Science.gov

Sample records for future ice sheet

  1. Commitments to future retreat of Antarctic and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    DeConto, Robert; Pollard, David

    2016-04-01

    The agreement reached at the COP21 United Nations Conference on Climate Change is aimed at limiting future increases in global mean temperature below 2°C. Here, we use a continental ice sheet/shelf model with new treatments of meltwater-enhanced calving (hydrofracturing) and marine terminating ice-cliffs, to explore future commitments to sea-level rise given limits of global mean warming between 1 and 3°C. In this case, ice-sheet model physics are calibrated against past ice-sheet response to temperatures warmer than today. The ice-sheet model is coupled to highly resolved atmosphere and ocean-model components, with imposed limits on future warming designed to mimic the idealized limits discussed at COP21. Both the short and long-term potential rise in global mean sea level are discussed in light of the range of allowances agreed in Paris. We also explore the sensitivity of Greenland and Antarctic ice sheets to plausible ranges of atmospheric versus ocean warming consistent with global mean temperatures between 1 and 3°C; and the resulting long-term commitments to sea-level rise over the coming centuries and millennia.

  2. A Grand Design for Future Ice Sheet Projections

    NASA Astrophysics Data System (ADS)

    Edwards, T.

    2014-12-01

    If we are to make robust projections of the probability of sea level rise from the ice sheets, these must be founded in both glaciological theory, represented by dynamical ice sheet models, and statistical inference, i.e. formal uncertainty quantification (UQ). No such studies yet exist for either the Greenland or Antarctic ice sheet. Therefore projections risk being physically implausible, difficult to interpret, or both. More optimistically, ice sheet models have many advantages over climate models with respect to uncertainty quantification. They are computationally cheaper, simpler to understand, and have fewer input parameters and output variables. It is relatively straightforward to switch between different model structures, such as physics approximations, basal drag laws, and resolution. Moreover the ice sheet modelling community is relatively small and is not constrained methodologically or culturally by the legacy - and pitfalls - of the CMIP multi-model "ensemble of opportunity". These advantages present us with a golden opportunity to create a new vision for policy-relevant sea level projections: we can design a grand ensemble that quantifies multiple modelling uncertainties in a statistically rigorous and efficient way. Such an ensemble systematically samples model parameters and structures, initial and boundary conditions, in the most informative way given the available resources and also allows statistical inference. I will review some of the UQ steps that have been taken in ice sheet modelling, such as Bayesian calibration of parameters and projections, history matching (statistically-formalised ruling out of poor parameter values), and emulation (statistical surrogates of numerical models). I will then describe how to implement these and other techniques in a multi-model ensemble design, including: sequential experimental design, which is more efficient than the usual Latin Hypercube; quantifying uncertainty in Full Stokes and high resolution models

  3. Learning from the past: Antarctic Eemian ice sheet dynamics as an analogy for future warming.

    NASA Astrophysics Data System (ADS)

    Sutter, Johannes; Thoma, Malte; Grosfeld, Klaus; Gierz, Paul; Lohmann, Gerrit

    2015-04-01

    Facing considerable warming during this century the stability of the West Antarctic Ice Sheet is under increasing scrutiny. Recent observations suggest that the marine ice sheet instability of the WAIS has already started . We investigate the dynamic evolution of the Antarctic Ice Sheet during the last interglacial, forcing a state of the art 3D ice sheet model with Eemian boundary conditions. We elucidate the role of ocean warming and surface mass balance on the coupled ice sheet/shelf and grounding line dynamics. Special focus lies on an ice sheet modeling assessment of Antarctica's potential contribution to global sea level rise during the Eemian. The transient model runs are forced by time slice experiments of a fully coupled atmosphere-ocean global circulation model, as well as different sets of sea level and bedrock reconstructions. The model result show strong evidences for a severe ice-sheet retreat in West Antartica, leading to substantical contribution to global sea level from the Southern Hemisphere. Additionally we compare future warming scenarios of West Antarctic Ice Sheet dynamics to our paleo ice sheet modeling studies.

  4. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    NASA Technical Reports Server (NTRS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  5. Long-term future contribution of the Greenland ice sheet to sea level rise

    NASA Astrophysics Data System (ADS)

    Calov, Reinhard; Robinson, Alex; Ganopolski, Andrey

    2015-04-01

    We investigate the impact of future cumulative anthropogenic emissions on the fate of the Greenland ice sheet. For this study, we use the polythermal ice sheet model SICOPOLIS, which is bi-directionally coupled with the regional climate model of intermediate complexity REMBO. We constrain our model parameters with simulations over two glacial cycles employing anomalies from the global CLIMBER-2 model. CLIMBER-2 treats the major components or the Earth system, including atmosphere, ocean, terrestrial vegetation and carbon cycle. As constraints we include the cumulative error in ice thickness, the surface mass balance partition (ratio between precipitation and ice discharge) and the ice elevation drop between Eemian and present-day at the NEEM ice core location. Our model includes a new ice discharge parameterization, which describes the ice loss via small-scale outlet glaciers in a heuristic statistical approach. Using the large-ensemble of model versions consistent with our constraints, we estimate the range of the long-term future contribution of the Greenland ice sheet to sea-level rise under global warming. On the 100,000-year time scale, there is a visible modulation over the CO2 signal in the simulated Greenland ice volume caused by the 20,000 years precessional cycle of insolation. In nearly all of our scenarios (500 to 5000 Gt carbon cumulative emissions), the Greenland is sheet fully decays in the future after at least 40,000 years. For the extreme scenario (5000 Gt), the Greenland ice sheet decays much faster - after about 5000 years, while there is still 80% of the ice sheet left after 40,000 years only for the model versions with a low temperature sensitivity and the low cumulative carbon emission scenario (500 Gt). Our results underline that without future negative CO2 emissions, irreversible loss of Greenland ice sheet is essentially unavoidable.

  6. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  7. Current and future darkening of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated

  8. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss.

    PubMed

    Gomez, Natalya; Pollard, David; Holland, David

    2015-01-01

    The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet-sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica. PMID:26554381

  9. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss

    NASA Astrophysics Data System (ADS)

    Gomez, Natalya; Pollard, David; Holland, David

    2015-11-01

    The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet-sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica.

  10. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  11. On the reconstruction of palaeo-ice sheets: Recent advances and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hättestrand, Clas; Heyman, Jakob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; Jakobsson, Martin; Kirchner, Nina; Livingstone, Stephen J.; Margold, Martin; Murton, Julian B.; Noormets, Riko; Peltier, W. Richard; Peteet, Dorothy M.; Piper, David J. W.; Preusser, Frank; Renssen, Hans; Roberts, David H.; Roche, Didier M.; Saint-Ange, Francky; Stroeven, Arjen P.; Teller, James T.

    2015-10-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus

  12. On the Reconstruction of Palaeo-Ice Sheets: Recent Advances and Future Challenges

    NASA Technical Reports Server (NTRS)

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hattestrand, Clas; Heyman, Jacob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; Peteet, Dorothy M.

    2015-01-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus

  13. Will ice flow in land-terminating regions of the Greenland ice sheet accelerate under future climate warming?

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Hubbard, A.

    2015-12-01

    Recent observations and modelling studies investigating the dynamic response of land-terminating regions of the Greenland ice sheet to a warmer climate remain at best unreconciled and at worst equivocal and contradictory. Some studies suggest that ice flow will be regulated over annual time scales by the development of efficient subglacial drainage. Others suggest that such self-regulation processes may not be effective at higher elevations and that the recent and projected expansion of supraglacial lakes further into the ice sheet interior has lead to increased ice flow at high elevations. On the other hand, the observation that rapid in situ supraglacial lake drainage events may be triggered by precursory basal motion have led to the argument that, by inference, such lake drainage in the interior may be impossible, or at least hindered, by reduced strain rates and lack of surface crevasses in these regions. The response of the Greenland ice sheet to a warmer, wetter climate, in which late summer and autumnal cyclonic weather events drive widespread melt, rainfall and transient accelerations may also need to be accounted for in assessments of future Greenland ice mass loss if predicted changes in Greenland's climate are realised. This talk will critically assess recent insights gained into this topic, attempt to resolve some of them, and suggest directions for future research.

  14. An assessment of the contribution of the Greenland ice sheet to future sea level rise

    NASA Astrophysics Data System (ADS)

    Geyer, M.; Melia, D. Salas y.

    2012-04-01

    We assess the order of magnitude of future sea level rise due to the melting of the Greenland ice sheet. To this end, we forced GRISLI ice sheet model (LGGE, France) with output from climate simulations run with CNRM-CM5 in the framework of CMIP5 (Coupled Model Intercomparison Project phase 5). GRISLI is a 3D thermo-mechanically coupled ice sheet model which mixes shallow ice approximation and shallow shelf approximation. The horizontal resolution is 15km. We use surface mass balance modeled by CNRM-CM5 as a top boundary conditions. CNRM-CM5 is a global coupled climate model developed by CNRM/CERFACS (France). This new global coupled climate model is based on the ocean-atmosphere core formed by the most up-to-date versions of NEMO and ARPEGE-Climat. Surface-atmosphere exchanges, sea ice and river routing are respectively represented by SURFEX v5, Gelato v5 and TRIP models. The atmospheric component of CNRM-CM5 has 31 vertical levels and a horizontal resolution of 1.4°, and the ocean has 42 levels and a horizontal resolution of 1°. GRISLI was forced with the output of a preindustrial simulation run with CNRM-CM5 in order to generate an initial state for the ice sheet that is in near-equilibrium with the preindustrial climate. Then, GRISLI was forced with CNRM-CM5 data from a 1850-2005 historical experiment. From 2006, several scenario experiments run with CNRM-CM5 were run: RCP2.6, RCP4.5 and RCP8.5 over 2006-2300. We estimate the additional sea level rise over the whole 21st century. It should be noted that for the RCP8.5 scenario the melting rate of Greenland accelerates very rapidly after the 21st century, which results in almost total melting of Greenland ice sheet before year 2800. This acceleration phenomenon is probably amplified by topographic changes induced by the shrinking of the ice sheet.

  15. Future ice ages and the challenges related to final disposal of nuclear waste: The Greenland Ice Sheet Hydrology Project

    NASA Astrophysics Data System (ADS)

    Lehtinen, A.; Claesson-Liljedahl, L.; Näslund, J.-O.; Ruskeeniemi, T.

    2009-04-01

    ) provides a good analogue for this purpose due to similarities in geology (in the selected study area), and the climate conditions and ice sheet size in Kangerlussuaq resemble the expected conditions in Fennoscandia during future glaciations. In 2005 and 2008 reconnaissance field trips were made to Kangerlussuaq, which confirmed the suitability of the area for the planned studies. According to the present Work Programme the investigations will be carried out in 2009-2012. The project is divided into four subprojects (SPA, SPB, SPC and SPD) addressing specific and different topics at or in relation to the ice margin: SPA (ice sheet hydrology and glacial groundwater formation); SPB (subglacial ice sheet hydrology), SPC (hydrogeochemistry and hydrogeology) and SPD (periglacial environment: biosphere and permafrost). The main objectives of SPA and SPB are to gain a better process understanding of supra- and subglacial hydrology. Qualitative and quantitative knowledge of the mechanisms, rates and distribution of the melt water recharge through the ice down to the bed, location and extension of warm-based areas and hydraulic pressure conditions at the base are the key issues to be studied. This will be made by meteorological observations, GPS measurements, radar surveys, drilling through the ice sheet and by ice sheet modelling. SPC will further study the fate of melt water by extending the investigations into the bedrock. It is assumed that the high hydraulic pressures at the ice sheet bed force water into the fracture network prevailing in the bedrock. However, it is not known how the fracture network behaves under loading, what is the proportion of recharging water compared to the drainage through the bed sediments, what is the intrusion depth, how long the meltwater can sustain its oxic nature and what chemical composition the recharging water has when and if it reaches repository depth (400-700 m). SPC seeks to answer these questions by drilling and instrumenting boreholes

  16. Large-Ensemble modeling of last deglacial and future variations of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Pollard, David; DeConto, Robert; Chang, Won; Applegate, Patrick; Haran, Murali

    2015-04-01

    Recent observations of thinning and retreat of the Pine Island and Thwaites Glaciers identify the Amundsen Sea Embayment (ASE) sector of West Antarctica as particularly vulnerable to future climate change. To date, most future modeling of these glaciers has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data from ~20,000 years BP to present, focusing on the ASE but including other sectors of Antarctica. Following several recent ice-sheet studies, we use Large-Ensemble statistical techniques, performing sets of ~500 to 1000 runs with varying model parameters. The model is run for the last 40 kyrs on 10 to 20-km grids, both on continental domains and also on nested domains over West Antarctica. Various types of objective scores for each run are calculated using reconstructed past grounding lines, relative sea level records, measured uplift rates, and cosmogenic elevation-age data. Runs are extended into the future few millennia using RCP scenarios. The goal is to produce calibrated probabilistic ranges of model parameter values and quantified envelopes of future ice retreat. Preliminary results are presented for Large Ensembles with (i) Latin HyperCube sampling in high-dimensional parameter space, using statistical emulators and Markov Chain Monte Carlo techniques, and (ii) dense "factorial" sampling with a smaller number of parameters. Different ways of combining the types of scores listed above are explored. One robust conclusion is that for the warmer future RCP scenarios, most reasonable parameter combinations produce retreat deep into the West Antarctic interior. Recently proposed mechanisms of hydrofracturing and ice-cliff failure accelerate future West Antarctic retreat, and later produce retreat into East Antarctic basins.

  17. Modeling Greenland ice sheet present-day and near-future runoff contribution.

    NASA Astrophysics Data System (ADS)

    Peano, Daniele; Colleoni, Florence; Masina, Simona

    2014-05-01

    The last IPCC report [AR5, IPCC] has shown an increasing contribution from Greenland melting to global sea-level over the last decade, increasing from 0.09 mm/year (period 1992-2001) to 0.59 mm/year (period 2002-2011). Given its strategic location, i.e. close to the main North Atlantic ocean convection sites, it is therefore of importance to better assess ice sheet melting and its impact on regional ocean processes. So far, runoff estimate from ice sheet has been poorly constrained (e.g. [Hanna et al., 2005], [Hanna et al., 2008]) and most of the time the few estimates comes from regional atmospheric models or general circulation models (e.g. [Edwards et al., 2013], [Fettweis et al., 2013]). Here, we present the results from the implementation of a routing scheme into the thermo-mechanical ice sheet-ice shelves model GRISLI [Ritz et al, 2001], applied to the Greenland ice sheet mass evolution over the 20th and 21st centuries. The routing scheme is based on the "multiple flow direction" developed by [Quinn et al., 1991]. We further improved this scheme by considering topographic depressions as possible "lakes" to be filled by meltwater. In this way, when a depression is filled, only the extra water is routed towards the Greenland coasts. This allow us to obtain an estimate of the total amount of freshwater reaching the ocean at each time step of the model integration, as well as a time-varying spatial distribution of the runoff along the coasts of Greenland. This routing scheme is applied in routing both surface and basal meltwater. Surface meltwater is computed by means of a PDD method [Fausto et al., 2007] on which only a fraction is considered for routing while the basal melting rate is part of the heat balance at the ice-bed interface. Runoff is simulated on a 5km x 5km horizontal grid and validation is performed over the 20th century using mean annual total precipitation and air temperature at 2 meters from Era-Interim reanalysis [Dee et al., 2011]. Near future

  18. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  19. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy; van Kampenhout, Leo; van den Broeke, Michiel R.

    2016-02-01

    We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) with a horizontal resolution of ˜1° in the past, present and future (1850-2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131 {Gt year^{-1}} , which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenario RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 {Gt year^{-1}} per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet's edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.

  20. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These

  1. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model

    NASA Astrophysics Data System (ADS)

    Pollard, David; DeConto, Robert; Gomez, Natalya

    2016-04-01

    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  2. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  3. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  4. Assessing the impact of ocean temperature on the contribution of the Greenland ice sheet to future sea-level rise with a heuristic statistical approach

    NASA Astrophysics Data System (ADS)

    Calov, R.; Ganopolski, A.; Robinson, A.; Beckmann, J.; Alexander, D.; Perrette, M.

    2015-12-01

    We present large ensembles of simulations of the contribution of the Greenland ice sheet to sea-level rise under RCP2.6, 4.5 and 8.5 future scenarios over 300 years, including several extended simulations over millennia. To this end, we utilise the ice sheet model SICOPOLIS coupled with the regional climate system model of intermediate complexity REMBO. The loss of ice into fjords via outlet glaciers is resolved in a heuristic statistical approach. In this framework, we recently included into our model an ocean temperature parameterization to assess the impact of ice loss of the Greenland ice sheet. This work precedes our planned more comprehensive approach, which will resolve all important ice loss processes in a model of intermediate complexity of the Greenland glacial system. Our large ensembles of simulations under future scenarios serve to estimate the uncertainty of the impact of future ocean temperatures on the state of the Greenland ice sheet. A suite of initial configurations of the ice sheet is generated via paleo simulations over two glacial cycles by introducing present-day and Eemian constraints, such as a range in the mass balance partition, the shape of the ice sheet, the Eemian ice surface elevation change at an upstream position of the NEEM and further local constraints. The paleo simulations support the choice of the range of parameters of our ocean temperature parameterization. The large ensemble simulations together with the paleo constraints enable us to improve estimates onthe range of the possible impact of future changes in ocean temperature around Greenland on the ice loss of the Greenland ice sheet.

  5. The Elementary Marine Ice Sheet Model (EMISM)

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank

    2015-04-01

    behaviour is in line with recent model simulations of Pine Island and Thwaites Glacier systems. We perform a series of sensitivity experiments with EMISM and compare results to recent model intercomparisons of the Antarctic ice sheet (e.g., SeaRISE, Favier et al. (2013)). Future developments include the implementation of a variant of the coupled SSA/SIA to account for ice stream flow, upstream of grounding lines.

  6. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  7. Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Gillet-Chaulet, F.; Gagliardini, O.

    2011-12-01

    The full Stokes thermo-mechanically coupled model Elmer/Ice is applied to the Greenland ice sheet. Elmer/Ice employs the finite element method to solve the full Stokes equations, the temperature evolution equation and the evolution equation of the free surface. The general framework of this modeling effort is a contribution to the Sea-level Response to Ice Sheet Evolution (SeaRISE) assessment project, a community-organized effort to estimate the likely range of ice sheet contributions to sea level rise over the next few hundred years (http://tinyurl.com/srise-lanl, http://tinyurl.com/srise-umt). The present geometry (surface and basal topographies) is derived from data where the basal topography was created with the preservation of the troughs at the Jakobshavn Ice Stream, Helheim, Kangerdlussuaq and Petermann glaciers. A mesh of the computational domain is created using an initial footprint which contains elements of 5 km horizontal resolution and to limit the number elements on the footprint while maximizing the spatial resolution, an anisotropic mesh adaptation scheme is employed based on the Hessian matrix of the observed surface velocities. The adaptation is carried out with the tool YAMS and the final footprint is vertically extruded to form a 3D mesh of 320880 elements with 17 equidistant, terrain-following layers. The numerical solution of the Stokes and the heat transfer equations employs direct solvers with stabilization procedures. The boundary conditions are such that the temperature at the surface uses the present-day mean annual air temperature given by a parameterization or directly from the available data, the geothermal heat flux at the bedrock is given by data and the lateral sides are open boundaries. A non-linear Weertman law is used for the basal sliding. Results for the SeaRISE 2011 sensitivity experiments are presented so that six different experiments have been conducted, grouped in two sets. The Set C (three experiments) applies a change to

  8. Future rates of sea-level rise from long-term coupled climate-ice sheet projections

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2015-04-01

    Global mean sea level rose at an average rate of ~3.1 mm yr-1 since the early 1990s and is projected to rise between 0.28 and 0.98 m until year 2100, strongly depending on the assumed anthropogenic forcing scenario (IPCC AR5). This global rise in sea level is a combination of contributions from ocean thermal expansion, glaciers and small ice caps, from the Greenland and Antarctic ice sheets and changes in land water storage. Except for the latter, all components are expected to contribute to further sea-level rise well beyond the end of this century due to the long residence time of CO2 in the atmosphere. In the present study we present results from long-term future sea-level change experiments over 1000 years with the Earth system model of intermediate complexity LOVECLIM version 1.3 forced by four extended RCP scenarios. The model includes fully coupled three-dimensional thermomechanical models of the Greenland and Antarctic ice sheets, a global glacier melt algorithm to account for the response of mountain glaciers and small ice caps, and a diagnostic for oceanic thermal expansion. A range of the model's sensitivity to greenhouse warming was sampled by systematic parameter variations leading to an ensemble of model versions that simulate the present-day climate consistent with observations, while producing contrasted results for the future period. We analyse sea-level rates of change for all components over the course of the third millennium for the entire ensemble of model versions and forcing scenarios.

  9. Integrating climate science, glaciology and hydrology to predict future run-off at the Greenland ice sheet margin: A case study from Ilulissat, West Greenland.

    NASA Astrophysics Data System (ADS)

    Mottram, R. H.; Ahlstrøm, A. P.; Nielsen, C.; Reeh, N.; Stendel, M.; Andersen, S. Bech

    2009-04-01

    Predicting future hydrological regimes with regard to climate change is an increasingly important task for hydrologists. In polar regions the task is more difficult due to the lack of datasets and long term monitoring as well as logistical difficulties in remote and inaccessible basins. Here, we demonstrate a case study predicting the future run-off in a difficult to model hydrological basin by integrating a range of data, methods and numerical models. A study, evaluating the future conditions in the Pakitsup Akuliarusersua basin near Ilulissat, West Greenland, was initiated to determine the viability of a small hydropower scheme based around two lakes adjacent to the ice-sheet margin. This basin is mainly supplied by meltwater from the ice-sheet margin and the position of the ice sheet relative to the lakes makes them sensitive to changes in drainage pathways. We combined glaciological and hydrological models with data from climate models in order to resolve these issues. An ice dynamic model (Reeh, 1988), incorporating new digital terrain models for the ice sheet surface and basal topographies (Mottram and other, 2009), was driven by climate data from a combined global/regional climate model (HIRHAM4) for the period 1950-2080 (Stendel and others, 2007). The climate data was downscaled to catchment scale and corrected using observational data from the local area. The corrected HIRHAM4 output was used as input to a temperature-index mass-balance model (Reeh, 1991) and used to force the ice-dynamic model in order to predict the future ice sheet geometry and to drive meltwater production at the ice sheet surface. These ice sheet geometries were used to predict the size of the ice-sheet part of the hydrological basin for a range of different levels of ice sheet basal water pressure every 5 years from present day to 2080. Thus, the present analysis takes into account global and regional climate change, ice dynamical response and changes in the internal drainage system

  10. Impact of realistic future ice sheet discharge on the Atlantic ocean

    NASA Astrophysics Data System (ADS)

    van den Berk, Jelle

    2015-04-01

    Royal Netherlands Meteorological Institute, De Bilt, The Netherlands A high-end scenario of polar ice loss from the Greenland and Antarctic ice sheet is presented with separate projections for different mass-loss sites up to the year 2100. The resultant freshwater forcing is applied to a global climate model and the effects on sea-level rise are discussed. The simulations show strong sea level rise on the Antarctic continental shelves. To separate the effects of atmospheric warming and melt water we then ran four simulations. One without either forcing, one with both and two with one of each separately. Melt water leads to a slight additional depression of the Atlantic overturning circulation, but a strong decrease remains absent. The bulk of the strength reduction is due to higher atmospheric temperatures which inhibits deep water formation in the North Atlantic. The melt water freshens the upper layers of the ocean, but does not strongly impact buoyancy. The balance between North Atlantic Deep Water and Antarctic Bottom Water must then remain relatively unaffected. Only applying the melt water forcing to the Northern Hemisphere does not lead to a stronger effect. We conclude that the meltwater scenario only impacts the overturning circulation superficially because the deeper ocean is not affected. Transport through Bering Strait and across the zonal section at the latitude of Cape Agulhas is increased by increased atmospheric temperatures and adds some inertia to these transports. Reversing the atmospheric forcing bears this out when the transport then further increases. The freshwater, however, mitigates this inertia somewhat.

