin

    2015-07-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling — given by the Dark Penguin — in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the 8 and 14 TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the 100 TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold for on-shell production of the mediators. We consider both minimal models and models where an additional state beyond the DM is accessible. In the latter case, under the assumption of anarchic flavor structure in the dark sector, the LHC monophoton and diphoton searches will be able to set much stronger bounds than in the minimal scenario. A determination of the mass of the heavier dark fermion might be feasible using the M T2 variable. In addition, if the Dark Penguin flavor structure is almost aligned with that of the DM mass, a displaced signal from the decay of the heavier dark fermion into the DM and photon can be observed. This allows us to set constraints on the mixings and couplings of the model from an existing search for non-pointing photons.

  16. Professional Learning between Past Experience and Future Work

    ERIC Educational Resources Information Center

    Weber, Kirsten

    2010-01-01

    This paper deals with the professionalization of human service work. It analyses learning processes and identity development in the emerging profession of child care with concrete examples from empirical research, based on a life history approach. It discusses examples of careers mainly based on students' life experience, pointing out that their…

  17. Proton-antiproton collider physics

    SciTech Connect

    Shochet, M.J.

    1995-07-01

    The 9th {anti p}p Workshop was held in Tsukuba, Japan in October, 1993. A number of important issues remained after that meeting: Does QCD adequately describe the large cross section observed by CDF for {gamma} production below 30 GeV? Do the CDF and D0 b-production cross sections agree? Will the Tevatron live up to its billing as a world-class b-physics facility? How small will the uncertainty in the W mass be? Is there anything beyond the Minimal Standard Model? And finally, where is the top quark? Presentations at this workshop addressed all of these issues. Most of them are now resolved, but new questions have arisen. This summary focuses on the experimental results presented at the meeting by CDF and D0 physicists. Reviews of LEP and HERA results, future plans for hadron colliders and their experiments, as well as important theoretical presentations are summarized elsewhere in this volume. Section 1 reviews physics beyond the Minimal Standard Model. Issues in b and c physics are addressed in section 3. Section 4 focuses on the top quark. Electroweak physics is reviewed in section 5, followed by QCD studies in section 6. Conclusions are drawn in section 7.

  18. The Insertable B-Layer of the ATLAS experiment for the Run-2 at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guescini, Francesco

    2015-10-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new Service Quarter Panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar and 3D. Both of these are connected via bump-bonding to the new FE-I4 front-end read-out chip. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the IBL project as well as the experience in its construction is presented, focusing on adopted technologies, modules and staves production, qualification of assembly procedure, integration of staves around the beam pipe and commissioning of the detector.

  19. When hope and fear collide: Expectations and experiences of first-year doctoral students in the natural sciences

    NASA Astrophysics Data System (ADS)

    Robinson, C. Sean

    Although there is a significant body of research on the process of undergraduate education and retention, much less research exists as it relates to the doctoral experience, which is intended to be transformational in nature. At each stage of the process students are presented with a unique set of challenges and experiences that must be negotiated and mastered. However, we know very little about entering students' expectations, beliefs, goals, and identities, and how these may or may not change over time within a doctoral program. Utilizing a framework built upon socialization theory and cognitive-ecological theory, this dissertation examines the expectations that incoming doctoral students have about their programs as well as the actual experiences that these students have during their first year. Interviews were conducted with twelve students from the departments of Botany, Chemistry, and Physics prior to matriculation into their respective doctoral programs. These initial interviews provided information about students' expectations. Interviews were then conducted approximately every six to eight weeks to assess students' perceptions about their actual experiences throughout their first year. The findings of this study showed that new doctoral students tend to have uninformed and naive expectations about their programs. In addition, many of the specific policies or procedures necessary for navigation through a doctoral program were unknown to the students. While few differences existed in terms of students' expectations based on gender or discipline, there were significant differences in how international students described their expectations compared to American students. The two primary differences between American and international students revolved around the role of faculty members and the language barrier. It is clear that the first year of doctoral study is indeed a year of transition. The nature and clarity of the expectations associated with the role of

  20. Shuttle flight pressure instrumentation: Experience and lessons for the future

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Bradley, P. F.; Wolf, H.; Flanagan, P. F.; Weilmuenster, K. J.; Kern, F. A.

    1983-01-01

    Flight data obtained from the Space Transportation System orbiter entries are processed and analyzed to assess the accuracy and performance of the Development Flight Instrumentation (DFI) pressure measurement system. Selected pressure measurements are compared with available wind tunnel and computational data and are further used to perform air data analyses using the Shuttle Entry Air Data System (SEADS) computation technique. The results are compared to air data from other sources. These comparisons isolate and demonstrate the effects of the various limitations of the DFI pressure measurement system. The effects of these limitations on orbiter performance analyses are addressed, and instrumentation modifications are recommended to improve the accuracy of similar fight data systems in the future.

  1. Present and Future Capabilities of High Energy Density Experiments*

    NASA Astrophysics Data System (ADS)

    Matzen, M. Keith

    2002-04-01

    In recent years, experiments on high energy lasers and pulsed power facilities have successfully reached extreme conditions of temperature and pressure in the laboratory, allowing replication of conditions relevant to areas of high energy density (HED) plasma physics (for example, astrophysics, planetary interiors, stellar physics, and Inertial Confinement Fusion). Experiments in these areas are now routinely providing high quality data in the areas of high energy density hydrodynamics and implosions, radiation transport, and equation-of-state. Current facilities include pulsed-power accelerators, such as the Z facility at Sandia National Laboratories, and high-energy lasers, such as the 60-beam Omega laser at the Laboratory of Laser Energetics at Rochester, as well as other MA-class pulsed-power facilities and kJ-class lasers worldwide. These facilities routinely conduct experiments at radiation temperatures of 200 eV and pressures up to 40 MBar. New facilities, such as the National Ignition Facility (NIF) and the refurbished Z facility, will extend the experimental regimes to higher temperatures and densities. The National Petawatt laser initiative is examining the physics regimes that could be explored by coupling energetic short-pulse lasers (multi-kJ energies at ps pulse widths) to experiments on these large HED facilities. We will review capabilities of the existing HED facilities, highlight examples of recent experimental results in HED plasma physics, discuss new regimes that might be achievable on next-generation facilities (e.g. NIF and refurbished Z), and explore the potential applications resulting from coupling multi-PW laser pulses with HED plasmas produced on these facilities. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  2. Past, present and future: experiences and lessons from telehealth projects

    PubMed Central

    Elder, Laurent; Clarke, Michael

    2007-01-01

    Information communications technology has been a focus of the work of the International Development Research Centre (IDRC) since 1970, when this organization was formed in Canada with the goal of helping to improve the health of people in developing countries (http://www.idrc.ca). In this article, we focus on the field of telemedicine in developing countries and its role in improving health, using examples from the experience of the IDRC. PMID:21673948

  3. Recent Astrophysics Results from ORELA and Possible Future Experiments at ORELA and SNS

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.

    2002-12-01

    I present some recent results from experiments at the Oak Ridge Electron Linear Accelerator (ORELA) and discuss their impact in nuclear astrophysics. I then describe some possible future nuclear astrophysics experiments at ORELA and at the Spallation Neutron Source (SNS) being built in Oak Ridge. The SNS and ORELA are complementary, world-class facilities and both will be needed for important future experiments in nuclear astrophysics.

  4. Renovation of HEPnet-J for near-future experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh Y.; Yuasa, Fukuko; Nakamura, Tomoaki; Hara, Takanori

    2015-12-01

    Originally HEPnet-J had only one instance that is connected to Internet as the network connectivity by campus network of institutes in Japan was very limited, so the main purpose of HEPnet-J was providing enough connectivity for interactive use on domestic and international links funded by KEK. In last 10 years, the domestic and international connectivity provided by NRENs have been dramatically improved and they are enough for manual transfer of typical skimmed data files. Therefore, HEPnet-J has many closed networks that connect domestic sites related to specific projects, in order to access them on computer farms in private networks in their home institutes. The rapid growth of data volume makes it unable to apply same model to new generation experiments. As the tier structure for LHC computing sites has proved that the distributed computing model over collaboration sites is really applicable to the huge scale experiment, the external connectivity for international collaboration sites should be faster and secure. For example, the Belle II experiment in KEK will have many repositories in U.S. and EU. The expected throughput from KEK to U.S. is about 20 Gbps, thus it need the bypass of slow security devices like a firewall. Now bypass lines for Belle II are prepared and under tasting. This article reports the brief history of HEPnet- J and recent changes for project-specific networks.

  5. Photon collider Higgs factories

    NASA Astrophysics Data System (ADS)

    Telnov, V. I.

    2014-09-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  6. THERMAL SHOCK INDUCED BY A 24 GEV PROTON BEAM IN THE TEST WINDOWS OF THE MUON COLLIDER EXPERIMENT E951 - TEST RESULTS AND THEORETICAL PREDICTIONS.

    SciTech Connect

    SIMOS,N.; KIRK,H.; FINFROCK,C.; PRIGL,R.; BROWN,K.; KAHN,S.; LUDEWIG,H.; MCDONALDK.; CATES,M.; TSAI,J.; BESHEARS,D.; RIEMER,B.

    2001-11-11

    The need for intense muon beams for muon colliders and neutrino factories has lead to a concept of a high performance target station in which a 1-4 MW proton beam of 6-24 GeV impinges on a target inside a high field solenoid channel. While novel technical issues exist regarding the survivability of the target itself, the need to pass the tightly focused proton beam through beam windows poses additional concerns. In this paper, issues associated with the interaction of a proton beam with window structures designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 x 10{sup 12} per pulse and a pulse length of approximately 100 ns is expected to be tightly focused (to 0.5 mm rms one sigma radius) on an experimental target. Such beam will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed assessment of the thermal/shock response of beam windows is attempted with a goal of identifying the best window material candidate. Further, experimental strain results and comparison with the predicted values are presented and discussed.

  7. Recent experiences and future expectations in data storage technology

    SciTech Connect

    Pfister, J. )

    1990-08-01

    For more than 10 years the conventional media for High Energy Physics has been 9 track magnetic tape in various densities. More recently, especially in Europe, the IBM 3480 technology has been adopted while in the United States, especially at Fermilab, 8 mm is being used by the largest experiments as a primary recording media and where possible they are using 8 mm for the production, analysis and distribution of data summary tapes. VHS and Digital Audio tape have recurrently appeared but seem to serve primarily as a back-up storage media.

  8. GMO quantification: valuable experience and insights for the future.

    PubMed

    Milavec, Mojca; Dobnik, David; Yang, Litao; Zhang, Dabing; Gruden, Kristina; Zel, Jana

    2014-10-01

    Cultivation and marketing of genetically modified organisms (GMOs) have been unevenly adopted worldwide. To facilitate international trade and to provide information to consumers, labelling requirements have been set up in many countries. Quantitative real-time polymerase chain reaction (qPCR) is currently the method of choice for detection, identification and quantification of GMOs. This has been critically assessed and the requirements for the method performance have been set. Nevertheless, there are challenges that should still be highlighted, such as measuring the quantity and quality of DNA, and determining the qPCR efficiency, possible sequence mismatches, characteristics of taxon-specific genes and appropriate units of measurement, as these remain potential sources of measurement uncertainty. To overcome these problems and to cope with the continuous increase in the number and variety of GMOs, new approaches are needed. Statistical strategies of quantification have already been proposed and expanded with the development of digital PCR. The first attempts have been made to use new generation sequencing also for quantitative purposes, although accurate quantification of the contents of GMOs using this technology is still a challenge for the future, and especially for mixed samples. New approaches are needed also for the quantification of stacks, and for potential quantification of organisms produced by new plant breeding techniques. PMID:25182968

  9. Contracting for nurse education: nurse leader experiences and future visions.

    PubMed

    Moule, P

    1999-02-01

    The integration of nurse education into higher education establishments following Working for Patients, Working Paper 10 (DOH 1989a) has seen changes to the funding and delivery of nurse education. The introduction of contracting for education initiated a business culture which subsumed previous relationships, affecting collaborative partnerships and shared understanding. Discourse between the providers and purchasers of nurse education is vital to achieve proactive curriculum planning, which supports the development of nursing practitioners who are fit for award and fit for purpose. Research employed philosophical hermeneutics to guide the interviewing of seven nurse leaders within one region. Data analysis occurred within a hermeneutic circle and was refined using NUDIST. Two key themes were seen as impacting on the development of an effective educational strategy. Firstly, the development of collaborative working was thought to have been impeded by communication difficulties between the Trusts and higher education provider. Secondly, there was concern that curriculum developments would support the future evolution of nursing, acknowledging the professional issues impacting on nursing roles. The research findings suggest purchasers and providers of nurse education must move towards achieving mutual understanding and collaborate in developing a curriculum which will prepare nurses for practice and for award. PMID:10335200

  10. ALMA test interferometer control system: past experiences and future developments

    NASA Astrophysics Data System (ADS)

    Marson, Ralph G.; Pokorny, Martin; Kern, Jeff; Stauffer, Fritz; Perrigouard, Alain; Gustafsson, Birger; Ramey, Ken

    2004-09-01

    The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an interferometer. The ALMA Test Interferometer Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to provide sufficient functionality for the evaluation of the prototype antennas. The main antenna evaluation tasks include surface measurements via holography and pointing accuracy, measured at both optical and millimeter wavelengths. In this paper we will present the design of TICS, which is a distributed computing environment. In the test facility there are four computers: three real-time computers running VxWorks (one on each antenna and a central one) and a master computer running Linux. These computers communicate via Ethernet, and each of the real-time computers is connected to the hardware devices via an extension of the CAN bus. We will also discuss our experience with this system and outline changes we are making in light of our experiences.

  11. PHENIX CDR update: An experiment to be performed at the Brookhaven National Laboratory relativistic heavy ion collider. Revision

    SciTech Connect

    Not Available

    1994-11-01

    The PHENIX Conceptual Design Report Update (CDR Update) is intended for use together with the Conceptual Design Report (CDR). The CDR Update is a companion document to the CDR, and it describes the collaboration`s progress since the CDR was submitted in January 1993. Therefore, this document concentrates on changes, refinements, and decisions that have been made over the past year. These documents together define the baseline PHENIX detector that the collaboration intends to build for operation at RHIC startup. In this chapter the current status of the detector and its motivation are briefly described. In Chapters 2 and 3 the detector and the physics performance are more fully developed. In Chapters 4 through 13 the details of the present design status, the technology choices, and the construction costs and schedules are presented. The physics goals of PHENIX collaboration have remained exactly as they were described in the CDR. Primary among these is the detection of a new phase of matter, the quark-gluon plasma (QGP), and the measurement of its properties. The PHENIX experiment will measure many of the best potential QGP signatures to see if any or all of these physics variables show anomalies simultaneously due to the formation of the QGP.

  12. Electron-ion collider eRHIC

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.

    In this article, we describe our planned future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference [1]. We plan to add a polarized electron beam with energy tunable within the 5-30-GeV range to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a maximum energy of 250 GeV, to heavy, fully striped ions with energies up to 100 GeV/u.

  13. Marine TAIGER OBS Experiment and its future prospects

    NASA Astrophysics Data System (ADS)

    Lee, C.; Wang, T.; van Avendonk, H. J.; Huang, Y.; Lin, J.; Lallemand, S.; Klingelhoeher, F.

    2009-12-01

    A total of 260 OBSs were deployed in the marine TAIGER program from late March to late July, 2009. These data were collected by US Columbia University’s R/V Langseth as the big-power seismic shooting ship and 10 Taiwanese ships to take terms for supporting of the OBS experiment in the entire seismic cruises. The OBS were provided by the National Taiwan Ocean University, French IFREMER and Scripps Institution of Oceanography. During these 4 months, we have worked around Taiwan in the South China Sea, Luzon Arc, East Taiwan and West Philippine Basin. All efforts are put together by many earth scientists from Taiwan, USA and France under one major purpose, to get a better understanding of the Taiwan mountain building processes. As a result, these new data will provide as a base to combine with many other disciplinal studies, such as the multi-channel seismic, land recorded seismometer data, gravity and magnetic as well as the natural earthquake data recorded by the OBS during the experiment time. Four very preliminary OBS data analyses will be presented in the same T25 postal section. Beside the research, we also carried out our teaching to our students on board a Taiwanese student training ship, Yu-Yin No.2. Therefore, an educational post is also to be shown in the ED01 section. Even the data analyses are in an early stage, but we are exciting about it. For example, 3 OBS profiles (T4, T5 and T6) in the East Taiwan were shot twice in normal and reversed directions with different shot intervals (30 and 60 seconds per shot). This exercise will be important to interpret the complicate collision/subduction structures in the East Taiwan. Two OBS profiles (T1 and T2) in the Luzon Arc were shot 5 times in the separated R/V Langseth cruises (due to the typhoon effects), again with different shot intervals (20 and 60 seconds per shot). These will provide us more opportunities to examine the collisional features in between Taiwan and Luzon. One OBS long profile (550 km) was

  14. Exploring Astrobiology: Future and In-Service Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Cola, J.; Williams, L. D.; Snell, T.; Gaucher, E.; Harris, B.; Usselman, M. C.; Millman, R. S.

    2009-12-01

    The Georgia Tech Center for Ribosome Adaptation and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational Astrobiology program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to provide educators with the materials, exposure, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. A one-week, non-residential summer enrichment program for high school students was conducted and tested by two high school educators, an undergraduate student, and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired in-service teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with an undergraduate student interested in becoming a teacher through the Tech to Teaching program. The GIFT and Tech to Teaching fellows investigated extremophiles which have adapted to life under extreme environmental conditions. As a result, extremophiles became the focus of a week-long, “Life on the Edge: Astrobiology” curriculum aligned with the Georgia Performance Standards in Biology. Twenty-five high school students explored the adaptation and survival rates for various types of extremophiles exposed to UV radiation and desiccation; students were also introduced to hands-on activities and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact on everyone invested and involved in the Astrobiology program including the GIFT and Tech to Teaching fellows, high school students, and faculty are discussed.

  15. A Future Polarized Drell-Yan Experiment at Fermilab

    SciTech Connect

    Kleinjan, David William

    2015-06-04

    The topic is treated in a series of slides under the following headings: Motivation (Nucleon Spin Puzzle, Quark Orbital Momentum and the Sivers Function, Accessing Sivers via Polarized Drell-Yan (p+p↑ → μ+μ-)); Transition of Seaquest (E906 → E1039) (Building a Polarized proton Target, Status of Polarized Target); and Outlook. The nucleon spin puzzle: when the quark and gluon contributions to the proton spin are evaluated, nearly 50% of the measured spin is missing; lattice QCD calculations indicate as much as 50% may come from quark orbital angular momentum. Sea quarks should carry orbital angular momentum (O.A.M.). The E1039 Polarized Target Drell-Yan Experiment provides opportunity to study possible Sea Quark O.A.M. Data taking is expected to begin in the spring of 2017.

  16. Studies of future readout links for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Bouffet, Olivier; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Hatton, Derek; Holzner, Andre; Hwong, Yi Ling; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty

    2011-12-01

    The Compact Muon Solenoid (CMS) experiment has developed an electrical implementation of the S-LINK64 extension (Simple Link Interface 64 bit) operating at 400 MB/s in order to read out the detector. This paper studies a possible replacement of the existing S-LINK64 implementation by an optical link, based on 10 Gigabit Ethernet in order to fulfil larger throughput, replace aging hardware and simplify an architecture. A prototype transmitter unit has been developed based on the FPGA Altera PCI Express Development Kit with a custom firmware. A standard PC has been acted as receiving unit. The data transfer has been implemented on a stack of protocols: RDP over IP over Ethernet. This allows receiving the data by standard hardware components like PCs or network switches and NICs. The first test proved that basic exchange of the packets between transmitter and receiving unit works. The paper summarizes the status of these studies.

  17. Refractive telescope systems for future cosmic microwave background polarimetry experiments

    NASA Astrophysics Data System (ADS)

    Hargrave, Peter; Savini, Giorgio; Gradziel, Marcin; Trappe, Neil; Tynan, Niall; Candotti, Massimo; Challinor, Anthony; Sørenson, Stig; Ade, Peter; Sudiwala, Rashmi; van der Vorst, Maarten

    2014-07-01

    This paper presents the key findings of an ESA-funded programme of work to investigate refractive systems and their application to precision polarimetry experiments. We briefly summarize the derivation of requirements on the optical system for CMB polarimetry, and the design of a refractive telescope system which meets these stringent requirements. An extensive programme of experimental work was undertaken in order to better understand the optical, thermal and mechanical characteristics of the lens material, and of lenses made from this material. A repeatable and controllable antireflection coating procedure was developed and validated, and used to coat lenses used in this study. Optical measurements before and after coating have been used to validate a new module for an industry-standard antenna modelling software package.

  18. Get real: Effects of repeated simulation and emotion on the perceived plausibility of future experiences

    PubMed Central

    Szpunar, Karl K.; Schacter, Daniel L.

    2012-01-01

    People frequently imagine specific interpersonal experiences that might occur in their futures. The present study used a novel experimental paradigm to examine the influence of repeated simulation of future interpersonal experiences on subjective assessments of plausibility for positive, negative, and neutral events. The results demonstrate that repeated simulation increases estimates of plausibility for emotional, but not neutral, future interpersonal experiences. Additional correlational analyses reveal that increases in plausibility for emotional events are associated with concurrent increases in ease of simulation, event detail, and arousal. Implications for daily life and affective disorders such as depression and anxiety are noted. PMID:22686637

  19. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  20. Accelerator considerations of large circular colliders

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2016-07-01

    As we consider the tremendous physics reaches of the big future circular electron-positron and proton-proton colliders, it might be advisable to keep a close track of what accelerator challenges they face. Good progresses are being made, and yet it is reported here that substantial investments in funding, manpower, as well as a long sustained time to the R&D efforts will be required in preparation to realize these dream colliders.

  1. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  2. Physics goals of the next linear collider

    SciTech Connect

    Kuhlman, S.; Marciano, W.J.; Gunion, J. F.; NLC ZDR Design Group; NLC Physics Working Group

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs.

  3. Solid fuel's future today: pellet and chip experiments

    SciTech Connect

    Flagler, G.

    1982-01-01

    The various projects involving the use of wood pellets and chips as a heating fuel in Charlottetown, Prince Edward Island are described in detail. Carried out by the Institute of Man and Resources (founded in 1977) the goal is to promote renewable energy activities of special interest to Prince Edward Island residents. Four projects involving pellets and chips are described. These are: (1) the wood-fired Residential Heating Demonstration Program designed to research sophisticated central systems and alleviate pressure on the island's hardwood forests; (2) the Wood Fuel Survey Project in which 300 residents were used to gauge the impact of wood heating; (3) evaluation and testing of pellet wood stokers (using currently available coal-fired units); and (4) a demonstration program to determine costs and practicality of fuel supply systems for chips and pellets. The results of these programs are discussed and specific experiences are discussed in detail. Problems (e.g. pellet breakage and dust) are considered. It is concluded that (overall) results are satisfactory; wood chips and pellets are a convenient fuel; appliances function satisfactorily; and homeowners involved in the program are enthusiastic. (MJJ)

  4. The CEBAF Energy Recovery Experiment: Update and Future Plans

    SciTech Connect

    Arne Freyberger; Kevin Beard; S. Bogacz; Yu-Chiu Chao; Swapan Chattopadhyay; David Douglas; Andrew Hutton; Nikolitsa Merminga; Christopher Tennant; Michael Tiefenback

    2004-07-01

    A successful GeV scale energy recovery demonstration with a high ratio of peak-to-injection energies (50:1) was carried out on the CEBAF (Continuous Electron Beam Accelerator Facility) recirculating superconducting linear accelerator in the spring of 2003. To gain a quantitative understanding of the beam behavior through the machine, data was taken to characterize the 6D phase space during the CEBAF-ER (CEBAF with Energy Recovery) experimental run. The transverse emittance of the accelerating and energy recovered beams was measured in several locations to ascertain the beam quality preservation during energy recovery. Measurements also included the RF system's response to the energy recovery process and transverse beam profile of the energy recovered beam. One of the salient conclusions from the experiment is that the energy recovery process does not contribute significantly to the emittance degradation. The current status of the data analysis will be presented as well as plans for a GeV scale energy recovery experimental run with current doubling.

  5. The role of personal goals in autonoetic experience when imagining future events.

    PubMed

    Lehner, Edith; D'Argembeau, Arnaud

    2016-05-01

    Although autonoetic experience-a sense of mental time travel-has been considered as the hallmark of episodic future thinking, what determines this subjective feeling is not yet fully understood. Here, we investigated the role of autobiographical knowledge by manipulating the relevance of imagined events for personal goals. Participants were asked to imagine three types of events (goal-related future events, experimenter-provided future events, and atemporal events) and to assess various characteristics of their mental representations. The results showed that the three types of events were represented with similar levels of detail and vividness. Importantly, however, goal-related future events were associated with a stronger autonoetic experience. Furthermore, autonoetic experience was significantly predicted by the importance of imagined events for personal goals. These findings suggest that the subjective feeling of pre-experiencing one's personal future in part depends on the extent to which imagined events can be placed in an autobiographical context. PMID:27089529

  6. ``Recent experiences and future expectations in data storage technology''

    NASA Astrophysics Data System (ADS)

    Pfister, Jack

    1990-08-01

    For more than 10 years the conventional media for High Energy Physics has been 9 track magnetic tape in various densities. More recently, especially in Europe, the IBM 3480 technology has been adopted while in the United States, especially at Fermilab, 8 mm is being used by the largest experiments as a primary recording media and where possible they are using 8 mm for the production, analysis and distribution of data summary tapes. VHS and Digital Audio tape have recurrently appeared but seem to serve primarily as a back-up storage media. The reasons for what appear to be a radical departure are many. Economics (media and controllers are inexpensive), form factor (two gigabytes per shirt pocket), and convenience (fewer mounts/dismounts per minute) are dominant among the reasons. The traditional data media suppliers seem to have been content to evolve the traditional media at their own pace with only modest enhancements primarily in ``value engineering'' of extant products. Meanwhile, start-up companies providing small system and workstations sought other media both to reduce the price of their offerings and respond to the real need of lower cost back-up for lower cost systems. This happening in a market context where traditional computer systems vendors were leaving the tape market altogether or shifting to ``3480'' technology which has certainly created a climate for reconsideration and change. The newest data storage products, in most cases, are not coming from the technologies developed by the computing industry but by the audio and video industry. Just where these flopticals, opticals, 19 mm tape and the new underlying technologies, such as, ``digital paper'' may fit in the HEP computing requirement picture will be reviewed. What these technologies do for and to HEP will be discussed along with some suggestions for a methodology for tracking and evaluating extant and emerging technologies.

  7. Recent experiences and future expectations in data storage technology

    SciTech Connect

    Pfister, J.

    1990-04-01

    For more than 10 years the conventional media for High Energy Physics has been 9 track magnetic tape in various densities. More recently, especially in Europe, the IBM 3480 technology has been adopted while in the United States, especially at Fermilab, 8mm is being used by the largest experiments as a primary recording media and where possible they are using 8mm for the production, analysis and distribution of data summary tapes. VHS and Digital Audio tape have recurrently appeared but seem to serve primarily as back-up storage media. The reasons for what appear to be a radical departure are many. Economics, form factor, and convenience are dominant among the reasons. The traditional data media suppliers seem to have been content to evolve the traditional media at their own pace with only modest enhancements primarily in value engineering'' of extant products. Meanwhile, start-up companies providing small system and workstations sought other media both to reduce the price of their offerings and respond to the real need of lower cost back-up for lower cost systems. This happening in a market context where traditional computer systems vendors were leaving the tape market altogether or shifting to 3480'' technology which has certainly created a climate for reconsideration and change. The newest data storage products, in most cases, are not coming from the technologies developed by the computing industry but by the audio and video industry. Just where these flopticals, opticals, 19 mm tape and the new underlying technologies, such as, digital paper'' may fit in the HEP computing requirement picture will be reviewed. What these technologies do for and to HEP will be discussed along with some suggestions for a methodology for tracking and evaluating extant and emerging technologies.

  8. Supervised Occupational Experience Programs: History, Philosophy, Current Status, and Future Implications.

    ERIC Educational Resources Information Center

    Boone, Harry N.; And Others

    1987-01-01

    The authors examine the evolution of supervised occupational experience programs in agricultural education, provide an overview of their current status, and suggest the direction they will take in the future. Information was collected from a review of the literature. (CH)

  9. Mexican American Seventh Graders' Future Work and Family Plans: Associations with Cultural Experiences and Adjustment

    ERIC Educational Resources Information Center

    Cansler, Emily; Updegraff, Kimberly A.; Simpkins, Sandra D.

    2012-01-01

    We describe Mexican American seventh graders' expectations for future work and family roles and investigate links between patterns of future expectations and adolescents' cultural experiences and adjustment. Adolescents participated in home interviews and a series of seven nightly phone calls. Five unique patterns of adolescents' future…

  10. State of hadron collider physics

    SciTech Connect

    Grannis, P.D. |

    1993-12-01

    The 9th Topical Workshop on Proton-Antiproton Collider Physics in Tsukuba Japan demonstrated clearly the enormous breadth of physics accessible in hadron cowders. Although no significant chinks were reported in the armor of the Standard Model, new results presented in this meeting have expanded our knowledge of the electroweak and strong interactions and have extended the searches for non-standard phenomena significantly. Much of the new data reported came from the CDF and D0 experiments at the Fermilab cowder. Superb operation of the Tevatron during the 1992-1993 Run and significant advances on the detector fronts -- in particular, the emergence of the new D0 detector as a productive physics instrument in its first outing and the addition of the CDF silicon vertex detector -- enabled much of this advance. It is noteworthy however that physics from the CERN collider experiments UA1 and UA4 continued to make a large impact at this meeting. In addition, very interesting summary talks were given on new results from HERA, cosmic ray experiments, on super-hadron collider physics, and on e{sup +}e{sup {minus}} experiments at LEP and TRISTAN. These summaries are reported in elsewhere in this volume.

  11. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  12. Stuck in the here and now: Construction of fictitious and future experiences following ventromedial prefrontal damage.

    PubMed

    Bertossi, Elena; Aleo, Fabio; Braghittoni, Davide; Ciaramelli, Elisa

    2016-01-29

    There is increasing interest in uncovering the cognitive and neural bases of episodic future thinking (EFT), the ability to imagine events relevant to one's own future. Recent functional neuroimaging evidence shows that the ventromedial prefrontal cortex (vmPFC) is engaged during EFT. However, vmPFC is also activated during imagination of fictitious, atemporal experiences. Therefore, its role in EFT is currently unclear. To test (1) whether vmPFC is critical for EFT, and (2) whether it supports EFT specifically, or, rather, construction of any complex experience, patients with focal lesions to vmPFC (vmPFC patients), control patients with lesions not involving vmPFC, and healthy controls were asked to imagine personal future experiences and fictitious experiences. Compared to the control groups, vmPFC patients were impaired at imagining both future and fictitious experiences, indicating a general deficit in constructing novel experiences. Unlike the control groups, however, vmPFC patients had more difficulties in imagining future compared to fictitious experiences. Exploratory correlation analyses showed that general construction deficits correlated with lesion volume in BA 11, whereas specific EFT deficits correlated with lesion volume in BA 32 and BA 10. Together, these findings indicate that vmPFC is crucial for EFT. We propose, however, that different vmPFC subregions may support different component processes of EFT: the most ventral part, BA 11, may underlie core constructive processes needed to imagine any complex experience (e.g., scene construction), whereas BA 10 and BA 32 may mediate simulation of those specific experiences that likely await us in the future. PMID:26707714

  13. Experience as a Basis for the Professional Development of Future Teacher of Music

    ERIC Educational Resources Information Center

    Popovych, Natalia

    2014-01-01

    This paper investigates the problem of forming the professional and personal experience of the future music teacher as the basis for improving its professional excellence. The aim of the study was the theoretical justification and experimental verification of the contents of the experience gained and pedagogical technology of development of the…

  14. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    SciTech Connect

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  15. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Collider Physics: Yesterday, Today and Tomorrow

    NASA Astrophysics Data System (ADS)

    Eichten, Estia

    2011-04-01

    More than a quarter century ago, theoretical issues with the Standard Model scalar boson sector inspired theorists to develop alternative models of electroweak symmetry breaking. The goal of the EHLQ study of hadron collider physics was to help determine the basic parameters of a supercollider that could distinguish these alternatives. Now we await data from the CMS and ATLAS experiments at CERN's Large Hadron Collider to solve this mystery. Does the Standard Model survive or, as theorists generally expect, does new physics appear (Strong Dynamics, SUSY, Extra Dimensions,...)? Even well into the LHC era it is likely that questions about the origin of fermion mass and mixings will remain and new physics will bring new puzzles. This time, the associated new scales are unknown. The opportunity to address new physics at a future multi-TeV lepton collider is briefly addressed.

  16. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1992-01-01

    This presentation is designed to relate some of the experiences of the Scientific Computing Division at NCAR dealing with the 'data problem'. A brief history and a development of some basic Mass Storage System (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. There is discussion of future MSS needs for future computing environments.

  17. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  18. SLAC linear collider

    SciTech Connect

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described.

  19. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  20. Materials flight experiment carrier capability and future flight experiments on Hitchhiker-M carrier program

    NASA Technical Reports Server (NTRS)

    Davis, D.

    1993-01-01

    The CMSS has designed, fabricated, and qualified a unique Materials FLight EXperiment (MFLEX) carrier. The MFLEX is a reusable materials experiment carrier designed to support a wide array of sensors that measure synergistic effects on candidate space materials in Low Earth Orbit (LEO). The MFLEX can be integrated on a variety of launch vehicles/carriers and multiple units can be networked to optimize the surface area of carriers such as the Hitchhiker-M currently being built by the Goddard Space Flight Center (GSFC).

  1. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  2. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  3. Tau anomalous magnetic moment in γγ colliders

    NASA Astrophysics Data System (ADS)

    Peressutti, Javier; Sampayo, Oscar A.

    2012-08-01

    We investigate the possibility of setting model independent limits for a nonstandard anomalous magnetic moment aτNP of the tau lepton, in future γγ colliders based on Compton backscattering. For a hypothetical collider we find that, at various levels of confidence, the limits for aτNP could be improved, compared to previous studies based on LEP1, LEP2 and SLD data. We show the results for a realistic range of the center of mass energy of the e+e- collider. As a more direct application, we also present the results of the simulation for the photon collider at the TESLA project.

  4. Fast cooling, muon acceleration and the prospect of muon colliders

    NASA Astrophysics Data System (ADS)

    Palmer, Mark

    Facilities based on stored muons offer unique potential for future high-energy physics capabilities. Three key characteristics of the muon make this possible: * The muon is a lepton; * The muon is roughly 200 times as massive as the electron; * The muon decays to an electron and two neutrinos. As the next heavier members of the lepton family with respect to the electron and positron, μ+ and μ-. beams can be collided to provide a precision lepton probe of the electroweak couplings. This makes a muon collider a suitable option for a lepton collider companion to a hadron collider discovery machine...

  5. Status of the SLAC Linear Collider Project

    SciTech Connect

    Stiening, R.

    1983-01-01

    The SLAC Linear Collider Project has two principal goals. The first is to serve as a prototype for a future very high energy linear electron-positron collider. The second is to quickly, at low cost, achieve sufficient luminosity at 100 GeV center-of-mass energy to explore the physics of the Z/sup 0/. The first goal is important to the future of electron-positron physics because the rapid increase of synchrotron radiation with energy causes the cost of circular storage ring colliders to whereas the cost of linear colliders increases only in proportion to the center-of-mass energy. The second is important because the existance at SLAC of a linear accelerator which can be converted at low cost to collider operation makes possible a unique opportunity to quickly achieve 100 GeV center-of-mass collisions. At the design luminosity of 6.0 x 10/sup 30/ many thousands of Z/sup 0/ decays should be observed in each day of operation.

  6. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  7. Framing the Future. Speaking from Experience: A Practical Guide to Workbased Learning.

    ERIC Educational Resources Information Center

    Field, Laurie, Ed.

    This publication is a resource for people who are involved in Australia's Framing the Future work-based learning project teams. It is a compendium that outlines project processes and provides useful hints and lessons learned by others through their experience. Six parts address the six steps in a project. Part 1, on the proposal, covers possible…

  8. Measure of the impact of future dark energy experiments based on discriminating power among quintessence models

    NASA Astrophysics Data System (ADS)

    Barnard, Michael; Abrahamse, Augusta; Albrecht, Andreas; Bozek, Brandon; Yashar, Mark

    2008-08-01

    We evaluate the ability of future data sets to discriminate among different quintessence dark energy models. This approach gives an alternative (and complementary) measure for assessing the impact of future experiments, as compared with the large body of literature that compares experiments in abstract parameter spaces (such as the well-known w0-wa parameters) and more recent work that evaluates the constraining power of experiments on individual parameter spaces of specific quintessence models. We use the Dark Energy Task Force (DETF) models of future data sets and compare the discriminative power of experiments designated by the DETF as stages 2, 3, and 4 (denoting increasing capabilities). Our work reveals a minimal increase in discriminating power when comparing stage 3 to stage 2, but a very striking increase in discriminating power when going to stage 4 (including the possibility of completely eliminating some quintessence models). We also see evidence that even modest improvements over DETF stage 4 (which many believe are realistic) could result in even more dramatic discriminating power among quintessence dark energy models. We develop and demonstrate the technique of using the independently measured modes of the equation of state (derived from principle component analysis) as a common parameter space in which to compare the different quintessence models, and we argue that this technique is a powerful one. We use the PNGB, Exponential, Albrecht-Skordis, and Inverse Tracker (or inverse power law) quintessence models for this work. One of our main results is that the goal of discriminating among these models sets a concrete measure on the capabilities of future dark energy experiments. Experiments have to be somewhat better than DETF stage 4 simulated experiments to fully meet this goal.

  9. Results from the kaonic hydrogen X-ray measurement at DAFNE and outlook to future experiments

    NASA Astrophysics Data System (ADS)

    Cargnelli, Michael; Bazzi, M.; Beer, G.; Berucci, C.; Bombelli, L.; Bragadireanu, A. M.; Clozza, A.; Corradi, G.; Curceanu (Petrascu), C.; d'Uffizi, A.; Fiorini, C.; Ghio, F.; Girolami, B.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Lucherini, V.; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Ponta, T.; Quaglia, R.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    The overline{K}N system at rest plays a key role for the understanding of strong interaction of hadrons with strangeness involved. The experiment SIDDHARTA used X-ray spectroscopy of kaonic atoms to measure the strong interaction induced shift and width of the ground state. It was the first experiment on kaonic He3 and deuterium ever, kaonic hydrogen was measured with improved precision resulting in ɛ_{1s} = -283 ± 36 (stat) ± 6 (syst) eV and Γ_{1s} = 541 ± 89 (stat) ± 22 (syst) eV. Additionally a scheme for an improved future experiment on kaonic deuterium is introduced in this contribution.

  10. Results from the kaonic hydrogen X-ray measurement at DAFNE and outlook to future experiments

    NASA Astrophysics Data System (ADS)

    Cargnelli, Michael; Bazzi, M.; Beer, G.; Berucci, C.; Bombelli, L.; Bragadireanu, A. M.; Clozza, A.; Corradi, G.; Curceanu (Petrascu), C.; d'Uffizi, A.; Fiorini, C.; Ghio, F.; Girolami, B.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Lucherini, V.; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Ponta, T.; Quaglia, R.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2012-05-01

    The overline{K}N system at rest plays a key role for the understanding of strong interaction of hadrons with strangeness involved. The experiment SIDDHARTA used X-ray spectroscopy of kaonic atoms to measure the strong interaction induced shift and width of the ground state. It was the first experiment on kaonic He3 and deuterium ever, kaonic hydrogen was measured with improved precision resulting in ɛ_{1s} = -283 ± 36 {(stat)} ± 6 {(syst)} eV and Γ_{1s} = 541 ± 89 {(stat)} ± 22 {(syst)} eV. Additionally a scheme for an improved future experiment on kaonic deuterium is introduced in this contribution.

  11. Optical Resonators in Current and Future Experiments of the ALPS Collaboration

    SciTech Connect

    Meier, T.

    2010-08-30

    The ALPS collaboration runs a 'light shining through a wall' (LSW) experiment to search for weakly interacting sub-eV particles (WISPs). Its sensitivity is significantly enhanced by the incorporation of a large-scale production resonator and a small-scale high-power resonant second harmonic generator. Here we report on important experimental details and limitations of these resonators and derive recommendations for further experiments. A very promising improvement for a future ALPS experiment is the incorporation of an additional large-scale regeneration resonator. We present a rough sketch of how to combine a regeneration resonator with a single-photon counter (SPC) as detector for regenerated photons.

  12. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  13. Lessons from the GP-B Experience for Future Fundamental Physics Missions in Space

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    Gravity Probe B launched in April 2004 and completed its science data collection in September 2005, with the objective of sub-milliarcsec measurement of two General Relativistic effects on the spin axis orientation of orbiting gyroscopes. Much of the technology required by GP-B has potential application in future missions intended to make precision measurements. The philosophical approach and experiment design principles developed for GP-B are equally adaptable to these mission concepts. This talk will discuss GP-B's experimental approach and the technological and philosophical lessons learned that apply to future experiments in fundamental physics. Measurement of fundamental constants to high precision, probes of short-range forces, searches for equivalence principle violations, and detection of gravitational waves are examples of concepts and missions that will benefit kern GP-B's experience.

  14. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    SciTech Connect

    ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

    2001-05-03

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

  15. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.; CDF Collaboration

    1996-08-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag {ital b} quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D{null} collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  16. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  17. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  18. Technology for the Future: In-Space Technology Experiments Program, part 1

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.

  19. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  20. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  1. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  2. Physics at the linear collider

    NASA Astrophysics Data System (ADS)

    Moortgat-Pick, G.; Baer, H.; Battaglia, M.; Belanger, G.; Fujii, K.; Kalinowski, J.; Heinemeyer, S.; Kiyo, Y.; Olive, K.; Simon, F.; Uwer, P.; Wackeroth, D.; Zerwas, P. M.; Arbey, A.; Asano, M.; Bagger, J.; Bechtle, P.; Bharucha, A.; Brau, J.; Brümmer, F.; Choi, S. Y.; Denner, A.; Desch, K.; Dittmaier, S.; Ellwanger, U.; Englert, C.; Freitas, A.; Ginzburg, I.; Godfrey, S.; Greiner, N.; Grojean, C.; Grünewald, M.; Heisig, J.; Höcker, A.; Kanemura, S.; Kawagoe, K.; Kogler, R.; Krawczyk, M.; Kronfeld, A. S.; Kroseberg, J.; Liebler, S.; List, J.; Mahmoudi, F.; Mambrini, Y.; Matsumoto, S.; Mnich, J.; Mönig, K.; Mühlleitner, M. M.; Pöschl, R.; Porod, W.; Porto, S.; Rolbiecki, K.; Schmitt, M.; Serpico, P.; Stanitzki, M.; Stål, O.; Stefaniak, T.; Stöckinger, D.; Weiglein, G.; Wilson, G. W.; Zeune, L.; Moortgat, F.; Xella, S.; Bagger, J.; Brau, J.; Ellis, J.; Kawagoe, K.; Komamiya, S.; Kronfeld, A. S.; Mnich, J.; Peskin, M.; Schlatter, D.; Wagner, A.; Yamamoto, H.

    2015-08-01

    A comprehensive review of physics at an linear collider in the energy range of GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  3. Tevatron collider operations and plans

    SciTech Connect

    Peter H. Garbincius

    2004-06-17

    Fermilab's Tevatron is a proton-antiproton collider with center of mass energy of 1.96 TeV. The antiprotons are produced by 125 GeV protons from the Main Injector striking a stainless steel target. The 8 GeV antiprotons are collected and cooled in the Debuncher and Accumulator rings of the Antiproton Source and, just recently, in the Recycler ring before acceleration by the Main Injector and the Tevatron. In addition to energy, a vital parameter for generating physics data is the Luminosity delivered to the experiments given by a formula that is listed in detail in the paper.

  4. Dynamic collimation for linear colliders

    SciTech Connect

    Merminga, N.; Ruth, R.D.

    1990-06-01

    Experience with the SLC has indicated that backgrounds caused by the tails of the transverse beam distribution will be a serious problem for a next generation linear collider. Mechanical scrapers may not provide the best solution, because they may be damaged by the tiny, intense beams, and also because they may induce wakefield kicks large enough to cause emittance dilution. In this paper, we present a possible solution, which uses several nonlinear lenses to drive the tails of the beam to large amplitudes where they can by more easily scraped mechanically. Simulations of several different schemes are presented and evaluated with respect to effectiveness, tolerances and wakefield effects. 4 refs., 6 figs.

  5. Calorimetry At Very High Energy Colliders

    SciTech Connect

    Chiu, Mickey

    2011-06-01

    The capability of hadron colliders has increased to where it will soon be possible to collide protons at center of mass energies of 14 TeV with the advent of the LHC. With increasing collision energy, calorimeters become ever more essential components of a detector, and collaborations often choose very different technologies to meet their goals. From the perspective of a high energy particle and nuclear physicist, a survey is presented of the differences in design considerations and actual performance of the wide variety of calorimeters used in modern hadron colliders such as the Tevatron, RHIC, and LHC. The lessons learned and some ideas for future development of calorimetry will also be discussed.

  6. Collider signatures of Higgs-portal scalar dark matter

    NASA Astrophysics Data System (ADS)

    Han, Huayong; Yang, Jin Min; Zhang, Yang; Zheng, Sibo

    2016-05-01

    In the simplest Higgs-portal scalar dark matter model, the dark matter mass has been restricted to be either near the resonant mass (mh / 2) or in a large-mass region by the direct detection at LHC Run 1 and LUX. While the large-mass region below roughly 3 TeV can be probed by the future Xenon1T experiment, most of the resonant mass region is beyond the scope of Xenon1T. In this paper, we study the direct detection of such scalar dark matter in the narrow resonant mass region at the 14 TeV LHC and the future 100 TeV hadron collider. We show the luminosities required for the 2σ exclusion and 5σ discovery.

  7. Investigation of crew motion disturbances on Skylab-Experiment T-013. [for future manned spacecraft design

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Astronaut crew motions can produce some of the largest disturbances acting on a manned spacecraft which can affect vehicle attitude and pointing. Skylab Experiment T-013 was developed to investigate the magnitude and effects of some of these disturbances on the Skylab spacecraft. The methods and techniques used to carry out this experiment are discussed, and preliminary results of data analysis presented. Initial findings indicate that forces on the order of 300 N were exerted during vigorous soaring activities, and that certain experiment activities produced spacecraft angular rate excursions 0.03 to 0.07 deg/sec. Results of Experiment T-013 will be incorporated into mathematical models of crew-motion disturbances, and are expected to be of significant aid in the sizing, design, and analysis of stabilization and control systems for future manned spacecraft.

  8. A robust jet reconstruction algorithm for high-energy lepton colliders

    NASA Astrophysics Data System (ADS)

    Boronat, M.; Fuster, J.; García, I.; Ros, E.; Vos, M.

    2015-11-01

    We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of t t bar and ZZ production at future linear e+e- colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e+e- colliders.

  9. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  10. Muon collider design

    SciTech Connect

    Palmer, R. |; Sessler, A.; Skrinsky, A.

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  11. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    SciTech Connect

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.; Kubono, S.; Wakabayashi, Y.; Yamaguchi, H.; Kurihara, Y.; Bihn, D. N.; Kahl, D.; Watanabe, S.; Hashimoto, T.; Hayakawa, S.; Khiem, L. H.; Cuong, P. V.; Goto, A.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  12. Status and perspectives of neutrino physics at present and future experiments

    NASA Astrophysics Data System (ADS)

    Pagliarone, Carmine Elvezio

    2016-03-01

    Neutrino Physics and Dark Matter searches play a crucial role in nowadays Particle and Astroparticle Physics. The present review paper will describe general properties of neutrinos and neutrino mass phenomenology (Dirac and Majorana masses). Space will be dedicated to the experimental attempts to answer the question of the neutrino mass hierarchy. We will give, then, a short review of the results of part of the experiments that have been running so far. We will also shortly summarize future experiments that plan to explore this very wide scientific area.

  13. The Next Linear Collider: NLC2001

    SciTech Connect

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  14. PROJECTED CONSTRAINTS ON THE COSMIC (SUPER)STRING TENSION WITH FUTURE GRAVITATIONAL WAVE DETECTION EXPERIMENTS

    SciTech Connect

    Sanidas, Sotirios A.; Battye, Richard A.; Stappers, Benjamin W. E-mail: rbattye@jb.man.ac.uk

    2013-02-10

    We present projected constraints on the cosmic string tension, G{mu}/c {sup 2}, that could be achieved by future gravitational wave detection experiments and express our results as semi-analytic relations of the form G{mu}({Omega}{sub gw} h {sup 2})/c {sup 2}, to allow for direct computation of the tension constraints for future experiments. These results can be applied to new constraints on {Omega}{sub gw} h {sup 2} as they are imposed. Experiments operating in different frequency bands probe different parts of the gravitational wave spectrum of a cosmic string network and are sensitive to different uncertainties in the underlying cosmic string model parameters. We compute the gravitational wave spectra of cosmic string networks based on the one-scale model, covering all the parameter space accessed by each experiment that is strongly dependent on the birth scale of loops relative to the horizon, {alpha}. The upper limits on the string tension avoid any assumptions on the model parameters. We perform this investigation for Pulsar Timing Array experiments of different durations, as well as ground-based and space-borne interferometric detectors.

  15. Progress report on future accelerators

    SciTech Connect

    Panofsky, W.K.H.

    1984-02-01

    SLAC intends to pursue high energy physics work in the future along three lines: (1) continued exploration of electron and photon physics on stationary targets; (2) colliding beam physics using electron-positron storage rings; (3) single-pass collider physics with electrons using first the Stanford Linear Collider (SLC) and eventually a single-pass collider operating near the highest practical upper limit for such devices. These long-range plans are discussed.

  16. New technology for linear colliders

    SciTech Connect

    McIntyre, P.M.

    1991-08-01

    The purpose of this contract is to develop and evaluate new technology for future e{sup +}e{sup {minus}} linac colliders. TeV linac colliders will require major improvements in the performance of microwave power tubes: >100 mW/m peak power, {approximately}20 GHz frequency, and high frequency. For the past three years we have been developing gigatron, a new design concept for microwave power tubes. It incorporates three key innovations: a gated field-emitter cathode which produces a fully modulated electron beam directly into the vacuum; a ribbon beam geometry which eliminates space charge and phase dispersion, and a traveling wave coupler which provides optimum output coupling even over a wide ribbon beam. During the past year we have built prototypes of two cathode designs: a stripline edge-emitter array and a porous silicon dioxide cathode. A highlight of our results is the development and testing of the porous SiO{sub 2} cathode. It delivers exceptional performance as a modulated electron source in general and for gigatron in particular. Its high emitter density and low work function accommodate higher tube gain, simpler cathode coupling, and higher peak power than any other technology. The protection of the active emitting surface by {approximately}2 {mu}m of porous SiO{sub 2} should provide for rugged operation in a tube environment.