  11. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  12. Impact of present-day and future (1850-2200) ice sheet melting on regional climate in the fully coupled CESM

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan; van Kampenhout, Leo; Vizcaino, Miren; Le Bars, Dewi; van den Broeke, Michiel

    2015-04-01

    Earth's ice sheets are currently losing volume at an accelerating pace, thereby not only contributing to sea level rise, but also altering the global ocean freshwater budget. The latter potentially impacts ocean circulations, which in turn affects polar and global climate. However, state-of-the-art climate models (e.g. from CMIP5) do not include changing meltwater fluxes from ice sheets, since both ice dynamics and snow hydrology are poorly represented. Here we forced the fully coupled, ~1° resolution Community Earth System Model (CESM) with a best estimate of past (from 1850 onwards), present and future ice sheet freshwater forcing according to two climate change scenarios, RCP2.6 and RCP8.5, both until the year 2200. This dataset was constructed from observations and regional climate model output and contains high spatial (drainage basin) and temporal (daily) detail. We compare results of these CESM simulations to observations and benchmark CESM simulations, without ice sheet melting, and focus particularly on the North Atlantic region. We find that ice sheet melting leads to additional weakening in the meridional overturning circulation strength in the North Atlantic beyond the year 2100, with important consequences for the climate in northwestern Europe and Greenland itself.

  13. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.

    PubMed

    Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas

    2013-08-27

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337

  14. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-01-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas. PMID:25908601

  15. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics

    PubMed Central

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-01-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas. PMID:25908601

  16. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ~3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  17. Irregular oscillations of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Macayeal, Douglas R.

    1993-01-01

    Model simulations of the West Antarctic ice sheet suggest that sporadic, perhaps chaotic, collapse (complete mobilization) of the ice sheet occurred throughout the past one million years. The irregular behavior is due to the slow equilibration time of the distribution of basal till, which lubricates ice-sheet motion. This nonlinear response means that predictions of future collapse of the ice sheet in response to global warming must take into account its past history, and in particular, whether the present basal till distribution predisposes the ice sheet towards rapid change.

  18. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (+/-5.2) W m-2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  19. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Lhermitte, Stef; Lenaerts, Jan T. M.; Gorodetskaya, Irina V.; L'Ecuyer, Tristan S.; Noël, Brice; van den Broeke, Michiel R.; Turner, David D.; van Lipzig, Nicole P. M.

    2016-04-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m‑2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  20. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  1. Paleoclimate perspectives on Antarctic ice sheet sensitivity

    NASA Astrophysics Data System (ADS)

    Naish, Timothy

    2015-04-01

    Near- and long-term future projections of global mean sea level rise (SLR) are hampered by a lack of understanding of the potential dynamic contribution of the polar ice sheets, and in particular the Antarctic ice sheets. With the completion of the Intergovernmental Panel on Climate Change's Assessment Report a major challenge continues to be placing an upper bound in sea-level projections for 2100 and beyond. The so-called "deterministic" approach which sums observed- and model-projected trends in the known contributions (e.g. ice sheet and glacier surface mass balance, ocean thermal expansion and ground water storage changes) implies a "likely" upper bound of +100cm by 2080-2100. The "semi-empirical" approach which scales past observed sea-level change to mean surface temperature, and uses this relationship to scale future temperature scenarios, predicts a significantly higher upper bound of up to ~2m by 2100. The discrepancy between the two approaches may in part reflect the poorly understood contribution of ice dynamics - that is the rate of flow of ice sheets into the ocean. An ensemble of Antarctic ice sheet models produces highly divergent results for future sea-level projections, primarily because of uncertainties around the mass changes in the East Antarctic Ice Sheet with some models showing increased precipitation driving a positive mass balance overall, even with loss of the marine-based West Antarctic Ice Sheet (WAIS). Current best estimates suggest a 10-20cm dynamic ice sheet contribution by 2100 to global SLR. Of concern is that marine based ice sheets are highly sensitive to increases in ocean temperature at their margins and rapid disintegration may ensue if the ice sheets grounding lines retreat into deep sub-glacial basins. Recent studies show the highest rates of ice sheet thinning and retreat are occurring at locations around the WAIS where the surface ocean has warmed, and that some WAIS loss may now be irreversible. Geological records allow

  2. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise

    PubMed Central

    Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas

    2013-01-01

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337

  3. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet. PMID:26887494

  4. Isochronal ice sheet model: Simulate englacial tracer transport to reconstruct past climates and ice sheet volumes

    NASA Astrophysics Data System (ADS)

    Born, Andreas

    2015-04-01

    The full history of ice sheet and climate interactions is recorded in the vertical profiles of isotopic and other geochemical tracers in polar ice sheets. In addition, recent advances in radiostratigraphy uncover the englacial layering that contains information of past surface topographies and thus ice sheet volumes and sea level. Numerical simulations of these archives could afford great advances both in the interpretation of paleoclimatic tracers as well as to help improve ice sheet models themselves and future projections. However, fundamental mathematical shortcomings in existing ice sheet models subject tracers to spurious diffusion that renders such attempts unfeasible. Here, we propose a new vertical discretization for ice sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world ice flow as a thinning of underlying layers. Simulations of the last glacial cycle are presented that show good skill in reproducing the reconstructed profile of the oxygen isotopic ratio (δ18O) and the age scale (http://www.climate.unibe.ch/~born/ice_model.html).

  5. Epistemology of Ice Sheet Change

    NASA Astrophysics Data System (ADS)

    Waibel, M. S.; Hulbe, C. L.; Johnson, J. V.

    2012-12-01

    Recent change in the Greenland and West Antarctic ice sheets is observed as surface lowering accompanied by speed up of the ice. One of two types of perturbation is usually invoked to account for these changes, unbalanced forces at either the bed or at the marine margin of the ice sheet. The former is linked to change in meltwater at the bed while the latter is linked to a change in the temperature of the ocean near the margin. Observational data have been used together with numerical models to reproduce both cases. What we ask here is whether or not there is anything distinctive in the observed patterns of change that warrants preferring one type of perturbation over the other. That is, our interest is epistemological: is there anything distinctive in the pattern of ice sheet response to environmental forcing that allows the correct forcing to be identified using observational data? We hypothesize that specific changes in ice dynamics—perturbation at the bed or at the margin—lead to unique patterns of change in ice sheet flow, and thus geometry. For example, ocean warming may have its largest expression close to the coast and then propagate into the interior on time and spatial scales set by the material properties of the ice and various boundary conditions. Other perturbations may yield different patterns. The hypothesis is tested using an ice sheet model and a set of simple perturbations that represent environmental changes that might drive ice sheet change. We use surface lowering (ice thinning) as our indicator of change and conduct an EOF analysis to identify modes in that time dependent field. If leading modes derived from different perturbation experiments are distinguishable, the null hypothesis—that there is nothing diagnostic in the observed changes—is rejected and we conclude that observed patterns of change in ice sheets may be used to identify underlying causes for that change. This, in turn, would yield normal mode "finger prints" for

  6. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  7. Greenland Ice Sheet glacier motion and ice loss: New understanding of ice sheet behavior through remote sensing

    NASA Astrophysics Data System (ADS)

    Moon, T. A.; Fahnestock, M. A.; Scambos, T.; Joughin, I.

    2015-12-01

    Ice loss from the Greenland Ice Sheet makes up roughly a third of current sea level rise, also generating substantial local and regional freshwater fluxes. Containing more than 6 meters of sea level rise equivalent in ice, Greenland has the potential to contribute much more to rising ocean levels and freshening water in the future. Understanding the dynamics of the ice sheet, particularly the behavior of fast flowing coastal outlet glaciers, is critical to improving predictions of future ice sheet change and associated impacts. Combining velocity, glacier ice front, sea ice, and ice sheet surface melt data, we made several important advances in characterizing and understanding seasonal glacier behavior and the processes driving change: 1) seasonal velocity patterns fall into at least 3 distinct patterns, 2) these seasonal velocity patterns likely indicate differences in glacier responsiveness to ocean versus subglacial hydrologic processes, and 3) in some regions seasonal versus multi-year velocity changes appear most strongly influenced by different environmental factors. Further progress was previously hampered by limits in measurement resolution across space and time. To address this challenge, we are creating a new - and continuously growing - ice velocity dataset from Landsat 8 imagery. This data stream supports comprehensive global measurements of ice flow, providing a leap in our understanding of ice sheet motion across space and time. We offer a high-level discussion of our research findings and an introduction to the new Landsat 8-enabled data stream. Our results and measurement capabilities deliver critical new knowledge about ice sheet behavior and interaction with ocean and climate factors. These advances, in turn, have important implications for other elements of Earth system research, including climate, oceanography, and biology.

  8. West Antarctic Ice Sheet Initiative. Volume 2: Discipline Reviews

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1991-01-01

    Seven discipline review papers are presented on the state of the knowledge of West Antarctica and opinions on how that knowledge must be increased to predict the future behavior of this ice sheet and to assess its potential to collapse, rapidly raising the global sea level. These are the goals of the West Antarctic Ice Sheet Initiative (WAIS).

  9. Climate science: Ice streams waned as ice sheets shrank

    NASA Astrophysics Data System (ADS)

    Briner, Jason P.

    2016-02-01

    It emerges that ice discharge from a major ice sheet did not increase rapidly at the end of the most recent ice age. The finding points to steady, not catastrophic, ice-sheet loss and sea-level rise on millennial timescales. See Letter p.322

  10. Very high resolution modelling of the Surface Mass Balance of the Greenland Ice Sheet: Present day conditions and future prospects.

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Aðalgeirsdóttir, Guðfinna; Boberg, Fredrik; Hesselbjerg Christensen, Jens; Bøssing Christensen, Ole; Langen, Peter; Rodehacke, Christian; Stendel, Martin; Yang, Shuting

    2014-05-01

    Recent experiments with the Regional Climate Model (RCM) HIRHAM5 have produced new surface mass balance (SMB) estimates at the unprecedented high horizontal resolution of 0.05 degrees (~5.5km). These simulations indicate a present day SMB of 347 ± 98 Gt/year over the whole ice sheet averaged over the period 1989 - 2012 driven by the ERA-Interim reanalysis dataset. We validate accumulation rates over the ice sheet using estimates from shallow firn cores to confirm the importance of resolution to accurate estimates of accumulation. Comparison with PROMICE and GC-Net automatic weather station observations shows the model represents present day climate and climate variability well when driven by the ERA-Interim reanalysis dataset. Comparison with a simulation at 0.25 degrees (~27km) resolution from the same model shows a significantly different calculated SMB over the whole ice sheet, largely due to changes in precipitation distribution over Greenland. The very high resolution requires a more sophisticated treatment of sub-grid scale processes in the snow pack including meltwater retention and refreezing and an enhanced albedo scheme. Our results indicate retention processes account for a significant proportion of the total surface budget based on a new parameterization scheme in the model. SMB projections, driven by the EC-Earth Global Climate Model (GCM) at the boundaries for the RCP 4.5 scenario indicate a declining surface mass balance over the 21st century with some compensation for warmer summer temperatures and enhanced melt in the form of increased precipitation. A cold bias in the driving GCM for present day conditions suggests that this simulation likely underestimates the change in SMB. However, the downscaled precipitation fields compare well with those in the reanalysis driven simulations. A soon-to-be complete simulation uses driving fields from the GCM running the RCP8.5 scenario.

  11. Meteorites and the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A.

    1986-01-01

    The majority of the meteorite finds were located in the Allan Hills site. All the expected goals involving the recovery of rare or previously unknown types of meteorites, and even the recovery of lunar ejecta, were realized. The relationship between these remarkable concentrations of meteorites and the Antarctic ice sheet itself were less well documented. Ice flow vector studies were made and concentration models were proposed. Earlier estimates of the abundances of meteorite types were based on the number of falls in the world collections. The accumulated data and the future collected data will allow more reliable estimates of the source region of most meteorites.

  12. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  13. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  14. Response of the ice sheets to fluctuating temperatures

    NASA Astrophysics Data System (ADS)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2016-04-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing tempera- tures. Using coupled climate and ice sheet models long time forecasting is often made computationally feasible by running the ice sheet model in off-line mode, such that the temperature and precipitation fields govern- ing the mass balance of the ice sheets are taken to be constant over time. As the temperature and precipitation fluctuates, the asymmetry in the typical time scales for accumulation and ablation would result in a bias in the resulting mass balance of the ice sheet. We show that the steady state of the ice sheet is biased toward larger size of the ice sheet, if the short time scale fluctuations in temperature are not taken into account. This could potentially imply that the critical global temperature increase for ice sheet collapse is overestimated, thus the risk of collapse in a given climate change scenario underestimated. Our results highlight the need to consider the variability and not only the mean of the forcing of the mass balance of the ice sheet. We estimate that the effect of temperature variability on surface mass balance of the Greenland Ice Sheet in recent ensemble forecasting should be adjusted downward by as much as 10 percent of the present day observed value, if assuming a 2 degree warming. We are thus closer to a potential tipping point, than previously anticipated. Many predicted scenarios of the future climate show an increased variability in temperature over much of the Earth. In light of the findings presented here, it is important to gauge the extent to which this increased variability will further influence climate change.

  15. Greenland ice sheet mass balance: a review.

    PubMed

    Khan, Shfaqat A; Aschwanden, Andy; Bjørk, Anders A; Wahr, John; Kjeldsen, Kristian K; Kjær, Kurt H

    2015-04-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes. PMID:25811969

  16. Ice Stream Dynamics during Deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Stokes, C.; Margold, M.; Clark, C.

    2014-12-01

    Ice streams can rapidly drain large sectors of ice sheet interiors. At present, they account for approximately 50% and 90% of the mass loss from Greenland and Antarctica, respectively, but there are concerns over recent increases in ice discharge. This has been linked to atmospheric and oceanic warming, but the longer-term implications for ice sheet deglaciation are less clear. A key question is whether the activity of ice streams is predictably linked to climate-driven ice sheet mass balance, or whether their activity might accelerate deglaciation. To explore this, we analyse ice streaming during deglaciation of the Laurentide Ice Sheet (LIS) from ~18 to ~7 ka. Following a recent mapping inventory, we bracket the timing of >100 ice streams using published ice margin chronologies. At the Last Glacial Maximum (LGM), ice streams formed a drainage network similar to modern ice sheets. Numerous ice streams were located in topographic troughs and likely operated for thousands of years from the LGM. These drained the marine-based sectors of the northern and eastern margins of the ice sheet until ~11 ka and show a degree of spatial self-organisation. Other ice streams operated on much shorter time-scales and turned on and off, perhaps in as little as a few hundred years. These include large ice streams that switched positions over sedimentary bedrock at the western and southern terrestrial margins until ~13 ka. As the LIS retreated onto its low-relief and predominantly crystalline bedrock interior (after ~11 ka), a smaller number of large ice streams operated that were very wide (50-100 km), and have no modern analogue. Overall, the number of ice streams decreased during deglaciation and they drained a smaller proportion of the ice sheet margin: 30% at the LGM (similar to present-day Antarctica), 15% at 12 ka, and 12% at 10 ka. We use simple scaling relationships to estimate the mass loss delivered by ice streams and examine their role during deglaciation.

  17. Ice Sheet System Model as Educational Entertainment

    NASA Astrophysics Data System (ADS)

    Perez, G.

    2013-12-01

    Understanding the importance of polar ice sheets and their role in the evolution of Sea Level Rise (SLR), as well as Climate Change, is of paramount importance for policy makers as well as the public and schools at large. For example, polar ice sheets and glaciers currently account for 1/3 of the SLR signal, a ratio that will increase in the near to long-term future, which has tremendous societal ramifications. Consequently, it is important to increase awareness about our changing planet. In our increasingly digital society, mobile and web applications are burgeoning venues for such outreach. The Ice Sheet System Model (ISSM) is a software that was developed at the Jet Propulsion Laboratory/CalTech/NASA, in collaboration with University of California Irvine (UCI), with the goal of better understanding the evolution of polar ice sheets. It is a state-of-the-art framework, which relies on higher-end cluster-computing to address some of the aforementioned challenges. In addition, it is a flexible framework that can be deployed on any hardware; in particular, on mobile platforms such as Android or iOS smart phones. Here, we look at how the ISSM development team managed to port their model to these platforms, what the implications are for improving how scientists disseminate their results, and how a broader audience may familiarize themselves with running complex climate models in simplified scenarios which are highly educational and entertaining in content. We also look at the future plans toward a web portal fully integrated with mobile technologies to deliver the best content to the public, and to provide educational plans/lessons that can be used in grades K-12 as well as collegiate under-graduate and graduate programs.

  18. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, B.; Dolan, A. M.; Bernales, J.; Gasson, E.; Goelzer, H.; Golledge, N. R.; Sutter, J.; Huybrechts, P.; Lohmann, G.; Rogozhina, I.; Abe-Ouchi, A.; Saito, F.; van de Wal, R. S. W.

    2015-05-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene.

  19. Glaciological constraints on current ice mass changes from modelling the ice sheets over the glacial cycles

    NASA Astrophysics Data System (ADS)

    Huybrechts, P.

    2003-04-01

    The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.

  20. Anthropogenic climate change and the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Mikolajewicz, U.; Vizcaíno, M.; Rodehacke, C.; Ziemen, F.

    2012-04-01

    In the standard CMIP5 simulations the ice sheets are kept fixed. Only few groups have been able to perform CMIP5 simulations with interactively coupled ice sheet models. Beside its importance for the future evolution of global mean sea level, the Greenland ice sheet also has the potential to strongly affect deep water formation, especially in the Labrador Sea, but also in the Nordic Seas. Here we present a set of simulations with two interactively coupled ice sheet models, which allows to assess the uncertainty arising from both the ice sheet model as well as the coupling technique. The climate model ECHAM5/MPIOM is coupled interactively to two different ice sheet models using two different coupling strategies. The ice sheet models are a Greenland set-up of SICOPOLIS with 10 km horizontal resolution and a northern hemisphere set-up of PISM with a horizontal resolution of 20 km. The coupling is done either with a simple positive degree days approach or a mass-balance scheme calculating the surface melting with an energy-balance scheme. The atmospheric forcing is applied directly to the ice sheet model without flux correction or anomaly coupling, which avoids inconsistencies between the models. The resulting net mass loss rates for the Greenland ice sheet in a 1-percent-scenario capped at 4x preindustrial atmospheric CO2 concentrations show a considerable dependence on both ice sheet model and coupling technique. The resulting differences in atmospheric climate, however, are small within the first centuries and restricted to the immediate vicinity of Greenland. The feedbacks between atmosphere, ocean and the Greenland ice sheet are studied in a series of sensitivity experiments, where individual feedbacks were suppressed. It turns out that the future development of the Atlantic overturning and its associated heat transport are quite important for the future evolution of the Greenland ice sheet: The stronger the Atlantic overturning remains, the stronger the mass loss

  1. Atmospheric Response to a Hypothetical Tibetan Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Lautenschlager, M.; Santer, B. D.

    1991-04-01

    The atmospheric response to a hypothetical Tibetan ice sheet was tested with the T21 Atmospheric General Circulation Model (AGCM) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The model response is discussed in terms of an `autocycle' hypothesis of the ice ages proposed by Kuhle. According to this hypothesis, ice-albedo feedbacks associated with the growth and retreat of the Tibetan ice sheet are the mechanism that amplifies the variation of solar insolation on astronomical time scales, producing conditions that favor glaciation or deglaciation in North America and Eurasia.The imposed Tibetan ice sheet forcing did not increase the annual snow balance at the locations of the Laurentide and Eurasian ice sheets. Analysis of the seasonal cycle results indicated that there were small areas of locally significant temperature decreases in July (at the ice sheet locations), but no corresponding precipitation increases in January. The upper-tropospheric response to the elevated Tibetan plateau is not confined to the vicinity of the forcing, but changes in the global energetics of the atmosphere are small (less than 5%) relative to the control.The results of this experiment do not permit a conclusive decision regarding the validity of Kuhle's autocycle hypothesis. Future modeling studies need to consider ocean-atmosphere-ice sheet feedbacks and to investigate the transient response of the climate system over a complete ice age cycle.

  2. Balance of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  3. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography

    NASA Astrophysics Data System (ADS)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.

    2015-12-01

    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  4. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. PMID:26912699

  5. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available. PMID:23197526

  6. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    NASA Astrophysics Data System (ADS)

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; Deconto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Läufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-03-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the `warmer-than-present' early-Pliocene epoch (~5-3Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ~40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ~3°C warmer than today and atmospheric CO2 concentration was as high as ~400p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7m in equivalent sea level associated with the loss of the WAIS and up to +3m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2.

  7. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    USGS Publications Warehouse

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (???5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ???40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ???3??C warmer than today and atmospheric CO 2 concentration was as high as ???400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2. ??2009 Macmillan Publishers Limited. All rights reserved.

  8. Obliquity-paced Pliocene West Antarctic ice sheet oscillations.

    PubMed

    Naish, T; Powell, R; Levy, R; Wilson, G; Scherer, R; Talarico, F; Krissek, L; Niessen, F; Pompilio, M; Wilson, T; Carter, L; DeConto, R; Huybers, P; McKay, R; Pollard, D; Ross, J; Winter, D; Barrett, P; Browne, G; Cody, R; Cowan, E; Crampton, J; Dunbar, G; Dunbar, N; Florindo, F; Gebhardt, C; Graham, I; Hannah, M; Hansaraj, D; Harwood, D; Helling, D; Henrys, S; Hinnov, L; Kuhn, G; Kyle, P; Läufer, A; Maffioli, P; Magens, D; Mandernack, K; McIntosh, W; Millan, C; Morin, R; Ohneiser, C; Paulsen, T; Persico, D; Raine, I; Reed, J; Riesselman, C; Sagnotti, L; Schmitt, D; Sjunneskog, C; Strong, P; Taviani, M; Vogel, S; Wilch, T; Williams, T

    2009-03-19

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2). PMID:19295607

  9. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  10. Ice sheets. Volume loss from Antarctic ice shelves is accelerating.