  17. Very large hadron collider (VLHC)

    SciTech Connect

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  18. Experiments in free shear flows: Status and needs for the future

    NASA Technical Reports Server (NTRS)

    Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.

    1973-01-01

    Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.

  19. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  20. Future detectability of gravitational-wave induced lensing from high-sensitivity CMB experiments

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Yamauchi, Daisuke; Taruya, Atsushi

    2015-02-01

    We discuss the future detectability of gravitational-wave induced lensing from high-sensitivity cosmic microwave background (CMB) experiments. Gravitational waves can induce a rotational component of the weak-lensing deflection angle, usually referred to as the curl mode, which would be imprinted on the CMB maps. Using the technique of reconstructing lensing signals involved in CMB maps, this curl mode can be measured in an unbiased manner, offering an independent confirmation of the gravitational waves complementary to B-mode polarization experiments. Based on the Fisher matrix analysis, we first show that with the noise levels necessary to confirm the consistency relation for the primordial gravitational waves, the future CMB experiments will be able to detect the gravitational-wave induced lensing signals. For a tensor-to-scalar ratio of r ≲0.1 , even if the consistency relation is difficult to confirm with a high significance, the gravitational-wave induced lensing will be detected at more than 3 σ significance level. Further, we point out that high-sensitivity experiments will be also powerful to constrain the gravitational waves generated after the recombination epoch. Compared to the B-mode polarization, the curl mode is particularly sensitive to gravitational waves generated at low redshifts (z ≲10 ) with a low frequency (k ≲1 0-3 Mpc-1 ), and it could give a much tighter constraint on their energy density ΩGW by more than 3 orders of magnitude.

  1. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  2. Introductory Lectures on Collider Physics

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  3. Search for new physics at colliders

    SciTech Connect

    Chiarelli, Giorgio; /INFN, Pisa

    2005-09-01

    In this paper I present the most recent results of the ongoing searches, mainly from Tevatron Collider experiments, for new physics beyond the Standard Model. While no signal has been seen so far, many analyses are reaching the point in which either a discovery will take place or strong limit on currently popular theories will be set.

  4. Physics Case for the International Linear Collider

    SciTech Connect

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.; Barklow, Tim; Gao, Yuanning; Kanemura, Shinya; Kim, Hyungdo; List, Jenny; Nojiri, Mihoko; Perelstein, Maxim; Poeschl, Roman; Reuter, Juergen; Simon, Frank; Tanabe, Tomohiko; Yu, Jaehoon; Wells, James D.; Murayama, Hitoshi; Yamamoto, Hitoshi; /Tohoku U.

    2015-06-23

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  5. Collider Tests of the Little Higgs Model

    SciTech Connect

    Burdman, Gustavo; Perelstein, Maxim; Pierce, Aaron

    2002-12-16

    The little Higgs model provides an alternative to traditional candidates for new physics at the TeV scale. The new heavy gauge bosons predicted by this model should be observable at the Large Hadron Collider (LHC). We discuss how the LHC experiments could test the little Higgs model by studying the production and decay of these particles.

  6. Balancing teaching and research experiences in doctoral training programs: lessons for the future educator.

    PubMed

    Wolyniak, Michael J

    2003-01-01

    While a variety of alternative careers has emerged for Ph.D. life scientists in industry, business, law, and education in the past two decades, the structure of doctoral training programs in many cases does not provide the flexibility necessary to pursue career experiences not directly related to a research emphasis. Here I describe my efforts to supplement my traditional doctoral research training with independent teaching experiences that have allowed me to prepare myself for a career that combines both into a combined educational program. I describe the issues I have come across in finding and taking part in these endeavors, how these issues have affected my work in pursuing my Ph.D., and how my experiences translate into my hopes for a future education-based career in molecular and cell biology. PMID:14673488

  7. The Photon Collider at Tesla

    NASA Astrophysics Data System (ADS)

    Badelek, B.; Blöchinger, C.; Blümlein, J.; Boos, E.; Brinkmann, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chyla, J.; Çiftçi, A. K.; Decking, W.; de Roeck, A.; Fadin, V.; Ferrario, M.; Finch, A.; Fraas, H.; Franke, F.; Galynskii, M.; Gamp, A.; Ginzburg, I.; Godbole, R.; Gorbunov, D. S.; Gounaris, G.; Hagiwara, K.; Han, L.; Heuer, R.-D.; Heusch, C.; Illana, J.; Ilyin, V.; Jankowski, P.; Jiang, Y.; Jikia, G.; Jönsson, L.; Kalachnikow, M.; Kapusta, F.; Klanner, R.; Klassen, M.; Kobayashi, K.; Kon, T.; Kotkin, G.; Krämer, M.; Krawczyk, M.; Kuang, Y. P.; Kuraev, E.; Kwiecinski, J.; Leenen, M.; Levchuk, M.; Ma, W. F.; Martyn, H.; Mayer, T.; Melles, M.; Miller, D. J.; Mtingwa, S.; Mühlleitner, M.; Muryn, B.; Nickles, P. V.; Orava, R.; Pancheri, G.; Penin, A.; Potylitsyn, A.; Poulose, P.; Quast, T.; Raimondi, P.; Redlin, H.; Richard, F.; Rindani, S. D.; Rizzo, T.; Saldin, E.; Sandner, W.; Schönnagel, H.; Schneidmiller, E.; Schreiber, H. J.; Schreiber, S.; Schüler, K. P.; Serbo, V.; Seryi, A.; Shanidze, R.; da Silva, W.; Söldner-Rembold, S.; Spira, M.; Stasto, A. M.; Sultansoy, S.; Takahashi, T.; Telnov, V.; Tkabladze, A.; Trines, D.; Undrus, A.; Wagner, A.; Walker, N.; Watanabe, I.; Wengler, T.; Will, I.; Wipf, S.; Yavaş, Ö.; Yokoya, K.; Yurkov, M.; Zarnecki, A. F.; Zerwas, P.; Zomer, F.

    High energy photon colliders (γγ,γe) are based on e-e- linear colliders where high energy photons are produced using Compton scattering of laser light on high energy electrons just before the interaction point. This paper is a part of the Technical Design Report of the linear collider TESLA.1 Physics program, possible parameters and some technical aspects of the photon collider at TESLA are discussed.

  8. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  9. Lattice of the NICA Collider Rings

    SciTech Connect

    Sidorin, Anatoly; Kozlov, Oleg; Meshkov, Igor; Mikhaylov, Vladimir; Trubnikov, Grigoriy; Lebedev, Valeri Nagaitsev, Sergei; Senichev, Yurij; /Julich, Forschungszentrum

    2010-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at JINR. It is designed for collider experiments with ions and protons and has to provide ion-ion (Au{sup 79+}) and ion-proton collisions in the energy range 1 {divided_by} 4.5 GeV/n and collisions of polarized proton-proton and deuteron-deuteron beams. Collider conceptions with constant {gamma}{sub tr} and with possibility of its variation are considered. The ring has the racetrack shape with two arcs and two long straight sections. Its circumference is about 450m. The straight sections are optimized to have {beta}* {approx} 35cm in two IPs and a possibility of final betatron tune adjustment.

  10. Antiproton - Ion Collider for FAIR Project

    SciTech Connect

    Beller, P.; Franzke, B.; Kienle, P.; Kruecken, R.; Koop, I.; Parkhomchuk, V.; Shatunov, Y.; Skrinsky, A.; Vostrikov, V.; Widmann, E.

    2006-03-20

    An antiproton-ion collider (AIC), with extensive using of electron cooling, is proposed to determine rms radii for protons and neutrons in unstable and short lived nuclei by means of antiproton absorption at medium energies. The experiment makes use of the electron-ion collider complex with appropriate modifications of the electron ring to store, cool and collide antiprotons of 30 MeV energy with 740 MeV/unit ions in the NESR. Antiprotons are collected, cooled, decelerated up to 30 MeV and transferred to the electron storage ring. The radioactive nuclei beams are transferred to the CR and cooled at 740A MeV and transported via the RESR to NESR, in which especially short lived nuclei are accumulated continuously to increase the luminosity. Luminosities of about 1023 cm-2s-1 may be reached with 106 ions accumulated in the NESR in coasting mode of operation, used for Schottky spectroscopy of the fragments.

  11. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  12. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Magallon, D.; Rempe, J.; Wilkins, C.; Pierre, J.; Marquié, C.; Eymery, S.; Morice, R.

    2010-09-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 K to 3380 K. This sensor, which uses the temperature dependence of the acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) capability of measuring a temperature profile from multiple sensors on a single probe and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high-temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. With new developments of alternative materials, this instrument may be used in a wide range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this article summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages, and drawbacks are outlined and future prospects for long-term high-temperature irradiation experiments are discussed.

  13. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    SciTech Connect

    M. Laurie; D. Magallon; J.Rempe; C.Wilkins; C. Marquié; S. Eymery; R. Morice

    2010-08-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 to 3380 K. This sensor, which uses the temperature dependence of acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) recording capability of a temperature profile deduced from the notches on the sensor rod and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. If new developments are conducted with other materials, this sensor type may be used in a wide-range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this paper summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages and drawbacks are outlined and future prospects for long term high temperature irradiation experiments are discussed.

  14. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    CMS Collabortion; Abbaneo, D.; Abbiendi, G.; Abbrescia, M.; Abdullin, S.; Abdulsalam, A.; Acharya, B. S.; Acosta, D.; Acosta, J. G.; Adair, A.; Adam, W.; Adam, N.; Adamczyk, D.; Adams, T.; Adams, M. R.; Adiguzel, A.; Adler, V.; Adolphi, R.; Adzic, P.; Afanasiev, S.; Agostino, L.; Agram, J.-L.; Aguilar-Benitez, M.; Aguilo, E.; Ahmad, M.; Ahmad, M. K. H.; Ahuja, S.; Akchurin, N.; Akgun, U.; Akgun, B.; Akin, I. V.; Alagoz, E.; Albajar, C.; Albayrak, E. A.; Albergo, S.; Albert, M.; Albrow, M.; Alcaraz Maestre, J.; Aldá Júnior, W. L.; Aldaya Martin, M.; Alemany-Fernandez, R.; Alexander, J.; Aliev, T.; Alimena, J.; Allfrey, P.; Almeida, N.; Alverson, G.; Alves, G. A.; Aly, A.; Amaglobeli, N.; Amapane, N.; Ambroglini, F.; Amsler, C.; Anagnostou, G.; Anastassov, A.; Andelin, D.; Anderson, J.; Anderson, M.; Andrea, J.; Andreev, Yu.; Andreev, V.; Andreev, V.; Andrews, W.; Anfreville, M.; Angelini, F.; Anghel, I. M.; Anisimov, A.; Anjos, T. S.; Ansari, M. H.; Antonelli, L.; Anttila, E.; Antunovic, Z.; Apanasevich, L.; Apollinari, G.; Appelt, E.; Apresyan, A.; Apyan, A.; Arce, P.; Arcidiacono, R.; Ardalan, F.; Arenton, M. W.; Arezzini, S.; Arfaei, H.; Argiro, S.; Arisaka, K.; Arndt, K.; Arneodo, M.; Arora, S.; Asavapibhop, B.; Asawatangtrakuldee, C.; Asghar, M. I.; Askew, A.; Aspell, P.; Assran, Y.; Ata, M.; Atac, M.; Attebury, G.; Attikis, A.; Auffray, E.; Autermann, C.; Auzinger, G.; Avdeeva, E.; Avery, P.; Avetisyan, A.; Avila, C.; Awad, A.; Ayan, A. S.; Azarkin, M.; Azhgirey, I.; Aziz, T.; Azzi, P.; Azzolini, V.; Azzurri, P.; Baarmand, M. M.; Babb, J.; Baccaro, S.; Bacchetta, N.; Bachtis, M.; Baden, A.; Badgett, W.; Badier, J.; Baechler, J.; Baffioni, S.; Bagaturia, I.; Bagliesi, G.; Bai, Y.; Bailleux, D.; Baillon, P.; Bainbridge, R.; Bakhshiansohi, H.; Bakirci, M. N.; Bakken, J. A.; Balazs, M.; Baldin, B.; Ball, A. H.; Ball, G.; Ballin, J.; Ban, Y.; Banerjee, S.; Banerjee, S.; Bäni, L.; Banicz, K.; Bansal, M.; Bansal, S.; Banzuzi, K.; Barashko, V.; Barbagli, G.; Barberis, E.; Barbone, L.; Barczyk, A.; Bard, R.; Barfuss, A. F.; Bargassa, P.; Barge, D.; Baringer, P.; Barker, A.; Barnes, V. E.; Barnett, B. A.; Barney, D.; Barone, L.; Barrass, T.; Bartalini, P.; Barth, C.; Bartoloni, A.; Basegmez, S.; Basso, L.; Basti, A.; Bateman, E.; Battilana, C.; Bauer, J.; Bauer, D.; Bauer, G.; Bauerdick, L. A. T.; Baulieu, G.; Baumbaugh, B.; Baumgartel, D.; Baur, U.; Bayshev, I.; Bazterra, V. E.; Bean, A.; Beauceron, S.; Beaudette, F.; Beaumont, W.; Beaupere, N.; Becheva, E.; Bedjidian, M.; Beernaert, K.; Behner, F.; Behr, J.; Behrenhoff, W.; Behrens, U.; Belforte, S.; Beliy, N.; Belknap, D.; Bell, A. J.; Bell, K. W.; Bellan, R.; Bellato, M.; Bellazzini, R.; Bellinger, J. N.; Belotelov, I.; Belyaev, A.; Belyaev, A.; Benaglia, A.; Bencze, G.; Bendavid, J.; Benedetti, D.; Benelli, G.; Benettoni, M.; Benhabib, L.; Beni, N.; Benitez, J. F.; Benussi, L.; Benvenuti, A. C.; Beranek, S.; Beretvas, A.; Bergauer, T.; Berger, J.; Bergholz, M.; Beri, S. B.; Bernardes, C. A.; Bernardini, J.; Bernardino Rodrigues, N.; Bernet, C.; Berry, D.; Berry, E.; Berryhill, J.; Bertl, W.; Bertoldi, M.; Berzano, U.; Besancon, M.; Besson, A.; Betchart, B.; Betev, B.; Bethani, A.; Betts, R. R.; Beuselinck, R.; Bhandari, V.; Bhardwaj, A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharya, S.; Bhattacharya, S.; Bhatti, A.; Bheesette, S.; Bialas, W.; Bialkowska, H.; Biallass, P.; Bian, J. G.; Bianchi, G.; Bianchini, L.; Bianco, S.; Biasini, M.; Biasotto, M.; Biino, C.; Bilei, G. M.; Bilin, B.; Bilki, B.; Binkley, M.; Bisello, D.; Bitioukov, S.; Blau, B.; Blekman, F.; Blobel, V.; Bloch, D.; Bloch, P.; Bloom, K.; Bluj, M.; Blüm, P.; Blumenfeld, B.; Blyweert, S.; Boccali, T.; Bocci, A.; Bochenek, J.; Bockelman, B.; Bodek, A.; Bodin, D.; Boimska, B.; Bolla, G.; Bolognesi, S.; Bolton, T.; Bonacorsi, D.; Bonato, A.; Bondu, O.; Bonnett Del Alamo, M.; Bontenackels, M.; Boos, E.; Borcherding, F.; Bornheim, A.; Borras, K.; Borrello, L.; Bortignon, P.; Bortoletto, D.; Bose, T.; Bose, S.; Böser, C.; Bosi, F.; Bostock, F.; Botta, C.; Boudoul, G.; Bouhali, O.; Boulahouache, C.; Bourilkov, D.; Boutemeur, M.; Boutigny, D.; Boutle, S.; Bradley, D.; Braibant-Giacomelli, S.; Branca, A.; Branson, A.; Branson, J. G.; Brauer, R.; Braunschweig, W.; Breedon, R.; Breto, G.; Breuker, H.; Brew, C.; Brez, A.; Brigliadori, L.; Brigljevic, V.; Brinkerhoff, A.; Brito, L.; Broccolo, G.; Brochero Cifuentes, J. A.; Brochet, S.; Brom, J.-M.; Brona, G.; Brooke, J. J.; Broutin, C.; Brown, R. M.; Brownson, E.; Brun, H.; Bruno, G.; Buchmann, M. A.; Buchmuller, O.; Bucinskaite, I.; Budd, H.; Buege, V.; Bujak, A.; Bunichev, V.; Bunin, P.; Bunkowski, K.; Bunn, J.; Buontempo, S.; Burgmeier, A.; Burkett, K.; Busson, P.; Busza, W.; Butler, A. P. H.; Butler, P. H.; Butler, J. N.; Butt, J.; Butz, E.; Bylsma, B.; Cabrillo, I. J.; Caebergs, T.; Cai, J.; Cakir, A.; Calabria, C.; Calamba, A.; Calderon, A.; Calderon De La Barca Sanchez, M.; Cali, I. A.; Calligaris, L.; Callner, J.; Calpas, B.; Calvert, B.; Calvo, E.; Calzolari, F.; Camanzi, B.; Campagnari, C.; Campbell, A.; Campi, D.; Camporesi, T.; Candelise, V.; Cankocak, K.; Cano, E.; Capiluppi, P.; Cappello, G.; Carbone, L.; Carboni, A.; Cardaci, M.; Carlin, R.; Carlsmith, D.; Carrera Jarrin, E.; Carrillo Montoya, C. A.; Carrillo Moreno, S.; Carroll, R.; Cartiglia, N.; Carvalho, W.; Casal, B.; Casarsa, M.; Case, M.; Casimiro Linares, E.; Castaldi, R.; Castello, R.; Castilla-Valdez, H.; Castro, E.; Castro, A.; Caudron, J.; Cavallari, F.; Cavallo, F. R.; Cavallo, N.; Cavanaugh, R.; Ceard, L.; Cepeda, M.; Cerati, G. B.; Cerci, S.; Cerizza, G.; Cerminara, G.; Cerrada, M.; Cerri, C.; Cerutti, M.; Chabert, E. C.; Chadwick, M.; Chakaberia, I.; Chamizo Llatas, M.; Chamont, D.; Chan, M.; Chan, K. M.; Chang, S.; Chang, Y. H.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chanon, N.; Chao, Y.; Charaf, O.; Charkiewicz, A.; Charlot, C.; Chasco, M.; Chasserat, J.; Chatrchyan, S.; Chatterjee, A.; Chatterji, S.; Chauhan, S.; Checchia, P.; Chekhovsky, V.; Chen, G. M.; Chen, H. S.; Chen, Z. Y.; Chen, Z.; Chen, K. H.; Chen, W. T.; Chen, K. F.; Chen, Y.; Chen, M.; Chen, J.; Chendvankar, S.; Cheng, T.; Cherepanov, V.; Chertok, M.; Chetluru, V.; Cheung, H. W. K.; Chhibra, S. S.; Chierici, R.; Chiladze, B.; Chiochia, V.; Chiorboli, M.; Chlebana, F.; Choi, S.; Choi, M.; Choi, Y.; Choi, Y. K.; Chou, J. P.; Choudhary, B. C.; Choudhury, S.; Choudhury, R. K.; Chowdhury, S.; Christiansen, T.; Chuang, S. H.; Chung, J.; Chung, M. H.; Chung, Y. S.; Chwalek, T.; Ciampa, A.; Ciesielski, R.; Cihangir, S.; Cimmino, A.; Cinquilli, M.; Cittolin, S.; Ciulli, V.; Civinini, C.; Claes, D. R.; Clare, R.; Clarida, W.; Clement, E.; Clerbaux, B.; Cline, D.; Coarasa Perez, J. A.; Cockerill, D. J. A.; Codispoti, G.; Colafranceschi, S.; Colaleo, A.; Cole, J. E.; Colino, N.; Collard, C.; Colling, D.; Combaret, C.; Conetti, S.; Connolly, J. F.; Contardo, D.; Conte, E.; Contreras-Campana, C.; Contreras-Campana, E.; Conway, J.; Conway, R.; Cooper, S. I.; Coppage, D.; Cornelis, T.; Correa Martins Junior, M.; Cossutti, F.; Costa, S.; Costa, M.; Costantini, S.; Costanza, F.; Coughlan, J. A.; Cousins, R.; Covarelli, R.; Cox, P. T.; Cox, B.; Creanza, D.; Cremaldi, L. M.; Cripps, N.; Crotty, I.; Cuevas, J.; Cuffiani, M.; Cumalat, J. P.; Cuplov, V.; Curé, B.; Cushman, P.; Cussans, D.; Custódio, A.; Cutajar, M.; Cutts, D.; Cwiok, M.; Czellar, S.; Czyrkowski, H.; Da Costa, E. M.; Da Silva Di Calafiori, D. R.; Dabrowski, R.; Dabrowski, A.; Daci, N.; Daeuwel, D.; Dafinei, I.; Dagenhart, W.; D'Agnolo, R. T.; Daguin, J.; Dahmes, B.; Dahms, T.; Dalchenko, M.; D'Alessandro, R.; D'Alfonso, M.; Dallavalle, G. M.; Dambach, S.; Damgov, J.; Dammann, D.; D'Angelo, P.; Danielson, T.; Das, S.; Daskalakis, G.; Dasu, S.; Daubie, E.; Dauncey, P.; Davatz, G.; David, A.; Davies, G.; de Barbaro, P.; De Benedetti, A.; De Boer, W.; De Cosa, A.; De Favereau De Jeneret, J.; De Filippis, N.; De Gruttola, M.; De Guio, F.; De Jesus Damiao, D.; De La Cruz, B.; De La Cruz-Burelo, E.; De Lentdecker, G.; De Mattia, M.; De Oliveira Martins, C.; De Palma, M.; De Robertis, G.; De Roeck, A.; de Trocóniz, J. F.; De Visscher, S.; De Wolf, E. A.; Debbins, P.; Deisher, A.; Deiters, K.; Dejardin, M.; Del Re, D.; Delaere, C.; Delannoy, A. G.; Delgado Peris, A.; Deliomeroglu, M.; Della Negra, M.; Della Ricca, G.; Dell'Orso, R.; Demaria, N.; Demin, P.; Demina, R.; Demiragli, Z.; Demiyanov, A.; Demortier, L.; Denegri, D.; Denis, G.; Deniz, M.; D'Enterria, D.; Denton, L. G.; Depasse, P.; Dermenev, A.; Dero, V.; Derylo, G.; Descroix, A.; Deshpande, P. V.; Devroede, O.; Dewulf, J. P.; Dharmaratna, W. G. D.; Dhingra, N.; D'Hondt, J.; Di Giovanni, G. P.; Di Guida, S.; Di Marco, E.; Di Matteo, L.; Diamond, B.; Dias, F. A.; Diemoz, M.; Dierlamm, A.; Dietz, C.; Dietz-Laursonn, E.; Diez Pardos, C.; Dimitrov, L.; Dimitrov, A.; Dinardo, M. E.; Dini, P.; Dirkes, G.; Dissertori, G.; Dittmann, J.; Dittmar, M.; Djambazov, L.; Djordjevic, M.; Dobrzynski, L.; Dobson, M.; Dobur, D.; Doesburg, R.; Dogangun, O.; Dolen, J.; Dolinsky, S.; Dominguez, A.; Domínguez Vázquez, D.; Dominik, W.; Donegà, M.; Donvito, G.; Dorigo, T.; Dorney, B.; Doroba, K.; Dosselli, U.; Dozen, C.; Draeger, J.; Dragicevic, M.; Dragoiu, C.; Drell, B. R.; Dremin, I.; Drouhin, F.; Drozdetskiy, A.; Druzhkin, D.; du Pree, T.; Duarte, J.; Duarte Campderros, J.; Dubinin, M.; Duchardt, D.; Dudero, P. R.; Dudko, L.; Dugad, S.; Duggan, D.; Dumanoglu, I.; Dumitrescu, C.; Dünser, M.; Dupont-Sagorin, N.; Duric, S.; Duris, J.; Durkin, L. S.; Duru, F.; Dutta, S.; Dutta, D.; Dutta, V.; Dykstra, D.; Eads, M.; Eartly, D. P.; Eckerlin, G.; Ecklund, K. M.; Eckstein, D.; Edelhoff, M.; Eerola, P.; Egeland, R.; Eggel, C.; Eggert, N.; Ekmedzic, M.; El Mamouni, H.; Elgammal, S.; Elias, J. E.; Elliott-Peisert, A.; Ellison, J.; Ellithi Kamel, A.; Elmer, P.; Elvira, V. D.; Emeliantchik, I.; Enderle, H.; Engh, D.; Eno, S. C.; Eppard, M.; Epshteyn, V.; Erbacher, R.; Erdmann, M.; Erdmann, W.; Erdogan, Y.; Erfle, J.; Erhan, S.; Erö, J.; Erofeeva, M.; Ershov, Y.; Ershov, A.; Eshaq, Y.; Eskut, E.; Etesami, S. M.; Eugster, J.; Eulisse, G.; Eusebi, R.; Evangelou, I.; Evans, D.; Evans, D.; Evdokimov, O.; Everaerts, P.; Everett, A.; Evstyukhin, S.; Fabbri, F.; Fabbri, F.; Fabbricatore, P.; Fabbro, B.; Faber, G.; Fabjan, C.; Fabozzi, F.; Faccioli, P.; Fagan, D.; Fahim, A.; Fahrer, M.; Fanelli, C.; Fanfani, A.; Fanò, L.; Fantasia, C.; Fanzago, F.; Farina, F. M.; Farinon, S.; Farrell, C.; Fasanella, D.; Faure, J. L.; Favaro, C.; Favart, D.; Fay, J.; Fedi, G.; Fedorov, A.; Fehling, D.; Feichtinger, D.; Feindt, M.; Felcini, M.; Feld, L.; Felzmann, U.; Fenyvesi, A.; Ferapontov, A.; Ferbel, T.; Ferencek, D.; Ferguson, W.; Ferguson, T.; Fernandez, M.; Fernandez Bedoya, C.; Fernandez Menendez, J.; Fernandez Perez Tomei, T. R.; Fernández Ramos, J. P.; Ferrando, A.; Ferreira Parracho, P. G.; Ferri, F.; Ferro, C.; Feyzi, F.; Field, R. D.; Finger, M.; Finger, M.; Fiore, L.; Fiorendi, S.; Fiori, F.; Fischer, R.; Fisher, M.; Fisk, I.; Flacher, H.; Flanagan, W.; Flix, J.; Florez, C.; Flossdorf, A.; Flower, P. S.; Flowers, K.; Flucke, G.; Flügge, G.; Foà, L.; Focardi, E.; Folgueras, S.; Fonseca De Souza, S.; Fontaine, J.-C.; Ford, W. T.; Forthomme, L.; Foudas, C.; Foulkes, S.; Fouz, M. C.; Francis, B.; Franzoni, G.; Frazier, R.; Freeman, J.; French, M. J.; Freudenreich, K.; Frey, M.; Friedl, M.; Friis, E.; Frisch, B.; Frosali, S.; Frueboes, T.; Frühwirth, R.; Fu, Y.; Fulcher, J.; Funk, W.; Furgeri, A.; Furic, I. K.; Futyan, D.; Gabathuler, K.; Gabella, W.; Gabusi, M.; Gaddi, A.; Gaines, I.; Galanti, M.; Gallinaro, M.; Gallo, E.; Galvez, P.; Gamsizkan, H.; Ganguli, S. N.; Ganguly, S.; Ganjour, S.; Gao, Z.; Gao, Y.; Garabedian, A.; Garcia, G.; Garcia-Abia, P.; Garcia-Bellido, A.; Garcia-Solis, E. J.; Gardner, M.; Gartner, J.; Gartung, P.; Gary, J. W.; Gascon, S.; Gasparini, F.; Gasparini, U.; Gastal, M.; Gataullin, M.; Gaultney, V.; Gauthier, L.; Gavrilenko, M.; Gavrilov, V.; Gay, A. P. R.; Gaz, A.; Gebauer, I.; Gebbert, U.; Geenen, H.; Geerebaert, Y.; Geffert, P.; Geiser, A.; Geisler, M.; Gelé, D.; Genchev, V.; Gennai, S.; Genta, C.; Gentit, F. X.; Georgiou, G.; Geralis, T.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Gerwig, H.; Gessler, A.; Geurts, F. J. M.; Ghete, V. M.; Ghezzi, A.; Ghodgaonkar, M.; Giacchetti, L.; Giacomelli, P.; Giammanco, A.; Giassi, A.; Gibbons, L. K.; Giffels, M.; Gigi, D.; Gilbert, A.; Gill, K.; Gilmore, J.; Ginther, G.; Giordano, D.; Giordano, F.; Giraud, N.; Girgis, S.; Girone, M.; Giubilato, P.; Giunta, M.; Giurgiu, G.; Giusti, S.; Givernaud, A.; Glege, F.; Gleyzer, S. V.; Glushkov, I.; Gninenko, S.; Go, A.; Gobbi, B.; Gobbo, B.; Godinovic, N.; Godshalk, A.; Goerlach, U.; Goettlicher, P.; Goetzmann, C.; Goh, J.; Gokbulut, G.; Gokieli, R.; Goldenzweig, P.; Goldstein, J.; Golf, F.; Gollapinni, S.; Golovtsov, V.; Golubev, N.; Golunov, A.; Golutvin, I.; Gomber, B.; Gomez, J. P.; Gomez, G.; Gomez, J. A.; Gomez Ceballos, G.; Gomez Moreno, B.; Gomez-Reino Garrido, R.; Goncharov, M.; Gonella, F.; Gonzalez Caballero, I.; Gonzalez Lopez, O.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Gonzi, S.; Goodell, J.; Goorens, R.; Gorbounov, N.; Gorbunov, I.; Gorbunov, D.; Gorn, L.; Görner, M.; Gorski, T.; Górski, M.; Goscilo, L.; Gotra, Y.; Gottschalk, E.; Goudard, R.; Goulianos, K.; Gouskos, L.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Goy Lopez, S.; Gozzelino, A.; Grab, C.; Grachov, O.; Gramenitski, I.; Grandi, C.; Granier de Cassagnac, R.; Gras, P.; Grassi, T.; Grassi, M.; Gray, R.; Gray, L.; Graziano, A.; Grebenyuk, A.; Greco, M.; Green, D.; Greene, S.; Greenhalgh, R. J. S.; Grégoire, G.; Gregores, E. M.; Gribushin, A.; Grim, G.; Grimes, M.; Grishin, V.; Gritsan, A. V.; Grogg, K. S.; Gronberg, J.; Gross, L.; Grothe, M.; Grundler, U.; Grunewald, M.; Gruschke, J.; Grynyov, B.; Guchait, M.; Gude, A.; Guida, R.; Guiducci, L.; Guler, A. M.; Gülmez, E.; Gulmini, M.; Guneratne Bryer, A.; Gunion, J.; Gunnellini, P.; Guo, S.; Guo, Y.; Guo, Y.; Guo, Z. J.; Gupta, R.; Gupta, P.; Guragain, S.; Gurpinar, E.; Gurrola, A.; Gurtu, A.; Gutay, L.; Güth, A.; Guthoff, M.; Gutleber, J.; Gutsche, O.; Gyun, D.; Haas, J.; Habib, S.; Hackstein, C.; Hadjiiska, R.; Hadley, N. J.; Hagopian, S.; Hagopian, V.; Haguenauer, M.; Hahn, G.; Hahn, A.; Hahn, K. A.; Haj Ahmad, W.; Hajdu, C.; Haley, J.; Halkiadakis, E.; Hall, G.; Hall-Wilton, R.; Halsall, R. N. J.; Halyo, V.; Ham, S. W.; Hamel de Monchenault, G.; Hammad, G. H.; Hammarstrom, R.; Hammer, J.; Han, D.; Han, J.; Hanlon, J.; Hansen, M.; Hanson, G.; Harder, K.; Harel, A.; Härkönen, J.; Haroutunian, R.; Harper, S.; Harr, R.; Harris, P.; Harris, R. M.; Hartl, C.; Hartmann, F.; Harvey, J.; Hashemi, M.; Hatakeyama, K.; Hatherell, Z.; Hauk, J.; Hauler, F.; Haupt, J.; Hauser, J.; Hauth, T.; Hays, J.; Hazen, E.; He, K. L.; Heath, G. P.; Heath, H. F.; Hebbeker, T.; Hebda, P.; Heering, A. H.; Hegeman, J.; Hegner, B.; Heidemann, C.; Heier, S.; Heikkinen, A.; Heindl, S. M.; Heinrich, M.; Heintz, U.; Heiss, A.; Heister, A.; Hektor, A.; Held, H.; Hellwig, G.; Heltsley, B.; Henderson, C.; Hennion, P.; Heracleous, N.; Heredia-de La Cruz, I.; Hermanns, T.; Hernandez, J. M.; Herndon, M.; Hervé, A.; Hewamanage, S.; Heyburn, B.; Hidas, P.; Hidas, D.; Hildreth, M.; Hilgers, G.; Hill, J. A.; Hill, C.; Hindrichs, O.; Hintz, W.; Hinzmann, A.; Hirosky, R.; Hirschauer, J.; Hits, D.; Hobson, P. R.; Hoch, M.; Hoehle, F.; Hoepfner, K.; Hof, C.; Hofer, H.; Hoffmann, K. H.; Hofman, D. J.; Hohlmann, M.; Höing, R. S.; Holbrook, B.; Hollar, J.; Hollingsworth, M.; Hollis, R.; Holme, O.; Holmes, D.; Holzman, B.; Holzner, A.; Honc, S.; Hong, B.; Honma, A.; Hooberman, B.; Hooper, R.; Hoorani, H. R.; Horisberger, R.; Hörmann, N.; Horvath, D.; Horvath, I.; Hos, I.; Hou, W.-S.; Howell, J.; Hreus, T.; Hrubec, J.; Hsiung, Y.; Hu, G.; Hu, Z.; Huang, C. h.; Huang, X. T.; Hufnagel, D.; Hughes, R.; Hugon, J.; Hunt, A.; Husemann, U.; Huss, D.; Iaselli, G.; Iashvili, I.; Iaydjiev, P.; Ignatenko, M.; Iiyama, Y.; Iles, G.; Ille, B.; Ilyin, V.; Imhof, M.; Incandela, J.; Ingram, Q.; Ingram, F. D.; Innocente, V.; Inyakin, A.; Iope, R. L.; Iordanova, A.; Iorio, A. O. M.; Isildak, B.; Ivanov, Y.; Ivanov, A.; Ivova Rikova, M.; Jabeen, S.; Jackson, J.; Jafari, A.; Jain, Sa.; Jain, Sh.; Jain, S.; Jang, D. W.; Janot, P.; Janssen, X.; Janulis, M.; Jarry, P.; Jarvis, M.; Jarvis, C.; Jeitler, M.; Jeng, G. Y.; Jenkins, M.; Jeong, C.; Jessop, C.; Jiang, C. H.; Jindal, P.; Jindariani, S.; Jo, M.; Jo, Y.; Johns, W.; Johnson, D.; Johnson, M.; Johnson, K. F.; Jones, J.; Jones, C. D.; Jones, M.; Jorda, C.; Josa, M. I.; Joshi, U.; Juillot, P.; Jun, S. Y.; Jung, H.; Jung, C.; Junghans, S.; Juodagalvis, A.; Juska, E.; Jussen, R.; Justus, C.; Kaadze, K.; Kachanov, V.; Kadastik, M.; Kadija, K.; Kaestli, H. C.; Kaftanov, V.; Kailas, S.; Kalagin, V.; Kalakhety, H.; Kalavase, P.; Kalinin, A.; Kalinowski, A.; Kalmani, S. D.; Kalogeropoulos, A.; Kamenev, A.; Kaminskiy, A.; Kamon, T.; Kang, J.; Kang, M.; Kang, S.; Kangal, E. E.; Kanishchev, K.; Kannike, K.; Kao, K. Y.; Kao, S. C.; Karaman, T.; Karancsi, J.; Karapinar, G.; Karapostoli, G.; Karavakis, E.; Karchin, P. E.; Kargoll, B.; Karimäki, V.; Karjalainen, A.; Karjavin, V.; Karmgard, D. J.; Karneyeu, A.; Karpinski, W.; Kaschube, K.; Kasemann, M.; Kasprowicz, G.; Katajisto, H. M.; Kataria, S. K.; Katkov, I.; Katsas, P.; Kaur, M.; Kaussen, G.; Kavka, C.; Kaya, M.; Kaya, O.; Kayis Topaksu, A.; Kazana, M.; Kcira, D.; Kellams, N.; Keller, J.; Kelley, R.; Kellogg, R. G.; Kennedy, B. W.; Kenny, R. P., Iii; Kenzie, M.; Kerzel, U.; Kesisoglou, S.; Khachatryan, V.; Khakzad, M.; Khalatyan, S.; Khalid, S.; Khalil, S.; Khalil, S.; Khan, W. A.; Khan, A.; Kharchilava, A.; Khotilovich, V.; Khukhunaishvili, A.; Khurana, R.; Khurshid, T.; Kieffer, E.; Kiesenhofer, W.; Kilminster, B.; Kim, T. Y.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, K. S.; Kim, J. Y.; Kim, Zero J.; Kim, H.; Kim, T. J.; Kim, H.; Kim, J. H.; Kim, M. S.; Kim, V.; Kim, B.; Kim, Y.; Kinnunen, R.; Kirakosyan, M.; Kircher, F.; Kirn, M.; Kirsanov, M.; Kirschenmann, H.; Kiselevich, I.; Klabbers, P.; Klanner, R.; Klapoetke, K.; Klein, B.; Klein, K.; Kleinwort, C.; Klima, B.; Klimkovich, T.; Klingebiel, D.; Kloukinas, K.; Kluge, H.; Klukas, J.; Klute, M.; Klyukhin, V.; Knoblauch, D.; Knünz, V.; Knutsson, A.; Ko, W.; Koay, S. A.; Kodolova, O.; Kohli, J. M.; Kokkas, P.; Kolb, J.; Kolberg, T.; Kolosov, V.; Komaragiri, J. R.; Konecki, M.; Kong, D. J.; König, S.; Konigsberg, J.; Konoplyanikov, V.; Konoplyannikov, A.; Konstantinov, D.; Kopecky, A.; Korablev, A.; Korenkov, V.; Korjenevski, S.; Korotkikh, V.; Korpela, A.; Kortelainen, M. J.; Korytov, A.; Korzhik, M.; Kossov, M.; Kotamäki, M.; Kotlinski, D.; Kotov, K.; Kottachchi Kankanamge Don, C.; Kousouris, K.; Kovac, M.; Kovalskyi, D.; Kovitanggoon, K.; Koybasi, O.; Kozhuharov, V.; Kozlov, G.; Kozlov, Y.; Kraan, A.; Kräber, M.; Krajczar, K.; Krämer, M.; Krammer, M.; Krasnikov, N.; Krätschmer, I.; Kravchenko, I.; Kreczko, L.; Kreis, B.; Kress, T.; Kress, M.; Kreuzer, P.; Krishnaswamy, M. R.; Kroeger, R.; Krofcheck, D.; Krokhotin, A.; Krolikowski, J.; Kropivnitskaya, A.; Krpic, D.; Krücker, D.; Krutelyov, V.; Krychkine, V.; Kryukov, A.; Kubic, J.; Kubik, A.; Kubota, Y.; Kudla, I. M.; Kuessel, Y.; Kuhr, T.; Kukartsev, G.; Kumar, Arun; Kumar, Ashok; Kumar, V.; Kumar, A.; Kunde, G. J.; Kunori, S.; Kuo, C. M.; Kurca, T.; Kurenkov, A.; Kurt, P.; Kuznetsov, V.; Kuznetsova, E.; Kvatadze, R.; Kwan, S.; Kwon, E.; Kyberd, P.; Kypreos, T.; Kyre, S.; Kyriakis, A.; Laasanen, A. T.; Lacaprara, S.; Lacesso, W.; Lackey, J.; Lacroix, F.; Lagana, C.; Laird, E.; Lakkireddi, V. R.; Lamichhane, P.; Lampén, T.; Lanaro, A.; Lander, R.; Landsberg, G.; Lanev, A.; Lange, W.; Lange, J.; Lange, D.; Langenegger, U.; Lannon, K.; Lariccia, P.; Larson, K.; Lassila-Perini, K.; Lath, A.; Latronico, L.; Lawson, P.; Layter, J. G.; Lazaridis, C.; Lazic, D.; Lazo-Flores, J.; Lazzizzera, I.; Le Bihan, A.-C.; Leaver, J.; Lebeau, M.; Lebolo, L. M.; Lebourgeois, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lee, M. W.; Lee, K. S.; Lee, B.; Lee, J.; Lee, S.; Lee, Y.-J.; Lee, J.; Lee, S. J.; Lee, S. W.; Leggat, D.; Legrand, I.; Lehti, S.; Lei, Y. J.; Lelas, D.; Lellouch, J.; Lemaire, M. C.; Lemaitre, V.; Lenzi, P.; Leonard, J.; Léonard, A.; Leonardo, N.; Leonidopoulos, C.; Leonidov, A.; Leslie, D.; Lethuillier, M.; Letts, J.; Levchenko, P.; Levchuk, L.; Levin, A.; Levine, A.; Lewendel, B.; Li, W. G.; Li, W.; Li, S. W.; Li, W.; Liamsuwan, T.; Liang, D.; Liang, S.; Liao, J.; Liau, J. j.; Libeiro, T.; Lietti, S. M.; Ligabue, F.; Liko, D.; Lin, W.; Lin, S. W.; Lin, F. C.; Lin, C.; Linacre, J.; Linari, S.; Lincoln, D.; Lindén, T.; Ling, T. Y.; Lingemann, J.; Linn, S.; Lintern, A. L.; Lipton, R.; Lista, L.; Litomin, A.; Litov, L.; Litvine, V.; Litvintsev, D.; Liu, H. T.; Liu, S.; Liu, M. H.; Liu, Z. K.; Liu, H.; Liu, H.; Liu, Y. F.; Liu, C.; Liu, J. H.; Lloret Iglesias, L.; Lobelle Pardo, P.; Locci, E.; Loddo, F.; Lodge, A. B.; Lohmann, W.; Lokhtin, I.; Lomidze, D.; Lomtadze, T.; Long, O. R.; Longo, E.; Loos, R.; Lopes Pegna, D.; Lopez, A.; Lopez Perez, J. A.; Lopez Virto, A.; Lopez-Fernandez, R.; Loreti, M.; Los, S.; Loukas, D.; Lourenço, C.; Loveless, R.; Low, J. F.; Lowette, S.; Lu, Y. J.; Lu, R.-S.; Lu, Y.; Lübelsmeyer, K.; Lucaroni, A.; Luckey, P. D.; Luetic, J.; Luiggi Lopez, E.; Lujan, P.; Luk, M.; Lukyanenko, S.; Lumb, N.; Lundstedt, C.; Lungu, G.; Luo, W.; Lusin, S.; Lusito, L.; Lustermann, W.; Luthra, A.; Lutz, B.; Luukka, P.; Luyckx, S.; Lychkovskaya, N.; Lykken, J.; Lynch, S.; Lyons, L.; Ma, Y.; Ma, T.; Macneill, I.; Macpherson, A.; Madorsky, A.; Mäenpää, T.; Maes, M.; Maeshima, K.; Magaña Villalba, R.; Magass, C.; Magazzu, G.; Maggi, M.; Maggi, G.; Magini, N.; Magnan, A.-M.; Magrans de Abril, M.; Maguire, C.; Mahmoud, M. A.; Mahrous, A.; Maier, W.; Maity, M.; Majerotto, W.; Majumder, D.; Makankin, A.; Makarenko, V.; Mäki, T.; Makouski, M.; Maksimovic, P.; Malakhov, A.; Malberti, M.; Malbouisson, H.; Malcles, J.; Malek, M.; Malgeri, L.; Malhotra, S.; Malik, S.; Malik, S.; Malvezzi, S.; Mandjavidze, I.; Mangano, B.; Mankel, R.; Manna, N.; Mannelli, M.; Manolakos, I.; Mans, J.; Manthos, N.; Mantovani, G.; Manzoni, R. A.; Mao, Y.; Marage, P. E.; Marangelli, B.; Maravin, Y.; Marcellini, S.; Marchica, C.; Marchioro, A.; Marco, J.; Marco, R.; Marfin, I.; Margoni, M.; Marienfeld, M.; Marinelli, N.; Marinho, F.; Marini, A. C.; Marinov, A.; Marionneau, M.; Mariotti, C.; Markina, A.; Markou, A.; Markou, C.; Markowitz, P.; Marlow, D.; Maron, G.; Marone, M.; Maroussov, V.; Marques Pinho Noite, J.; Marraffino, J. M.; Marrouche, J.; Martelli, A.; Martin, W.; Martin, T.; Martinez, G.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Martínez-Ortega, J.; Martini, L.; Martins, T.; Martschei, D.; Maruyama, S.; Maselli, S.; Masetti, L.; Masetti, G.; Mason, D.; Massa, M.; Massai, M. M.; Massironi, A.; Matchev, K.; Mathez, H.; Mathias, B.; Matorras, F.; Matos Figueiredo, D.; Mattson, M.; Matveev, V.; Matveev, M.; Mavromanolakis, G.; Mavrommatis, C.; Maxa, Z.; Mazumdar, K.; Mazzoni, E.; Mazzucato, M.; McBride, P.; Mccartin, J.; McCauley, T.; McClatchey, R.; McCliment, E.; Mccoll, N.; Medvedeva, T.; Mehta, M. Z.; Mehta, P.; Meier, B.; Meier, F.; Meijers, F.; Mekterovic, D.; Melnitchenko, I.; Melo, A.; Melzer-Pellmann, I.-A.; Menasce, D.; Menchikov, A.; Mendez, H.; Meneghelli, M.; Meneguzzo, A. T.; Meng, X.; Menichelli, M.; Meola, S.; Mercadante, P. G.; Mercier, D.; Meridiani, P.; Merino, G.; Merkel, P.; Merlo, J.-P.; Mermerkaya, H.; Merola, M.; Merschmeyer, M.; Mersi, S.; Merz, J.; Meschi, E.; Meschini, M.; Mesropian, C.; Messineo, A.; Mestvirishvili, A.; Mesyats, G.; Metson, S.; Meyer, A.; Meyer, A. B.; Miceli, T.; Micheli, F.; Migliore, E.; Mignerey, A. C.; Mikulec, I.; Milenovic, P.; Militaru, O.; Millan Mejias, B.; Miller, D. G.; Miller, M. J.; Miller, D. H.; Milleret, G.; Milosevic, J.; Milstène, C.; Miné, P.; Miner, D. C.; Mirabito, L.; Mirman, N.; Mironov, C.; Mishra, K.; Missevitch, O.; Mitselmakher, G.; Mitsyn, V. V.; Miyamoto, J.; Mnich, J.; Moccia, S.; Moeller, A.; Moggi, A.; Mohammadi, A.; Mohammadi Najafabadi, M.; Mohanty, A. K.; Mohanty, G. B.; Mohapatra, A.; Mohr, N.; Moisenz, P.; Mol, X.; Molnar, J.; Mommsen, R. K.; Monaco, V.; Mondal, N. K.; Moneta, L.; Montalvo, R.; Montanari, A.; Montanino, D.; Montecassiano, F.; Moon, D. H.; Mooney, M.; Moortgat, F.; Morelos Pineda, A.; Mörmann, D.; Moromisato, J.; Moroni, L.; Morovic, S.; Morse, D. M.; Mossolov, V.; Mott, A.; Mousa, J.; Mozer, M. U.; Mrak-Tadel, A.; Mrenna, S.; Mucibello, L.; Mueller, S.; Mughal, A.; Muhl, C.; Mulders, M.; Müller, Th.; Mundim, L.; Muniz, L.; Munoz Sanchez, F. J.; Müntel, M.; Mura, B.; Murray, P.; Murray, S. J.; Murray, M.; Murzin, V.; Musella, P.; Musenich, R.; Musich, M.; Musienko, Y.; Mussgiller, A.; Muzaffar, S.; My, S.; Nachtman, J.; Nae, D.; Nägeli, C.; Nahn, S.; Naimuddin, M.; Nam, S. K.; Nandi, R.; Nappi, A.; Narain, M.; Naranjo, I. N.; Narasimham, V. S.; Nash, J.; Nash, D.; Natali, S.; Nauenberg, U.; Naujikas, R.; Naumann-Emme, S.; Navarria, F. L.; Nawrocki, K.; Nayak, A.; Nef, P.; Negri, P.; Nessi-Tedaldi, F.; Neu, C.; Neuberger, D.; Neuland, M. B.; Neumeister, N.; Newbold, D. M.; Newman, H. B.; Newman-Holmes, C.; Newsom, C. R.; Nguyen, M.; Nguyen, D.; Nguyen, H.; Nguyen, C. N.; Nicolaou, C.; Nicolas Kaufman, G.; Niegel, M.; Nikitenko, A.; Nikolic, M.; Nirunpong, K.; Nishu, N.; Nogima, H.; Noonan, D.; Norbeck, E.; Noto, F.; Nourbakhsh, S.; Novaes, S. F.; Novgorodova, O.; Nowack, A.; Nowak, F.; Noy, M.; Ntomari, E.; Nürnberg, A.; Nuttens, C.; Nuzzo, S.; Oberst, O.; Obertino, M. M.; Obraztsov, S.; O'Brien, C.; Ocalan, K.; Ocampo Rios, A. A.; Ochando, C.; Ochesanu, S.; Odeh, M.; Odell, N.; O'Dell, V.; Odorici, F.; Oehler, A.; Ofierzynski, R. A.; Oguri, V.; Oh, Y. D.; Ojalvo, I.; Oklinski, W.; Olaiya, E.; Olbrechts, A.; Oleynik, D.; Oliveros, S.; Olschewski, M.; Olsen, J.; Olson, J.; Olzem, J.; Onel, Y.; Onengut, G.; Onnela, A.; Orbaker, D.; Oreshkin, V.; Organtini, G.; Orimoto, T.; Orlov, A.; Orsini, L.; Ortega Gomez, T.; Osborne, J. A.; Osborne, I.; Osipenkov, I.; Osorio Oliveros, A. F.; Ostapchuk, A.; Otiougova, P.; Ott, J.; Otwinowski, S.; Oulianov, A.; Ozdemir, K.; Ozkorucuklu, S.; Ozok, F.; Ozpineci, A.; Ozturk, S.; Pacifico, N.; Padhi, S.; Padley, B. P.; Padula, Sandra S.; Paganini, P.; Pagano, D.; Paganoni, M.; Pakhotin, Y.; Paktinat Mehdiabadi, S.; Palencia Cortezon, E.; Palichik, V.; Palinkas, J.; Palla, F.; Palmer, C.; Palmonari, F.; Panagiotou, A.; Pandolfi, F.; Pandoulas, D.; Pansanel, J.; Pansart, J. P.; Pant, L. M.; Panwalkar, S.; Panyam, N.; Paoletti, S.; Paolucci, P.; Papacz, P.; Papadopoulos, I.; Papageorgiou, A.; Pape, L.; Paramatti, R.; Paramesvaran, S.; Parashar, N.; Parenti, A.; Parida, B.; Park, H.; Park, S. K.; Park, C.; Park, I. C.; Park, S.; Park, M.; Park, M.; Parrini, G.; Pashenkov, A.; Passaseo, M.; Passeri, D.; Pastika, N.; Pastrone, N.; Patel, R.; Patil, M. R.; Patois, Y.; Patras, V.; Patterson, J. R.; Paulini, M.; Paus, C.; Pauss, F.; Pavlov, B.; Pavlunin, V.; Pazzini, J.; Pearson, M. R.; Pearson, T.; Pedrini, D.; Pedro, K.; Pegoraro, M.; Peiffer, T.; Pela, J.; Pellett, D.; Pelliccioni, M.; Peltola, T.; Penzo, A.; Perchalla, L.; Perelygin, V.; Perera, L.; Perez, E.; Perfilov, M.; Perieanu, A.; Perloff, A.; Pernicka, M.; Peroni, C.; Perrey, H.; Perries, S.; Perrotta, A.; Perrozzi, L.; Peruzzi, M.; Pesaresi, M.; Petagna, P.; Peterman, A.; Petkov, P.; Petrakou, E.; Petridis, K.; Petrilli, A.; Petrosyan, A.; Petrov, V.; Petrucci, A.; Petrucciani, G.; Petrukhin, A.; Petrushanko, S.; Petyt, D.; Pfeiffer, D.; Pfeiffer, A.; Philipps, B.; Phillips, D.; Piasecki, C.; Piccolo, D.; Piedra Gomez, J.; Pieri, M.; Pierini, M.; Pierro, G. A.; Pieta, H.; Pietsch, N.; Pimiä, M.; Pin, A.; Pioppi, M.; Piotrzkowski, K.; Piparo, D.; Piperov, S.; Piroué, P.; Pitzl, D.; Pivarski, J.; Pivovarov, G.; Placidi, P.; Plager, C.; Planer, M.; Plestina, R.; Pol, M. E.; Polatoz, A.; Polese, G.; Polic, D.; Poll, A.; Pollack, B.; Pompili, A.; Pooth, O.; Popescu, S.; Popov, V.; Popov, A.; Pordes, R.; Poschlad, A.; Postema, H.; Postoev, V. E.; Potenza, R.; Potenza, A.; Pozdnyakov, A.; Pozniak, K.; Pozzobon, N.; Prado Da Silva, W. L.; Primavera, F.; Prokofyev, O.; Proskuryakov, A.; Prosper, H.; Ptochos, F.; Puerta Pelayo, J.; Pugliese, G.; Puigh, D.; Puljak, I.; Pullia, A.; Punz, T.; Qazi, S.; Qian, S. J.; Quan, X.; Quast, G.; Quertenmont, L.; Quintario Olmeda, A.; Rabbertz, K.; Racz, A.; Radburn-Smith, B. C.; Radi, A.; Radicci, V.; Raffaelli, F.; Ragazzi, S.; Ragghianti, G.; Raghavan, R.; Rahatlou, S.; Rahbaran, B.; Rahmat, R.; Raics, P.; Raidal, M.; Rakness, G.; Ralich, R.; Ralph, D.; Ramirez Vargas, J. E.; Rand, D.; Rander, J.; Ranieri, A.; Ranieri, R.; Ranjan, K.; Rappoccio, S.; Rapsevicius, V.; Raspereza, A.; Rathjens, D.; Ratnikov, F.; Ratnikova, N.; Ratti, S. P.; Raupach, F.; Raval, A.; Ravot, S.; Raymond, D. M.; Razis, P. A.; Rebane, L.; Rebassoo, F.; Redaelli, N.; Redjimi, R.; Redondo, I.; Reece, W.; Reeder, D.; Reid, I. D.; Reidy, J.; Reis, T.; Reithler, H.; Rekovic, V.; Remington, R.; Renker, D.; Renz, M.; Reucroft, S.; Reyes-Santos, M. A.; Reymond, J. M.; Ribeiro, P. Q.; Ribeiro Cipriano, P. M.; Ribnik, J.; Riccardi, C.; Ricci, D.; Ricci-Tam, F.; Richman, J.; Riedl, C.; Riley, D.; Rinkevicius, A.; Rizzi, A.; Ro, S. R.; Roberts, J.; Robles, J.; Robmann, P.; Röcker, S.; Rodenburg, M.; Rodozov, M.; Rodrigo, T.; Rodrigues Antunes, J.; Rodriguez, J. L.; Rodríguez-Marrero, A. Y.; Roe, J.; Roederer, F.; Rogan, C.; Rogerson, S.; Roh, Y.; Rohe, T.; Rohlf, J.; Rohringer, C.; Rohringer, H.; Roinishvili, V.; Roland, B.; Roland, C.; Roland, G.; Rolandi, G.; Romaniuk, R.; Romano, F.; Romanowska-Rybinska, K.; Romanteau, T.; Romeo, F.; Romero, L.; Romero, A.; Ron, E.; Ronchese, P.; Ronga, F. J.; Ronzhin, A.; Rose, A.; Rose, K.; Rosemann, C.; Röser, U.; Rosin, M.; Rosowsky, A.; Ross, I.; Rossato, K.; Rossi, A. M.; Rossin, R.; Rossini, M.; Rossman, P.; Rott, C.; Rougny, R.; Roumenin, C.; Rovelli, C.; Rovelli, T.; Rovere, M.; Rowe, J.; Roy, A.; Rozsa, S. G.; Rubakov, V.; Ruchti, R.; Rudolph, M.; Rugovac, S.; Ruiz-Jimeno, A.; Rumerio, P.; Rurua, L.; Rusack, R.; Rusakov, S. V.; Rush, C. J.; Ruspa, M.; Russ, J.; Rutherford, B.; Ryabov, A.; Ryan, M. J.; Ryckbosch, D.; Ryd, A.; Ryjov, V.; Ryu, G.; Ryu, S.; Ryutin, R.; Sabellek, A.; Sabes, D.; Sacchi, R.; Safarzadeh, B.; Safonov, A.; Safronov, G.; Saha, A.; Saini, L. K.; Saizu, M. A.; Saka, H.; Sakharov, A.; Sakhelashvili, T.; Sakulin, H.; Sakuma, T.; Sakumoto, W.; Sala, L.; Sala, S.; Salazar Ibarguen, H. A.; Salerno, R.; Salfeld-Nebgen, J.; Salur, S.; Salvati, E.; Sammet, J.; Samyn, D.; Sanabria, J. C.; Sanchez, A. K.; Sánchez-Hernández, A.; Sander, C.; Sanders, S.; Sanders, D. A.; Sanguinetti, G.; Sani, M.; Santanastasio, F.; Santaolalla, J.; Santocchia, A.; Santoro, A.; Saoulidou, N.; Saout, C.; Sarkar, S.; Sartirana, A.; Sarycheva, L.; Sauerland, P.; Savin, A.; Savina, M.; Savrin, V.; Sawley, M.-C.; Scarborough, T.; Schael, S.; Schäfer, C.; Schettler, H.; Scheurer, A.; Schieferdecker, D.; Schieferdecker, P.; Schilling, F.-P.; Schinzel, D.; Schizzi, A.; Schlein, P.; Schleper, P.; Schlieckau, E.; Schmanau, M.; Schmidt, R.; Schmidt, A.; Schmidt, I.; Schmitt, M.; Schmitz, D.; Schmitz, S. A.; Schnetzer, S.; Schoerner-Sadenius, T.; Schöfbeck, R.; Schott, G.; Schröder, M.; Schul, N.; Schultz von Dratzig, A.; Schum, T.; Schwerdtfeger, W.; Schwick, C.; Sciaba, A.; Scodellaro, L.; Scurlock, B.; Searle, M.; Seez, C.; Segala, M.; Segneri, G.; Segoni, I.; Sehgal, V.; Seidel, M.; Seitz, C.; Seixas, J.; Sekmen, S.; Selvaggi, M.; Selvaggi, G.; Semenov, R.; Semenov, S.; Sen, N.; Sen, S.; Sengupta, S.; Senkin, S.; Seo, H.; Serban, A. T.; Serin, M.; Servoli, L.; Sever, R.; Sexton-Kennedy, E.; Sfiligoi, I.; Sgandurra, L.; Sguazzoni, G.; Shah, M. A.; Shamdasani, J.; Shanidze, R.; Sharan, M.; Sharma, A.; Sharma, V.; Sharma, A.; Sharma, V.; Sharma, S.; Sharma, M.; Sharp, P.; Shaw, T. M.; Sheldon, P.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Shevchenko, S.; Shi, X.; Shin, K.; Shipkowski, S. P.; Shipsey, I.; Shirinyants, V.; Shiu, J. G.; Shivpuri, R. K.; Shmatov, S.; Shoaib, M.; Shrestha, S.; Shreyber, I.; Shukla, P.; Shulha, S.; Shumeiko, N.; Sibille, J.; Siedling, R.; Siegrist, P.; Sigamani, M.; Sikler, F.; Silkworth, C.; Sill, A.; Silva, J.; Silva, P.; Silvers, D.; Silverwood, H.; Silvestre, C.; Silvestris, L.; Sim, K. S.; Simon, M.; Simon, S.; Simonetto, F.; Simonis, H. J.; Singh, J. B.; Singh, A. P.; Singh, G.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Siroli, G. P.; Sirunyan, A. M.; Skachkova, A.; Skatchkov, N.; Skhirtladze, N.; Skiba, A.; Skuja, A.; Slattery, P.; Slaunwhite, J.; Smetannikov, V.; Smiljkovic, N.; Smirnov, V.; Smirnov, I.; Smith, V. J.; Smith, B. J.; Smith, J.; Smith, J. G.; Smith, R. P.; Smith, K.; Smith, W. H.; Smolin, D.; Smoron, A.; Snigirev, A.; Snihur, R.; Snoek, H.; Snook, B.; Snow, G. R.; Snowball, M.; Soares, M. S.; Sobol, A.; Sobron Sanudo, M.; Soffi, L.; Sogut, K.; Soha, A.; Sola, V.; Solano, A.; Solin, A.; Solovey, A.; Somalwar, S.; Son, D.; Son, D. C.; Song, S.; Sonmez, N.; Sonnenschein, L.; Soomro, K.; Sordini, V.; Soroka, D.; Sorokin, P.; Souza, M. H. G.; Sowa, M.; Spagnolo, P.; Spalding, W. J.; Spandre, G.; Spanier, S.; Sparrow, A.; Speer, T.; Sperka, D.; Sphicas, P.; Spiegel, L.; Spiezia, A.; Spiga, D.; Spinoso, V.; Spiridonov, A.; Spiropulu, M.; Sprenger, D.; Sproston, M.; Squillacioti, P.; Squires, M.; Srimanobhas, N.; Stadie, H.; Stahl, A.; Staiano, A.; Starodumov, A.; Stasko, J.; Staykova, Z.; Steenberg, C.; Stefanovitch, R.; Steggemann, J.; Stein, M.; Steinbrück, G.; Stenson, K.; Stepanov, N.; Stephans, G. S. F.; Stephenson, R.; Stickland, D.; Stieger, B.; Stober, F. M.; Stöckli, F.; Stolin, V.; Stone, R.; Stoye, M.; Stoykova, S.; Stoynev, S.; Strauss, J.; Stringer, R.; Strobbe, N.; Stroiney, S.; Strom, D.; Strumia, A.; Stuart, D.; Sturdy, J.; Suarez, I.; Suarez Gonzalez, J.; Sudano, E.; Sudhakar, K.; Suh, J. S.; Sulak, L.; Sulimov, V.; Sultanov, G.; Summers, D.; Sumorok, K.; Sumowidagdo, S.; Sun, G.; Sun, H. S.; Sun, W.; Sunar Cerci, D.; Sung, K.; Surat, U. E.; Suter, H.; Svintradze, I.; Svyatkovskiy, A.; Swain, J.; Swanson, D.; Swanson, J.; Swartz, M.; Symonds, P.; Szillasi, Z.; Szleper, M.; Sznajder, A.; Szoncsó, F.; Tabarelli de Fatis, T.; Tadel, M.; Takahashi, M.; Talamo, I. G.; Tali, B.; Talov, V.; Tambe, N.; Tan, P.; Tanenbaum, W.; Tao, J.; Tapper, A.; Taroni, S.; Tatarinov, A.; Taurok, A.; Tauscher, L.; Tavernier, S.; Taylor, B. G.; Taylor, L.; Tcholakov, V.; Teller, O.; Temple, J.; Tenchini, R.; Teng, H.; Tentindo, S.; Teo, W. D.; Teodorescu, L.; Terentyev, N.; Teyssier, D.; Thea, A.; Theel, A.; Theofilatos, K.; Thiebaux, C.; Thom, J.; Thomas, L.; Thomas, M.; Thomas, S.; Thompson, J.; Thompson, R.; Thomsen, J.; Thümmel, W. H.; Thyssen, F.; Tikhonenko, E.; Tiko, A.; Timciuc, V.; Timlin, C.; Tinti, G.; Tiradani, A.; Tiras, E.; Titov, M.; Tkaczyk, S.; Tlisov, D.; To, W.; Toback, D.; Tomalin, I. R.; Tomaszewska, J.; Tonelli, G.; Tonjes, M. B.; Tonwar, S. C.; Toole, T.; Topakli, H.; Topkar, A.; Torassa, E.; Torbet, M. J.; Toropin, A.; Torre, P.; Tosi, S.; Tosi, M.; Tourneur, S.; Tourtchanovitch, L.; Traczyk, P.; Tran, N. V.; Travaglini, R.; Trayanov, R.; Treille, D.; Triantis, F. A.; Tricomi, A.; Tripathi, M.; Trocino, D.; Trocsanyi, Z. L.; Troendle, D.; Troitsky, S.; Tropea, P.; Tropiano, A.; Troshin, S.; Troska, J.; Trüb, P.; Trunov, A.; Tsamalaidze, Z.; Tsang, K. V.; Tschudi, Y.; Tsesmelis, E.; Tsirou, A.; Tu, Y.; Tucker, J.; Tully, C.; Tumanov, A.; Tumasyan, A.; Tuo, S.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Tupputi, S.; Turkewitz, J.; Turner, M.; Turner, P.; Tuura, L.; Tuuva, T.; Tuve, C.; Twedt, E.; Tytgat, M.; Tyurin, N.; Tzeng, Y. M.; Udriot, S.; Ueno, K.; Ujvari, B.; Ulmer, K. A.; Ulrich, R.; Unalan, Z.; Ungaro, D.; Uplegger, L.; Urscheler, C.; Uvarov, L.; Uzunian, A.; Uzunova, D.; Vaandering, E. W.; Valdata, M.; Valls, N.; Valuev, V.; Van Doninck, W.; Van Haevermaet, H.; Van Hove, P.; Van Lancker, L.; van Lingen, F.; Van Mechelen, P.; Van Mulders, P.; Van Onsem, G. P.; Van Remortel, N.; Van Spilbeeck, A.; Vander Donckt, M.; Vander Velde, C.; Vanelderen, L.; Vanhala, T. P.; Vanini, S.; Vankov, I.; Vanlaer, P.; Vardanyan, I.; Varela, J.; Varela Rodriguez, F.; Varelas, N.; Vartak, A.; Vasey, F.; Vasil'ev, S.; Vasquez Sierra, R.; Vaughan, J.; Vavilov, S.; Vazquez Acosta, M.; Vazquez Valencia, F.; Veelken, C.; Veeraraghavan, V.; Veillet, L.; Velasco, M.; Velicanu, D.; Velikzhanin, Y.; Velkovska, J.; Venditti, R.; Ventura, S.; Venturi, A.; Verdier, P.; Verdini, P. G.; Veres, G. I.; Vergili, L. N.; Vergili, M.; Verma, P.; Verrecchia, P.; Verwilligen, P.; Verzetti, M.; Veszpremi, V.; Vesztergombi, G.; Veverka, J.; Vichoudis, P.; Vidal, R.; Vidal Marono, M.; Viertel, G.; Vila, I.; Vilar Cortabitarte, R.; Vilela Pereira, A.; Villasenor-Cendejas, L. M.; Villella, I.; Vinogradov, A.; Virdee, T.; Viret, S.; Vischia, P.; Vishnevskiy, D.; Vitulo, P.; Vizan Garcia, J. M.; Vlasov, E.; Vlimant, J. R.; Vodopiyanov, I.; Vogel, H.; Voicu, B. R.; Volkov, A.; Volobouev, I.; Volodko, A.; Volpe, R.; Volyanskyy, D.; Von Goeler, E.; von Gunten, H. P.; Vorobiev, I.; Vorobyev, A.; Vorobyev, An.; Voutilainen, M.; Vuosalo, C.; Vutova, M.; Wagner, S. R.; Wagner-Kuhr, J.; Wakefield, S.; Wallny, R.; Walsh, S.; Walsh, R.; Waltenberger, W.; Walzel, G.; Wan, X.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Wang, D.; Wang, C. C.; Wang, M.; Wardle, N.; Wasserbaech, S.; Wayand, S.; Wayne, M.; Weber, H.; Weber, M.; Weber, M.; Weber, H. A.; Weber, M.; Wehrli, L.; Wei, J. T.; Weiler, T.; Weinberg, M.; Wendland, L.; Weng, J.; Weng, Y.; Wenger, E. A.; Wenman, D.; Werner, J. S.; Wertelaers, P.; West, C.; Wetzel, J.; Whitbeck, A.; White, D.; Whitmore, J.; Whyntie, T.; Wickens, J.; Wickramage, N.; Widl, E.; Wigmans, R.; Wildish, T.; Wilken, R.; Wilkinson, R.; Williams, J. C.; Williams, T.; Williams, J. H.; Williams, G.; Willmott, C.; Wimpenny, S.; Winer, B. L.; Wingham, M.; Winn, D.; Winstrom, L.; Wissing, C.; Wittich, P.; Wittmer, B.; Wlochal, M.; Wöhri, H. K.; Wolf, R.; Wolf, M.; Womersley, W. J.; Won, S.; Wood, J. S.; Wood, D.; Wood, J.; Woodard, A.; Worm, S. D.; Wright, D.; Wrochna, G.; Wu, J. H.; Wu, S.; Wu, W.; Wulz, C.-E.; Würthwein, F.; Wyslouch, B.; Xiao, H.; Xie, S.; Xie, Z.; Xu, M.; Yagil, A.; Yang, M.; Yang, X.; Yang, Y.; Yang, F.; Yang, M.; Yang, Z. C.; Yarba, J.; Yazgan, E.; Ye, Y. L.; Yeh, P.; Yelton, J.; Yepes, P.; Yetkin, T.; Yi, K.; Yilmaz, Y.; Yohay, R.; Yoo, J.; Yoo, H. D.; Yoon, A. S.; York, A.; Youngman, C.; Yu, I.; Yu, S. S.; Yumiceva, F.; Yun, J. C.; Zabel, J.; Zabi, A.; Zablocki, J.; Zabolotny, W.; Zaganidis, N.; Zahariev, R.; Zakaria, M.; Zalan, P.; Zalewski, P.; Zanetti, M.; Zang, J.; Zang, S. L.; Zarubin, A.; Zatserklyaniy, A.; Zaytsev, V.; Zeinali, M.; Zeise, M.; Zelepoukine, S.; Zenz, S. C.; Zeuner, W. D.; Zeyrek, M.; Zhang, X.; Zhang, Z.; Zhang, Z.; Zhang, L.; Zhang, L.; Zhang, J.; Zhao, W. R.; Zheng, Y.; Zheng, Y.; Zhiltsov, V.; Zhokin, A.; Zhu, Z.; Zhu, B.; Zhu, K.; Zhu, R. Y.; Zhukov, V.; Zhukova, V.; Ziebarth, E. B.; Zielinski, M.; Zilizi, G.; Zimmerman, T.; Zito, G.; Zoeller, M. H.; Zorba, O.; Zotto, P.; Zou, W.; Zumerle, G.; Zupan, M.; Zuranski, A.; Zuyeuski, R.; Zvada, M.; Zych, P.