    PubMed

    Paolo, Fernando S; Fricker, Helen A; Padman, Laurie

    2015-04-17

    The floating ice shelves surrounding the Antarctic Ice Sheet restrain the grounded ice-sheet flow. Thinning of an ice shelf reduces this effect, leading to an increase in ice discharge to the ocean. Using 18 years of continuous satellite radar altimeter observations, we have computed decadal-scale changes in ice-shelf thickness around the Antarctic continent. Overall, average ice-shelf volume change accelerated from negligible loss at 25 ± 64 cubic kilometers per year for 1994-2003 to rapid loss of 310 ± 74 cubic kilometers per year for 2003-2012. West Antarctic losses increased by ~70% in the past decade, and earlier volume gain by East Antarctic ice shelves ceased. In the Amundsen and Bellingshausen regions, some ice shelves have lost up to 18% of their thickness in less than two decades. PMID:25814064

  11. The Greenland Ice Sheet in Three Dimensions

    NASA Astrophysics Data System (ADS)

    MacGregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Paden, J. D.; Gogineni, S.; Morlighem, M.; Colgan, W. T.; Li, J.; Stillman, D. E.; Grimm, R. E.; Clow, G. D.; Young, S. K.; Mabrey, A. N.; Rybarski, S. C.; Wagman, B. M.; Rodriguez, K.

    2014-12-01

    We have produced a dated radiostratigraphy for the whole of the Greenland Ice Sheet (GrIS) from two decades of airborne radar-sounding surveys performed by The University of Kansas. This radiostratigraphy reveals a wealth of new information regarding this ice sheet's three-dimensional structure and history. South of Jakobshavn Isbræ, most of the ice sheet is Holocene-aged. Eemian ice is mostly confined to central northern Greenland. Disrupted radiostratigraphy is often located near the onset of the largest outlet glaciers, suggesting a strong coupling between the initiation of faster ice flow and anomalous basal processes in the ice-sheet interior. Ice-flow modeling constrained by this radiostratigraphy reveals that the Holocene-averaged pattern of surface accumulation is similar to the modern pattern, but that Holocene surface-accumulation rates were substantially higher than present rates in the interior. The pattern of predicted basal melt is strongly modulated by surface accumulation, further suggesting that geothermal flux beneath the GrIS is low except in the vicinity of the Northeast Greenland Ice Stream. This observation also raises the possibility that the position of the GrIS's central ice divide is coupled to local basal conditions, including spatially varying subglacial geology and geothermal flux. The Holocene-averaged flow of the GrIS was significantly faster than at present, implying that the ice-sheet interior is presently dynamically thickening, likely due to the viscosity contrast between Holocene and Last Glacial Period ice. Englacial dielectric attenuation, inferred from the echo intensity of mapped reflections, is related to borehole-measured temperature and constrains depth-averaged englacial temperature across the GrIS. This ice-sheet-wide radiostratigraphy and its related inferences are new and powerful constraints on the dynamics of the GrIS, and they should be used to evaluate and improve the next generation of ice-sheet models.

  12. Subglacial lake drainage detected beneath the Greenland ice sheet

    PubMed Central

    Palmer, Steven; McMillan, Malcolm; Morlighem, Mathieu

    2015-01-01

    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response—a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future. PMID:26450175

  13. Subglacial lake drainage detected beneath the Greenland ice sheet.

    PubMed

    Palmer, Steven; McMillan, Malcolm; Morlighem, Mathieu

    2015-01-01

    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response--a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future. PMID:26450175

  14. Ice sheets viewed from the ocean: the contribution of marine science to understanding modern and past ice sheets.

    PubMed

    Ó Cofaigh, Colm

    2012-12-13

    Over the last two decades, marine science, aided by technological advances in sediment coring, geophysical imaging and remotely operated submersibles, has played a major role in the investigation of contemporary and former ice sheets. Notable advances have been achieved with respect to reconstructing the extent and flow dynamics of the large polar ice sheets and their mid-latitude counterparts during the Quaternary from marine geophysical and geological records of landforms and sediments on glacier-influenced continental margins. Investigations of the deep-sea ice-rafted debris record have demonstrated that catastrophic collapse of large (10(5)-10(6) km(2)) ice-sheet drainage basins occurred on millennial and shorter time scales and had a major influence on oceanography. In the last few years, increasing emphasis has been placed on understanding physical processes at the ice-ocean interface, particularly at the grounding line, and on determining how these processes affect ice-sheet stability. This remains a major challenge, however, owing to the logistical constraints imposed by working in ice-infested polar waters and ice-shelf cavities. Furthermore, despite advances in reconstructing the Quaternary history of mid- and high-latitude ice sheets, major unanswered questions remain regarding West Antarctic ice-sheet stability, and the long-term offshore history of the East Antarctic and Greenland ice sheets remains poorly constrained. While these are major research frontiers in glaciology, and ones in which marine science has a pivotal role to play, realizing such future advances will require an integrated collaborative approach between oceanographers, glaciologists, marine geologists and numerical modellers. PMID:23129711

  15. Uncertainty quantification for ice sheet inverse problems

    NASA Astrophysics Data System (ADS)

    Petra, N.; Ghattas, O.; Stadler, G.; Zhu, H.

    2011-12-01

    Modeling the dynamics of polar ice sheets is critical for projections of future sea level rise. Yet, there remain large uncertainties in the basal boundary conditions and in the non-Newtonian constitutive relations employed within ice sheet models. In this presentation, we consider the problem of estimating uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem-i.e., the posterior probability density-is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal slipperiness field and the Glen's law exponent field). However, under the assumption of Gaussian noise and prior probability densities, and after linearizing the parameter-to-observable map, the posterior density becomes Gaussian, and can therefore be characterized by its mean and covariance. The mean is given by the solution of a nonlinear least squares optimization problem, which is equivalent to a deterministic inverse problem with appropriate interpretation and weighting of the data misfit and regularization terms. To obtain this mean, we solve a deterministic ice sheet inverse problem; here, we infer parameters arising from discretizations of basal slipperiness and rheological exponent fields. For this purpose, we minimize a regularized misfit functional between observed and modeled surface flow velocities. The resulting least squares minimization problem is solved using an adjoint-based inexact Newton method, which uses first and second derivative information. The posterior covariance matrix is given (in the linear-Gaussian case) by the inverse of the Hessian of the least squares cost functional of the deterministic inverse problem. Direct computation of the Hessian matrix is prohibitive, since it would

  16. Application of GRACE to the Evaluation of an Ice Flow Model of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Wiese, D. N.; Watkins, M. M.; Larour, E. Y.; Box, J. E.; Fettweis, X.; van den Broeke, M. R.; Morlighem, M.; Boening, C.; Seroussi, H. L.

    2014-12-01

    Quantifying Greenland's future contribution to sea level rise is a challenging task and requires accurate estimates of ice flow sensitivity to climate change. Transient ice flow models are promising tools for estimating future ice sheet behavior. However, confidence in these types of future projections is low, especially because evaluation of model historical runs is so challenging due to the scarcity of continental-wide data for validation. For more than a decade, NASA's GRACE has continuously acquired time-variable measurements of the Earth's gravity field and has provided unprecedented surveillance of mass balance of the ice sheets, offering an opportunity for ice sheet model evaluation. Here, we take advantage of a new high-resolution (~300 km) monthly mascon solution for the purpose of mass balance comparison with an independent, historical ice flow model simulation using the Ice Sheet System Model (ISSM). The comparison highlights which regions of the ice sheet differ most from GRACE. Investigation of regional differences in trends and seasonal amplitudes between simulations forced with three different Regional Climate Model (RCM)-based estimates of surface mass balance (SMB) allows us to make conclusions about the relative contributions of various error sources in the model hindcast. This study constitutes the first regional comparison of GRACE data and an ice sheet model. Conclusions will aid in the improvement of RCM SMB estimates as well as ice sheet simulation estimates of present and future rates of sea level rise. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Program and President's and Director's Fund Program.

  17. Microbial abundance in surface ice on the Greenland Ice Sheet

    PubMed Central

    Stibal, Marek; Gözdereliler, Erkin; Cameron, Karen A.; Box, Jason E.; Stevens, Ian T.; Gokul, Jarishma K.; Schostag, Morten; Zarsky, Jakub D.; Edwards, Arwyn; Irvine-Fynn, Tristram D. L.; Jacobsen, Carsten S.

    2015-01-01

    Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS. PMID:25852678

  18. Spatial complexity of ice flow across the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ng, Felix S. L.

    2015-11-01

    Fast-flowing ice streams carry ice from the interior of the Antarctic Ice Sheet towards the coast. Understanding how ice-stream tributaries operate and how networks of them evolve is essential for developing reliable models of the ice sheet’s response to climate change. A particular challenge is to unravel the spatial complexity of flow within and across tributary networks. Here I define a measure of planimetric flow convergence, which can be calculated from satellite measurements of the ice sheet’s surface velocity, to explore this complexity. The convergence map of Antarctica clarifies how tributaries draw ice from its interior. The map also reveals curvilinear zones of convergence along lateral shear margins of streaming, and abundant ripples associated with nonlinear ice rheology and changes in bed topography and friction. Convergence on ice-stream tributaries and their feeding zones is uneven and interspersed with divergence. For individual drainage basins, as well as the ice sheet as a whole, fast flow cannot converge or diverge as much as slow flow. I therefore deduce that flow in the ice-stream networks is subject to mechanical regulation that limits flow-orthonormal strain rates. These findings provide targets for ice-sheet simulations and motivate more research into the origin and dynamics of tributarization.

  19. Evaluating ice sheet model spinup procedures using chronological data constraining ice margin positions over time on Greenland

    NASA Astrophysics Data System (ADS)

    Applegate, P. J.; Kirchner, N.; Levy, L.; Kelly, M. A.; Lowell, T. V.; Greve, R.

    2011-12-01

    We compare a recently-published ice sheet model run to field data constraining ice margin positions over time on Greenland, to assess presently-accepted model spinup procedures. Computer models describing ice flow and mass balance are important tools for learning about the future behavior of ice sheets in a warming world. Because ice softness is temperature-sensitive and the thermal field within the ice sheet is mostly unknown, ice sheet models must be "spun up" using paleoclimate data before future changes can be estimated. The models produce ice margin positions over time during the spinup, allowing comparison with field data such as cosmogenic exposure dates and radiocarbon dating of organic matter. If the agreement between modeled and reconstructed ice margin positions is good, we can have increased confidence in the models' ability to forecast future changes. For the present study, we use a model setup from Greve et al. (2011; Annals of Glaciology 52, 23-30; sicopolis.greveweb.net), and a preliminary collection of chronological data. We aggregate the chronological data to the model grid, then plot the data and modeled ice margin positions as time-distance diagrams along west-east transects. Our results have implications for the use of the Summit ice cores to predict mass balance around the margins of the ice sheet and future projections of sea level rise using ice sheet models.

  20. Holocene deceleration of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.; Colgan, William T.; Fahnestock, Mark A.; Morlighem, Mathieu; Catania, Ginny A.; Paden, John D.; Gogineni, S. Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet’s radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet’s dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry.

  1. Controls on interior West Antarctic Ice Sheet Elevations: inferences from geologic constraints and ice sheet modeling

    NASA Astrophysics Data System (ADS)

    Ackert, Robert P.; Putnam, Aaron E.; Mukhopadhyay, Sujoy; Pollard, David; DeConto, Robert M.; Kurz, Mark D.; Borns, Harold W.

    2013-04-01

    Knowledge of the West Antarctic Ice Sheet (WAIS) response to past sea level and climate forcing is necessary to predict its response to warmer temperatures in the future. The timing and extent of past interior WAIS elevation changes provides insight to WAIS behavior and constraints for ice sheet models. Constraints prior to the Last Glacial Maximum (LGM) however, are rare. Surface exposure ages of glacial erratics near the WAIS divide at Mt. Waesche in Marie Byrd Land, and at the Ohio Range in the Transantarctic Mountains, range from ∼10 ka to >500 ka without a dependence on elevation. The probability distribution functions (PDF) of the exposure ages at both locations, are remarkably similar. During the last glaciation, maximum interior ice elevations as recorded by moraines and erratics were reached between 10 ka and 12 ka. However, most exposure ages are older than the LGM and cluster around ∼40 ka and ∼80 ka. The peak in the exposure age distributions at ∼40 ka includes ages of alpine moraine boulders at Mercer Ridge in the Ohio Range. Comparison of the PDF of exposures ages from the Ohio Range and Mt. Waesche with the temperature record from the Fuji Dome ice core indicates that the youngest peak in the exposure age distributions corresponds to the abrupt warming during the Last Glacial termination. A prominent peak in the Ohio Range PDF corresponds to the penultimate termination (stage 5e). During the intervening glacial period, there is not a consistent relationship between the peaks in the PDF at each location and temperature. A combined ice sheet/ice shelf model with forcing scaled to marine δ18O predicts that interior WAIS elevations near the ice divide have varied ∼300 m over the Last Glacial cycle. Peaks in the PDF correspond to model highstands over the last 200 ka. In the simulated elevation history, maximum ice elevations at Ohio Range (+100 m) and Mt. Waesche (+60 m) occur at ∼10 ka, in agreement with observations from these sites

  2. Dynamic Antarctic ice-sheet response to deglacial meltwater pulses

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Clark, Peter U.; Timmermann, Axel; Lohmann, Gerrit; Kuhn, Gerhard; Sprenk, Daniela; Gladstone, Rupert

    2013-04-01

    Reconstruction of the last global sea level rise faces uncertainties because only a few robust data evidences are available for Antarctic ice sheets. Deglacial dynamics have mostly been inferred from shallow-water cores on the shelf, where decisive changes are either erased by grounding ice or occur in condensed, lithologically complex successions with partially reversed and generally unreliable 14C ages. Previous modeling studies reconstruct a late ice-sheet retreat starting around 12 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, new findings from two deepwater cores from the Scotia Sea challenge these reconstructions and call for a principal revision of the Antarctic deglacial history. The well-dated sites (Weber et al., 2012, Quaternary Science Reviews) provide the first integrative and representative record of Antarctic Ice Sheet instability. They are located in the central transport route of virtually all Antarctic icebergs, the so-called Iceberg Alley, and demonstrate a highly dynamic Antarctic Ice Sheet during the last deglaciation with eight distinct phases of enhanced iceberg routing, dubbed Antarctic Ice Sheet Events (AIE), in contrast to existing models of a late and monotonous ice-sheet retreat which implied only little contribution to the last, natural, sea-level rise 19,000 to 9,000 years ago. We found the first direct evidence for an Antarctic contribution to Meltwater Pulse 1A in the flux rates of ice-rafted debris. Using an ensemble of transient deglacial model simulations we could show that increased export of warmer Circumpolar Deep Water towards Antarctica contributed to Antarctic Ice Sheet melt by ocean thermal forcing (Weber et al., Science, in review). These new findings hold the potential to substantially revise and improve our understanding of the transient response of the ice sheet to external and internal forcings

  3. Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X. S.; Cornford, S. L.; Durand, G.; Galton-Fenzi, B. K.; Gladstone, R. M.; Gudmundsson, G. H.; Hattermann, T.; Holland, D. M.; Holland, D.; Holland, P. R.; Martin, D. F.; Mathiot, P.; Pattyn, F.; Seroussi, H.

    2015-11-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions in the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the ice shelf-ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for evaluation of the participating models.

  4. Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Dolan, Aisling; Bernales, Jorge; Gasson, Edward; Goelzer, Heiko; Golledge, Nick; Sutter, Johannes; Huybrechts, Phillipe; Lohmann, Gerrit; Rogozhina, Irina; Abe-Ouchi, Ayako; Saito, Fuyuki; van de Wal, Roderik

    2015-04-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere-ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently

  5. Sensitivity of Pliocene ice sheets to orbital forcing

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Hill, D.J.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.

    2011-01-01

    The stability of the Earth's major ice sheets is a critical uncertainty in predictions of future climate and sea level change. One method of investigating the behaviour of the Greenland and the Antarctic ice sheets in a warmer-than-modern climate is to look back at past warm periods of Earth history, for example the Pliocene. This paper presents climate and ice sheet modelling results for the mid-Pliocene warm period (mPWP; 3.3 to 3.0 million years ago), which has been identified as a key interval for understanding warmer-than-modern climates (Jansen et al., 2007). Using boundary conditions supplied by the United States Geological Survey PRISM Group (Pliocene Research, Interpretation and Synoptic Mapping), the Hadley Centre coupled ocean–atmosphere climate model (HadCM3) and the British Antarctic Survey Ice Sheet Model (BASISM), we show large reductions in the Greenland and East Antarctic Ice Sheets (GrIS and EAIS) compared to modern in standard mPWP experiments. We also present the first results illustrating the variability of the ice sheets due to realistic orbital forcing during the mid-Pliocene. While GrIS volumes are lower than modern under even the most extreme (cold) mid-Pliocene orbit (losing at least 35% of its ice mass), the EAIS can both grow and shrink, losing up to 20% or gaining up to 10% of its present-day volume. The changes in ice sheet volume incurred by altering orbital forcing alone means that global sea level can vary by more than 25 m during the mid-Pliocene. However, we have also shown that the response of the ice sheets to mPWP orbital hemispheric forcing can be in anti-phase, whereby the greatest reductions in EAIS volume are concurrent with the smallest reductions of the GrIS. If this anti-phase relationship is in operation throughout the mPWP, then the total eustatic sea level response would be dampened compared to the ice sheet fluctuations that are theoretically possible. This suggests that maximum eustatic sea level rise does not

  6. Modelling binge-purge oscillations of the Laurentide ice sheet using a plastic ice sheet

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Dahl-Jensen, D.

    A simple combined heat and ice-sheet model has been used to calculate temperatures at the base of the Laurentide ice sheet. We let the ice sheet surge when the basal temperature reaches the pressure-melting temperature. Driving the system with the observed accumulation and temperature records from the GRIP ice core, Greenland, produces surges corresponding to the observed Heinrich events. This suggests that the mechanism of basal sliding, initiated when the basal temperature reaches the melting point, can explain the surges of the Laurentide ice sheet. This study highlights the importance of the surface temperature and accumulation rate as a means of forcing the timing and strength of the Heinrich events, thus implying important ice-sheet climate feedbacks.

  7. Conditions for bubble elongation in cold ice-sheet ice

    USGS Publications Warehouse

    Alley, R.B.; Fitzpatrick, J.J.

    1999-01-01

    Highly elongated bubbles are sometimes observed in ice-sheet ice. Elongation is favored by rapid ice deformation, and opposed by diffusive processes. We use simple models to show that vapor transport dominates diffusion except possibly very close to the melting point, and that latent-heat effects are insignificant. Elongation is favored by larger bubbles at pore close-off, but is nearly independent of bubble compression below close-off. The simple presence of highly elongated bubbles indicates only that a critical ice-strain rate has been exceeded for significant time, and provides no information on possible disruption of stratigraphic continuity by ice deformation.

  8. Models for polythermal ice sheets and glaciers

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Schoof, Christian

    2016-04-01

    The dynamics of ice-sheets and glaciers depend sensitively on their thermal structure. Many ice masses are polythermal, containing both cold ice, with temperature below the melting point, and temperate ice, with temperature at the melting point. The temperate ice is really an ice-water mixture, with water produced at grain boundaries by dissipative heating. Although the water content is typically small, it can have an important effect on ice dynamics; water content controls ice viscosity, and internal meltwater percolation affects hydrology. Locations where this may be important are in the enhanced shear layer at the base of fast-flowing outlet glaciers, and in the shear margins of ice streams. In this study, we present a simplified model to describe the temperature and water-content of polythermal ice masses, accounting for the possibility of gravity- and pressure-driven water drainage according to Darcy's law. The model is based on the principle of energy conservation and the theory of viscous compaction. Numerical solutions are described and a number of illustrative test problems presented. The model is compared with existing methods in the literature, including enthalpy gradient methods, to which it reduces under certain conditions. Based on the results of our analysis, we suggest a modified enthalpy method that allows for drainage under gravity but that can be relatively easily implemented in ice-sheet models.

  9. Ice Velocity Measurements From The First Sentinel-1a Full Antarctic Ice Sheet Campaign

    NASA Astrophysics Data System (ADS)

    Hogg, A. E.; Shepherd, A.; Gourmelen, N.; Nagler, T.

    2015-12-01

    Island Glacier in West Antarctica InSAR is less successful. We conclude that the short 12-day repeat period and large scale coverage of Sentinel-1a is an invaluable new resource, which in the future will be a critical tool for monitoring ice velocity change and dynamic instability of the Antarctic ice sheet.

  10. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  11. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-08-01

    The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  12. Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, B.; Dolan, A. M.; Bernales, J.; Gasson, E.; Goelzer, H.; Golledge, N. R.; Sutter, J.; Huybrechts, P.; Lohmann, G.; Rogozhina, I.; Abe-Ouchi, A.; Saito, F.; van de Wal, R. S. W.

    2014-11-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere-ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently

  13. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations

    NASA Astrophysics Data System (ADS)

    Naish, T.; Powell, R.; Levy, R.; Deconto, R.; Pollard, D.; Andrill Mis Science Team

    2009-04-01

    Thirty years after the first deep-sea oxygen isotope records confirmed Milankovitch's orbital hypothesis of the ice ages, fundamental questions remain over the response of Antarctica's ice sheets to cycles in Earth's orbital geometry. Furthermore, an understanding of the behaviour of the marine-based, West Antarctic Ice Sheet (WAIS) during "warmer-than-present" Early Pliocene Epoch (~5-3 million years ago) is needed in the context of future global warming. Here we present a marine glacial record from the upper 600m of a sediment core (AND-1B) recovered from beneath the northwest part of the Ross Ice Shelf by the ANDRILL Program . Well-dated, cyclic variations in the core link ice sheet extent to cycles in insolation controlled by the ~40,000 year period of Earth's axial tilt (obliquity) during the Pliocene. Our data provide the first direct evidence for orbitally-induced oscillations in the WAIS, which periodically collapsed resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross Embayment when planetary temperatures were up to ~3°C warmer than today and atmospheric pCO2 as high as ~400 ppm. The evidence is consistent with a new ice sheet-ice shelf model that simulates fluctuations in Antarctic ice volume of up to +8 m equivalent sea level, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2.

  14. Growth of Greenland ice sheet - Interpretation

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    1989-01-01

    An observed 0.23 m/year thickening of the Greenland ice sheet indicates a 25 percent to 45 percent excess ice accumulation over the amount required to balance the outward ice flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (less than 100 years). If there is a similar imbalance in the northern 60 percent of the ice-sheet area, the depletion is 0.35 to 0.7 mm/year. Increasing ice thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.

  15. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  16. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  17. Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Dolan, Aisling M.; Hill, Daniel J.; van de Wal, Roderik S. W.