    2012-12-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W-, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle.

  15. A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider.

    PubMed

    2012-12-21

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W(+), W(-), and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 125 [corrected] giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle. PMID:23258887

  16. Basic radiation protection training for nurses and paramedical personnel: Belgian experience and future perspectives.

    PubMed

    Clarijs, T; Coeck, M; Van Bladel, Lodewijk; Fremout, An

    2015-07-01

    When using ionising radiation for medical diagnosis or treatment of patients, understanding of relevant radiation protection principles and issues is indispensable. In Belgium, nurses and paramedical staff are required to acquire knowledge for protecting the patient against the detrimental effects of ionising radiation by means of a vocational training course. The experience with and challenges for this training course are presented here from a lecturer's point of view, together with a proposal for a future approach that harmonises the training content, its level and quality, according to European recommended standards. PMID:25821209

  17. Charged Lepton Flavor Violation: Latest Results and Future Plans of the MEG Experiment

    NASA Astrophysics Data System (ADS)

    Lim, Gordon M. A.

    Charged lepton flavor violation processes are ideal probes for new physics due to the suppression of Standard Model backgrounds. Currently, the MEG collaboration is searching for μ+ → e+γ decay with unprecedented precision and has recently published a new analysis based on data collected in the years 2009-2011. This resulted in an upper limit on the branching ratio of 5.7 · 10-13 at 90% confidence level, which represents a four times more stringent limit than the previous world best limit set by MEG. The details behind this result, as well as the current status and future plans of theMEG experiment are reported here.

  18. Retention and application of Skylab experiences to future programs. [a postflight review of technical programs.

    NASA Technical Reports Server (NTRS)

    Gillespie, V. G.; Kelly, R. O.

    1974-01-01

    The problems encountered and special techniques and procedures developed on the Skylab program are described along with the experiences and practical benefits obtained for dissemination and use on future programs. Three major topics are discussed: electrical problems, mechanical problems, and special techniques. Special techniques and procedures are identified that were either developed or refined during the Skylab program. These techniques and procedures came from all manufacturing and test phases of the Skylab program and include both flight and GSE items from component level to sophisticated spaceflight systems.

  19. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2011-10-06

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  20. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  1. Bouncing and Colliding Branes

    SciTech Connect

    Lehners, Jean-Luc

    2007-11-20

    In a braneworld description of our universe, we must allow for the possibility of having dynamical branes around the time of the big bang. Some properties of such domain walls in motion are discussed here, for example the ability of negative-tension domain walls to bounce off spacetime singularities and the consequences for cosmological perturbations. In this context, we will also review a colliding branes solution of heterotic M-theory that has been proposed as a model for early universe cosmology.

  2. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  3. Experimental tests of quantum mechanics: Pauli Exclusion Principle Violation (the VIP experiment) and future perspectives

    NASA Astrophysics Data System (ADS)

    Curceanu, C.; Bartalucci, S.; Bertolucci, S.; Bragadireanu, M.; Cargnelli, M.; di Matteo, S.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Vidal, A. Romero; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    The Pauli exclusion principle (PEP), as a consequence or the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs a lively debate on its possible limits, deeply rooted as it is in the very foundations of Quantum Field Theory. The VIP (VIolation of the Pauli exclusion principle) experiment established the world's best limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method and the obtained results; we briefly present future plans to go beyond the actual limit by upgrading the experiment using vetoed new spectroscopic fast Silicon Drift Detectors. We also shortly mention the possibility of using a similar experimental technique to search for possible X-rays generated in the spontaneous collapse models of quantum mechanics.

  4. Technology for the Future: In-Space Technology Experiments Program, part 2

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.

  5. COLLIDING CRYSTALLINE BEAMS.

    SciTech Connect

    WEI, J.

    1998-06-26

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.

  6. Colliding Crystalline Beams

    SciTech Connect

    Wei, Jie; Sessler, A.M.

    1998-06-01

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice.

  7. Scintillating Fibre Tracking at High Luminosity Colliders

    NASA Astrophysics Data System (ADS)

    Joram, C.; Haefeli, G.; Leverington, B.

    2015-08-01

    The combination of small diameter scintillating plastic fibres with arrays of SiPM photodetectors has led to a new class of SciFi trackers usable at high luminosity collider experiments. After a short review of the main principles and history of the scintillating fibre technology, we describe the challenges and developments of the large area Scintillating Fibre Tracker currently under development for the upgraded LHCb experiment.

  8. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  9. The performance of the Tevatron collider at Fermilab

    SciTech Connect

    Gelfand, N.M.

    1991-10-01

    This paper will describe the actual operating performance of the Tevatron, operating as a collider, and will indicate the planned upgrades which will enhance, the physics results coming from the experiments being performed at Fermilab.

  10. Connecting Ocean Scientists with Future Educators - COSEE Florida's Research Experience for Pre-Service Teachers

    NASA Astrophysics Data System (ADS)

    Cook, S.; Cetrulo, B.; Capers, J.

    2012-12-01

    To bring real world ocean science into the classroom, COSEE Florida's Research Experience for Pre-Service Teachers (REPT) program provides an opportunity for future science teachers to work with marine scientists on research projects. In 2011 and 2012, eleven middle school education majors at Indian River State College in Fort Pierce, FL, participated in a seven week summer experience. Scientist teams at Harbor Branch Oceanographic Institute of Florida Atlantic University, the Smithsonian Marine Station, and the Ocean Research & Conservation Association each mentored two students for 20 hours of research per week with 5 hours of support from Indian River State College (IRSC) faculty. Mentors helped students develop a scientific poster describing their research and guided them in the production of a video vignette called a CSTAR (COSEE Student Teachers as Researchers). The CSTAR videos address a 'nature of science' Florida state standard, have been shown to a variety of audiences in and out of the classroom and are expected to be a more frequently used educational product than a single lesson plan. To showcase the REPT intern accomplishments, an 'end-of-program' symposium open to the COSEE and IRSC communities was held at IRSC. Evaluation data indicate that the first two iterations of the COSEE Florida REPT program have given future teachers an authentic and deeper understanding of scientific practices and have provided ocean scientists with a meaningful opportunity to contribute to ocean science education.