    2014-05-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene Warm Period (also known as the PRISM interval: 3.29 to 2.97 million years before present) can serve as a potential analogue for projected future climates, with a global annual mean surface-air temperature warming of 1.76 °C. Although Pliocene ice locations and surface extents are still poorly constrained, a significant contribution to sea-level rise should be expected from Greenland and West and, possibly, East Antarctica based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of the ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of sensitivity experiments. Ice-sheet model forcing fields are taken from the PlioMIP results incorporating multiple coupled atmosphere-ocean general circulation models (GCM). We show that ice-sheet models simulate a present-day ice sheet which is comparable to the observations, and find no systematic biases introduced when using different GCM forcing relative to observational climate forcing. This project includes multiple ice-sheet models forced with multiple climate model output, from which a comprehensive assessment can be made as to the uncertainties of ice-sheet extent on Antarctica. These results may eventually serve as a new constraint on the extent of the Antarctic ice sheet during the Late-Pliocene Warm Period

  18. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-26

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales. PMID:22538614

  19. Studies of ice sheet hydrology using SAR

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.; Vornberger, P. L.

    1989-01-01

    Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.

  20. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  1. Climate Model Dependency and Understanding the Antarctic Ice Sheet during the Warm Late Pliocene

    NASA Astrophysics Data System (ADS)

    Dolan, Aisling; de Boer, Bas; Bernales, Jorge; Hunter, Stephen; Haywood, Alan

    2016-04-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals of Earth history is fundamentally important. A warm period in the Late Pliocene (3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions and geological evidence. Following a five year international project PLISMIP (Pliocene Ice Sheet Modeling Intercomparison Project) we present the final set of results which quantify uncertainty in climate model-based predictions of the Antarctic ice sheet. In this study we use an ensemble of climate model forcings within a multi-ice sheet model framework to assess the climate (model) dependency of large scale features of the Antarctic ice sheet. Seven coupled atmosphere-ocean climate models are used to derive surface temperature, precipitation and oceanic forcing that drive three ice sheet models (over the grounded and floating domain). Similar to results presented over Greenland, we show that the reconstruction of the Antarctic ice sheet is sensitive to which climate model is used to provide the forcing field. Key areas of uncertainty include West Antarctica, the large subglacial basins of East Antarctica and the overall thickness of the continental interior of East Antarctica. We relate the results back to geological proxy data, such as those relating to exposure rates which provide information on potential ice sheet thickness. Finally we discuss as to whether the choice of modelling framework (i.e. climate model and ice sheet model used) or the choice of boundary conditions causes the greatest uncertainty in ice sheet reconstructions of the warm Pliocene.

  2. Bedforms of the Keewatin Ice Sheet, Canada

    NASA Astrophysics Data System (ADS)

    Aylsworth, J. M.; Shilts, W. W.

    1989-05-01

    By compiling glacial bedforms on a map that covers most of one sector of the Laurentide Ice Sheet, it is possible to make some suggestions about their genesis based largely on spatial relationships. It can be concluded that drumlins and ribbed moraine form at the base of actively flowing ice under similar dynamic conditions. For either landform to exist, however, there must have been enough sediment available in the base of the glacier to leave or form a feature large enough to be recognizable. The presence or absence of sufficient load is related to the geology of the glacier bed and has little to do with regionally changing dynamics of the ice-water system. Likewise, given sufficient load, it is evident that whether drumlins formed or whether ribbed moraine formed in a certain area is a function of the physical nature of the load which is, again, related to geology of the source outcrops. Whether the physical characteristics come into play after the sediment has been released from the ice and is being reshaped by basal drag, streamlining, etc., or whether the nature of the load while entrained changes the behaviour of the basal part of the ice is unclear. Physical characteristics of the basal sediment load have apparently promoted internal thrusting of coherent slabs of entrained debris and ice to form ribbed moraine on melting, whereas drumlins may reflect moulding of plastic subglacial debris or erosional streamlining of both the unconsolidated glacial substrate and bedrock. The observation that many eskers cross drumlin fields at nearly right angles to their orientation suggests that conditions producing streamlining and those pertaining to subglacial drainage are separated in time and circumstance. The general occurrence of drumlins and eskers throughout the sediment-rich portions of the Keewatin Ice Sheet, from Zone 1 to its edge, is difficult to reconcile with the restriction and intimate association of these forms with ribbed moraine almost exclusively in

  3. Shallow ice approximation, second order shallow ice approximation, and full Stokes models: A discussion of their roles in palaeo-ice sheet modelling and development

    NASA Astrophysics Data System (ADS)

    Kirchner, N.; Ahlkrona, J.; Gowan, E. J.; Lötstedt, P.; Lea, J. M.; Noormets, R.; von Sydow, L.; Dowdeswell, J. A.; Benham, T.

    2016-03-01

    Full Stokes ice sheet models provide the most accurate description of ice sheet flow, and can therefore be used to reduce existing uncertainties in predicting the contribution of ice sheets to future sea level rise on centennial time-scales. The level of accuracy at which millennial time-scale palaeo-ice sheet simulations resolve ice sheet flow lags the standards set by Full Stokes models, especially, when Shallow Ice Approximation (SIA) models are used. Most models used in paleo-ice sheet modeling were developed at a time when computer power was very limited, and rely on several assumptions. At the time there was no means of verifying the assumptions by other than mathematical arguments. However, with the computer power and refined Full Stokes models available today, it is possible to test these assumptions numerically. In this paper, we review (Ahlkrona et al., 2013a) where such tests were performed and inaccuracies in commonly used arguments were found. We also summarize (Ahlkrona et al., 2013b) where the implications of the inaccurate assumptions are analyzed for two paleo-models - the SIA and the SOSIA. We review these works without resorting to mathematical detail, in order to make them accessible to a wider audience with a general interest in palaeo-ice sheet modelling. Specifically, we discuss two implications of relevance for palaeo-ice sheet modelling. First, classical SIA models are less accurate than assumed in their original derivation. Secondly, and contrary to previous recommendations, the SOSIA model is ruled out as a practicable tool for palaeo-ice sheet simulations. We conclude with an outlook concerning the new Ice Sheet Coupled Approximation Level (ISCAL) method presented in Ahlkrona et al. (2016), that has the potential to match the accuracy standards of full Stokes model on palaeo-timescales of tens of thousands of years, and to become an alternative to hybrid models currently used in palaeo-ice sheet modelling. The method is applied to an ice

  4. Anisotropic texture of ice sheet surfaces

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin E.; Raymond, Charles F.; Scambos, Theodore

    2006-03-01

    In this paper we analyze the magnitude and spatial organization of small-scale surface features (the surface texture) of the Greenland and Antarctic ice sheets. The texture is revealed in shaded relief maps of digital elevation models because surface slopes emphasize short-wavelength topography. We show that the surface slope components parallel to and perpendicular to the ice flow direction of ice sheets are both qualitatively and quantitatively different from one another. The parallel component variations are larger in magnitude than the perpendicular component variations, and features in maps of the parallel component are elongated perpendicular to the ice flow direction, while features in maps of the perpendicular component are elongated at a diagonal to the ice flow direction. These properties may be explained by a simple model of glacier dynamics in which a linearly viscous slab of ice flows over a random, isotropic, red noise bed. In this model an anisotropic surface results from an isotropic bed because the surface anisotropy derives from the anisotropic transfer of bed topography to the surface by viscous flow dynamics. The modeling results suggest that analysis of surface texture magnitude and anisotropy can be used to identify areas of sliding ice from surface topography data alone and can be used to roughly estimate sliding rates where bed topography is known.

  5. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  6. Satellite remote sensing for ice sheet research

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; omplexity of the land cover and land use p; omplexity of the land cover and land use p

    1985-01-01

    Potential research applications of satellite data over the terrestrial ice sheets of Greenland and Antarctica are assessed and actions required to ensure acquisition of relevant data and appropriate processing to a form suitable for research purposes are recommended. Relevant data include high-resolution visible and SAR imagery, infrared, passive-microwave and scatterometer measurements, and surface topography information from laser and radar altimeters.

  7. A Pluridisciplinary Study of the Impact of Future Ice Sheets Instability on Sea Level Rise, Climate Changes, Migrations and Energy Supply

    NASA Astrophysics Data System (ADS)

    Ramstein, G.; Defrance, D.; Dumas, C.; Charbit, S.; Gemenne, F.; Vanderlinden, J. P.; Bouneau, S.; David, S.

    2014-12-01

    From paleoclimate data and GCM models simulations, we learnt that, when ice sheets are unstable, they produce large surges of icebergs that cover North Atlantic and produce global climate instability through atmosphere and ocean dynamics. Indeed, these instabilities are associated with a cold (glacial) context. In a warming world, it appears that the two remaining ice sheets (Antarctica and Greenland) are becoming unstable. The probability of abrupt ice sheet changes is therefore to be investigated. In comparison with predicted AR5 sea level rise (SLR) (28 to 82 cm), such a fast melting could add a contribution of 2 to 5 meters, which corresponds to the sea level rise estimate of glacial instability (Heinrich events). The aim of this presentation is to describe consistent sea level and climate simulations. We define 3 scenarios, the sea level rise is produced by the melting of about third of the Greenland, or the disappearance of West Antarctica, or finally a mixture of both ice sheets melting. We first analyze, using IPSL OAGCM, the climatic impact. Indeed, superimposed to direct sea level rise, climate changes has drastic consequences in North Atlantic (Europe and east of North America) due to the thermohaline circulation breakdown. Moreover, when freshwater is injected into North Atlantic, far field effects on the location and amplitude of Asian Monsoon have been shown with its drastic decrease. The second step of this multidisciplinary study is to quantify the impact of the sea level rise and the climatic changes on populations migration, with a focus on Southern Asia with a prospective migration of several hundreds of people. In a third step, we intend to simulate the reorganization of power supply to adapt to the expected new distribution of population, using a quantitative energy model (COSIME). Here, we show the climate response to the 3 investigated climate scenarios and the response in terms of migration, which is huge due to the very large part of the

  8. Mass balance of the Antarctic ice sheet.

    PubMed

    Wingham, D J; Shepherd, A; Muir, A; Marshall, G J

    2006-07-15

    The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise. PMID:16782603

  9. Ice sheet collapse affects ocean circulation

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-06-01

    As Earth's climate warms and ice melts, freshwater input to oceans could weaken the large-scale Atlantic meridional overturning circulation, which acts as an important conveyor of heat and has significant effects on climate. Green et al. used an intermediate complexity climate model to study how freshwater input to oceans can affect the meridional overturning circulation. They applied their model to the collapse of the Barents ice sheet about 140,000 years ago—the first study of this kind for the time period—which resulted in a huge influx of freshwater to the North Atlantic Ocean as large icebergs calved off of the ice sheet. (Paleoceanography, doi:10.1029/ 2010PA002088, 2011)

  10. Moulin distribution and formation on the southwest Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Chu, V. W.; Smith, L. C.; Gleason, C. J.; Yang, K.; Poinar, K.; Joughin, I.; Pitcher, L. H.

    2015-12-01

    River moulins represent a significant connection between surface meltwater generated on the Greenland ice sheet and subglacial drainage networks, where increased meltwater can enhance ice sliding dynamics. In this study, a new high-resolution moulin map is created from WorldView-1/2 imagery acquired during the 2012 record melt year for a 12,500 km2 area near Russell Glacier in southwest Greenland. A total of 1,236 moulins are mapped and categorized as being located: in crevasse fields, along a single ice fracture, within drained lake basins, or having no visible formation mechanism. We find the presence of moulins up to 1787 m elevation, with 11% of moulins found above 1600 m elevation: higher than previously mapped moulins and where glaciological theory suggests few moulins should form. Our study observes moulins in both extensional and compressional ice flow regimes (28% of moulins are found in areas of high extensional strain rate >0.005 yr-1), suggesting that strain rates are not a strong indicator of the likelihood for moulin formation. Overall, moulin density tends to increase with higher bed elevation, thinner ice, lower surface slope, higher velocity, and higher strain rate. In sum, moulins are most common in crevassed, thinner ice near the ice sheet edge, but significant quantities also develop at high elevations. This indicates that future inland expansion of melting may create hydrologic connections between the surface and the bed at higher elevations than previously thought.

  11. Ice stream reorganization and ice sheet mass balance following the reactivation of Kamb Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Bougamont, Marion; Christoffersen, Poul; Price, Stephen; Carter, Sasha

    2015-04-01

    Ice streams in Antarctica account for most of the ice volume discharged to the ocean, and their flow variability greatly influences the mass balance of the ice sheet. Today, the Siple Coast region of West Antarctica is the only one to experience a positive mass balance (~36Gt/yr), as a consequence of the stagnation of Kamb Ice Stream about 170 years ago and the ongoing slowdown of Whillans Ice Stream. However, this positive trend could be temporary; past studies have shown that both ice streams experienced significant flow variability over the past millennia, with stagnation typically followed by reactivation on centennial timescales, occurring in response to internal processes. The impact this variability may have on the future mass balance of the WAIS remains unknown. Here, we explore the future flow variability of the Siple Coast ice streams by using a three-dimensional higher-order ice sheet model (CISM), coupled to a physically-based basal processes model and a model of regional hydrology. To obtain realistic initial flow conditions, we assimilate available velocity data for this region from 1997. We perform forward simulations over a 200 year period, during which the basal properties evolve according to the distribution of meltwater beneath the ice and its drainage/flow through a subglacial till layer. First, we assume that the bed evolves according to ice-till interactions with only local exchange of water between the ice and till. Next, we include a model of the regional basal water system capable of transporting water over long distances, so that meltwater is routed laterally along the bed before interacting with the till layer. We also explore the effect of geothermal heat flux uncertainties. We find that ice discharge to the grounding line is larger and more sustained in time when the regional water system is included in the simulations. Still, in all experiments, the main future perturbation to the current state of flow follows from the reactivation of

  12. Response of a marine ice sheet to changes at the grounding line

    SciTech Connect

    Van der Veen, C.J.

    1985-01-01

    A numerical model was designed to study the stability of a marine ice sheet, and used to do some basic experiments. The ice-shelf/ice-sheet interaction enters through the flow law in which the longitudinal stress is also taken into account. Instead of applying the model to some (measured) profile and showing that this is unstable (as is common practice in other studies), an attempt is made to simulate a whole cycle of growth and retreat of a marine ice sheet, although none of the model sheets is particularly sensitive to changes in environmental conditions. The question as to what might happen to the West Antarctic Ice Sheet in the near future when a climatic warming can be expected as a result of the CO/sub 2/ effect, seems to be open for discussion again. From the results presented in this paper one can infer that a collapse, caused by increased melting on the ice shelves, is not very likely.

  13. Ice Sheet Monitoring Using Latest Generation SAR Satellites

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.; Li, X.

    2015-12-01

    Remote sensing is a crucial component to gain insight in the worlds ice sheets and glaciers. Spaceborne Synthetic Aperture Radar data have proven to be a key resource to monitor the great ice sheets in Antarctica and Greenland. International efforts undertaken during the last International Polar Year resulted in the collection of vast amounts of data to generate the first continent-wide ice velocity map of Antarctica, a series of full velocity maps of Greenland, and time series data in key regions. The Antarctic grounding line was also mapped at unprecedented accuracy using InSAR. The end of several SAR missions since 2010 has posed a significant challenge in the effort to provide ongoing data acquisitions. New generation missions show potential to not only fill the data gap, but to make the collection of ice sheet data part of the ongoing acquisition scenarios, therefore ensuring data continuity. New modes, like the TOPSAR mode used for Sentinel-1A, provide new opportunities but also pose processing challenges, particularly if the entire area monitored is in motion. Several future missions are in various stages of development, thus further adding to the suite of sensors potentially available to collect data in Polar Regions going forward. The NASA-ISRO L-and S-band mission, planned for launch in 2020, will be a pure science mission with an open data policy, thus again changing the data availability and data access situation for the better. In international collaboration through the Polar Space Task Group, space agencies coordinate their science acquisitions in Polar Regions. With broad input from the larger ice sheet science community, we have worked closely with space agencies to define science requirements and to develop acquisition scenarios that maximize science value for ice sheets. Here we highlight the collaboration effort, summarize the input of the ice sheet science community to the Polar Space Task Group, and present the acquisition plans that resulted

  14. Historic and Future Ice Storms

    NASA Astrophysics Data System (ADS)

    Klima, K.; Morgan, M. G.

    2014-12-01

    Ice storm losses from business interruption as well as transportation and health damages can range into billions of dollars. For instance, the December 2008 New England and Upstate New York ice storm caused four deaths and monetary damages between 2.5 and 3.7 billion, and the 2008 Chinese winter storms resulted in over 130 deaths and over 20 billion in damages. Informal discussions with ice storm experts indicate that due to competing temperature and precipitation effects as well as local topographic effects, it is unclear how exactly climate change will affect ice storms. Here we ask how incident frequencies might change in a future climate at four weather stations prone to ice storms. Using historical atmospheric soundings, we conduct a thought experiment where we perturb the temperatures as might be expected in a future climate. We then discuss changes in monthly frequency of ice storms.

  15. The Greenland Ice Sheet Monitoring Network (GLISN)

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Govoni, A.; Hanka, W.; Kanao, M.; Larsen, T.; Lasocki, S.; McCormack, D. A.; Mykkeltveit, S.; Nettles, M.; Agostinetti, N. P.; Stutzmann, E.; Tsuboi, S.; Voss, P.

    2010-12-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is an international, broadband seismic capability for Greenland, being installed and implemented through the collaboration of Denmark, Canada, Germany, Italy, Japan, Norway, Poland, Switzerland, and USA. GLISN is a real-time sensor array of seismic stations to enhance and upgrade the performance of the sparse Greenland seismic infrastructure for detecting, locating, and characterizing glacial earthquakes and other cryo-seismic phenomena, and contributing to our understanding of Ice Sheet dynamics. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems; the underlying geological and geophysical processes affecting the Greenland Ice Sheet; interactions between oceans, climate, and the cryosphere; and other multidisciplinary areas of interest to geoscience and climate dynamics. The glacial processes that induce seismic events (internal deformation, sliding at the base, disintegration at the calving front, drainage of supra-glacial lakes) are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behavior over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms and metrics relevant to ice sheet collapse, and will provide new constraints on Ice Sheet dynamic processes and their potential roles in sea-level rise during the coming decades. GLISN will provide a new, fiducial reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The 2010 summer field season saw the installation or upgrade of 9 stations in the GLISN network. Sites visited under the GLISN project include Station Nord (NOR

  16. Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleobenchmark for models of marine ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Andreassen, Karin; Bjarnadóttir, Lilja R.; Dowdeswell, Julian A.; Winsborrow, Monica C. M.; Noormets, Riko; Polyak, Leonid; Auriac, Amandine; Hubbard, Alun

    2015-12-01

    Our understanding of processes relating to the retreat of marine-based ice sheets, such as the West Antarctic Ice Sheet and tidewater-terminating glaciers in Greenland today, is still limited. In particular, the role of ice stream instabilities and oceanographic dynamics in driving their collapse are poorly constrained beyond observational timescales. Over numerous glaciations during the Quaternary, a marine-based ice sheet has waxed and waned over the Barents Sea continental shelf, characterized by a number of ice streams that extended to the shelf edge and subsequently collapsed during periods of climate and ocean warming. Increasing availability of offshore and onshore geophysical data over the last decade has significantly enhanced our knowledge of the pattern and timing of retreat of this Barents Sea ice sheet (BSIS), particularly so from its Late Weichselian maximum extent. We present a review of existing geophysical constraints that detail the dynamic evolution of the BSIS through the last glacial cycle, providing numerical modelers and geophysical workers with a benchmark data set with which to tune ice sheet reconstructions and explore ice sheet sensitivities and drivers of dynamic behavior. Although constraining data are generally spatially sporadic across the Barents and Kara Seas, behaviors such as ice sheet thinning, major ice divide migration, asynchronous and rapid flow switching, and ice stream collapses are all evident. Further investigation into the drivers and mechanisms of such dynamics within this unique paleo-analogue is seen as a key priority for advancing our understanding of marine-based ice sheet deglaciations, both in the deep past and in the short-term future.

  17. Comparative forecast simulations of the Greenland ice-sheet using Elmer/Ice and GRISLI

    NASA Astrophysics Data System (ADS)

    Ritz, C.; Gillet-chaulet, F.; Gagliardini, O.; Quiquet, A.; Durand, G.; Peyaud, V.

    2012-12-01

    The total mass balance of the Greenland Ice Sheet (GrIS) is a matter of concern when considering its possible contribution to sea level rise. Both surface mass balance (smb) and ice discharge are contributing increasingly to the observed GrIS imbalance. Simple extrapolation of the recent observed trends cannot be justified. Therefore realistic projections of the contribution of GrIS to sea-level rise on decadal to century timescales must be derived from the forecasts of verified ice-flow models driven by the most reliable projections of climatic (atmosphere and ocean) forcing. Here we compare the results of two ice-flow models that have been used to run the forecast simulations of the GrIS 200 years into the future within the ice2sea project: Elmer/Ice a full stokes ice flow model using an unstructured grid with a resolution ranging from 1km in the outlets to 30km in the central parts; and GRISLI an hybrid Shallow Ice / Shallow Shelf model running on a regular 5km grid. For the spin-up both models use inverse methods to constrain the basal friction field to match the current observations of the GrIS state. The models are then forced using the surface mass balance computed with the regional climate model MAR. We compare the sensitivities of ice sheet volume computed by both model (i) to basal lubrication by applying a parametrization that link ice-flow speed-up to runoff and (ii) to the feedback between surface elevation and smb by applying a parametrization derived from MAR simulations on several GrIS topographies. The two models lead to similar volume changes and large scale flow patterns. Basal lubrication affects the flow pattern of the ice-sheet but has little effect on the whole mass budget. On the other hand, considering the surface elevation/smb feedback increases the total mass loss by 10%.

  18. Estimation of the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional climate model MAR (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Fettweis, Xavier; Gallée, Hubert; van den Broeke, Michiel; Tedesco, Marco; van Angelen, Jan; Lenaerts, Jan; Erpicum, Michel

    2013-04-01

    With the aim of estimating the sea level rise (SLR) coming from Surface Mass Balance (SMB) changes over the Greenland ice sheet (GrIS), we report future projections obtained with the regional climate model MAR, forced by outputs of three CMIP5 General Circulation Models (GCMs). Our results indicate that in warmer climates, the mass gained due to increased winter snowfall over GrIS does not compensate the mass lost through increased meltwater run-off in summer. All the MAR projections shows similar non-linear melt increases with rising temperatures as a result of the positive surface albedo feedback, because no change is projected in the general atmospheric circulation over Greenland. Nevertheless, MAR exhibits a large range in its future projections. By coarsely estimating the GrIS SMB changes from CMIP5 GCMs outputs, we show that the uncertainty coming from the GCM-based forcing represents about half of projected SMB changes. In 2100, the CMIP5 ensemble mean projects a SLR, resulting from a GrIS SMB decrease, estimated to be 4±2 cm and 9±4 cm for the RCP 4.5 and RCP 8.5 scenarios, respectively. However, these future projections do not consider the positive melt-elevation feedback. Sensitivity MAR experiments using perturbed ice sheet topographies consistent with the projected SMB changes highlight the importance of coupling climate models to an ice sheet model. Such a coupling will allow to consider the future response of both surface processes and ice-dynamic changes, and their mutual feedbacks to rising temperatures.