  11. Optimization of a closed-loop gas system for the operation of Resistive Plate Chambers at the Large Hadron Collider experiments

    NASA Astrophysics Data System (ADS)

    Capeans, M.; Glushkov, I.; Guida, R.; Hahn, F.; Haider, S.

    2012-01-01

    Resistive Plate Chambers (RPCs), thanks to their fast time resolution (˜1 ns), suitable space resolution (˜1 cm) and low production cost (˜50 €/m2), are widely employed for the muon trigger systems at the Large Hadron Collider (LHC). Their large detector volume (they cover a surface of about 4000 m2 equivalent to 16 m3 of gas volume both in ATLAS and CMS) and the use of a relatively expensive Freon-based gas mixture make a closed-loop gas circulation unavoidable. It has been observed that the return gas of RPCs operated in conditions similar to the difficult experimental background foreseen at LHC contains a large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents are currently in use in order to avoid accumulation of impurities in the closed-loop circuits. We present the results of a systematic study characterizing each of these cleaning agents. During the test, several RPCs were operated at the CERN Gamma Irradiation Facility (GIF) in a high radiation environment in order to observe the production of typical impurities: mainly fluoride ions, molecules of the Freon group and hydrocarbons. The polluted return gas was sent to several cartridges, each containing a different cleaning agent. The effectiveness of each material was studied using gas chromatography and mass-spectrometry techniques. Results of this test have revealed an optimized configuration of filters that is now under long-term validation.Gas optimization studies are complemented with a finite element simulation of gas flow distribution in the RPCs, aiming at its eventual optimization in terms of distribution and flow rate.

  12. Technology and techniques for parity experiments at Mainz: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Diefenbach, Juergen

    2016-03-01

    For almost 20 years the Mainz accelerator facility MAMI delivered polarized electron beam to the parity violation experiment A4 that measured the contributions of strange sea quarks to the proton electromagnetic factors. Parity violation asymmetries were of the order of A ~5 ppm. Currently the A1 collaboration carries out single spin asymmetry measurements at MAMI (A ~20 ppm) to prepare for a measurement of neutron skin depth on lead (A ~1 ppm). For such high precision experiments active stabilization and precise determination of beam parameters like current, energy, position, and angle are essential requirements in addition to precision electron beam polarimetry. For the future P2 experiment at the planned superconducting accelerator MESA in Mainz the requirements for beam quality will be even higher. P2 will measure the weak mixing angle with 0.15 percent total uncertainty and, in addition, the neutron skin depth of lead as well as parity violation in electron scattering off 12C. A tiny asymmetry of only -0.03 ppm creates the needs to combine digital feedback with feedforward stabilizations along with new polarimetry developments like a hydro-Moller and a double-Mott polarimeter to meet the goals for systematic uncertainty. This talk gives an overview of our experience with polarimetry, analog feedbacks and compensation techniques for apparative asymmetries at the A4 experiment. It finally leads to the requirements and new techniques for the pioneering P2 experiment at MESA. First results from beam tests currently carried out at the existing MAMI accelerator, employing high speed analog/digital conversion and FPGAs for control of beam parameters, will be presented. Supported by the cluster of excellence PRISMA and the Deutsche Forschungsgemeinschaft in the framework of the SFB1044.

  13. Colliding gravitational plane waves with noncollinear polarization. II

    SciTech Connect

    Ernst, F.J.; Garcia D., A.; Hauser, I.

    1987-12-01

    A simple criterion for colliding gravitational plane waves is developed. This colliding wave condition is preserved by a new realization of the Geroch group augmented by a Kramer--Neugebauer involution. A three-parameter generalization of a two-parameter family of solutions with noncollinear polarization discovered recently by Ferrari, Ibanez, and Bruni is presented, and two additional solutions are derived that demonstrate that much larger families are likely to be constructed in the near future.

  14. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development. Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science return. Livers and spleens from mice were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection procedures including storage at minus 80 degrees Centigrade for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RNA Integrity Number (RIN) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNA, later) and liver (fast-freezing) at various time points post-euthanasia (from 5 minutes up to 105 minutes). The RNA recovered was of high quality (spleen, RIN greater than 8; liver, RIN greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at 105 minutes. Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The

  15. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development; Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science. Mouse livers and spleens were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection operations including storage at -80 C for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RIN(is) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNAlater) and liver (fast-freezing) at various time points post-euthanasia (from 5 min up to 105 min). The RNA recovered was of high quality (spleen, RIN (is) greater than 8; liver, RIN (is) greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at the latest time (105 min). Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The protocols developed for future flight

  16. XXth Hadron Collider Physics Symposium

    NASA Astrophysics Data System (ADS)

    In 2009, the Hadron Collider Physics Symposium took place in Evian (France), on the shore of the Geneva Lake, from 16-20 November. It was jointly organised by CERN and the French HEP community (CNRS-IN2P3 and CEA-IRFU). This year's symposium come at an important time for both the Tevatron and LHC communities. It stimulated the completion of analyses for a significant Tevatron data sample, and it allowed an in-depth review of the readiness of the LHC and its detectors just before first collisions. The programme includes sessions on top-quark and electro-weak physics, QCD, B physics, new phenomena, electro-weak symmetry breaking, heavy ions, and the status and commissioning of the LHC machine and its experiments. Conference website : http://hcp2009.in2p3.fr/

  17. Collider searches for extra dimensions

    SciTech Connect

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  18. Artist rendering of dust grains colliding at low speeds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  19. PERFORMANCE LIMITATIONS IN HIGH-ENERGY ION COLLIDERS

    SciTech Connect

    FISCHER, W.

    2005-05-16

    High-energy ion colliders (hadron colliders operating with ions other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams limits are set by space charge, charge exchange, and intrabeam scattering effects. The latter leads to luminosity lifetimes of only a few hours for intense heavy ions beams. Currently, the Relativistic Heavy Ion Collider (RHIC) at BNL is the only operating high-energy ion collider. Later this decade the Large Hadron Collider (LHC), under construction at CERN, will also run with heavy ions.

  20. New DIS and collider results on PDFs

    SciTech Connect

    Rizvi, E.

    2015-05-15

    The HERA ep collider experiments have measured the proton structure functions over a wide kinematic range. New data from the H1 experiment now extend the range to higher 4-momentum transfer (√(Q{sup 2})) over which a precision of ∼ 2% is achieved in the neutral current channel. A factor of two reduction in the systematic uncertainties over previous measurement is attained. The charged current structure function measurements are also significantly improved in precision. These data, when used in QCD analyses of the parton density functions (PDFs) reduce the PDF uncertainties particularly at high momentum fractions x which is relevant to low energy neutrino scattering cross sections. New data from the LHC pp collider experiments may also offer significant high x PDF improvements as the experimental uncertainties improve.

  1. The Need for Future Alternatives: An Investigation of the Experiences and Future of Older Parents Caring for Offspring with Learning Disabilities over a Prolonged Period of Time

    ERIC Educational Resources Information Center

    Cairns, Deborah; Tolson, Debbie; Brown, Jayne; Darbyshire, Chris

    2013-01-01

    This article reports on the results of a qualitative study (in-depth interviews) carried out in the United Kingdom as part of a larger (two-phased) study investigating the experiences, health and future perspectives of older parent carers (six mothers and two fathers) of offspring with learning disabilities over a prolonged period of time. The…

  2. Governance of the International Linear Collider Project

    SciTech Connect

    Foster, B.; Barish, B.; Delahaye, J.P.; Dosselli, U.; Elsen, E.; Harrison, M.; Mnich, J.; Paterson, J.M.; Richard, F.; Stapnes, S.; Suzuki, A.; Wormser, G.; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly

  3. Self-sustaining charging of identical colliding particles.

    PubMed

    Siu, Theo; Cotton, Jake; Mattson, Gregory; Shinbrot, Troy

    2014-05-01

    Recent experiments have demonstrated that identical material samples can charge one another after being brought into symmetric contact. The mechanism for this charging is not known. In this article, we use a simplified one-dimensional lattice model to analyze charging in the context of agitated particles. We find that the electric field from a single weakly polarized grain can feed back on itself by polarizing its neighbors, leading to an exponential growth in polarization. We show that, by incorporating partial neutralization between neighboring polarized particles, either uniform alignment of dipoles or complex charge and polarization waves can be produced. We reproduce a polarized state experimentally using identical colliding particles and raise several issues for future study. PMID:25353788

  4. Alighment and Vibration Issues in TeV Linear Collider Design

    SciTech Connect

    Fischer, G.E.; /SLAC

    2005-08-12

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of particle-beam-derived placement information are mentioned.

  5. Alignment and vibration issues in TeV linear collider design

    SciTech Connect

    Fischer, G.E.

    1989-07-01

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of public-beam-derived placement information are mentioned. 40 refs., 4 figs., 1 tab.

  6. Summary of Past Microgravity Experiment in Japanese Microgravity Science Field and Future Plan

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yoda, S.

    2002-01-01

    strategic plan for the early years of the 21st century is described experiments were carried out onboard various flight platforms such as airplanes, sounding rockets, free-flyers, and space shuttles. In Japan, microgravity experiments started with Skylab in 1973. In this first set of experiments, the results were scrutinized with keen interest and the usefulness of microgravity environment was evidenced. In the 1980's, the Japanese sounding rocket TT-500A, which provided microgravity conditions for several minutes, was used to verify the experimental facilities and the operations before long duration microgravity experiments were carried out. With the First International Microgravity Laboratory (IML-1) and the First Material Processing Test (FMPT) projects, the National Space Development Agency of Japan (NASDA) had the opportunity to perform sustained and genuine microgravity experiments. With the twenty-two experiments carried out in the FPMT, the Japanese microgravity community made rapid progress. Following this, space missions such as the Second International Microgravity Laboratory (IML-2) and the First Microgravity Science Laboratory (MSL-1) were performed. In addition, a series of seven sounding rockets TR-IA were launched to investigate scientific problems and to help develop technologies. Through these flight experiments, material sciences (Electrostatic Levitation Furnace; the diffusion coefficient measurement by shear-cell method; in-situ simultaneous observation of temperature and concentration field by two wavelength Mach-Zehnder microscope Interferometer) became at the forefront of science and technology in the world. measurement, and cell biology, are being carried out as phase C of NASDA strategic research. Research solicitation in microgravity sciences, among other fields, has seen substantial progress since its initiation in 1997. It is hoped that grant awardees will be the potential applicants of ISS flight experiments in the future. The science

  7. Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.

    2015-10-01

    A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.

  8. Hadron-hadron colliders

    SciTech Connect

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  9. The super collider revisited

    SciTech Connect

    Hussein, M.S.; Pato, M.P. )

    1992-05-20

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC.

  10. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  11. The International year of soils: thoughts on future directions for experiments in soil erosion research

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2015-04-01

    The 2015 UN Year of Soils (IYS), implemented by the FAO, aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. The IYS has six specific objectives, ranging from raising the awareness among civil society and decision makers about the profound importance of soils, to the development of policies supporting the sustainable use of the non-renewable soil resource. For scientists and academic teachers using experiments to study soil erosion processes, two objectives appear of particular relevance. First is need for the rapid capacity enhancement for soil information collection and monitoring at all levels (global, regional and national). While at first glance, this objective appears to relate mostly to traditional mapping, sampling and monitoring, the threat of large-scale soil loss, at least with regards to their ecosystem services, illustrates the need for approaches of studying soils that avoids such irreversible destruction. Relying on often limited data and their extrapolation does not cover this need for soil information because rapid change of the drivers of change itself carry the risk of unprecedented soil reactions not covered by existing data sets. Experiments, on the other hand, offer the possibility to simulate and analyze future soil change in great detail. Furthermore, carefully designed experiments may also limit the actual effort involved in collecting the specific required information, e.g. by applying tests designed to study soil system behavior under controlled conditions, compared to field monitoring. For rainfall simulation, experiments should therefore involve the detailed study of erosion processes and include detailed recording and reporting of soil and rainfall properties. The development of a set of standardised rainfall simulations would widen the use data collected by such experiments. A second major area for rainfall simulation lies in the the education of the public about

  12. Detector Noise Susceptibility Issues for the Future Generation of High Energy Physics Experiments

    SciTech Connect

    Arteche, F.; Esteban, C.; Iglesias, M.; Rivetta, C.; Arcega, F.J.; /Zaragoza U.

    2011-11-22

    The front-end electronics (FEE) noise characterization to electromagnetic interference and the compatibility of the different subsystems are important topics to consider for the LHC calorimeter upgrades. A new power distribution scheme based on switching power converters is under study and will define a noticeable noise source very close to the detector's FEE. Knowledge and experience with both FFE noise and electromagnetic compatibility (EMC) issues from previous detectors are important conditions to guarantee the design goals and the good functionality of the upgraded LHC detectors. This paper shows an overview of the noise susceptibility studies performed in different CMS subdetectors. The impact of different FEE topologies in the final sensitivity to electromagnetic interference of the subsystem is analyzed and design recommendations are presented to increase the EMC of the detectors to the future challenging power distribution topologies.

  13. Post-marketing experience with an opioid nasal spray for migraine: lessons for the future.

    PubMed

    Loder, E

    2006-02-01

    In 1992 a nasal spray formulation of butorphanol, an opioid medication intended for pain relief, was marketed in the USA on an unscheduled basis. Only a few years later, amid widespread reports of abuse and dependence, primarily in migraine patients, its manufacturer voluntarily requested the Food and Drug Administration to reschedule the drug as a Schedule IV narcotic. The events surrounding this episode are reviewed, and four problem areas that might have contributed are identified: (i) inadequate review of previous experience with other formulations of butorphanol; (ii) failure to consider the impact of disease state and drug formulation on the risk of adverse events; (iii) the limited scope of clinical trials prior to approval; and (iv) aggressive marketing efforts. The implications of these lessons for future drug development and post-marketing surveillance in the migraine field are considered. PMID:16426261

  14. Extra-large crystal emulsion detectors for future large-scale experiments

    NASA Astrophysics Data System (ADS)

    Ariga, T.; Ariga, A.; Kuwabara, K.; Morishima, K.; Moto, M.; Nishio, A.; Scampoli, P.; Vladymyrov, M.

    2016-03-01

    Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.

  15. Experiences of Hurricane Katrina Evacuees in Houston Shelters: Implications for Future Planning

    PubMed Central

    Brodie, Mollyann; Weltzien, Erin; Altman, Drew; Blendon, Robert J.; Benson, John M.

    2006-01-01

    Objectives. To shed light on how the public health community can promote the recovery of Hurricane Katrina victims and protect people in future disasters, we examined the experiences of evacuees housed in Houston area shelters 2 weeks after the hurricane. Methods. A survey was conducted September 10 through 12, 2005, with 680 randomly selected respondents who were evacuated to Houston from the Gulf Coast as a result of Hurricane Katrina. Interviews were conducted in Red Cross shelters in the greater Houston area. Results. Many evacuees suffered physical and emotional stress during the storm and its aftermath, including going without adequate food and water. In comparison with New Orleans and Louisiana residents overall, disproportionate numbers of this group were African American, had low incomes, and had no health insurance coverage. Many had chronic health conditions and relied heavily on the New Orleans public hospital system, which was destroyed in the storm. Conclusions. Our results highlight the need for better plans for emergency communication and evacuation of low-income and disabled citizens in future disasters and shed light on choices facing policymakers in planning for the long-term health care needs of vulnerable populations. PMID:16571686

  16. A guide to designing future ground-based cosmic microwave background experiments

    SciTech Connect

    Wu, W. L. K.; Kuo, C. L.; Errard, J.; Dvorkin, C.; Lee, A. T.; McDonald, P.; Zahn, O.; Slosar, A.

    2014-06-20

    In this follow-up work to the high energy physics Community Summer Study 2013 (aka SNOWMASS), we explore the scientific capabilities of a future Stage IV cosmic microwave background polarization experiment under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties of cosmological parameters in νΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark energy equation of state, dark matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the baryon acoustic oscillation signal as measured by Dark Energy Spectroscopic Instrument to constrain parameters that would benefit from low redshift information. We find the following best 1σ constraints: σ(M {sub ν}) = 15 meV, σ(N {sub eff}) = 0.0156, dark energy figure of merit = 303, σ(p {sub ann}) = 0.00588 × 3 × 10{sup –26} cm{sup 3} s{sup –1} GeV{sup –1}, σ(Ω {sub K}) = 0.00074, σ(n{sub s} ) = 0.00110, σ(α {sub s}) = 0.00145, and σ(r) = 0.00009. We also detail the dependencies of the parameter constraints on detector count, resolution, and sky coverage.

  17. Linear collider development at SLAC

    SciTech Connect

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  18. Meaningful Use of Electronic Health Records: Experiences From the Field and Future Opportunities

    PubMed Central

    Slight, Sarah Patricia; Berner, Eta S; Galanter, William; Huff, Stanley; Lambert, Bruce L; Lannon, Carole; Lehmann, Christoph U; McCourt, Brian J; McNamara, Michael; Menachemi, Nir; Payne, Thomas H; Spooner, S Andrew; Schiff, Gordon D; Wang, Tracy Y; Akincigil, Ayse; Crystal, Stephen; Fortmann, Stephen P; Vandermeer, Meredith L

    2015-01-01

    Background With the aim of improving health care processes through health information technology (HIT), the US government has promulgated requirements for “meaningful use” (MU) of electronic health records (EHRs) as a condition for providers receiving financial incentives for the adoption and use of these systems. Considerable uncertainty remains about the impact of these requirements on the effective application of EHR systems. Objective The Agency for Healthcare Research and Quality (AHRQ)-sponsored Centers for Education and Research in Therapeutics (CERTs) critically examined the impact of the MU policy relating to the use of medications and jointly developed recommendations to help inform future HIT policy. Methods We gathered perspectives from a wide range of stakeholders (N=35) who had experience with MU requirements, including academicians, practitioners, and policy makers from different health care organizations including and beyond the CERTs. Specific issues and recommendations were discussed and agreed on as a group. Results Stakeholders’ knowledge and experiences from implementing MU requirements fell into 6 domains: (1) accuracy of medication lists and medication reconciliation, (2) problem list accuracy and the shift in HIT priorities, (3) accuracy of allergy lists and allergy-related standards development, (4) support of safer and effective prescribing for children, (5) considerations for rural communities, and (6) general issues with achieving MU. Standards are needed to better facilitate the exchange of data elements between health care settings. Several organizations felt that their preoccupation with fulfilling MU requirements stifled innovation. Greater emphasis should be placed on local HIT configurations that better address population health care needs. Conclusions Although MU has stimulated adoption of EHRs, its effects on quality and safety remain uncertain. Stakeholders felt that MU requirements should be more flexible and recognize

  19. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  20. 2001 Report on the Next Linear Collider

    SciTech Connect

    Gronnberg, J; Breidenbach; Burke, D; Corlett, J; Dombeck, T; Markiewicz, T

    2001-08-28

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider.

  1. TARGETRY FOR A MU+MU- COLLIDER.

    SciTech Connect

    KIRK,H.G.

    1999-03-29

    The requirement for high luminosity in a {mu}{sup +}{mu}{sup -} collider leads one to conclude that a prodigious source of pions is needed followed by an efficient capture/decay channel. Significant targetry issues are raised by these demands. Among these are (1) the best target configuration to tolerate a high-rep rate, high-power proton beam ({approx} 10{sup 14} ppp at 15 Hz), (2) the pion spectra of the produced pions and (3) the best configuration for maximizing the quantity of captured pions. In this paper, the current thinking of the {mu}{sup +}{mu}{sup -} collider collaboration for solutions to these issues is discussed. In addition, we give a description of the R&D program designed to provide a proof-of-principle for a muon capture system capable of meeting the demands of a future high-luminosity machine.

  2. Feeling the future: A meta-analysis of 90 experiments on the anomalous anticipation of random future events.

    PubMed

    Bem, Daryl; Tressoldi, Patrizio; Rabeyron, Thomas; Duggan, Michael

    2015-01-01

    In 2011, one of the authors (DJB) published a report of nine experiments in the Journal of Personality and Social Psychology purporting to demonstrate that an individual's cognitive and affective responses can be influenced by randomly selected stimulus events that do not occur until after his or her responses have already been made and recorded, a generalized variant of the phenomenon traditionally denoted by the term precognition. To encourage replications, all materials needed to conduct them were made available on request. We here report a meta-analysis of 90 experiments from 33 laboratories in 14 countries which yielded an overall effect greater than 6 sigma, z = 6.40, p = 1.2 × 10 (-10 ) with an effect size (Hedges' g) of 0.09. A Bayesian analysis yielded a Bayes Factor of 5.1 × 10 (9), greatly exceeding the criterion value of 100 for "decisive evidence" in support of the experimental hypothesis. When DJB's original experiments are excluded, the combined effect size for replications by independent investigators is 0.06, z = 4.16, p = 1.1 × 10 (-5), and the BF value is 3,853, again exceeding the criterion for "decisive evidence." The number of potentially unretrieved experiments required to reduce the overall effect size of the complete database to a trivial value of 0.01 is 544, and seven of eight additional statistical tests support the conclusion that the database is not significantly compromised by either selection bias or by intense " p-hacking"-the selective suppression of findings or analyses that failed to yield statistical significance. P-curve analysis, a recently introduced statistical technique, estimates the true effect size of the experiments to be 0.20 for the complete database and 0.24 for the independent replications, virtually identical to the effect size of DJB's original experiments (0.22) and the closely related "presentiment" experiments (0.21). We discuss the controversial status of precognition and other anomalous effects

  3. Feeling the future: A meta-analysis of 90 experiments on the anomalous anticipation of random future events

    PubMed Central

    Bem, Daryl; Tressoldi, Patrizio; Rabeyron, Thomas; Duggan, Michael

    2016-01-01

    In 2011, one of the authors (DJB) published a report of nine experiments in the Journal of Personality and Social Psychology purporting to demonstrate that an individual’s cognitive and affective responses can be influenced by randomly selected stimulus events that do not occur until after his or her responses have already been made and recorded, a generalized variant of the phenomenon traditionally denoted by the term precognition. To encourage replications, all materials needed to conduct them were made available on request. We here report a meta-analysis of 90 experiments from 33 laboratories in 14 countries which yielded an overall effect greater than 6 sigma, z = 6.40, p = 1.2 × 10 -10  with an effect size (Hedges’ g) of 0.09. A Bayesian analysis yielded a Bayes Factor of 5.1 × 10 9, greatly exceeding the criterion value of 100 for “decisive evidence” in support of the experimental hypothesis. When DJB’s original experiments are excluded, the combined effect size for replications by independent investigators is 0.06, z = 4.16, p = 1.1 × 10 -5, and the BF value is 3,853, again exceeding the criterion for “decisive evidence.” The number of potentially unretrieved experiments required to reduce the overall effect size of the complete database to a trivial value of 0.01 is 544, and seven of eight additional statistical tests support the conclusion that the database is not significantly compromised by either selection bias or by intense “ p-hacking”—the selective suppression of findings or analyses that failed to yield statistical significance. P-curve analysis, a recently introduced statistical technique, estimates the true effect size of the experiments to be 0.20 for the complete database and 0.24 for the independent replications, virtually identical to the effect size of DJB’s original experiments (0.22) and the closely related “presentiment” experiments (0.21). We discuss the controversial status of precognition and other

  4. Multi-processor developments in the United States for future high energy physics experiments and accelerators

    SciTech Connect

    Gaines, I.

    1988-03-01

    The use of multi-processors for analysis and high-level triggering in High Energy Physics experiments, pioneered by the early emulator systems, has reached maturity, in particular with the multiple microprocessor systems in use at Fermilab. It is widely acknowledged that such systems will fulfill the major portion of the computing needs of future large experiments. Recent developments at Fermilab's Advanced Computer Program will make such systems even more powerful, cost-effective, and easier to use than they are at present. The next generation of microprocessors, already available, will provide CPU power of about one VAX 780 equivalent/$300, while supporting most VMS FORTRAN extensions and large (>8MB) amounts of memory. Low cost high density mass storage devices (based on video tape cartridge technology) will allow parallel I/O to remove potential I/O bottlenecks in systems of over 1000 VAX equipment processors. New interconnection schemes and system software will allow more flexible topologies and extremely high data bandwidth, especially for on-line systems. This talk will summarize the work at the Advanced Computer Program and the rest of the US in this field. 3 refs., 4 figs.

  5. Modeling course-based undergraduate research experiences: an agenda for future research and evaluation.

    PubMed

    Corwin, Lisa A; Graham, Mark J; Dolan, Erin L

    2015-03-01

    Course-based undergraduate research experiences (CUREs) are being championed as scalable ways of involving undergraduates in science research. Studies of CUREs have shown that participating students achieve many of the same outcomes as students who complete research internships. However, CUREs vary widely in their design and implementation, and aspects of CUREs that are necessary and sufficient to achieve desired student outcomes have not been elucidated. To guide future research aimed at understanding the causal mechanisms underlying CURE efficacy, we used a systems approach to generate pathway models representing hypotheses of how CURE outcomes are achieved. We started by reviewing studies of CUREs and research internships to generate a comprehensive set of outcomes of research experiences, determining the level of evidence supporting each outcome. We then used this body of research and drew from learning theory to hypothesize connections between what students do during CUREs and the outcomes that have the best empirical support. We offer these models as hypotheses for the CURE community to test, revise, elaborate, or refute. We also cite instruments that are ready to use in CURE assessment and note gaps for which instruments need to be developed. PMID:25687826

  6. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    SciTech Connect

    Wagener, T; Hogue, T; Schaake, J; Duan, Q; Gupta, H; Andreassian, V; Hall, A; Leavesley, G

    2006-05-08

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modelers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community and briefly states future directions.

  7. Integrated Pressure-Fed Liquid Oxygen / Methane Propulsion Systems - Morpheus Experience, MARE, and Future Applications

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; Morehead, Robert; Melcher, John C.; Atwell, Matt

    2016-01-01

    An integrated liquid oxygen (LOx) and methane propulsion system where common propellants are fed to the reaction control system and main engines offers advantages in performance, simplicity, reliability, and reusability. LOx/Methane provides new capabilities to use propellants that are manufactured on the Mars surface for ascent return and to integrate with power and life support systems. The clean burning, non-toxic, high vapor pressure propellants provide significant advantages for reliable ignition in a space vacuum, and for reliable safing or purging of a space-based vehicle. The NASA Advanced Exploration Systems (AES) Morpheus lander demonstrated many of these key attributes as it completed over 65 tests including 15 flights through 2014. Morpheus is a prototype of LOx/Methane propellant lander vehicle with a fully integrated propulsion system. The Morpheus lander flight demonstrations led to the proposal to use LOx/Methane for a Discovery class mission, named Moon Aging Regolith Experiment (MARE) to land an in-situ science payload for Southwest Research Institute on the Lunar surface. Lox/Methane is extensible to human spacecraft for many transportation elements of a Mars architecture. This paper discusses LOx/Methane propulsion systems in regards to trade studies, the Morpheus project experience, the MARE NAVIS (NASA Autonomous Vehicle for In-situ Science) lander, and future possible applications. The paper also discusses technology research and development needs for Lox/Methane propulsion systems.

  8. Modeling Course-Based Undergraduate Research Experiences: An Agenda for Future Research and Evaluation

    PubMed Central

    Corwin, Lisa A.; Graham, Mark J.; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are being championed as scalable ways of involving undergraduates in science research. Studies of CUREs have shown that participating students achieve many of the same outcomes as students who complete research internships. However, CUREs vary widely in their design and implementation, and aspects of CUREs that are necessary and sufficient to achieve desired student outcomes have not been elucidated. To guide future research aimed at understanding the causal mechanisms underlying CURE efficacy, we used a systems approach to generate pathway models representing hypotheses of how CURE outcomes are achieved. We started by reviewing studies of CUREs and research internships to generate a comprehensive set of outcomes of research experiences, determining the level of evidence supporting each outcome. We then used this body of research and drew from learning theory to hypothesize connections between what students do during CUREs and the outcomes that have the best empirical support. We offer these models as hypotheses for the CURE community to test, revise, elaborate, or refute. We also cite instruments that are ready to use in CURE assessment and note gaps for which instruments need to be developed. PMID:25687826

  9. Adolescent experience affects postnatal ultrasonic vocalizations and gene expression in future offspring.

    PubMed

    Bodi, Caroline M; Vassoler, Fair M; Byrnes, Elizabeth M

    2016-09-01

    The present study measured postnatal ultrasonic vocalization (USV) and gene expression to examine potential changes in communication and/or attachment in the offspring of mothers exposed to morphine during adolescence. Offspring of morphine-exposed (Mor-F1), saline-exposed (Sal-F1), or non-handled control (Con-F1) female Sprague-Dawley rats were tested for separation-induced distress calls and maternal potentiation of distress calls during early postnatal development. We also examined relative expression of dopamine D2 receptor and mu opioid receptor (oprm1) mRNA in the nucleus accumbens and hypothalamus in these offspring, as their activity has been implicated in the regulation of postnatal USV in response to maternal separation. The findings indicate that adolescent experiences of future mothers, including their 10 daily saline or morphine injections, can result in significant region-specific differences in gene expression. In addition, these experiences resulted in fewer numbers of separation-induced distress calls produced by offspring. In contrast, augmented maternal potentiation was only observed in Mor-F1 offspring. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:714-723, 2016. PMID:26999300

  10. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    USGS Publications Warehouse

    Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.

  11. TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

    SciTech Connect

    Jabeen, Shabnam

    2013-10-20

    This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of √ s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of √ s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

  12. Longitudinal damping in the Tevatron collider

    SciTech Connect

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  13. Top physics at the Tevatron Collider

    SciTech Connect

    Margaroli, Fabrizio; /Purdue U.

    2007-10-01

    The top quark has been discovered in 1995 at the CDF and DO experiments located in the Tevatron ring at the Fermilab laboratory. After more than a decade the Tevatron collider, with its center-of-mass energy collisions of 1.96 TeV, is still the only machine capable of producing such exceptionally heavy particle. Here I present a selection of the most recent CDF and DO measurements performed analyzing {approx} 1 fb{sup -1} of integrated luminosity.

  14. Status of the MEIC ion collider ring design

    SciTech Connect

    None, None

    2015-07-14

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  15. Status of the MEIC ion collider ring design

    SciTech Connect

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  16. Accelerator Test Facility for Muon Collider and Neutrino Factory R&d

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. This article briefly reviews the needs and possibilities for a Muon Collider beam test facility to carry out the R&D program on the collider front-end and 6D cooling demonstration experiment.

  17. Composite leptoquarks in hadronic colliders

    SciTech Connect

    Eboli, O.J.P.; Olinto, A.V.

    1988-12-01

    We study the production of composite scalar leptoquarks in hadronic colliders (CERN p-barp, Fermilab Tevatron p-barp, and the Superconducting Super Collider pp). We examine its direct single production via qg..-->..l+leptoquark, and its effect on the production of lepton pairs (p/sup (-)/p..-->..l/sup +/l/sup -/).

  18. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  19. Colliding Beam Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Rostoker, Norman; Qerushi, Artan; Binderbauer, Michl

    2003-06-01

    The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker-Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are generic in that they do not relate to specific confinement devices. In all cases except for a Tokamak with D-T fuel the recirculating power was found to exceed the fusion power by a large factor. In this paper we criticize the generality claimed for this calculation. The ratio of circulating power to fusion power is calculated for the Colliding Beam Reactor with fuels D-T, D-He3 and p-B11. The results are respectively, 0.070, 0.141 and 0.493.

  20. When Worlds Collide

    SciTech Connect

    Chang, Spencer; Kleban, Matthew; Levi, Thomas S E-mail: mk161@nyu.edu

    2008-04-15

    We analyze the cosmological signatures visible to an observer in a Coleman-de Luccia bubble when another such bubble collides with it. We use a gluing procedure to generalize the results of Freivogel, Horowitz and Shenker to the case of a general cosmological constant in each bubble and study the resulting spacetimes. The collision breaks the isotropy and homogeneity of the bubble universe and provides a cosmological 'axis of evil' which can affect the cosmic microwave background in several unique and potentially detectable ways. Unlike more conventional perturbations to the inflationary initial state, these signatures can survive even relatively long periods of inflation. In addition, we find that for a given collision the observers in the bubble with smaller cosmological constant are safest from collisions with domain walls, possibly providing another anthropic selection principle for small positive vacuum energy.

  1. The evolution of future geogenic matter fluxes due Enhanced Weathering: Results from the Antwerp Experiment

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Weiss, Andreas; Struyf, Eric; Schoelynck, Jonas; Meire, Patrick; Amann, Thorben

    2015-04-01

    Understanding the evolution of geogenic matter fluxes in soils due the application of rock products ontop of soils is relevant to evaluate alteration of soil solutions and saturation states of solutes. In the future the practice of applying rock products will continue and areas affected will likely spread (Hartmann et al., 2013). This trend will likely be fuelled by attempts to optimize carbon dioxide removal by increasing biomass production, soil organic carbon stocks, increase crop production or afforestation. All those efforts demand a certain amount of geogenic nutrients, which need to be replaced. To investigate the release patterns and the downward transport of an array of elements, and to study their fate as well as reaction processes, altered through this practice, a mesocosm experiment was established at Antwerp University. Extended results will be presented (c.f., Weiss et al., 2014) focusing on the release and transport of DIC (dissolved inorganic carbon) and Mg (magnesium) in the soil column downwards after the application of 22 kg m-2 olivine powder. Elevated DIC and Mg concentrations are detected in case of olivine is applied to mesocosms with wheat and barley, if compared to the mesocsoms without plants, and without olivine. The change patterns in concentrations and fluxes will be discussed. Hartmann, J., et al. (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Reviews of Geophysics; 51(2), 113-149. doi: 10.1002/rog.20004 Weiss, A., et al. (2014) The overlooked compartment of the critical-zone-complex, considering the evolution of future geogenic matter fluxes: Agricultural topsoils. Procedia Earth and Planetary Science, 10, 339-342. doi:10.1016/j.proeps.2014.08.032

  2. A model for computing at the SSC (Superconducting Super Collider)

    SciTech Connect

    Baden, D. . Dept. of Physics); Grossman, R. . Lab. for Advanced Computing)

    1990-06-01

    High energy physics experiments at the Superconducting Super Collider (SSC) will show a substantial increase in complexity and cost over existing forefront experiments, and computing needs may no longer be met via simple extrapolations from the previous experiments. We propose a model for computing at the SSC based on technologies common in private industry involving both hardware and software. 11 refs., 1 fig.

  3. A scalable parallel open architecture data acquisition system for low to high rate experiments, test beams and all SSC (Superconducting Super Collider) detectors

    SciTech Connect

    Barsotti, E.; Booth, A.; Bowden, M.; Swoboda, C. ); Lockyer, N.; VanBerg, R. )

    1989-12-01

    A new era of high-energy physics research is beginning requiring accelerators with much higher luminosities and interaction rates in order to discover new elementary particles. As a consequences, both orders of magnitude higher data rates from the detector and online processing power, well beyond the capabilities of current high energy physics data acquisition systems, are required. This paper describes a new data acquisition system architecture which draws heavily from the communications industry, is totally parallel (i.e., without any bottlenecks), is capable of data rates of hundreds of GigaBytes per second from the detector and into an array of online processors (i.e., processor farm), and uses an open systems architecture to guarantee compatibility with future commercially available online processor farms. The main features of the system architecture are standard interface ICs to detector subsystems wherever possible, fiber optic digital data transmission from the near-detector electronics, a self-routing parallel event builder, and the use of industry-supported and high-level language programmable processors in the proposed BCD system for both triggers and online filters. A brief status report of an ongoing project at Fermilab to build the self-routing parallel event builder will also be given in the paper. 3 figs., 1 tab.

  4. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    SciTech Connect

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation.

  5. Cerium Doped LSO/LYSO Crystal Development for future High Energy Physics Experiments

    SciTech Connect

    Ren-Yuan Zhu

    2012-03-25

    Because of their high stopping power and fast and bright scintillation, cerium doped LSO and LYSO crystals have attracted a broad interest in the physics community pursuing precision electromagnetic calorimeter for future high energy physics experiments. Their excellent radiation hardness against gamma-rays, neutrons and charged hadrons also makes them a preferred material for calorimeters to be operated in a severe radiation environment, such as the HL-LHC. An effort was made at SIPAT to grow 25 X{sub 0} (28 cm) long LYSO crystals for high energy physics applications. In this paper, the optical and scintillation properties and its radiation hardness against gamma-ray irradiations up to 1 Mrad are presented for the first 2.5 X 2.5 X 28 cm LYSO sample. An absorption band was found at the seed end of this sample and three other 20 cm long samples, which was traced back to a bad seed crystal used in the corresponding crystal growth process. Significant progresses in optical and scintillation properties were achieved for large size LYSO crystals after eliminating this absorption band.

  6. The SPi chip as an integrated power management device for serial powering of future HEP experiments

    SciTech Connect

    Trimpl, M.; Deptuch, G.; Gingu, C.; Yarema, R.; Holt, R.; Weber, M.; Kierstead, J.; Lynn, D.; /Brookhaven

    2009-01-01

    Serial powering is one viable and very efficient way to distribute power to future high energy physics (HEP) experiments. One promising way to realize serial powering is to have a power management device on the module level that provides the necessary voltage levels and features monitoring functionality. The SPi (Serial Powering Interface) chip is such a power manager and is designed to meet the requirements imposed by current SLHC upgrade plans. It incorporates a programmable shunt regulator, two linear regulators, current mode ADCs to monitor the current distribution on the module, over-current detection, and also provides module power-down capabilities. Compared to serially powered setups that use discrete components, the SPi offers a higher level of functionality in much less real estate and is designed to be radiation tolerant. Bump bonding techniques are used for chip on board assembly providing the most reliable connection at lowest impedance. This paper gives an overview of the SPi and outlines the main building blocks of the chip. First stand alone tests are presented showing that the chip is ready for operation in serially powered setups.

  7. Past experiences, current realities and future possibilities for HIV nursing education and care in Canada

    PubMed Central

    Mill, Judy; Caine, Vera; Arneson, Cheryl; Maina, Geoffrey; De Padua, Anthony; Dykeman, Margaret

    2016-01-01

    Nurses may have inadequate basic education and opportunities for continuing education in relation to HIV care. As well nurses may perpetuate and impose stigma. We developed, implemented and evaluated an educational intervention to reduce stigma and discrimination among nurses providing HIV care. The intervention used a mentorship model that brought experienced nurses in HIV care and people living with HIV together with nurses who wanted to learn more about HIV nursing care. We examined our findings in relation to past experiences, current realities and future possibilities for HIV nursing education and care in Canada. Our findings demonstrated that many nurses were interested in improving their HIV care, yet few opportunities existed for them to do so. We found that HIV nursing education and expertise were significantly different among participants and across clinical sites. This difference was visible in basic education, services offered for HIV and AIDS care, the collaborative and inter-professional nature of care, and opportunities for continuing education. Mentorship education is an effective strategy to not only address a critical void in knowledge, but also to promote a fundamental shift in attitudes. With the recent call by the World Health Organization to place nurses in key positions to provide HIV care, treatment and prevention, it is imperative to prepare nurses at both the undergraduate and graduate level, as well as those in practice, to fulfill this call. PMID:27152130

  8. Materials International Space Station Experiment (MISSE): Overview, Accomplishments and Future Needs

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Pippin, Gary; Jenkins, Philip P.; Walters, Robert J.; Thibeault, Sheila A.; Palusinski, Iwona; Lorentzen, Justin R.

    2014-01-01

    Materials and devices used on the exterior of spacecraft in low Earth orbit (LEO) are subjected to environmental threats that can cause degradation in material properties, possibly threatening spacecraft mission success. These threats include: atomic oxygen (AO), ultraviolet and x-ray radiation, charged particle radiation, temperature extremes and thermal cycling, micrometeoroid and debris impacts, and contamination. Space environmental threats vary greatly based on spacecraft materials, thicknesses and stress levels, and the mission environment and duration. For more than a decade the Materials International Space Station Experiment (MISSE) has enabled the study of the long duration environmental durability of spacecraft materials in the LEO environment. The overall objective of MISSE is to test the stability and durability of materials and devices in the space environment in order to gain valuable knowledge on the performance of materials in space, as well as to enable lifetime predictions of new materials that may be used in future space flight. MISSE is a series of materials flight experiments, which are attached to the exterior of the International Space Station (ISS). Individual experiments were loaded onto suitcase-like trays, called Passive Experiment Containers (PECs). The PECs were transported to the ISS in the Space Shuttle cargo bay and attached to, and removed from, the ISS during extravehicular activities (EVAs). The PECs were retrieved after one or more years of space exposure and returned to Earth enabling post-flight experiment evaluation. MISSE is a multi-organization project with participants from the National Aeronautics and Space Administration (NASA), the Department of Defense (DoD), industry and academia. MISSE has provided a platform for environmental durability studies for thousands of samples and numerous devices, and it has produced many tangible impacts. Ten PECs (and one smaller tray) have been flown, representing MISSE 1 through MISSE

  9. Introduction to colliding beams at Fermilab

    SciTech Connect

    Thompson, J.

    1994-10-01

    The Fermi National Accelerator Laboratory is currently the site of the world`s highest center-of-mass energy proton-antiproton colliding beam accelerator, the Tevatron. The CDF and D{O} detectors each envelop one of two luminous regions in the collider, and are thus wholly dependent on the accelerator for their success. The Tevatron`s high operating energy, reliability, and record setting integrated luminosity have allowed both experiments to make world-class measurements and defined the region of physics that each can explore. The following sections are an overview of the highlights of the accelerator operation and are compiled from many sources. The major sources for each section are listed at the beginning of that section.

  10. Collider signature of T-quarks

    SciTech Connect

    Carena, Marcela; Hubisz, Jay; Perelstein, Maxim; Verdier, Patrice; /Lyon, IPN

    2006-10-01

    Little Higgs models with T Parity contain new vector-like fermions, the T-odd quarks or ''T-quarks'', which can be produced at hadron colliders with a QCD-strength cross section. Events with two acoplanar jets and large missing transverse energy provide a simple signature of T-quark production. We show that searches for this signature with the Tevatron Run II data can probe a significant part of the Little Higgs model parameter space not accessible to previous experiments, exploring T-quark masses up to about 400 GeV. This reach covers parts of the parameter space where the lightest T-odd particle can account for the observed dark matter relic abundance. We also comment on the prospects for this search at the Large Hadron Collider (LHC).

  11. The CERN SPS proton-antiproton collider

    NASA Astrophysics Data System (ADS)

    Schmidt, Rudiger

    One of CERN's most ambitious and successful projects was the search for the intermediate bosons, W and Z [1]. The accelerator part of the project relied on a number of innovations in accelerator physics and technology. The invention of the method of stochastic cooling and the extension by many orders of magnitude beyond the initial proof of principle demonstration allowed the construction of the Antiproton Accumulator. Major modifications to the 26 GeV PS complex and the conversion of the 300 GeV SPS, which had just started up as an accelerator, to a pbar p collider were required. The SPS collider had to master the beam-beam effect far beyond limits reached before and had to function in a tight symbiosis with the UA1 and UA2 experiments.

  12. SMART-1 Technology and Science Experiments in Preparation of Future Missions and ESA Cornerstones

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Racca, G. D.; Foing, B. H.; SMART-1 Project

    1999-12-01

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, aimed at the demonstration of enabling technologies for future scientific missions. SMART-1's prime technology objective is the demonstration of the solar primary electric propulsion, a key for future interplanetary missions. SMART-1 will use a Stationary Plasma Thruster engine, cruising 15 months to capture a Moon polar orbit. A gallery of images of the spacecraft is available at the web site: http://www.estec.esa.nl/spdwww/smart1/html/11742.html SMART-1 payload aims at monitoring the electric propulsion and its spacecraft environment and to test novel instrument technologies. The Diagnostic Instruments include SPEDE, a spacecraft potential plasma and charged particles detector, to characterise both spacecraft and planetary environment, together with EPDP, a suite of sensors monitoring secondary thrust-ions, charging and deposition effects. Innovative spacecraft technologies will be tested on SMART-1 : Lithium batteries and KATE, an experimental X/Ka-band deep-space transponder, to support radio-science, to monitor the accelerations of the electric propulsion and to test turbo-code technique, enhancing the return of scientific data. The scientific instruments for imaging and spectrometry are: \\begin{itemize} D-CIXS, a compact X-ray spectrometer based on novel SCD detectors and micro-structure optics, to observe X-ray celectial objects and to perform lunar chemistry measurements. SIR, a miniaturised quasi-monolithic point-spectrometer, operating in the Near-IR (0.9 ÷ 2.4 micron), to survey the lunar crust in previously uncovered optical regions. AMIE, a miniature camera based on 3-D integrated electronics, imaging the Moon, and other bodies and supporting LASER-LINK and RSIS. RSIS and LASER-LINK are investigations performed with the SMART-1 Payload: \\begin{itemize} RSIS: A radio-science Experiment to validate in-orbit determination of the libration of the celestial target, based on high

  13. The standard model and colliders

    SciTech Connect

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated. (LEW)

  14. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  15. Vanilla technicolor at linear colliders

    NASA Astrophysics Data System (ADS)

    Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco

    2011-08-01

    We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.

  16. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    NASA Astrophysics Data System (ADS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  17. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  18. Short-Term International Internship Experiences for Future Teachers and Other Child Development Professionals

    ERIC Educational Resources Information Center

    Miller, Kari Knutson; Gonzalez, Amber M.

    2016-01-01

    This paper examines outcomes associated with participation in short-term, international internship experiences. Results suggest short-term international internship experiences contribute to rich personal and professional development outcomes. Findings highlight participant challenges associated with initial internship experiences, professional…

  19. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  20. Status and Future Sensitivities from the νμ Disappearance Analysis in the NOvA Experiment

    NASA Astrophysics Data System (ADS)

    Baird, Michael; NOvA Collaboration

    2015-04-01

    The NOvA experiment is a long-baseline neutrino oscillation experiment based out of Fermilab. It uses the newly upgraded NuMI beam line with two liquid scintillator detectors, one at Fermilab and a second 14 kton detector in northern Minnesota. The νμ disappearance analysis can significantly improve the world's best measurement of sin2(2θ23) . Presented here is the status of this analysis as well as future sensitivities.

  1. Education and Public Outreach at EGO/Virgo: past experiences and future projects

    NASA Astrophysics Data System (ADS)

    Razzano, Massimiliano

    2015-08-01

    We are approaching the new generation Gravitational Wave (GW) detector Era and in the next months a new exiting period for GW scientists will start enforcing collaboration and interactions among different scientific communities. We aim to reach a wider audience to spread this enthusiasm in the general public about our every day activities and let them know how it will change our understanding of the Universe, once revealed the Gravitational waves. In this talk, we will report about the activities of the last years and about the EGO/Virgo outreach plans for the future. The main goal of the Virgo/EGO outreach activity is to raise awareness and curiosity about the GW research projects. In the past years we informed the general public about science we do at EGO/Virgo site, trying to attract students in doing research, letting them know about the Virgo detector and involving them in small research activities. We run a regular program of site visits, and we often organized astronomical observations and science cafe' events which attracted a large number of people. Efforts were made also to involve kids in understanding our scientific job. We started a series of regular events in which art and science were fused.We are strengthening our outreach activities with common efforts in the Virgo laboratories which are spread all over in Europe.We plan to make available a scientific path within Virgo, where the public can do little experiences of science or for example tile, for a day, the activity of our researchers.

  2. Review Article: Persistent organic pollutants and landfills - a review of past experiences and future challenges.

    PubMed

    Weber, Roland; Watson, Alan; Forter, Martin; Oliaei, Fardin

    2011-01-01

    The landfilling and dumping of persistent organic pollutants (POPs) and other persistent hazardous compounds, such as polychlorinated biphenyls (PCBs), hexachlorocyclohaxane (HCH), polybrominated diphenylether (PBDEs) or perfluorooctane sulfonic acid (PFOS) can have significant adverse environmental consequences. This paper reviews past experiences with such disposal practices and highlights their unsustainability due to the risks of contamination of ecosystems, the food chain, together with ground and drinking water supplies. The use and associated disposal of POPs have been occurring for over 50 years. Concurrent with the phase-out of some of the most hazardous chemicals, the production of new POPs, such as brominated and fluorinated compounds has increased since the 1990s. These latter compounds are commonly used in a wide range of consumer goods, and as consumer products reach the end of their useful lives, ultimately enter waste recycling and disposal systems, in particular at municipal landfills. Because of their very slow, or lack of degradability, POPs will persist in landfills for many decades and possibly centuries. Over these extended time periods engineered landfill systems and their liners are likely to degrade, thus posing a contemporary and future risk of releasing large contaminant loads to the environment. This review highlights the necessity for alternative disposal methods for POP wastes, including destruction or complete removal from potential environmental release. In addition to such end of pipe solutions a policy change in the use pattern of persistent toxic chemicals is inevitable. In addition, inventories for the location and quantity of POPs in landfills, together with an assessment of their threat to ecosystems, drinking water and food resources are identified as key measures to facilitate appropriate management of risks. Finally the challenges of POP wastes in transition/developing countries, the risk of increased leaching of POPs from

  3. Achievements and future path of Tehran municipality in urban health domain: An Iranian experience

    PubMed Central

    Damari, Behzad; Riazi-Isfahani, Sahand

    2016-01-01

    Background: According to national laws and world experiences; provision, maintenance, and improving citizens’ health are considered to be the essential functions of municipalities as a "social institute". In order to equitably promote health conditions at urban level, particularly in marginal areas, since 2004 targeted efforts have been implemented in the municipality of Tehran metropolis. This study was intended to identify and analyze these targeted measures and tries to analyze health interventions in a conceptual framework and propose a future path. Methods: This is a qualitative study with content analysis approach. Reviewing documents and structured interviews with national health policy making and planning experts and executive managers of 22-region municipalities of Tehran metropolis were used to collect data. The data were analyzed on the basis of conceptual framework prepared for urban health in 4 domains including municipal interventions, goal achievements, drivers and obstacles of success, and the way forward. Results: From the viewpoint of interviewees, these new health actions of Tehran municipality are more based on public participation and the municipality was able to prioritize health issue in the programs and policies of Tehran city council. Tehran municipality has accomplished three types of interventions to improve health, which in orders of magnitude are: facilitative, promotional, and mandatory interventions. Development and institutionalization of public participation is the greatest achievement in health-oriented actions; and expansion of environmental and physical health-oriented facilities and promoting a healthy lifestyle are next in ranks. Conclusion: Since management alterations seriously challenges institutionalization of actions and innovations especially in the developing countries, it is suggested that mayors of metropolitan cities like Tehran document and review municipal health measures as soon as possible and while eliminating

  4. Beam Collimation at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.

    2003-12-01

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  5. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  6. [New technology for linear colliders

    SciTech Connect

    McIntyre, P.M.