  19. Flow-pattern evolution of the last British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hughes, Anna L. C.; Clark, Chris D.; Jordan, Colm J.

    2014-04-01

    We present a 10-stage reconstruction of the evolution in ice-flow patterns of the last British Ice Sheet from build-up to demise derived from geomorphological evidence. 100 flowsets identified in the subglacial bedform record (drumlins, mega-scale glacial lineations, and ribbed moraine) are combined with ancillary evidence (erratic-transport paths, absolute dates and a semi-independently reconstructed retreat pattern) to define flow patterns, ice divides and ice-sheet margins during build-up, maximum glaciation and retreat. Overprinting and cross-cutting of landform assemblages are used to define the relative chronology of flow patterns and a tentative absolute chronology is presented based on a collation of available dates for ice advance and retreat. The ice-flow configuration of the last British Ice Sheet was not static. Some ice divides were remarkably stable, persisting through multiple stages of the ice-sheet evolution, whereas others were transient features existing for a short time and/or shifting in position 10s km. The 10 reconstructed stages of ice-sheet geometry capture two main modes of operation; first as an integrated ice sheet with a broadly N-S orientated ice divide, and second as a multi-domed ice sheet orientated parallel with the shelf edge. A thick integrated ice sheet developed as ice expanded out of source areas in Scotland to envelop southerly ice caps in northern England and Wales, and connect with the Irish Ice Sheet to the west and the Scandinavian Ice Sheet across the North Sea. Following break-up of ice over the North Sea, ice streaming probably drove mass loss and ice-sheet thinning to create a more complex divide structure, where ice-flow patterns were largely controlled by the form of the underlying topography. Ice surface lowering occurred before separation of, and retreat to, multiple ice centres centred over high ground. We consider this 10-stage reconstruction of the evolution in ice-sheet configuration to be the simplest palaeo

  20. The First Annual West Antarctic Ice Sheet (WAIS) Science Workshop

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1993-01-01

    A compilation of abstracts presented at the workshop are presented. The goal was to answer the question, what is the future behavior and potential for rapid collapse of the West Antarctic Ice Sheet (WAIS)? The workshop was organized into four sessions corresponding to the four objectives identified as necessary to reach the WAIS workshop goal: history, current behavior, internal dynamics, and environmental interactions. Presentations were organized by their relevance to each objective, rather than by discipline.

  1. Latest Word on Retreat of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R.

    2000-01-01

    The West Antarctic ice sheet during the Last Glacial Maximum (LGM) is estimated to have been three times its present volume and to have extended close to the edge of the continental shelf Holocene retreat of this ice sheet in the Ross Sea began between 11,000 and 12,000 years ago. This history implies an average contribution of this ice sheet to sea level of 0.9 mm/a. Evidence of dateable past grounding line positions in the Ross sector are broadly consistent with a linear retreat model. However, inferred rates of retreat for some of these grounding line positions are not consistent with a linear retreat model. More rapid retreat approximately 7600 years ago and possible near-stability in the Ross Sea sector at present suggest a slow rate of initial retreat followed by a more rapid-than-average retreat during the late Holocene, returning to a near-zero rate of retreat currently. This model is also consistent with the mid-Holocene high stand observations of eustatic sea level. Recent compilation of Antarctic bed elevations (BEDMAP) illustrates that the LGM and present grounding lines occur in the shallowest waters, further supporting the model of a middle phase of rapid retreat bracketed by an older and a more recent phase of modest retreat. Extension of these hypotheses into the future make subsequent behavior of the West Antarctic ice sheet more difficult to predict but suggest that if it loses its hold on the present shallow bed, the final retreat of the ice sheet could be very rapid.

  2. Effect of microorganism on Greenland ice sheet surface temperature change

    NASA Astrophysics Data System (ADS)

    Shimada, R.; Takeuchi, N.; Aoki, T.

    2012-12-01

    Greenland ice sheet holds approximately 10% of the fresh water on earth. If it melts all, sea level rises about 7.2meter. It is reported that mass of Greenland ice sheet is decreasing with temperature rising of climate change. Melting of the coastal area is particularly noticeable. It is established that 4 to 23% of the sea level rising from 1993 to 2005 is caused by the melting of Greenland ice sheet. In 2010, amount of melting per year became the largest than the past. However many climate models aren't able to simulate the recent melting of snow and ice in the Arctic including Greenland. One of the possible causes is albedo reduction of snow and ice surface by light absorbing snow impurities such as black carbon and dust and by glacial microorganisms. But there are few researches for effect of glacial microorganism in wide area. So it is important to clarify the impact of glacial microorganisms in wide area. The purpose of this study is to clarify the effect of microorganism on Greenland ice sheet surface temperature change using satellite images of visible, near infrared and thermal infrared wavelength range and observation carried out in northwestern Greenland. We use MODIS Land Surface Temperature Product as ice sheet surface temperature. It estimates land surface temperature based on split window method using thermal infrared bands. MODIS data is bound to cover the whole of Greenland, and calculated the ratio of the temperature change per year. Analysis period is from December 2002 to November 2010. Results of calculating Greenland ice sheet surface temperature change using the MODIS data, our analysis shows that it is upward trend in the whole region. We find a striking upward trend in northern and western part of Greenland. The rate is 0.33±0.03 degree Celsius per a year from 47.5°W to 49°W. While in the coastal area from 49°W to 50.7°W, the rate is 0.26±0.06 degree Celsius per a year. This large upward trend area is the same area as dark region

  3. Marine ice sheet profiles and stability under Coulomb basal conditions

    NASA Astrophysics Data System (ADS)

    Tsai, Victor; Stewart, Andrew; Thompson, Andrew

    2015-04-01

    The behavior of marine-terminating ice sheets, like the West Antarctic Ice Sheet, is of interest due to the possibility of rapid grounding line retreat and consequent catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where the most popular approach is to relate the ice sheet velocity to a power-law function of basal stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb friction behavior. Here we address how Coulomb conditions modify ice sheet profiles and stability criteria. The basal rheology necessarily transitions to Coulomb friction near the grounding line due to low effective stresses, leading to changes in ice sheet properties within a narrow boundary layer. Ice sheet profiles 'taper off' towards a flatter upper surface, compared to the power-law case, and basal stresses vanish at the grounding line, consistent with observations. In the Coulomb case, the grounding line ice flux also depends more strongly on flotation ice thickness, which implies that ice sheets are more sensitive to climate perturbations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water than with a power-law rheology. This implies that smaller perturbations are required to push the grounding line into regions of negative bed slope, where it would become unstable. These results have important implications for ice sheet stability in a warming climate.

  4. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  5. Interhemispheric Ice-Sheet Synchronicity During the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Kuhn, G.; Ricken, W.; Sprenk, D.

    2011-12-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to and retreat from their maximum extent was nearly synchronous with Northern Hemisphere ice sheets. As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Deep-sea sediment sites from the central Scotia Sea "iceberg alley" show four phases of enhanced deposition of ice-rated detritus (IRD) occurred at 19.5, 16.5,14.5, and 12 ka. The first two relate to the two ice-sheet retreat signals documented for the Weddell Sea; the third phase indicates an Antarctic component to meltwater pulse 1a; the fourth phase falls roughly into period of the Younger Dryas. Our modeling studies show that surface climate forcing of Antarctic ice sheets would have likely increased ice mass balance during deglaciation, whereby a warming climate would increase accumulation but not surface melting. We propose that sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deepwater formation and attendant heat flux to Antarctic grounding lines provided the teleconnections to synchronize the hemispheric ice sheets.

  6. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2001-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.

  7. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  8. Evolution of a Coupled Marine Ice Sheet - Sea Level Model

    NASA Astrophysics Data System (ADS)

    Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.

    2012-04-01

    An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes whereby ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational, deformational and rotational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a sea-level fall in the vicinity of a shrinking ice sheet that is an order of magnitude greater amplitude than the sea-level rise that would be predicted assuming eustasy. We highlight the stabilizing influence of local sea-level changes on marine ice sheets by incorporating gravitationally self-consistent sea-level changes into a steady state model of ice sheet stability (Gomez et. al., Nature Geoscience, 2010). In addition, we develop a dynamic coupled ice sheet - sea level model to consider the impact of this stabilizing mechanism on the timescale of ice sheet retreat. The coupled system combines a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When

  9. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, M.E.; Clark, P.U.; Ricken, W.; Mitrovica, J.X.; Hostetler, S.W.; Kuhn, G.

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  10. Reconstructing the last Newfoundland Ice Sheet,Canada.

    NASA Astrophysics Data System (ADS)

    McHenry, Maureen; Dunlop, Paul

    2015-04-01

    The Newfoundland Ice Sheet which formed part of the North American Ice Sheet Complex was situated on the margins of the northwest Atlantic Ocean during the Wisconsinan glaciation (~80ka BP to 10ka BP). This complex consisted of the Laurentide, the Cordilleran and Innuitian Ice Sheets, the Canadian Maritime Provinces Ice Cover and the Newfoundland Ice Sheet (NIS). Although all were confluent at the last glacial maximum, the NIS is known to have supported independent ice centres with advances from the Laurentide Ice Sheet being restricted to Newfoundland's northern and western margins. Given its distinctive position, it is likely the evolution of the NIS through the last glacial cycle was influenced by a number of external and internal drivers including configuration changes in the Laurentide Ice Sheet, ice stream initiation and shutdown, changes in oceanic circulation and fluctuating sea levels and climate signals from the wider Amphi-North Atlantic. As such Newfoundland is a key location for investigating ice sheet response to a number of internal and external forcing mechanisms during glacial cycles. An established technique for reconstructing former ice sheet behaviour is the mapping and spatial analysis of glacial landforms. This provides a valuable record of former ice sheet extent and behaviour through time as well as ice sheet retreat during deglaciation. Here we present new mapping based on our interpretation of SPOT satellite imagery and Digital Elevation Models of the entire Island of Newfoundland as well as swath bathymetric imagery from several locations offshore. Our new database consisting of ~150,000 individually mapped subglacial bedforms that includes drumlins, crag and tails, glacially moulded bedrock lineations and ribbed moraines significantly increases the known landform record in this region. The new database shows Newfoundland has a complex palimpsest landscape that records multiple ice sheet events across the island. Here we report our

  11. Greenland ice sheet motion insensitive to exceptional meltwater forcing.

    PubMed

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A

    2013-12-01

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios. PMID:24248343

  12. Growth of Greenland ice sheet - Measurement

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Bindschadler, Robert A.; Marsh, James G.; Brenner, Anita C.; Major, Judy A.

    1989-01-01

    Measurements of ice-sheet elevation change by satellite altimetry show that the Greenland surface elevation south of 72 deg north latitude is increasing. The vertical velocity of the surface is 0.20 + or - 0.06 meters/year from measured changes in surface elevations at 5906 intersections between Geosat paths in 1985 and Seasat in 1978, and 0.28 + or - 0.02 meters/year from 256,694 intersections of Geosat paths during a 548-day period of 1985 to 1986.

  13. Growth of greenland ice sheet: measurement.

    PubMed

    Zwally, H J; Bindschadler, R A; Brenner, A C; Major, J A; Marsh, J G

    1989-12-22

    Measurements of ice-sheet elevation change by satellite altimetry show that the Greenland surface elevation south of 72 degrees north latitude is increasing. The vertical velocity of the surface is 0.20 +/- 0.06 meters per year from measured changes in surface elevations at 5906 intersections between Geosat paths in 1985 and Seasat in 1978, and 0.28 +/- 0.02 meters per year from 256,694 intersections of Geosat paths during a 548-day period of 1985 to 1986. PMID:17834422

  14. Modeling North American Ice Sheet Response to Changes in Precession and Obliquity

    NASA Astrophysics Data System (ADS)

    Tabor, C.; Poulsen, C. J.; Pollard, D.

    2012-12-01

    precession on the Laurentide and Cordillera ice sheets of North America. Preliminary model results show that the ice sheet response to changes in obliquity are larger than for precession despite providing a smaller direct insolation variation in the Northern Hemisphere high latitudes. A combination of enhanced Northern Hemisphere mid-latitude temperature gradient and longer cycle duration allow for a larger ice sheet response to obliquity than would be expected from insolation forcing alone. Conversely, a shorter duration dampens the ice sheet response to precession. Nevertheless, the precession cycle does cause significant changes in ice volume, a feature not observed in the Early Pleistocene δ18O records (Raymo and Nisancioglu, 2003). Future work will examine the climate response to an idealized transient orbit that includes concurrent variations in obliquity, precession, and eccentricity.

  15. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  16. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin.

    PubMed

    Feldmann, Johannes; Levermann, Anders

    2015-11-17

    The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades' enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner-Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. PMID:26578762

  17. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin

    PubMed Central

    Feldmann, Johannes; Levermann, Anders

    2015-01-01

    The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades’ enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner–Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. PMID:26578762

  18. Bedrock structure and the interpretation of palaeo ice stream footprints: examples from the Pleistocene British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.

    2009-04-01

    To model past and future behaviour of ice sheets, a good understanding of both modern and ancient ice streams is required. The study of present-day ice streams provides detailed data of short-term dynamic changes, whilst the study of Pleistocene palaeo-ice streams can provide crucial constraints on the longer-term evolution of ice sheets. To date, palaeo-ice streams, such as the classical Dubawnt Lake palaeo-ice stream of the former Laurentide Ice Sheet, have been recognised largely on the basis of extremely elongate drumlins and megascale glacial lineations; all soft-sediment features. Whilst it appears that topographically unconstrained ice streams (eg. within the West Antarctic Ice Sheet) are generally underlain by deformable till, topographically constrained ice streams such as Jakobshavn Isbrae do not require deformable sediment and may occur on a bedrock-dominated bed. Analysis of DEM data and geomorphology and structural geology fieldwork in Northern Scotland and Northern England has shown the occurrence of highly streamlined bedforms in bedrock of the former base of topographically controlled palaeo-ice streams, which drained parts of the British Ice Sheet. The bedforms are predominantly bedrock megagrooves with asymmetric cross-profiles. In the Ullapool tributary of the Minch palaeo ice stream, bedrock megagrooves form the dominant evidence for ice streaming. The megagrooves are typically 5-15 m deep, 10-30 m wide and 500 - 3000 m long. Spacing of megagrooves is typically 100 - 200 m. In both study areas, the bedrock is strongly anisotropic, either consisting of thin-bedded strata or strongly foliated metasedimentary rocks, with the strata or foliation having a gentle dip. Megagrooves are best developed where the strike of the anisotropy is sub-parallel (within 10 - 20°) with palaeo ice flow. The bedrock in both areas has a well-developed, relatively densely spaced (< 1m), conjugate joint system. We suggest that asymmetric megagrooves are formed by

  19. Surface Elevation Changes Of The Greenland Ice Sheet- Results From ESA's Ice Sheet CCI

    NASA Astrophysics Data System (ADS)

    Levinsen, Joanna F.; Khvorostovky, Kirill; Meister, Rakia; Sorensen, Louise S.; Ticconi, Francesca; Forsberg, Rene; Shepherd, Andrew

    2013-12-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Cli- mate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find the most optimal method, a Round Robin exercise was conducted in which the scientific community was asked to provide their best SEC estimate over the Jakobshavn Isbr drainage basin. The participants used both repeat-track (RT), overlapping footprints, and the cross-over (XO) methods, and both ICESat laser and Envisat radar altimeter data were used. Based on this and feedback sheets describing their methods we found that a combination of the RT and XO techniques yielded the best results. In the following, the obtained results will be presented and discussed.

  20. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  1. A Record of Antarctic Climate and Ice Sheet History Recovered

    NASA Astrophysics Data System (ADS)

    Naish, Tim; Powell, Ross; Levy, Richard; Florindo, Fabio; Harwood, David; Kuhn, Gerhard; Niessen, Frank; Talarico, Franco; Wilson, Gary

    2007-12-01

    Antarctica's late Cenozoic (the past ~15 million years) climate history is poorly known from direct evidence, owing to its remoteness, an extensive sea ice apron, and an ice sheet cover over the region for the past 34 million years. Consequently, knowledge about the role of Antarctica's ice sheets in global sea level and climate has relied heavily upon interpretations of oxygen isotope records from deep-sea cores. Whereas these isotopic records have revolutionized our understanding of climate-ice-ocean interactions, questions still remain about the specific role of Antarctic ice sheets in global climate. Such questions can be addressed from geological records at the marine margin of the ice sheets, recovered by drilling from floating ice platforms [e.g., Davey et al., 2001; Harwood et al., 2006; Barrett, 2007].

  2. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability

    PubMed Central

    Jones, R. S.; Mackintosh, A. N.; Norton, K. P.; Golledge, N. R.; Fogwill, C. J.; Kubik, P. W.; Christl, M.; Greenwood, S. L.

    2015-01-01

    Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to ‘marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558

  3. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability.

    PubMed

    Jones, R S; Mackintosh, A N; Norton, K P; Golledge, N R; Fogwill, C J; Kubik, P W; Christl, M; Greenwood, S L

    2015-01-01

    Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to 'marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558

  4. Using cosmogenic exposure dates to evaluate modeled Greenland Ice Sheet behavior

    NASA Astrophysics Data System (ADS)

    Applegate, P. J.; Kirchner, N.

    2012-04-01

    Cosmogenic exposure dates represent an untapped data set for evaluation and calibration of ice sheet models on Greenland. Ice sheet models contain simplified numerical descriptions of many processes affecting real ice sheets, including ice flow, surface mass balance, isostasy, and basal sliding. These models provide a crucial means of filling spatial and temporal gaps between paleo-data, and projecting the future behavior of ice sheets in a warming world. Such models must be tuned to data before their results can be considered reliable. Cosmogenic exposure dating of bedrock, erratic boulders, and trimlines on nunataks in Antarctica is often used to tune ice sheet models, but this approach has not been applied in Greenland due to the lack of appropriate topographic "dipsticks." Here, we demonstrate how cosmogenic exposure dates can be used to evaluate ice sheet model results in Greenland. Our starting point is a recently-published, 125 ka-long run with the ice sheet model SICOPOLIS (sicopolis.greveweb.net; Greve et al. 2011, Annals of Glaciology 52, 23-30). For each 10 km square ice sheet model grid cell that contains exposure dates, we project the elevations of the sample sites onto a hypsometric curve constructed using a finer-resolution digital elevation model. The hypsometric curve and the modeled history of ice thickness within each grid box determines when each sampled point became exposed. We then compare the model-predicted exposure times to the cosmogenic-derived apparent exposure times. Model-data agreement is relatively good where and when the margin is terrestrial (near Kangerlussuaq in western Greenland), but poorer where the ice margin interacts with the water (near Jakobshavn, on Store Koldewey Island, and in Scoresby Sund). We comment on the partitioning of residuals between model problems and geomorphic issues in the data. This work is novel because it 1) provides a new methodology for comparing ice sheet model results to chronologic data, and 2

  5. Boundary layer stability acts to ballast the mass of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M. B.; Noone, D. C.; Steen-Larsen, H. C.; O'Neill, M.; Raudzens Bailey, A.; Cox, C.; Schneider, D. P.

    2014-12-01

    The mass of the Greenland Ice Sheet has been reduced over recent decades as a consequence of warming, the impact of which is already detectable on global sea level. However, temperature projections suggest that at interior high-altitude sites on the ice it could be decades or more before warming forces these regions to transition from a dry to wet snow facies. Shifts in boundary layer dynamics, including atmosphere-ice sheet hydrological exchange and cloud radiative forcing could expedite or delay this transition. These processes are important with respect to future ice sheet stability, yet they remain difficult to constrain. Using continuous in situ measurements of vertical profiles of the isotopic composition of water vapor at Summit Camp, the highest observatory on the ice sheet, we document the presence of a hydrologic balance between surface sublimation and condensation fluxes. This exists because of a nearly persistent temperature inversion, which hinders the efficiency with which surface water vapor mixes into the free atmosphere. In the presence of a strong temperature inversion, fog and ice particles form near the ice-atmosphere interface from surface moisture fluxes. When this condensate precipitates on or settles to the surface, it ballasts the ice sheet's mass. A decade-long trend towards lower annual accumulation at Summit may therefore reflect continuous replacement of the near surface atmosphere due to reduced atmospheric stability. If this tendency toward destabilization continues, it could accelerate mass loss at interior sites on the ice sheet. The role of boundary layer stability in ice sheet hydrological budgets discussed here is applicable beyond the accumulation zone of the Greenland Ice Sheet.

  6. Evolution of a Coupled Marine Ice Sheet - Sea Level Model

    NASA Astrophysics Data System (ADS)

    Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.

    2011-12-01

    An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes. In this case, ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational and deformational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a near-field sea-level change of opposite sign, and an order of magnitude greater amplitude, than would be predicted assuming eustasy. In recent work (Gomez et. al., Nature Geoscience, 2010), we highlighted the potential importance of this stabilizing sea-level mechanism by incorporating gravitationally self-consistent sea-level changes into a steady state ice sheet model. We extend this earlier analysis to investigate the influence of this stabilization mechanism on the timescale of ice-sheet retreat by coupling a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When the ice-sheet model is forced from steady state, on short timescales (< ~500 years), viscous

  7. Modeling the fracture of ice sheets on parallel computers.

    SciTech Connect

    Waisman, Haim; Bell, Robin; Keyes, David; Boman, Erik Gunnar; Tuminaro, Raymond Stephen

    2010-03-01

    The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves in Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.

  8. The Last Interglacial History of the Antarctic Ice sheet

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Siddall, Mark; Milne, Glenn A.; Masson-Delmotte, Valerie; Wolff, Eric; Hindmarsh, Richard C. A.

    2014-05-01

    In this paper we present a summary of the work which was conducted as part of the 'PAST4FUTURE -WP4.1: Sea Level and Ice sheets' project. The overall aim of this study was to understand the response of the Antarctic Ice sheet (AIS) to climate forcing during the Last interglacial (LIG) and its contribution to the observed higher than present sea level during this period. The study involved the application and development of a novel technique which combined East Antarctic stable isotope ice core data with the output from a Glacial Isostatic Adjustment (GIA) model [Bradley et al., 2012]. We investigated if the stable isotope ice core data are sensitive to detecting isostatically driven changes in the surface elevation driven by changes in the ice-loading history of the AIS and if so, could we address some key questions relating to the LIG history of the AIS. Although it is believed that the West Antarctic Ice sheet (WAIS) reduced in size during the LIG compared to the Holocene, major uncertainties and unknowns remain unresolved: Did the WAIS collapse? What would the contribution of such a collapse be the higher than present LIG eustatic sea level (ESL)? We will show that a simulated collapse of the WAIS does not generate a significant elevation driven signal at the EAIS LIG ice core sites, and as such, these ice core records cannot be used to assess WAIS stability over this period. However, we will present 'treasure maps' [Bradley et al., 2012] to identify regions of the AIS where results from geological studies and/or new paleoclimate data may be sensitive to detecting a WAIS collapse. These maps can act as a useful tool for the wider science community/field scientists as a guide to highlight sites suitable to constrain the evolution of the WAIS during the LIG. Studies have proposed that the surface temperature across the East Antarctic Ice Sheet (EAIS) was significantly warmer, 2-5°C during the LIG compared to present [Lang and Wolff, 2011]. These higher

  9. History of the Greenland Ice Sheet: paleoclimatic insights

    USGS Publications Warehouse

    Alley, Richard B.; Andrews, John T.; Brigham-Grette, J.; Clarke, G.K.C.; Cuffey, Kurt M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; Muhs, D.R.; Otto-Bliesner, B. L.; Polyak, L.; White, J.W.C.

    2010-01-01

    Paleoclimatic records show that the GreenlandIce Sheet consistently has lost mass in response to warming, and grown in response to cooling. Such changes have occurred even at times of slow or zero sea-level change, so changing sea level cannot have been the cause of at least some of the ice-sheet changes. In contrast, there are no documented major ice-sheet changes that occurred independent of temperature changes. Moreover, snowfall has increased when the climate warmed, but the ice sheet lost mass nonetheless; increased accumulation in the ice sheet's center has not been sufficient to counteract increased melting and flow near the edges. Most documented forcings and ice-sheet responses spanned periods of several thousand years, but limited data also show rapid response to rapid forcings. In particular, regions near the ice margin have responded within decades. However, major changes of central regions of the ice sheet are thought to require centuries to millennia. The paleoclimatic record does not yet strongly constrain how rapidly a major shrinkage or nearly complete loss of the ice sheet could occur. The evidence suggests nearly total ice-sheet loss may result from warming of more than a few degrees above mean 20th century values, but this threshold is poorly defined (perhaps as little as 2 °C or more than 7 °C). Paleoclimatic records are sufficiently sketchy that the ice sheet may have grown temporarily in response to warming, or changes may have been induced by factors other than temperature, without having been recorded.

  10. Ice-age Ice-sheet Rheology: Constraints from the Last Glacial Maximum Form of the Laurentide Ice Sheet

    NASA Technical Reports Server (NTRS)

    Peltier, W. Richard; Goldsby, David L.; Kohlstedt, David L.; Tarasov, Lev

    2000-01-01

    State-ot-the-art thermomechanical models of the modern Greenland ice and the ancient Laurenticle ice sheet that covered Canada at the Last Glacial Maximum (LGM) are not able to explain simultaneously the observed forms of these cryospheric structures when the same, anisotropy-enhanced, version of the conventional Glen flow law is employed to describe their rheology. The LGM Laurenticle ice sheet. predicted to develop in response to orbital climate forcing, is such that the ratio of its thickness to its horizontal extent is extremely large compared to the aspect ratio inferred on the basis of surface-geomorphological and solid-earth-geophysical constraints. We show that if the Glen flow law representation of the rheology is replaced with a new rheology based upon very high quality laboratory measurements of the stress-strain-rate relation, then the aspect ratios of both the modern Greenland ice sheet and the Laurenticle ice sheet, that existed at the LGM, are simultaneously explained with little or no retuning of the flow law.

  11. Pre-LGM Northern Hemisphere ice sheet topography

    NASA Astrophysics Data System (ADS)

    Kleman, J.; Fastook, J.; Ebert, K.; Nilsson, J.; Caballero, R.

    2013-10-01

    We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS) 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM) to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok-GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS) 5b (86.2 kyr model age) and 4 (64 kyr model age). From the interglacial state of two north-south obstacles to atmospheric circulation (Rocky Mountains and Greenland), by MIS 5b the emergence of combined Quebec-central Arctic and Scandinavian-Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  12. Fully coupled ice sheet-earth system model: How does the Greenlandic ice sheet interact in a changing climate

    NASA Astrophysics Data System (ADS)

    Rodehacke, C.; Mikolajewicz, U.; Vizcaino, M.

    2012-04-01

    As ice sheets belong to the slowest climate components, they are usually not interactively coupled in current climate models. Therefore, long-term climate projections are incomplete and only the consideration of ice sheet interactions allows tackling fundamental questions, such as how do ice sheets modify the reaction of the climate systems under a strong CO2 forcing? The earth system model MPI-ESM, with the atmosphere model ECHAM6 and ocean model MPIOM, is coupled to the modified ice sheet model PISM. This ice sheet model, which is developed at the University of Fairbanks, represents the ice sheet of Greenland at a horizontal resolution of 10 km. The coupling is performed by calculating the surface mass balance based on 6-hourly atmospheric data to determine the boundary condition for the ice sheet model. The response of the ice sheet to this forcing, which includes orographic changes and fresh water fluxes, are passed back to the ESM. In contrast to commonly used strategies, we use a mass conserving scheme and do therefore neither apply flux corrections nor utilize anomaly coupling. Under a strong CO2 forcing a disintegrating Greenlandic ice sheet contributes to a rising sea level and has the potential to alter the formation of deep water masses in the adjacent formation sites Labrador Sea and Nordic Seas. We will present results for an idealized forcing with a growing atmospheric CO2 concentration that rises by 1% per year until four-times the pre-industrial level has been reached. We will discuss the reaction of the ice sheet and immediate responses of the ocean to ice loss.

  13. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic

  14. Progress and Challenges in Coupled Ice-Sheet/Climate Modeling with CESM

    NASA Astrophysics Data System (ADS)

    Fyke, J. G.; Sacks, W.; Vizcaino, M.; Lipscomb, W. H.; Price, S. F.

    2014-12-01

    Bidirectional coupling of ice sheet models and climate models opens the door to research of ice-sheet/climate interaction at a global scale. However, difficulties encountered in achieving this coupling have proven non-trivial and include both: 1) Technical challenges. Ocean and atmosphere model components cannot easily handle dynamic boundaries; land surface model components cannot easily simulate exposed glacial ice, firn evolution, or evolving land surfaces; coupling infrastructure cannot easily accept new earth system components; and ice sheet models typically operate at an order of magnitude higher spatial resolution than climate models and on regional domains, and require very long integrations to reach an equilibrium state. 2) Scientific challenges. The glaciological modeling and climate modeling communities often work on topics that cover very different spatiotemporal scales; carry out research using very different models and with very different modeling paradigms; and do not consider coupled ice-sheet/climate behavior across the various ice-sheet/climate physical interfaces. These technical and scientific challenges are being tackled within the Community Earth System Model. The resulting coupled architecture ("CESM-CISM") is now capable of simulating the Greenland ice sheet (GrIS) in the climate system. The model includes a relatively sophisticated representation of surface mass balance (SMB), explicit resolution of important ice-sheet climate communication pathways, and prognostic ice dynamics. First results, underpinned by modelled SMB validation, have explored changes in GrIS mean SMB and its variability, partially-coupled GrIS evolution, and emergence of an anthropogenic signal in SMB under RCP8.5 climate forcing. Ongoing work with the evolving CESM-CISM will set the stage for fully-coupled simulations of Greenland in past and future climates, and also for potential integration of the Antarctic ice sheet into a true coupled modeling framework.

  15. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  16. Phreatomagmatic eruptions under the West Antarctic Ice Sheet: potential hazard for ice sheet stability

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; Lieb-Lappen, R.; Kim, E. J.; Golden, E. J.; Obbard, R. W.

    2014-12-01

    Volcanic tephra layers have been seen in most ice cores in Antarctica. These tephra layers are deposited almost instantaneously across wide areas of ice sheets, creating horizons that can provide "pinning points" to adjust ice time scales that may otherwise be lacking detailed chronology. A combination of traditional particle morphology characterization by SEM with new non-destructive X-ray micro-computed tomography (Micro-CT) has been used to analyze selected coarse grained tephra in the West Antarctica Ice Sheet (WAIS) Divide WDC06A ice core. Micro-CT has the ability to image particles as small as 50µm in length (15µm resolution), quantifying both particle shape and size. The WDC06A contains hundreds of dusty layers of which 36 have so far been identified as primary tephra layers. Two of these tephra layers have been characterized as phreatomagmatic eruptions based on SEM imagery and are blocky and platy in nature, with rare magmatic particles. These layers are strikingly different in composition from the typical phonolitic and trachytic tephra produced from West Antarctic volcanoes. These two layers are coarser in grain size, with many particles (including feldspar crystals) exceeding 100µm in length. One tephra layer found at 3149.138m deep in the ice core is a coarse ~1mm thick basanitic tephra layer with a WDC06-7 ice core age of 45,381±2000yrs. The second layer is a ~1.3 cm thick zoned trachyandesite to trachydacite tephra found at 2569.205m deep with an ice core age 22,470±835yrs. Micro-CT analysis shows that WDC06A-3149.138 has normal grading with the largest particles at the bottom of the sample (~160μm). WDC06A-2569.205 has a bimodal distribution of particles with large particles at the top and bottom of the layer. These large particles are more spherical in shape at the base and become more irregular and finer grained higher in the layer, likely showing changes in eruption dynamics. The distinct chemistry as well as the blocky and large grain size

  17. Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts.

    PubMed

    Bingham, Robert G; Ferraccioli, Fausto; King, Edward C; Larter, Robert D; Pritchard, Hamish D; Smith, Andrew M; Vaughan, David G

    2012-07-26

    Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5 kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability. PMID:22837002

  18. Sea-level response to ice sheet evolution: An ocean perspective

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1991-01-01

    The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.

  19. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations. PMID:27386524

  20. Collapse of polar ice sheets during the stage 11 interglacial.

    PubMed

    Raymo, Maureen E; Mitrovica, Jerry X

    2012-03-22

    Contentious observations of Pleistocene shoreline features on the tectonically stable islands of Bermuda and the Bahamas have suggested that sea level about 400,000 years ago was more than 20 metres higher than it is today. Geochronologic and geomorphic evidence indicates that these features formed during interglacial marine isotope stage (MIS) 11, an unusually long interval of warmth during the ice age. Previous work has advanced two divergent hypotheses for these shoreline features: first, significant melting of the East Antarctic Ice Sheet, in addition to the collapse of the West Antarctic Ice Sheet and the Greenland Ice Sheet; or second, emplacement by a mega-tsunami during MIS 11 (ref. 4, 5). Here we show that the elevations of these features are corrected downwards by ∼10 metres when we account for post-glacial crustal subsidence of these sites over the course of the anomalously long interglacial. On the basis of this correction, we estimate that eustatic sea level rose to ∼6-13 m above the present-day value in the second half of MIS 11. This suggests that both the Greenland Ice Sheet and the West Antarctic Ice Sheet collapsed during the protracted warm period while changes in the volume of the East Antarctic Ice Sheet were relatively minor, thereby resolving the long-standing controversy over the stability of the East Antarctic Ice Sheet during MIS 11. PMID:22419155

  1. Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era

    NASA Astrophysics Data System (ADS)

    Davies, Bethan J.; Hambrey, Michael J.; Smellie, John L.; Carrivick, Jonathan L.; Glasser, Neil F.

    2012-01-01

    The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in the thinning, acceleration and recession of glaciers and the sequential collapse of ice shelves. It is important to view these changes in the context of long-term palaeoenvironmental complexity and to understand the key processes controlling ice sheet growth and recession. In addition, numerical ice sheet models require detailed geological data for tuning and testing. Therefore, this paper systematically and holistically reviews published geological evidence for Antarctic Peninsula Ice Sheet variability for each key locality throughout the Cenozoic, and brings together the prevailing consensus of the extent, character and behaviour of the glaciations of the Antarctic Peninsula region. Major contributions include a downloadable database of 186 terrestrial and marine calibrated dates; an original reconstruction of the LGM ice sheet; and a new series of isochrones detailing ice sheet retreat following the LGM. Glaciation of Antarctica was initiated around the Eocene/Oligocene transition in East Antarctica. Palaeogene records of Antarctic Peninsula glaciation are primarily restricted to King George Island, where glacigenic sediments provide a record of early East Antarctic glaciations, but with modification of far-travelled erratics by local South Shetland Island ice caps. Evidence for Neogene glaciation is derived primarily from King George Island and James Ross Island, where glaciovolcanic strata indicate that ice thicknesses reached 500-850 m during glacials. This suggests that the Antarctic Peninsula Ice Sheet draped, rather than drowned, the topography. Marine geophysical investigations indicate multiple ice sheet advances during this time. Seismic profiling of continental shelf-slope deposits indicates up to ten large advances of the Antarctic Peninsula Ice Sheet during the Early Pleistocene, when the ice sheet was dominated by 40 kyr cycles. Glacials became more

  2. Radiostratigraphy and age structure of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-01-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664

  3. Measurements of Past Ice Sheet Elevations in Interior West Antarctica.

    PubMed

    Ackert; Barclay; Borns; Calkin; Kurz; Fastook; Steig

    1999-10-01

    A lateral moraine band on Mount Waesche, a volcanic nunatak in Marie Byrd Land, provides estimates of past ice sheet surface elevations in West Antarctica. Helium-3 and chlorine-36 surface exposure ages indicate that the proximal part of the moraine, up to 45 meters above the present ice surface, was deposited about 10,000 years ago, substantially later than the maximum ice extent in the Ross Embayment. The upper distal part of the moraine may record multiple earlier ice sheet high stands. A nonequilibrium ice sheet model predicts a delay of several thousand years in maximum ice levels at Mount Waesche relative to the maximum ice extent in the Ross Sea. The glacial geologic evidence, coupled with the ice sheet model, indicates that the contribution of the Ross Sea sector of the West Antarctic Ice Sheet to Holocene sea level rise was only about 3 meters. These results eliminate West Antarctic ice as the principle source of the large meltwater pulse during the early Holocene. PMID:10514368

  4. Tropical Pacific response to continental ice sheet topography

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Yu; Chiang, John C. H.; Chang, Ping

    2015-05-01

    The last glacial maximum was marked by maximum land ice extent and lowest greenhouse gases concentration during the last ice age. We explore the impact of glacial continental ice sheet topography on the large-scale tropical ocean-atmosphere climate, in particular the tropical Pacific, in an intermediate complexity coupled model. Increasing the thickness of continental ice sheets causes a southward displaced Pacific Intertropical Convergence Zone (ITCZ) and a strengthening (weakening) of northern (southern) hemisphere winter Hadley cell. The equatorial zonal sea surface temperature gradient weakened with an increased continental ice sheets thickness, the reduction being caused by cooling in the western equatorial Pacific and warming in the eastern equatorial Pacific. The evolution of the tropical climate with changing ice thickness has distinct quasi-linear and nonlinear parts. While the linear part is a direct response to the ice topographic changes, the nonlinear part was a result of the tropical thermocline adjustment. Our analysis of a fully-coupled transient deglacial simulation strongly indicates the dominant role of ice sheet topography in determining the deglacial evolution of the simulated Pacific climate. The thickness of continental ice sheet, separate from ice albedo effect, has significant impact on the tropical ocean-atmosphere climate in particular with the meridional displacement in the Pacific ITCZ. The altered circulation states seen in the model may aid understanding of the relationship between tropical and high-latitude climate records in glacial-interglacial cycles.

  5. Evidence for a former large ice sheet in the Orville Coast- Ronne Ice Shelf area, Antarctica.

    USGS Publications Warehouse

    Carrara, P.

    1981-01-01

    The Orville Coast area of the Antarctic Peninsula was extensively glacierized in the past. Striations, polished rock surfaces, and erratics on nunatak summits indicate that this area was covered by a broad regional ice sheet whose grounded ice margin was on the continental shelf, in the present-day Ronne Ice Shelf area. If the glacial history of Antarctica has been controlled by eustatic sea-level changes, the destruction of this ice sheet would have been contemporaneous with that of the Ross Sea ice sheet due to the world-wide rise of eustatic sea-level at the end of the Wisconsin glaciation. -Author

  6. Modeling the Fracture of Ice Sheets on Parallel Computers

    SciTech Connect

    Waisman, Haim; Tuminaro, Ray

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  7. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  8. Refreezing on the Greenland ice sheet: a model comparison

    NASA Astrophysics Data System (ADS)

    Steger, Christian; Reijmer, Carleen; van den Broeke, Michiel; Ligtenberg, Stefan; Kuipers Munneke, Peter; Noël, Brice

    2016-04-01

    Mass loss of the Greenland ice sheet (GrIS) is an important contributor to global sea level rise. Besides calving, surface melt is the dominant source of mass loss. However, only part of the surface melt leaves the ice sheet as runoff whereas the other part percolates into the snow cover and refreezes. Due to this process, part of the meltwater is (intermediately) stored. Refreezing thus impacts the surface mass balance of the ice sheet but it also affects the vertical structure of the snow cover due to transport of mass and energy. Due to the sparse availability of in situ data and the demand of future projections, it is inevitable to use numerical models to simulate refreezing and related processes. Currently, the magnitude of refrozen mass is neither well constrained nor well validated. In this study, we model the snow and firn layer, and compare refreezing on the GrIS as modelled with two different numerical models. Both models are forced with meteorological data from the regional climate model RACMO 2 that has been shown to simulate realistic conditions for Greenland. One model is the UU/IMAU firn densification model (FDM) that can be used both in an on- and offline mode with RACMO 2. The other model is SNOWPACK; a model originally designed to simulate seasonal snow cover in alpine conditions. In contrast to FDM, SNOWPACK accounts for snow metamorphism and microstructure and contains a more physically based snow densification scheme. A first comparison of the models indicates that both seem to be able to capture the general spatial and temporal pattern of refreezing. Spatially, refreezing occurs mostly in the ablation zone and decreases in the accumulation zone towards the interior of the ice sheet. Below the equilibrium line altitude (ELA) where refreezing occurs in seasonal snow cover on bare ice, the storage effect is only intermediate. Temporal patterns on a seasonal range indicate two peaks in refreezing; one at the beginning of the melt season where

  9. Antarctic marine ice sheet retreat in the Ross Sea during the early Holocene

    NASA Astrophysics Data System (ADS)

    Mckay, R. M.; Golledge, N.; Naish, T.; Maas, S.; Levy, R. H.; Kuhn, G.; Lee, J. I.; Dunbar, G. B.

    2015-12-01

    Geological constraints on the timing of the retreat of the Last Glacial Maximum (LGM) Antarctic Ice Sheets provide critical insights into the processes controlling marine-based ice sheet stability. The over-deepened, seaward shallowing bathymetry of Antarctica's continental shelves is ideally configured to promote past, and potentially future, marine ice-sheet instability. The retreat history of the LGM ice sheet in the Ross Sea region is primarily constrained by C-14 ages on coastal beach ridges and relict penguin colonies along the Transantarctic Mountain front in the Western Ross Sea. Although these terrestrial sites offer more reliable dates than imprecise C-14 chronologies derived from bulk marine sediments, they may reflect retreat of local piedmont glaciers derived from East Antarctic outlet glaciers rather than representing the timing of retreat of the ice sheet in the central Ross Embayment. We present a sedimentary facies succession and foraminifera-based C-14 chronology from a core collected beneath the Ross Ice Shelf via a hot water drill access hole used for the ANDRILL Coulman High site survey. The site is to the east of Ross Island and distal from the coast, and yields a minimum age for glacial retreat that is approximately 1000 yrs earlier than suggested by coastal records along the nearby Victoria Land coast. We examine the implications of this constraint on the timing of ice sheet retreat in the context of model simulations and new multi-beam bathymetry data acquired in the Western Ross Sea. On the basis of these data we hypothesize that marine-based ice sheet retreat was triggered by oceanic forcings along most of the Pacific Ocean coastline of Antarctica simultaneously, but continued retreat in the Ross Sea occurred primarily as a consequence of marine ice sheet instability.

  10. A Grand (Ensemble) Design For Ice Sheet Projections

    NASA Astrophysics Data System (ADS)

    Edwards, Tamsin

    2015-04-01

    For projections of the probability of sea level rise from the ice sheets to be considered robust, they ought to be founded in both glaciological theory (represented by dynamical ice sheet models) and statistical inference (formal uncertainty quantification, UQ). No such studies yet exist for either the Greenland or Antarctic ice sheet. Ice sheet projections are therefore at risk of being physically implausible, difficult to interpret, or both. But ice sheet models have many advantages over climate models for UQ. They are computationally cheaper, simpler to understand, have fewer input parameters and output variables, and it is often straightforward to switch between different model structures. Just as importantly, the ice sheet modelling community is not yet constrained methodologically or culturally by the legacy - and pitfalls - of the CMIP multi-model "ensemble of opportunity". These advantages present us with a golden opportunity for policy relevant sea level projections: we can design a "grand ensemble" that quantifies multiple modelling uncertainties in a statistically rigorous and efficient way. Such an ensemble would systematically sample model parameters and structures, initial and boundary conditions, in the most informative way (given available computational resources), and would also allow statistical inference i.e. probabilistic estimates. I will present a design that draws on useful UQ techniques that have recently applied in ice sheet modelling (and others that have not). Such a design has the potential not only to generate more robust and meaningful sea level projections but also to provide thorough sensitivity analyses for prioritising model development and observational campaigns.

  11. Pre-LGM Northern Hemisphere paleo-ice sheet topography

    NASA Astrophysics Data System (ADS)

    Kleman, J.; Fastook, J.; Ebert, K.; Nilsson, J.; Caballero, R.

    2013-05-01

    We here reconstruct the paleotopgraphy of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS) 5b and 4. We employ two approaches, geologically based reconstruction and numerical modeling, in mutually supportive roles to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM) to calculate ice-sheet thickness and topography. The approach and ice-sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok-GRIP record, and spatial adjustment of climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS) 5b (86.2 kyr model age) and 4 (64 kyr model age). From the interglacial state of two north-south obstacles to atmospheric circulation (Rocky Mountains and Greenland), by MIS 5b combined Quebec-Central Arctic and Scandinavian-Barents/Kara ice sheets had effectively increased the number of such highland obstacles to four. This number remained constant through MIS 4, but at the last glacial maximum (LGM) dropped to three, through the merging of the Cordilleran and the proto-Laurentide Ice Sheet to a single continent-wide North American ice sheet.

  12. The environment and evolution of the West Antarctic ice sheet: setting the stage.

    PubMed

    Bindschadler, Robert

    2006-07-15

    The West Antarctic ice sheet is the last ice sheet of the type cradled in a warm, marine geologic basin. Its perimeter stretches into the surrounding seas allowing warmer ocean waters to reach the undersides of its floating ice shelves and its relatively low surface elevation permits snow-carrying storms to extend well into its interior. This special environment has given rise to theories of impending collapse and for the past quarter-century has challenged researchers who seek a quantitative prediction of its future behaviour and the corresponding effect on sea level. Observations confirm changes on a variety of time scales from the quaternary to less than a minute. The dynamics of the ice sheet involve the complex interaction of ice that is warm at its base and cold along the margins of ice streams; subglacial till that is composed of a combination of marine sediment and eroded sedimentary rocks; and water that moves primarily between the ice and bed, but whose flow direction can differ from the direction of ice motion. The pressure of the water system is often sufficient to float the ice sheet locally and small changes in the amount of water in the till can cause it to rapidly switch from very weak to very stiff. PMID:16782601

  13. Permafrost-ice-sheet interactions during the Quaternary

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. We recently included a permafrost module in the Earth system model CLIMBER-2 to explore the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution during the Quaternary. The model has been shown to perform generally well at reproducing present-day permafrost extent and thickness. Modelled permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. In a previous study we showed that over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM. In transient model simulations of the "40 kyr world" of the early Pleistocene we show that when all continents are covered by a thick sediment layer the response of ice volume to the obliquity component of orbital forcing is enhanced while the response to precession is dampened. We therefore argue that permafrost could have played a role for ice sheet evolution when all continents were covered by a thick sediment layer, as was likely the case in the early Pleistocene before the sediment layer was gradually eroded by expanding ice sheets over parts of northern Canada and Scandinavia.