    1992-08-12

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

  7. Physicists dream of supersized collider

    NASA Astrophysics Data System (ADS)

    Hao, Cindy

    2015-12-01

    Particle physicists in China are hopeful that the Chinese government will allocate 1 billion yuan (about £104m) to design what would be the world's largest particle accelerator - the Circular Electron Positron Collider (CEPC).

  8. Proceedings of the workshop on new kinds of positron sources for linear colliders

    SciTech Connect

    Clendenin, J.; Nixon, R.

    1997-06-01

    It has been very clear from the beginning of studies for future linear colliders that the conventional positron source approach, as exemplified by the SLC source, is pushing uncomfortably close to the material limits of the conversion target. Nonetheless, since this type of positron source is better understood and relatively inexpensive to build, it has been incorporated into the initial design studies for the JLC/NLC. New ideas for positron sources for linear colliders have been regularly reported in the literature and at accelerator conferences for at least a decade, and indeed the recirculation scheme associated with the VLEPP design is nearly two decades old. Nearly all the new types of positron sources discussed in this workshop come under the heading of crystals (or channeling), undulators, and Compton. Storage ring and nuclear reactor sources were not discussed. The positron source designs that were discussed have varying degrees of maturity, but except for the case of crystal sources, where proof of principle experiments have been undertaken, experimental results are missing. It is hoped that these presentations, and especially the recommendations of the working groups, will prove useful to the various linear collider groups in deciding if and when new experimental programs for positron sources should be undertaken.

  9. A high energy e{sup +}e{sup {minus}} collider in a ``really large`` tunnel

    SciTech Connect

    Norem, J.; Keil, E.

    1996-12-31

    Recent developments in tunneling technology imply that it is possible to consider much larger tunnels for high energy circular colliders in the future. Tunnels with diameters of 200 km are being considered for a low field hadron collider called the Really Large Hadron Collider (RLHC). This tunnel might be produced for a cost of about 1000 $/m. An e{sup +}e{sup -} collider in this tunnel could perhaps study {ital t{anti t}} production at threshold with good resolution, Higgs production and e/p collisions at high energy. This note considers some of the parameters and issues of such a machine.

  10. Science and Technology of the TESLA Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2002-07-01

    Recent analyses of the long term future of particles physics in Asia, Europe, and the U.S.A. have led to the consensus that the next major facility to be built to unravel the secrets of the micro-cosmos is an electron-positron linear collider in the energy range of 500 to 1000 GeV. This collider should be constructed in an as timely fashion as possible to overlap with the Large Hadron Collider, under construction at CERN. Here, the scientific potential and the technological aspects of the TESLA projects, a superconducting collider with an integrated X-ray laser laboratory, are summarised.

  11. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGESBeta

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  12. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  13. Future directions for QCD

    SciTech Connect

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  14. Forging the Future between Two Different Worlds: Recent Chinese Immigrant Adolescents Tell Their Cross-Cultural Experiences

    ERIC Educational Resources Information Center

    Li, Jun

    2009-01-01

    In order to understand the interplay of culture and mind in immigrant adolescent learning and psychological adjustment, this multiple-case qualitative study examined salient home and school experiences told by recent Chinese immigrant youth in semistructured interviews and narrative essays. Forging the future between two different worlds defined,…

  15. Experience of Health Complaints and Help Seeking Behavior in Employees Screened for Depressive Complaints and Risk of Future Sickness Absence

    PubMed Central

    Jansen, N. W. H.; Stevens, F. C. J.; van Amelsvoort, L. G. P. M.; Kant, IJ.

    2010-01-01

    Introduction The aim of this study was to examine the associations between on the one hand depressive complaints and risk of future sickness absence and on the other hand experience of health complaints and help seeking behavior in the working population. Methods Cross-sectional data were used from employees working in the banking sector (n = 8,498). The screening instrument included measures to examine the risk of future sickness absence, depressive complaints and help seeking behavior. Results Of employees reporting health complaints, approximately 80% had already sought help for these complaints. Experience of health complaints and subsequent help seeking behavior differed between employees with mild to severe depressive complaints and employees at risk of future sickness absence. Experience of health complaints was highest in employees identified with both concepts (69%) compared with employees identified at risk of future sickness absence only (48%) and with mild to severe depressive complaints only (57%). In those employees identified with one or both concepts and who had not sought help already, intention to seek help was about 50%. Conclusions From a screening perspective, employees who do not experience health complaints or who do not have the intention to seek help may refuse participation in early intervention. This might be a bottleneck in the implementation of preventive interventions in the occupational health setting. PMID:20467796

  16. Experience, Intersubjectivity, and Reflection: A Human Science Perspective on Preparation of Future Professionals in Adaptive Physical Activity

    ERIC Educational Resources Information Center

    Standal, Øyvind F.; Rugseth, Gro

    2016-01-01

    The aim of this article is to show that and how philosophy and philosophical thinking can be of relevance for the preparation of future professionals in adaptive physical activity. To this end we utilize philosophical insights from the human science perspective on two central issues, namely experience and intersubjectivity, which are weaved…

  17. Muon muon collider: Feasibility study

    SciTech Connect

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  18. Understanding the nuclear initial state with an electron ion collider

    NASA Astrophysics Data System (ADS)

    Toll, Tobias

    2013-09-01

    In these proceedings I describe how a future electron-ion collider will allow us to directly measure the initial spatial distribution of gluons in heavy ions, as well as its variance ("lumpiness") in exclusive diffraction. I show the feasibility of such a measurement by means of simulated data from the novel event generator Sartre.

  19. Linear Collider Flavour Identification status report: Sensors for the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Stefanov, K. D.

    2007-12-01

    The Linear Collider Flavour Identification (LCFI) collaboration is continuing the work to develop column-parallel CCDs (CPCCD) and CMOS readout chips to be used in the vertex detector at the international linear collider (ILC). The CPCCD achieves several orders of magnitude faster readout than conventional CCDs because every column is equipped with amplifier and ADC, enabling efficient data taking with low occupancy. Already two generations of CPCCDs and readout chips have been manufactured and the first chips have been fully tested. The second generation devices are now being evaluated. A new CCD-based device, the in-situ storage image sensor (ISIS) has also been developed. The ISIS offers numerous advantages in terms of relaxed readout, increased radiation hardness and great immunity to EMI. In this paper we present the results from the tests of the CPCCDs, readout chips and ISIS, as well as the plans for future developments.

  20. Anisotropy expectations for ultra-high-energy cosmic rays with future high-statistics experiments

    NASA Astrophysics Data System (ADS)

    Rouillé d'Orfeuil, B.; Allard, D.; Lachaud, C.; Parizot, E.; Blaksley, C.; Nagataki, S.

    2014-07-01

    Context. Ultra-high-energy cosmic rays (UHECRs) have attracted a lot of attention in astroparticle physics and high-energy astrophysics, due to their challengingly high energies, and to their ability to constrain the physical processes and astrophysical parameters in the most energetic sources of the universe. Despite their very large acceptance, current detectors have failed to detect significant anisotropies in their arrival directions, which had been expected to lead to the long-sought identification of their sources. Some indications about the composition of the UHECRs, which may become heavier at the highest energies, have even called into question the possibility that such a goal could be achieved in the foreseeable future. Aims: We investigate the potential value of a new-generation detector, with an exposure increased by one order of magnitude, to overcome the current situation and make notable progress in detecting anisotropies and thus in the study of UHECRs. We take as an example the expected performances of the JEM-EUSO detector, assuming a uniform full-sky coverage with a total exposure of 300 000 km2 sr yr. Methods: We simulated realistic UHECR sky maps for a wide range of possible astrophysical scenarios allowed by the current constraints, taking the energy losses and photo-dissociation of the UHE protons and nuclei into account, as well as their deflections by intervening magnetic fields. These sky maps, built for both the expected statistics of JEM-EUSO and the current Pierre Auger Observatory statistics, as a reference, were analysed from the point of view of their intrinsic anisotropies, using the two-point correlation function. A statistical study of the resulting anisotropies was performed for each astrophysical scenario, varying the UHECR source composition and spectrum and the source density and exploring a set of five hundred independent realizations for each choice of a parameter set. Results: We find that significant anisotropies are

  1. Energy for the Future, Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Schultz, Robert

    This booklet provides background information and five experiments which focus on how energy is lost. Section I contains two experiments to help students discover how energy is lost in their homes. These experiments involve determining a home's location and the weather forces acting on it and completing a home energy audit. Section II contains two…

  2. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect

    Tait, Tim

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  3. Location and direction dependent effects in collider physics from noncommutativity

    SciTech Connect

    Haghighat, Mansour; Okada, Nobuchika; Stern, Allen

    2010-07-01

    We examine the leading order noncommutative corrections to the differential and total cross sections for e{sup +}e{sup -{yields}}qq. After averaging over the Earth's rotation, the results depend on the latitude for the collider, as well as the direction of the incoming beam. They also depend on the scale and direction of the noncommutativity. Using data from LEP, we exclude regions in the parameter space spanned by the noncommutative scale and angle relative to the Earth's axis. We also investigate possible implications for phenomenology at the future International Linear Collider.

  4. The Structure of Jets at Hadron Colliders

    SciTech Connect

    Larkoski, Andrew James

    2012-08-01

    Particle physics seeks to understand the interactions and properties of the fundamental particles. To gain understanding, there is an interplay between theory and experiment. Models are proposed to explain how particles behave and interact. These models make precise predictions that can be tested. Experiments are built and executed to measure the properties of these particles, providing necessary tests for the theories that attempt to explain the realm of fundamental particles. However, there is also another level of interaction between theory and experiment; the development of new experiments demands the study of how particles will behave with respect to the measured observables toward the goal of understanding the details and idiosyncrasies of the measurements very well. Only once these are well-modeled and understood can one be con dent that the data that are measured is trustworthy. The modeling and interpretation of the physics of a proton collider, such as the LHC, is the main topic of this thesis.

  5. Collider study on the loop-induced dark matter mediation

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2016-06-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  6. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  7. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  8. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  9. ATLAS pixel IBL modules construction experience and developments for future upgrade

    NASA Astrophysics Data System (ADS)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  10. The influence of classroom experiences on community college students self-efficacy, attitude, and future intentions

    NASA Astrophysics Data System (ADS)

    Dawkins, Linda Mulderig

    Science and technology are an integral part of everyday life. Therefore it is necessary that the general population have some understanding and appreciation for science. Participating in activities that are science-related is one way a person could enhance their understanding and appreciation for science. According to the Theory of Planned Behavior (TPB), the attitude and self-efficacy beliefs a person holds regarding an object or activity will influence behavioral intentions (Ajzen, 1991). Therefore, if science educators can have a positive influence on their students' attitude and sense of efficacy toward science, perhaps the result will be a populace who willingly participates in science-related activities, ultimately gaining a better understanding and appreciation for science. The present study examined the relationships between the classroom environment students experienced during a ten week period of introductory chemistry and their attitudes toward chemistry (and general science), chemistry self-efficacy, and intentions to participate in chemistry-related activities in the future. The participants of this study (N = 189) were Midwestern community college students enrolled in an introductory chemistry course. The efficacy scale of the Chemistry Attitude and Experiences Questionnaire (CAEQ) developed by Dalgety, Coll, and Jones (2003) was used to measure student chemistry self-efficacy. The attitude scale used in this study consisted of the attitude toward chemistry items of CAEQ and five additional items pertaining to general science attitude. The classroom environment scale was defined by two measures: (1) instructional pedagogies and (2) teacher immediacy behaviors. The items within the instructional pedagogies and teacher immediacy measures were based on previous research that focused on identifying teaching techniques and teacher attributes that were conducive to promoting an engaging, supportive classroom environment that would promote better attitude

  11. Future of B Physics at CDF and D0

    SciTech Connect

    M. Paulini

    2003-02-21

    In this contribution to the panel discussion on ''The Future of Hadron B Experiments'' held at the 8th International Conference on B Physics at Hadron Machines (Beauty 2002) at Santiago de Compostela, Spain, June 17-21, 2002, we explore the physics potential for B physics at CDF and D0 in five years and beyond. After a brief introduction to precision flavour physics, we concentrate our discussion on the future of CP violation by evaluating the prospects for measuring the CKM angles {beta}, {gamma} and {alpha} at the Tevatron Collider experiments CDF and D0 by the end of Run II.

  12. Muon collider interaction region design

    SciTech Connect

    Alexahin, Y.I.; Gianfelice-Wendt, E.; Kashikhin, V.V.; Mokhov, N.V.; Zlobin, A.V.; Alexakhin, V.Y.; /Dubna, JINR

    2010-05-01

    Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta}* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 10{sup 34} cm{sup -2}s{sup -1} with an adequate protection of magnet and detector components.

  13. Luminosity determination at proton colliders

    NASA Astrophysics Data System (ADS)

    Grafström, P.; Kozanecki, W.

    2015-03-01

    Luminosity is a key parameter in any particle collider, and its precise determination has proven particularly challenging at hadron colliders. After introducing the concept of luminosity in its multiple incarnations and offering a brief survey of the pp and p p bar colliders built to date, this article outlines the various methods that have been developed for relative-luminosity monitoring, as well as the complementary approaches considered for establishing an absolute luminosity scale. This is followed by a survey, from both a historical and a technical perspective, of luminosity determination at the ISR, the S p p ¯ S, the Tevatron, RHIC and the LHC. For each of these, we first delineate the interplay between the experimental context, the specificities of the accelerator, and the precision targets suggested by the physics program. We then detail how the different methods were applied to specific experimental environments and how successfully they meet the precision goals.

  14. Large size LSO and LYSO crystal scintillators for future high-energy physics and nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Chen, Jianming; Zhang, Liyuan; Zhu, Ren-yuan

    2007-03-01

    The high energy and nuclear physics community is interested in fast bright heavy crystal scintillators, such as cerium-doped LSO and LYSO. An investigation is being carried out to explore the potential use of the LSO and LYSO crystals in future physics experiments. Optical and scintillation properties, including longitudinal transmittance, emission and excitation spectra, light output, decay kinetics and light response uniformity, were measured for three long (2.5×2.5×20 cm) LSO and LYSO samples from different vendors, and were compared to a long BGO sample of the same size. The degradation of optical and scintillation properties under γ-ray irradiations and the radiation-induced phosphorescence were also measured for two long LYSO samples. Possible applications for a crystal calorimeter in future high energy and nuclear physics experiments are discussed.

  15. Chromaticity correction for a muon collider optics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  16. From Awareness to Action: Evaluation of the ITFL Experience for Future Development.

    ERIC Educational Resources Information Center

    Dave, Ravindra

    In 1987, when the United Nations proclaimed 1990 as International Literacy Year (ILY), it invited nongovernmental organizations (NGOs) to participate in national and international programs for the year. An evaluation of these programs was done in order to make recommendations for the future battle against worldwide illiteracy. The evaluation…

  17. Collaborations for Learning: The Experience of NASA's Classroom of the Future.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.; Ruberg, Laurie; Johnson, Tina; Kraus, Janet; Sowd, Ann

    1998-01-01

    NASA research into plant-based regenerative systems for sustaining colonies in space provides the core content for the Classroom of the Future (COTF), a NASA sponsored project that transfers research on space exploration to high school biology classrooms. This article describes and evaluates BioBlast (Better Learning through Adventure, Simulations…

  18. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    SciTech Connect

    Ball, S.J.; Kamyshkov, Y.A.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  19. Which Field Experiences Best Prepare Future School Leaders? An Analysis of Kentucky's Principal Preparation Program

    ERIC Educational Resources Information Center

    Dodson, Richard L.

    2014-01-01

    This paper examines the effectiveness of field experiences in preparing school principals for the exigencies of the job. Current school principals throughout Kentucky were surveyed regarding their perceptions of the utility and comparative effectiveness of field experiences in the principal preparation program (PPP) each attended. Surveys were…

  20. A Phenomenological Approach to Experiences with Technology: Current State, Promise, and Future Directions for Research

    ERIC Educational Resources Information Center

    Cilesiz, Sebnem

    2011-01-01

    In this paper I conceptualize experiences with technology as an object of study for educational technology research and propose phenomenology as a highly suitable method for studying this construct. I begin by reviewing existing research focusing on the construct of experiences with technology and the approaches utilized for its study. To augment…

  1. Middle School Students' Experiences on a Science Museum Field Trip as Preparation for Future Learning

    ERIC Educational Resources Information Center

    Watson, William A.

    2010-01-01

    Exhibits in informal science institutions, like science centers and museums, are often designed to help people learn, but research showing the immediate impact of experiences with exhibits on understanding is limited. This dissertation tested the hypothesis that the value of first-hand experience with an exhibit is not necessarily in its immediate…

  2. Staying True to the Core: Designing the Future Academic Library Experience

    ERIC Educational Resources Information Center

    Bell, Steven J.

    2014-01-01

    In 2014, the practice of user experience design in academic libraries continues to evolve. It is typically applied in the context of interactions with digital interfaces. Some academic librarians are applying user experience approaches more broadly to design both environments and services with human-centered strategies. As the competition for the…

  3. Creating Meaningful Art Museum Experiences for Young Children: Discussions with Future Art Teachers

    ERIC Educational Resources Information Center

    Szekely, Ilona

    2014-01-01

    This article addresses concerns with museum spaces set aside for children to make interactive art, unconnected to the museum experience upstairs. Can the fun and excitement children have in making and exploring art through direct experiences in these alternative spaces take place in front of the works in the collection? The attraction of…

  4. Main results of biological experiments on Russian orbital stations and its contribution in future life support system

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    Biological experiments in a field of space biology have been started before the first satellite flight. These experiments were devoted to an estimation of space radiation factors on living organisms and carried out in mountains. The systematic biological experiments in space have been started in 1971 with orbital station Salyut. In total more than 1000 experiments have been installed in space flights: fundamental investigations (panspermia theory, gravity biology, complex factors of space environment on biological objects) and applications focused on future biological life support systems. The investigations were directed to some tasks: influence of complex factors of space flight on living organisms at different stages of the evolution scale; investigations of proteins and DNA, cell, tissue, organism and assembled organisms under space flight factors with separation of individual factors, for example, microgravity and space radiation. The aim was to understand the organism reactions on different levels, to get complete ontogenesis cycle in space flight and to find adaption ability of organisms to extreme factors of the space flight. In course of investigations, the unique experimental equipment for orbital biological experiments has been designed; new methods for organism protection against the negative factors of space flight were found; developed new biotechnological products and processes; developed recommendations for space station interior with biological objects for psychological comfort of crew. The results showed a possibility and ways to include different organisms into biotechnological life support systems for future space stations and interplanet spaceships.

  5. Experimental gyroklystron research at the University of Maryland for application to TeV linear colliders

    SciTech Connect

    Lawson, W.; Granatstein, V.L.; Hogan, B.; Koc, U.V.; Latham, P.E.; Main, W.; Matthews, H.W.; Nusinovich, G.S.; Reiser, M.; Striffler, C.D.; Tantawi, S.

    1992-12-31

    X-Band and K-Band gyroklystrons are being evaluated for possible application to future linear colliders. So far we have examined the different two- and three-cavity configurations. We have achieved a maximum peak power of 27 MW in {approximately}1 {mu}s pulses at a gain of 36 dB and an efficiency exceeding 32%. The nominal parameters include a 430 kV. 150--200 A beam with an average perpendicular to parallel velocity ratio near one. In this paper, we detail our progress to date and describe our plans for future experiments that should culminate in amplifier outputs in excess of 100 MW in 1 {mu}s pulses.

  6. Experimental gyroklystron research at the University of Maryland for application to TeV linear colliders

    SciTech Connect

    Lawson, W.; Granatstein, V.L.; Hogan, B.; Koc, U.V.; Latham, P.E.; Main, W.; Matthews, H.W.; Nusinovich, G.S.; Reiser, M.; Striffler, C.D.; Tantawi, S.

    1992-01-01

    X-Band and K-Band gyroklystrons are being evaluated for possible application to future linear colliders. So far we have examined the different two- and three-cavity configurations. We have achieved a maximum peak power of 27 MW in [approximately]1 [mu]s pulses at a gain of 36 dB and an efficiency exceeding 32%. The nominal parameters include a 430 kV. 150--200 A beam with an average perpendicular to parallel velocity ratio near one. In this paper, we detail our progress to date and describe our plans for future experiments that should culminate in amplifier outputs in excess of 100 MW in 1 [mu]s pulses.

  7. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    SciTech Connect

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With the LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held

  8. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  9. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  10. String resonances at hadron colliders

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Antoniadis, Ignatios; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Stojkovic, Dejan; Taylor, Tomasz R.

    2014-09-01

    We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale Ms is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (integrated luminosity =3000 fb-1) with a center-of-mass energy of √s =14 TeV and at potential future pp colliders, HE-LHC and VLHC, operating at √s =33 and 100 TeV, respectively (with the same integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and γ +jet are completely independent of the details of compactification and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are open to discovery at the ≥5σ in dijet (γ +jet) HL-LHC data. We also show that for n=1 the dijet discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively. To compute the signal-to-noise ratio for n=2 resonances, we first carry out a complete calculation of all relevant decay widths of the second massive level string states (including decays into massless particles and a massive n=1 and a massless particle), where we rely on factorization and conformal field theory techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We demonstrate that for string scales Ms≲10.5 TeV (Ms≲28 TeV) detection of n =2 Regge recurrences at HE-LHC (VLHC) would become the smoking gun for D

  11. Designing biomedical proteomics experiments: state-of-the-art and future perspectives.

    PubMed

    Maes, Evelyne; Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Hooyberghs, Jef; Mertens, Inge; Baggerman, Geert; Ramon, Jan; Laukens, Kris; Martens, Lennart; Valkenborg, Dirk

    2016-05-01

    With the current expanded technical capabilities to perform mass spectrometry-based biomedical proteomics experiments, an improved focus on the design of experiments is crucial. As it is clear that ignoring the importance of a good design leads to an unprecedented rate of false discoveries which would poison our results, more and more tools are developed to help researchers designing proteomic experiments. In this review, we apply statistical thinking to go through the entire proteomics workflow for biomarker discovery and validation and relate the considerations that should be made at the level of hypothesis building, technology selection, experimental design and the optimization of the experimental parameters. PMID:27031651

  12. Measurement of the radiation field surrounding the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2004-01-28

    We present here the first direct and detailed measurements of the spatial distribution of the ionizing radiation surrounding a hadron collider experiment. Using data from two different exposures we measure the effect of additional shielding on the radiation field around the Collider Detector at Fermilab (CDF). Employing a simple model we parameterize the ionizing radiation field surrounding the detector.

  13. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  14. Future drought scenarios for the Greater Alpine Region based on dynamical downscaling experiments.

    NASA Astrophysics Data System (ADS)

    Haslinger, Klaus; Anders, Ivonne; Schöner, Wolfgang

    2014-05-01

    Large scale droughts have major ecologic, agricultural, economic as well as societal impacts by reducing crop yield, producing low flows in river systems or by limiting the public water supply. Under the perspective of rising temperatures and possibly altered precipitation regimes in the upcoming decades due to global climate change, we accomplish an assessment of future drought characteristics for the Greater Alpine Region (GAR) with regional climate model simulations. This study consists of two parts: First, the ability of the Regional Climate Model COSMO-CLM (CCLM) to simulate drought conditions in the past in space and time is evaluated. Second, an analysis of future drought scenarios for the GAR is conducted. As a drought index the Standardized Precipitation Evapotranspiration Index (SPEI) is used. For the evaluation of the Regional Climate Model in the past, simulations driven by ERA-40 are compared to observations. The gridded observational datasets of the HISTALP-database are used for evaluation in the first place. To assess the skill of CCLM, correlation coefficients between the SPEI of model simulations and gridded observations stratified by seasons and time scales are accomplished. For the analysis of future changes in the drought characteristics, four scenario runs are investigated. These are ECHAM5 and HadCM3 driven CCLM runs for the SRES scenarios A1B, A2 and B1. The SPEI is calculated spanning both the C20 and the scenario runs and are therefore regarded as transient simulations. Generally, trends to dryer annual mean conditions are apparent in each of the scenario runs, whereas the signal is rather strong in summer, contradicted by winter which shows a slight increase in precipitation north of the Alps. This in turn leads to higher variability of the SPEI in the future, as differences between winter (wetter or no change) and summer (considerably dryer) grow larger.

  15. Back to the future: Patient experience and the link to quality, safety, and financial performance.

    PubMed

    Cochrane, Bonnie S; Hagins, Mitch; King, John A; Picciano, Gino; McCafferty, Maureen M; Nelson, Brian

    2015-11-01

    Improving patient experience has emerged as an important healthcare policy priority across Canada. Tools and systems for monitoring patient experience metrics are becoming increasingly refined and standardized, and the trend toward greater accountability for improvements that are sustainable and affordable is well underway. For many healthcare professionals, this represents a renewed focus on core patient needs and priorities, following decades during which structural and technological changes have dominated healthcare agendas. Improving patient experience in our contemporary healthcare environment presents major challenges-and opportunities-for Canadian health leaders. The experience of Studer Group partner organizations in Canada is relevant and instructive in this context. These organizations have adopted a model known as Evidence-Based Leadership (EBL) that enables and supports the alignment of all activities and behaviours toward specific organizational goals, including measurable patient experience improvements. This article reviews case studies of organizations that have adopted EBL. These organizations are demonstrating rapid progress in patient experience indicators while simultaneously making gains in critical areas such as clinical outcomes, safety, physician and staff engagement, and financial performance. Emerging evidence concerning the factors and processes that underlie these improvements is also discussed. PMID:26487727

  16. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2010-01-08

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  17. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be 'at least 20 years away' for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  18. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  19. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  20. Japanese lab spells out collider needs

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-02-01

    Japan's High Energy Accelerator Research Organization (KEK) last month issued a plan for the International Linear Collider (ILC) that calls on Japan to ramp up its expertise as it prepares to host the world's next-generation particle collider.