  14. Global ice-sheet system interlocked by sea level

    SciTech Connect

    Denton, G.H.; Hughes, T.J.; Karlen, W.

    1986-01-01

    Denton and Hughes postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during later Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75/sup 0/N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet. But factors other than areal changes of the grounded Antarctic Ice Sheet may have strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate, but another potential influence was high-frequency climatic oscillations. It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm-high frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 /sup 14/C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide. Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.

  15. Increased future ice discharge from Antarctica owing to higher snowfall.

    PubMed

    Winkelmann, R; Levermann, A; Martin, M A; Frieler, K

    2012-12-13

    Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet. PMID:23235878

  16. A surface mass balance model for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bougamont, Marion; Bamber, Jonathan L.; Greuell, Wouter

    2005-12-01

    A surface mass balance model aimed at being coupled to a Global Circulation Model (GCM) for future climate prediction is described and tested for the Greenland Ice Sheet. The model builds on previous modeling designed to be forced by automatic weather station data, and includes surface energy balance as well as processes occurring near the surface such as water percolation and refreezing. Surface albedo is calculated with a new scheme that differentiates the timescale for aging of wet and dry snow and incorporates the effect of a thin layer of water and/or fresh snow at the surface. The model was driven with automatic weather station data from two sites located in the ablation zone in the Kangerlussuaq area (West Greenland), and calculated reasonable annual mass balance values (within 10% in seven out of eight cases) for four individual and consecutive years (1998-2001), using both measured and calculated albedo. This implies that the albedo parameterization is adequate and climate feedbacks affecting the mass balance are well captured. The model was then applied to a distributed 20-km-resolution grid covering the whole ice sheet, and forced with 10 years of the European Centre for Medium-range Weather Forecast (ECMWF) reanalysis (ERA-40) data. With the aim of coupling the model to a GCM, this study focuses on the ability to model the interannual variability in mass balance rather than to assess the present state of balance of the ice sheet. Modeled spatial and temporal wet zone extent compares well with information derived from passive microwave satellite data.

  17. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice

  18. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  19. The climate - Greenland ice sheet Feedback as simulated by the coupled ice sheet/climate model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, Shuting; Madsen, Marianne S.; Rodehacke, Christian; Svendsen, Synne H.

    2014-05-01

    Recent observations show that mass loss from the Greenland ice sheet has increased during the past decades, in line with the warming trend in the Arctic. Studies have suggested that the ice sheet mass discharge through fast moving outlet glaciers and ice streams may be triggered by intrusions of warm seawater into fjords, implying the possibility for fjord-terminating glaciers to respond to ocean and atmospheric changes on annual to decadal time scales. Meanwhile, the rapid changes in ice sheet topography and surface runoff could alter the atmospheric and ocean circulation. To understand the interactions of ice sheet and atmosphere and ocean, process based, climate - ice sheet coupled models are needed. Recently a fully coupled global climate model with a dynamical ice sheet model for the Greenland ice sheet, EC-EARTH - PISM, has been developed. The model system consists of the atmosphere, ocean and sea ice model system, EC-EARTH, and the Parallel Ice Sheet Model, PISM. The coupling of the PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. PISM is initialized with the standard paleo-climatological spin-up followed by forcing with the EC-EARTH preindustrial climate to reach an equilibrium state with the model preindustrial climate. The EC-EARTH - PISM system is then integrated under preindustrial conditions until it has reached a

  20. Modelling heterogeneous meltwater percolation on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, S.

    2015-12-01

    The Greenland Ice Sheet (GrIS) has experienced an increase of surface meltwater production over the last decades, with the latest record set in the summer of 2012. For current and future ice sheet mass balance assessments, it is important to quantify what part of this meltwater reaches the ocean and contributes to sea level change. Meltwater produced at the surface has several options: it can infiltrate the local firn pack, where it is either stored temporarily or refrozen, or it can run off along the surface or via en-glacial drainage systems. In this study, we focus on the first; more specifically, in which manner meltwater percolates the firn column. Over the past years, GrIS research has shown that meltwater does not infiltrate the firn pack homogeneously (i.e. matrix flow), but that inhomogeneities in horizontal firn layers causes preferential flow paths for meltwater (i.e. piping). Although this process has been observed and studied on a few isolated sites, it has never been examined on the entire GrIS. To do so, we use the firn model IMAU-FDM with new parameterizations for preferential flow, impermeable ice lenses and sub-surface runoff. At the surface, IMAU-FDM is forced with realistic climate data from the regional climate model RACMO2.3. The model results are evaluated with temperatures and density measurements from firn cores across the GrIS. By allowing for heterogeneous meltwater percolation, the model is able to store heat and mass much deeper in the firn column. This is, however, in part counteracted by the inclusion of impermeability of ice lenses, which causes part of the meltwater to run off horizontally.

  1. Basal Dynamics and Internal Structure of Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, Michael J.

    The internal structure of ice sheets reflects the history of flow and deformation experienced by the ice mass. Flow and deformation are controlled by processes occurring within the ice mass and at its boundaries, including surface accumulation or ablation, ice rheology, basal topography, basal sliding, and basal melting or freezing. The internal structure and basal environment of ice sheets is studied with ice-penetrating radar. Recently, radar observations in Greenland and Antarctica have imaged large englacial structures rising from near the bed that deform the overlying stratigraphy into anticlines, synclines, and overturned folds. The mechanisms that may produce these structures include basal freeze-on, travelling slippery patches at the ice base, and rheological contrasts within the ice column. In this thesis, I explore the setting and mechanisms that produce large basal stratigraphic structures inside ice sheets. First, I use radar data to map subglacial hydrologic networks that deliver meltwater uphill towards freeze-on structures in East Antarctica. Next, I use a thermomechanical flowline model to demonstrate that trains of alternating slippery and sticky patches can form underneath ice sheets and travel downstream over time. The disturbances to the ice flow field produced by these travelling patches produce stratigraphic folds resembling the observations. I then examine the overturned folds produced by a single travelling sticky patch using a kinematic flowline model. This model is used to interpret stratigraphic measurements in terms of the dynamic properties of basal slip. Finally, I use a simple local one-dimensional model to estimate the thickness of basal freeze-on that can be produced based on the supply of available meltwater, the thermal boundary conditions, ice sheet geometry, and the ice flow regime.

  2. Sturgis and Tekonsha ice advances: Evidence for thin ice sheets in southern Michigan

    SciTech Connect

    Straw, W.T.; Kehew, A.E.; Passero, R.N. . Dept. of Geology)

    1993-03-01

    Advance of an ice sheet through the Saginaw Lowland to the position of Sturgis, in St. Joseph County, Michigan initially produced the Sturgis Moraine and adjacent outwash apron. As this ice sheet down wasted, meltwater impounded by it overtopped ice divides to form meltwater streams that cut canyons in the ice and underlying glacial sediments. Continued wasting was attended by formation of supraglacial streams that developed waterfalls as they eroded headward. Complete melting of the ice revealed a subglacial topography marked by drumlins, many of which are irregular, attesting to formation near the attenuated margin of the ice sheet. Prior to complete wasting of this stagnant ice mass, ice of the Lake Michigan Lobe advanced from the west-northwest to form the Tekonsha Moraine. Exposed only where this relatively thin ice sheet advanced onto a highland in east-central Kalamazoo County, the southwestern extension of this moraine was buried by outwash from ice that formed the very prominent Kalamazoo Moraine. That the Tekonsha ice sheet stagnated and wasted in place is revealed by two prominent elongate kames, several escarpments, lake and wetland basins produced by melting of ice masses buried by glacial outwash, and sequential filling of the lowland produced by melting of this ice sheet by a series of alluvial fans. The sequence of fan emplacement is indicated by marginal relationships of the fans and the number and size of depressions formed by melting of relic blocks of ice. The first-formed Dry Prairie fan is marked by numerous large depressions while the Prairie Ronde, the last formed fan exhibits only small widely spaced depressions formed by melting of the last vestiges of this ice sheet.

  3. The Vital Contributions of Geodesy to our Understanding of the Ice Sheets of Antarctica and Greenland

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2015-12-01

    The ice sheets of Antarctica and Greenland contain enough ice to raise global sea-level by more than 60 m. Predicting their future behaviour requires understanding their dynamics and state of balance, and geodetic techniques have provided information on these properties, on various time scales. Here, we give an overview of the major contributions of geodetic techniques to ice-sheet research over the past several decades. Early leveling measurements made in the 1960's provided estimates of ice velocity (from the horizontal component) and height (from the vertical component) in a few regions, and this coverage has expanded since the 1980s through more routine GPS surveys. Time series of velocity changes inform about the local dynamics of an ice-sheet region, and time series of height measurements inform about both the mass balance and glacial isostatic rebound. Since the early 1990s, increased coverage of height measurements is obtained using satellite-derived height estimates from radar and laser altimetry, and for velocity measurements from SAR. Gravity measurements from GRACE since 2002 have provided independent way of monitoring ice sheet mass. Together these various techniques have transformed our understanding of the ice sheets and taught us about variability on short and long time scales, which is allowing us to identify the processes driving these changes.

  4. The Antarctic Ice Sheet during the last Interglaciation: Insights from my Thesis

    NASA Astrophysics Data System (ADS)

    Whipple, Matthew; Lunt, Dan; Singarayer, Joy; Bradley, Sarah; Milne, Glenn; Wolff, Eric; Siddall, Mark

    2015-04-01

    The last interglaciation represents a period of warmer climates and higher sea levels, and a useful analogue to future climate. While many studies have focussed on the response of the Greenland Ice sheet, far less is known about the response of the Antarctic ice sheet. Here, I present the summarised results of my PhD thesis "Constraints on the minimum extent of the Antarctic ice sheet during the last interglaciation". Firstly, I cover the timings of interglaciation in Antarctica, and their differences with respect to the Northern Hemisphere timings, based on paleo sea level indicators, and oceanic temperature records. I move on to cover climate forcings, and how they influence the ice sheet, relative to present, and early Holocene. Secondly, I present thesis results, from looking at ice core stable water isotopes. These are compared with Isostatic and Climatic modelling results, for various different Ice sheet scenarios, as to the resulting Climate, from changes in Elevation, Temperature, Precipitation, and Sublimation, all contributing to the recorded stable water isotope record. Thirdly, I move on to looking at the mid-field relative sea level records, from Australia and Argentina. Using isostatic modelling, these are used to assess the relative contribution of the Eastern and Western Antarctic Ice sheets. Although data uncertainties result in us being to identify the contribution from West Antarctica. Overall, using model-data comparison, we find a lack of evidence for a substantial retreat of the Wilkes Subglacial basin. No data location is close enough to determine the existence of the marine based West Antarctic Ice sheet. Model uncertainty is unable to constrain evidence of variations in ice thickness in East Antarctica.

  5. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  6. Radiostratigraphy and age structure of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Paden, John D.; Prasad Gogineni, S.; Young, S. Keith; Rybarski, Susan C.; Mabrey, Alexandria N.; Wagman, Benjamin M.; Morlighem, Mathieu

    2015-02-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet.

  7. Ice streams in the Laurentide Ice Sheet: a new mapping inventory

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2014-05-01

    Rapidly-flowing ice streams dominate the drainage of continental ice sheets and are a key component of their mass balance. Due to their potential impact on sea level, their activity in the Antarctic and Greenland Ice Sheets has undergone detailed scrutiny in recent decades. However, these observations only cover a fraction of their 'life-span' and the subglacial processes that facilitate their rapid flow are very difficult to observe. To circumvent these problems, numerous workers have highlighted the potential of investigating palaeo-ice streams tracks, preserved in the landform and sedimentary record of former ice sheets. As such, it is becoming increasingly important to know where and when palaeo-ice streams operated. We present a new examination of ice streams in the North American Laurentide Ice Sheet (LIS), which was the largest of the ephemeral Pleistocene ice sheets and where numerous ice streams have been hypothesised. We compile previously-published evidence of ice stream activity and complement it with new mapping to generate the most complete and consistent inventory to date. Our map identifies close to three times as many ice streams (117 in total) compared to previous inventories, and categorises them according to the evidence they left behind, with some locations more speculative than others. We note that LIS ice streams span a broad range of size and shapes. The majority of large ice streams, thought to have operated during the Last Glacial Maximum, are comparable in size and shape to modern Antarctic ice streams, but we note a group of ice streams with low length-to-width ratios that do not have modern-day analogues and might be unique to deglacial conditions in which they operated. This study of Laurentide ice streams considerably refines our understanding of LIS dynamics, but there is a clear requirement for improved dating of ice stream activity.

  8. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    NASA Astrophysics Data System (ADS)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  9. Evidence for an extensive Antarctic Ice Sheet by 37 Ma

    NASA Astrophysics Data System (ADS)

    Carter, Andrew; Riley, Teal; Hillenbrand, Claus-Dieter; Rittner, Martin

    2016-04-01

    We present observational evidence that both the East and West Antarctic ice sheets had expanded to the coast by 37 Ma, predating, by at least 3 Myr, a major drop in atmospheric CO2 at the Eocene-Oligocene boundary widely considered responsible for Antarctic Ice Sheet expansion. Our evidence comes from the provenance (geochronology, thermochronometry, mineralogy) of iceberg-rafted debris identified in Late Eocene marine sediments from (ODP) Leg 113 Site 696 in the NW Weddell Sea. The existence of an significant Antarctic Ice Sheet in a Late Eocene high pCO2 world calls into question the role of atmospheric CO2 concentrations as the dominant mechanism for ice sheet expansion and whether topography and ocean circulation only play a secondary role.

  10. Cenozoic ice volume and temperature simulations with a 1-D ice-sheet model

    NASA Astrophysics Data System (ADS)

    de Boer, B.; van de Wal, R. S. W.; Bintanja, R.; Lourens, L. J.; Tuenter, E.

    2009-04-01

    Ice volume and temperature for the past 35 Million years is investigated with a 1-D ice-sheet model, simulating ice-sheets on both hemispheres. The simulations include two continental Northern Hemisphere (NH) ice-sheets representative for glaciation on the two major continents, i.e. Eurasia (EAZ) and North America (NAM). Antarctic glaciation is simulated with two separate ice-sheets, respectively for West and East Antarctica. The surface air temperature is reconstructed with an inventive inverse procedure, forced with benthic δ18O data. The procedure linearly relates the temperature to the difference between the modelled and observed marine δ18O 100 years later. The derived temperature, representative for the NH, is used to run the ice-sheet model over 100 years, to obtain a mutually consistent record of marine δ18O, sea level and temperature for the last 35 Ma of the Cenozoic. For Northern Hemispheric glaciations results are good compared to similar simulations performed with a much more comprehensive 3-D ice-sheet model. On average, differences are only 1.9 ˚ C for temperature and 6.1 m for sea level. Results with ice-sheets on both hemispheres are very similar. Most notably, the reconstructed ice volume as function of temperature shows a transition from climate dominated by Antarctic ice volume variation towards NH ice-sheets controlled climate. The transition period falls within the range of interglacials (about -2 to +8 ˚ C with respect to present day) and is thus characterized by lower ice volume changes per ˚ C. The relationship between temperature, sea level and δ18O input is tested with an equilibrium experiment, which results in a linear and symmetric relationship for both temperature and total sea level, providing limited evidence for hysteresis, though transient behaviour is still important. Furthermore results show a rather good comparison with other simulations of Antarctic ice volume and observed sea level and deep-sea temperature.

  11. A 'Geometric' Downscaling Method for Coupling Dynamical Ice Sheet Models to GEOS-5

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Cullather, R. I.; Nowicki, S.; Suarez, M.

    2014-12-01

    Plausible projection of future sea level rises requires coupled AOCGMs to include a dynamic ice sheet model (ISM) component. Getting the right forcing on the ice sheet models plays a critical role in the coupling process. The issue is further complicated by the mismatch between the grids used by atmosphere and ice sheet. Typically surface mass balance (SMB) and temperature fields are downscaled from the coarse atmospheric grid to the fine ice grid. We present one technique employed to couple NASA Goddard GEOS5 AGCM to JPL Ice Sheet System Model (ISSM). The Greenland ice surface from ISSM is explicitly embedded in the GEOS5 AGCM grid with a 'tile' representation. Atmospheric forcing fields are interpolated and further adjusted to account for elevation differences and fed into a SMB model operating on ice surface tiles. The coupling is done in such a way that mass and energy are conserved. The proposed method is independent of the underlying ice grid and can be used to couple any ISM. Comparison of resultant downscaled SMB fields from a suite of AGCM resolutions will be discussed.

  12. The Greenland Ice Sheet, now in HD

    NASA Astrophysics Data System (ADS)

    Howat, I. M.; Noh, M. J.; Porter, C. C.; Morin, P. J.; Herried, B.

    2014-12-01

    We are constructing very-high resolution (2 m of the margin, 10 m of the interior) Digital Elevation Model (DEM) and orthoimage mosaics of the the Greenland Ice Sheet from stereoscopic-mode satellite imagery acquired by the Worldview constellation and archived at the Polar Geospatial Center. The DEMs are constructed with the fully-automated Surface Extraction from TIN-based Search Minimization (SETSM) software developed by Ohio State University specifically for DEM extraction over high latitude terrains. The SETSM algorithm features an iterative process for correcting biases in the imagery geolocation information, improving DEM success over low-contrast and repetitively-textured surfaces such as snow and mountain shadows. The imagery are orthorectified using the corresponding DEM and individual orthoimages and DEMs are mosaiced into continuous tiles of coverage. To facilitate change detection, each pixel contains an acquisition date stamp and a flag indicating if the DEM pixel was measured or interpolated. The data are openly available online with registration at http://www.pgc.umn.edu/elevation/stereo . Here we present the Greenland DEM and orthoimage mosaics with examples of applications and comparisons to existing datasets. We compare the DEM's to coincident laser altimeter measurements to examine accuracies and potential biases, as well as discuss the feasibility of merging the DEMs with coordinated laser altimeter surveys to improve the spatial coverage of high-precision elevation data.

  13. Spatial patterns in backscatter strength across the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.

    1993-01-01

    The relationship between the physical properties of the Greenland ice sheet and Synthetic Aperture Radar (SAR) data collected from aircraft and from ERS-1 is addressed. Limited aircraft data are combined with a description of the glacier surface to predict qualitatively the spatial and seasonal variation in backscatter strength across the ice sheet. In particular the model predicts relatively low backscatter near the ice edge where scattering is dominated by rough surface effects. Backscatter increases through the lake zone as volume scattering becomes important. Strongest backscatter is found in the percolation facies where volume scatter from snow grains and volume scatter from large, buried ice bodies becomes important. Backscatter weakens in the interior ice sheet where fine grained snow is the only mechanism producing backscatter.

  14. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Phipps, S. J.; Turney, C. S. M.; Golledge, N. R.

    2015-10-01

    Despite advances in our understanding of the processes driving contemporary sea level rise, the stability of the Antarctic ice sheets and their contribution to sea level under projected future warming remains uncertain due to the influence of strong ice-climate feedbacks. Disentangling these feedbacks is key to reducing uncertainty. Here we present a series of climate system model simulations that explore the potential effects of increased West Antarctic Ice Sheet (WAIS) meltwater flux on Southern Ocean dynamics. We project future changes driven by sectors of the WAIS, delivering spatially and temporally variable meltwater flux into the Amundsen, Ross, and Weddell embayments over future centuries. Focusing on the Amundsen Sea sector of the WAIS over the next 200 years, we demonstrate that the enhanced meltwater flux rapidly stratifies surface waters, resulting in a significant decrease in the rate of Antarctic Bottom Water (AABW) formation. This triggers rapid pervasive ocean warming (>1°C) at depth due to advection from the original site(s) of meltwater input. The greatest warming is predicted along sectors of the ice sheet that are highly sensitized to ocean forcing, creating a feedback loop that could enhance basal ice shelf melting and grounding line retreat. Given that we do not include the effects of rising CO2—predicted to further reduce AABW formation—our experiments highlight the urgent need to develop a new generation of fully coupled ice sheet climate models, which include feedback mechanisms such as this, to reduce uncertainty in climate and sea level projections.

  15. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël; Galton-Fenzi, Benjamin K.; Gladstone, Rupert M.; Hilmar Gudmundsson, G.; Hattermann, Tore; Holland, David M.; Holland, Denise; Holland, Paul R.; Martin, Daniel F.; Mathiot, Pierre; Pattyn, Frank; Seroussi, Hélène

    2016-07-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.

  16. Evidence of Meltwater Retention within the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Smith, L. C.; Chu, V. W.; Box, J. E.; Forster, R. R.; van den Broeke, M. R.

    2012-12-01

    Greenland ice sheet water release, and the magnitude of sub- and englacial storage, firn densification, internal refreezing and other hydrologic processes that delay or reduce true water export to the global ocean remain poorly understood. This problem is compounded by scant hydrometerological measurements. Here, ice sheet surface meltwater runoff and proglacial river discharge determined between 2008 and 2010 for three sites near Kangerlussuaq, western Greenland were used to establish the water budget for a small ice sheet watershed. The water budget could not be closed in the three years, even when uncertainty ranges were considered. Instead, between 12% and 53% of ice sheet surface runoff is retained within the catchment each melt year (time between onset of ice sheet runoff in two consecutive years) most likely in en- and subglacial storages. Evidence suggests that while some holdover summer meltwater may escape during the cold-season, this water volume is too small to close the budget. Thus, this study indicates that the Greenland ice sheet cryo-hydrologic system may remain active year round, and that meltwater may be retained in the pro glacial area, internally, or in firn layers for prolonged time periods before release to the ocean.

  17. Data assimilation methods for ice-sheet model initialisation.

    NASA Astrophysics Data System (ADS)

    Nodet, M.; Ritz, C.; Bonan, B.

    2012-04-01

    A hot topic in ice-sheet modelling is to run prognostic simulations over the next 100 years, to investigate the impact of Antarctica and Greenland ice-sheets on sea-level change. Such simulations require an initial state of the ice-sheets which must be as close as possible to what is currently observed. The use of advanced inverse methods appears to be the adequate tool to produce such an initial state. Criteria for a good initial state are: an optimal fit to available observations, such as surface and (sparse) bedrock topography, surface velocities, surface elevation trend. Large scale ice-sheet dynamical models are mostly governed by the following input parameters and variables: basal dragging coefficient, bedrock topography, surface elevation, temperature field. We use variational and sequential data assimilation methods to infer these inputs parameters from available observations. To address this problem we perform identical twin experiments on the realistic flow-line large-scale ice-sheet model GRISLI. Thanks to the model, we simulate observations from a set of given input parameters (bedrock topography, basal sliding field, surface elevation), and we then try to recover these parameters with the generated observations. We also run several diagnostics to assess the quality of the recovered parameters. In the light of the results of our numerical twin experiments, we will discuss advantages and drawbacks of the state-of-the-art data assimilation methods currently used for the initialization problem of ice-sheet models.

  18. Ice-dynamical constraints on the existence and impact of subglacial volcanism on West Antarctic ice sheet stability

    NASA Astrophysics Data System (ADS)

    Vogel, Stefan W.; Tulaczyk, Slawek

    2006-12-01

    Subglacial volcanism in West Antarctica may play a crucial role in the dynamics and stability of the West Antarctic Ice Sheet (WAIS). Evidence supporting the existence of an individual subglacial volcanic center (Mt. Casertz) in the upper catchments of Whillans and Kamb Ice Stream (WIS and KIS), comes from a comparison of ice sheet modeling results with measured ice velocities. Lubrication of an area, which otherwise should be frozen to its bed, is best explained by basal melt water generated in the vicinity of Mt. Casertz. The estimated melt water production of Mt. Casertz corresponds to ~8 % of the total melt water production in the two catchments. This would be sufficient to offset basal freezing in the dormant KIS, relubricating its bed and potentially causing a restart. Near future volcanic activity changes are speculative, but would have far reaching implications on the dynamics and stability of the WAIS requiring further investigation.

  19. Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Timmermann, A.; Elison Timm, O.; Saito, F.; Abe-Ouchi, A.

    2014-08-01

    One hundred thousand years of ice sheet buildup came to a rapid end ∼25-10 thousand years before present (ka BP), when ice sheets receded quickly and multi-proxy reconstructed global mean surface temperatures rose by ∼3-5 °C. It still remains unresolved whether insolation changes due to variations of earth's tilt and orbit were sufficient to terminate glacial conditions. Using a coupled three-dimensional climate-ice sheet model, we simulate the climate and Northern Hemisphere ice sheet evolution from 78 ka BP to 0 ka BP in good agreement with sea level and ice topography reconstructions. Based on this simulation and a series of deglacial sensitivity experiments with individually varying orbital parameters and prescribed CO2, we find that enhanced calving led to a slowdown of ice sheet growth as early as ∼8 ka prior to the Last Glacial Maximum (LGM). The glacial termination was then initiated by enhanced ablation due to increasing obliquity and precession, in agreement with the Milankovitch theory. However, our results also support the notion that the ∼100 ppmv rise of atmospheric CO2 after ∼18 ka BP was a key contributor to the deglaciation. Without it, the present-day ice volume would be comparable to that of the LGM and global mean temperatures would be about 3 °C lower than today. We further demonstrate that neither orbital forcing nor rising CO2 concentrations alone were sufficient to complete the deglaciation.

  20. Late Pleistocene ice-shelf, valley-glacier and ice-sheet interactions on Alexander Island, Antarctic Peninsula: implications for climatic and ice-volume changes

    NASA Astrophysics Data System (ADS)

    Davies, Bethan; Hambrey, Michael; Glasser, Neil; Smellie, John; Carrivick, Jonathan; Bentley, Michael

    2014-05-01

    Recent rapid warming across the Antarctic Peninsula has resulted in ice-sheet thinning, dramatic ice-shelf collapse, acceleration of ice-flow velocities and widespread glacier recession. Reconstructing past rates, volumes and magnitudes of cryospheric change, particularly with respect to the former configuration of ice sheets and ice shelves, and their response to changing oceanic and climatic regimes, is vital in providing a context for this change, in order to improve predictions of future ice-sheet behaviour, and to provide glacio-isostatic adjustment corrections for gravimetric measurements of contemporary ice loss. This research aimed to investigate valley glacier and ice-shelf interactions during the Last Glacial Maximum (LGM) and Holocene Epoch across George VI Sound and Alexander Island, western Antarctic Peninsula, an area with a well-preserved but poorly dated record. We identify four principal stratigraphic units: (1) a high-elevation drift with Alexander Island erratics only (interpreted as recording older advances of ice from the interior of the island), (2) a lower-elevation drift with exotic Palmer Land erratics (interpreted as ice-shelf moraine, representing incursions of George VI Ice Shelf onto Ablation Point Massif), (3) multiple overlapping sequences of valley glacier moraine and ice-shelf moraine, presumed to be Holocene in age, and (4) more recent processes and units, including frozen epishelf lakes, slope processes and alluvial fans. On-going cosmogenic nuclide dating on these sediments (in progress; 25 10Be exposure ages) has the potential to unlock the complex history and interactions of ice streams, valley glaciers and ice shelves in this area. This work will also provide the first long-term record of sea-level indicators, allowing the first estimates of glacial unloading, rates of uplift and ice-sheet thinning to be calculated. The Holocene record of the ice shelf, preserved in the younger ice-shelf moraines and in the overlapping

  1. Dynamics and development of the last North Sea ice sheet

    NASA Astrophysics Data System (ADS)

    Nygård, A.; Sejrup, H. P.; Haflidason, H.

    2008-12-01

    The last decade there has been an increasing attention on the dynamics and history of the marine based parts of the large Pleistocene ice sheets. This interest has grown both from the potential influence the stability of these features could have on ocean circulation through rapid meltwater delivery and from the understanding of the critical role these parts have in terms of the dynamics of the large ice sheets. During the last glacial stage the northern North Sea has experienced a number of glacial advances of ice from UK and Fennoscandia. Acoustic data and core data from two contrasting areas are presented. The Norwegian Channel represents the highly dynamic ice stream system draining large parts of the southern Fennoscandian ice sheet. The adjacent Witch Ground basin shows in contrast evidence of smaller scale tidewater glaciers active in a shallow environment, which constituted the eastern limit of the north-eastern British Ice sheet during the deglaciation. Seabed imagery (Olex data) reveals fresh glacial morphology inside (west of) the interpreted ice limits, while the seabed outside (east of) the interpreted ice limits shows very few features, due to a thick cover of glacimarine sediments. The seabed imprint of these systems as well as geometry, genesis and chronology of the sediments from this region will be discussed and their implications for our understanding of the glacial development of the region will be explored.

  2. Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Mackintosh, Andrew N.; Verleyen, Elie; O'Brien, Philip E.; White, Duanne A.; Jones, R. Selwyn; McKay, Robert; Dunbar, Robert; Gore, Damian B.; Fink, David; Post, Alexandra L.; Miura, Hideki; Leventer, Amy; Goodwin, Ian; Hodgson, Dominic A.; Lilly, Katherine; Crosta, Xavier; Golledge, Nicholas R.; Wagner, Bernd; Berg, Sonja; van Ommen, Tas; Zwartz, Dan; Roberts, Stephen J.; Vyverman, Wim; Masse, Guillaume

    2014-09-01

    The East Antarctic Ice Sheet (EAIS) is the largest continental ice mass on Earth, and documenting its evolution since the Last Glacial Maximum (LGM) is important for understanding its present-day and future behaviour. As part of a community effort, we review geological evidence from East Antarctica that constrains the ice sheet history throughout this period (˜30,000 years ago to present). This includes terrestrial cosmogenic nuclide dates from previously glaciated regions, 14C chronologies from glacial and post-glacial deposits onshore and on the continental shelf, and ice sheet thickness changes inferred from ice cores and continental-scale ice sheet models. We also include new 14C dates from the George V Land - Terre Adélie Coast shelf. We show that the EAIS advanced to the continental shelf margin in some parts of East Antarctica, and that the ice sheet characteristically thickened by 300-400 m near the present-day coastline at these sites. This advance was associated with the formation of low-gradient ice streams that grounded at depths of >1 km below sea level on the inner continental shelf. The Lambert/Amery system thickened by a greater amount (800 m) near its present-day grounding zone, but did not advance beyond the inner continental shelf. At other sites in coastal East Antarctica (e.g. Bunger Hills, Larsemann Hills), very little change in the ice sheet margin occurred at the LGM, perhaps because ice streams accommodated any excess ice build up, leaving adjacent, ice-free areas relatively unaffected. Evidence from nunataks indicates that the amount of ice sheet thickening diminished inland at the LGM, an observation supported by ice cores, which suggest that interior ice sheet domes were ˜100 m lower than present at this time. Ice sheet recession may have started ˜18,000 years ago in the Lambert/Amery glacial system, and by ˜14,000 years ago in Mac.Robertson Land. These early pulses of deglaciation may have been responses to abrupt sea-level rise

  3. The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.

    2009-12-01

    Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has

  4. West Antarctic Ice Sheet Initiative. Volume 1: Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The Science and Implementation Plan of the West Antarctic Ice Sheet Initiative (WAIS) is described. The goal of this initiative is the prediction of the future behavior of this ice sheet and an assessment of its potential to collapse, rapidly raising global sea level. The multidisciplinary nature of WAIS reflects the complexity of the polar ice sheet environment. The project builds upon past and current polar studies in many fields and meshes with future programs of both the U.S. and other countries. Important tasks in each discipline are described and a coordinated schedule by which the majority of these tasks can be accomplished in 5 years is presented. The companion report (Volume 2) contains seven discipline review papers on the state of knowledge of Antarctica and opinions on how that knowledge must be increased to attain the WAIS goal.

  5. Challenges faced by ice sheet projections: lessons from the SeaRISE effort

    NASA Astrophysics Data System (ADS)

    Nowicki, S.

    2013-12-01

    Projecting the future evolution of the Greenland and Antarctic ice sheets is a problem of enormous societal importance, as ice sheet influence our future sea levels. This crucial issue is however a non trivial task, as demonstrated by the Sea level Response to Ice Sheet Evolution (SeaRISE) effort: prescribing simple external forcings to a group of ice sheet models results in a spread in responses. Understanding the source of the diversity in the model results is therefore crucial in order to reduce the uncertainty in the projection. Just as in any future climate simulation, the analysis presented here demonstrates that the model spread in the SeaRISE effort is due to a number of factors. First is the problem of obtaining an initial configuration for the projection. The two commonly used methods, interglacial spin-up or data assimilation, have both advantages and drawbacks, and will affect the determination of fields that cannot be measured (such as basal slipperiness). Second is the uncertainty in actual observations, which includes but is not limited to surface mass balance, basal topography, ice thickness, and surface velocities. An additional issue with these observations is that they can be transient quantities which are not measured at the same time, but ice sheet models require them to be simultaneous. Third is the uncertainty in the models' physics and discretization, which is limited by our understanding (or lack of understanding) of crucial processes that often occur at subgrid scale relative to the resolution used by continental ice sheet models, and thus require parameterization. Grounding line migration and sliding laws are such an example. Fourth is the determination of the future forcing scenarios and their implementation as the external forcing. Unfortunately, as demonstrated in this analysis, all ice sheet models face these limitations to some degree, so that it is extremely difficult to identify a set of models and projections that should be

  6. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    NASA Astrophysics Data System (ADS)

    McMillan, Malcolm; Shepherd, Andrew; Roca, Monica; Escorihuela, Maria Jose; Thibaut, Pierre; Remy, Frederique; Escola, Roger; Benveniste, Jerome; Ambrozio, Americo; Restano, Marco

    2016-04-01

    Since the launch of ERS-1 in 1991, polar-orbiting satellite radar altimeters have provided a near continuous record of ice sheet elevation change, yielding estimates of ice sheet mass imbalance at the scale of individual ice sheet basins. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which limits their capacity to make reliable measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat heralded the start of a new era of SAR altimetry, although full SAR coverage of the polar ice sheets will only be achieved with the launch of the first Sentinel-3 satellite in January 2016. Because of the heritage of SAR altimetry provided by CryoSat, current SAR altimeter processing techniques have to some extent been optimized and evaluated for water and sea ice surfaces. This leaves several outstanding issues related to the development and evaluation of SAR altimetry for ice sheets, including improvements to SAR processing algorithms and SAR altimetry waveform retracking procedures. Here we will outline SPICE (Sentinel-3 Performance Improvement for Ice Sheets), a 2 year project which began in September 2015 and is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme. This project aims to contribute to the development and understanding of ice sheet SAR altimetry through the emulation of Sentinel-3 data from dedicated CryoSat SAR acquisitions made at several sites in Antarctica. More specifically, the project aims to (1) evaluate and improve the current Delay-Doppler processing and SAR waveform retracking algorithms, (2) evaluate higher level SAR altimeter data, and (3) investigate radar wave interaction with the snowpack. We will provide a broad overview of

  7. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  8. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Bentley, Michael J.; Ó Cofaigh, Colm; Anderson, John B.; Conway, Howard; Davies, Bethan; Graham, Alastair G. C.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Jamieson, Stewart S. R.; Larter, Robert D.; Mackintosh, Andrew; Smith, James A.; Verleyen, Elie; Ackert, Robert P.; Bart, Philip J.; Berg, Sonja; Brunstein, Daniel; Canals, Miquel; Colhoun, Eric A.; Crosta, Xavier; Dickens, William A.; Domack, Eugene; Dowdeswell, Julian A.; Dunbar, Robert; Ehrmann, Werner; Evans, Jeffrey; Favier, Vincent; Fink, David; Fogwill, Christopher J.; Glasser, Neil F.; Gohl, Karsten; Golledge, Nicholas R.; Goodwin, Ian; Gore, Damian B.; Greenwood, Sarah L.; Hall, Brenda L.; Hall, Kevin; Hedding, David W.; Hein, Andrew S.; Hocking, Emma P.; Jakobsson, Martin; Johnson, Joanne S.; Jomelli, Vincent; Jones, R. Selwyn; Klages, Johann P.; Kristoffersen, Yngve; Kuhn, Gerhard; Leventer, Amy; Licht, Kathy; Lilly, Katherine; Lindow, Julia; Livingstone, Stephen J.; Massé, Guillaume; McGlone, Matt S.; McKay, Robert M.; Melles, Martin; Miura, Hideki; Mulvaney, Robert; Nel, Werner; Nitsche, Frank O.; O'Brien, Philip E.; Post, Alexandra L.; Roberts, Stephen J.; Saunders, Krystyna M.; Selkirk, Patricia M.; Simms, Alexander R.; Spiegel, Cornelia; Stolldorf, Travis D.; Sugden, David E.; van der Putten, Nathalie; van Ommen, Tas; Verfaillie, Deborah; Vyverman, Wim; Wagner, Bernd; White, Duanne A.; Witus, Alexandra E.; Zwartz, Dan

    2014-09-01

    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.

  9. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Sutter, Johannes; Gierz, Paul; Grosfeld, Klaus; Thoma, Malte; Lohmann, Gerrit

    2016-03-01

    The West Antarctic Ice Sheet (WAIS) is considered the major contributor to global sea level rise in the Last Interglacial (LIG) and potentially in the future. Exposed fossil reef terraces suggest sea levels in excess of 7 m in the last warm era, of which probably not much more than 2 m are considered to originate from melting of the Greenland Ice Sheet. We simulate the evolution of the Antarctic Ice Sheet during the LIG with a 3-D thermomechanical ice sheet model forced by an atmosphere-ocean general circulation model (AOGCM). Our results show that high LIG sea levels cannot be reproduced with the atmosphere-ocean forcing delivered by current AOGCMs. However, when taking reconstructed Southern Ocean temperature anomalies of several degrees, sensitivity studies indicate a Southern Ocean temperature anomaly threshold for total WAIS collapse of 2-3°C, accounting for a sea level rise of 3-4 m during the LIG. Potential future Antarctic Ice Sheet dynamics range from a moderate retreat to a complete collapse, depending on rate and amplitude of warming.

  10. Deciphering the evolution of the last Eurasian ice sheets

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2016-04-01

    Glacial geologists need ice sheet-scale chronological reconstructions of former ice extent to set individual records in a wider context and compare interpretations of ice sheet response to records of past environmental changes. Ice sheet modellers require empirical reconstructions on size and volume of past ice sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian ice sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published ice-sheet margin positions to reconstruct time-slice maps of the ice sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum extent up to 7000 years later than the westernmost marine margin; iii) the combined maximum ice volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the

  11. A model study of the effect of climate and sea-level change on the evolution of the Antarctic Ice Sheet from the Last Glacial Maximum to 2100

    NASA Astrophysics Data System (ADS)

    Maris, M. N. A.; van Wessem, J. M.; van de Berg, W. J.; de Boer, B.; Oerlemans, J.

    2015-08-01

    Due to a scarcity of observations and its long memory of uncertain past climate, the Antarctic Ice Sheet remains a largely unknown factor in the prediction of global sea level change. As the history of the ice sheet plays a key role in its future evolution, in this study we model the Antarctic Ice Sheet from the Last Glacial Maximum (21 kyr ago) until the year 2100 with the ice-dynamical model ANICE. We force the model with different temperature, surface mass balance and sea-level records to investigate the importance of these different aspects for the evolution of the ice sheet. Additionally, we compare the model output from 21 kyr ago until the present with observations to assess model performance in simulating the total grounded ice volume and the evolution of different regions of the Antarctic Ice Sheet. Although there are some clear limitations of the model, we conclude that sea-level change has driven the deglaciation of the ice sheet, whereas future temperature change and the history of the ice sheet are the primary cause of changes in ice volume in the future. We estimate the change in grounded ice volume between its maximum (around 15 kyr ago) and the present-day to be between 8.4 and 12.5 m sea-level equivalent and the contribution of the Antarctic Ice Sheet to the global mean sea level in 2100, with respect to 2000, to be -22 to 63 mm.

  12. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This

  13. Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning.

    PubMed

    Krabill; Abdalati; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    2000-07-21

    Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise. PMID:10903198

  14. Global Geodetic Signatures of the Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Ivins, Erik R.

    1997-01-01

    Four scenarios of present day Antarctic ice sheet mass change are developed from comprehensive reviews of the available glaciological and oceanographic evidence. The gridded scenarios predict widely varying contributions to secular sea level change xi ranging from -1.1 to 0.45 mm/yr, and predict polar motion m and time-varying low-degree gravitational coefficients J(sub l) that differ significantly from earlier estimates. A reasonably linear relationship between the rate of sea level change from Antarctica xi(sub A) and the predicted Antarctic J(sub l) is found for the four scenarios. This linearity permits a series of forward models to be constructed that incorporate the effects of ice mass changes in Antarctica, Greenland, and distributed smaller glaciers, as well as postglacial rebound (assuming the ICE-3G deglaciation history), with the goal of obtaining optimum reconciliation between observed constraints on J(sub l) and sea level rise xi. Numerous viable combinations of lower mantle viscosity and hydrologic sources are found that safely "observed" in the range of 1 to 2-2.5 mm/yr and observed J(sub l) for degrees 2, 3, and 4. In contrast, rates of global sea level rise above 2.5 mm/yr are inconsistent with available J(sub l) observations. The successful composite models feature a pair of lower mantle viscosity solutions arising from the sensitivity of J(sub l) to glacial rebound. The paired values are well separated at xi = 1 mm/yr, but move closer together as xi is increased, and, in fact, merge around xi = 2 - 2.5 mm/yr, revealing an intimate relation between xi and preferred lower mantle viscosity. This general pattern is quite robust and persists for different J(sub l) solutions, for variations in source assumptions, and for different styles of lower mantle viscosity stratification. Tighter J(sub l) constraints for l greater than 2 may allow some viscosity stratification schemes and source assumptions to be excluded in the future. For a given total

  15. Unusual radar echoes from the Greenland ice sheet

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.

    1993-01-01

    In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.

  16. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  17. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for

  18. Paleozoic ice sheet inception; a study of paleogeographic sensitivity

    NASA Astrophysics Data System (ADS)

    Horton, D. E.; Poulsen, C. J.; Torsvik, T. H.

    2011-12-01

    Large-scale continental glaciation is thought to have been episodic throughout the Paleozoic era. Evidence of short-lived glaciation in the Ordovician, a period of questionable glaciation in the Devonian, and extensive glaciation in the Permo-Carboniferous are variously supported by the geologic record. The climatic conditions that allowed Earth to descend into icehouse conditions during these periods are not well understood. Traditionally, Paleozoic glaciation was thought to be driven by the drift of continents over the austral pole, yet a myriad of other factors play a role in global mean temperatures and the ability of an icehouse climate to initiate. In this sensitivity study we utilize a coupled GCM-ice sheet-biome model in conjunction with updated paleogeographic reconstructions to examine ice sheet initiation at 30 million year time slices throughout the Paleozoic. Each time slice is subjected to an ice-favorable orbital alignment and a range of atmospheric pCO2 concentrations in an effort to determine the influence of continent distribution and greenhouse gas concentration on ice sheet initiation. Our modeling results demonstrate that both continental configuration and atmospheric pCO2 concentration play a significant role in ice sheet initiation, ice sheet areal extent, and ice sheet volume. Our results indicate that the geographic configurations most conducive to continental glaciation occurred from the mid-Devonian to the early Carboniferous, a result that is inconsistent with the geologic record and suggests that continental drift wasn't the sole driving force behind the occurrence of Paleozoic ice ages.

  19. The Ice Sheet Mass Balance Inter-comparison Exercise

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.

    2015-12-01

    Fluctuations in the mass of ice stored in Antarctica and Greenland are of considerable societal importance. The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a joint-initiative of ESA and NASA aimed at producing a single estimate of the global sea level contribution to polar ice sheet losses. Within IMBIE, estimates of ice sheet mass balance are developed from a variety of satellite geodetic techniques using a common spatial and temporal reference frame and a common appreciation of the contributions due to external signals. The project brings together the laboratories and space agencies that have been instrumental in developing independent estimates of ice sheet mass balance to date. In its first phase, IMBIE involved 27 science teams, and delivered a first community assessment of ice sheet mass imbalance to replace 40 individual estimates. The project established that (i) there is good agreement between the three main satellite-based techniques for estimating ice sheet mass balance, (ii) combining satellite data sets leads to significant improvement in certainty, (iii) the polar ice sheets contributed 11 ± 4 mm to global sea levels between 1992 and 2012, and (iv) that combined ice losses from Antarctica and Greenland have increased over time, rising from 10% of the global trend in the early 1990's to 30% in the late 2000's. Demand for an updated assessment has grown, and there are now new satellite missions, new geophysical corrections, new techniques, and new teams producing data. The period of overlap between independent satellite techniques has increased from 5 to 12 years, and the full period of satellite data over which an assessment can be performed has increased from 19 to 40 years. It is also clear that multiple satellite techniques are required to confidently separate mass changes associated with snowfall and ice dynamical imbalance - information that is of critical importance for climate modelling. This presentation outlines the approach

  20. Ice sheet mass loss caused by dust and black carbon accumulation

    NASA Astrophysics Data System (ADS)

    Goelles, T.; Bøggild, C. E.; Greve, R.

    2015-09-01

    Albedo is the dominant factor governing surface melt variability in the ablation area of ice sheets and glaciers. Aerosols such as mineral dust and black carbon (soot) accumulate on the ice surface and cause a darker surface and therefore a lower albedo. The darkening effect on the ice surface is currently not included in sea level projections, and the effect is unknown. We present a model framework which includes ice dynamics, aerosol transport, aerosol accumulation and the darkening effect on ice albedo and its consequences for surface melt. The model is applied to a simplified geometry resembling the conditions of the Greenland ice sheet, and it is forced by several temperature scenarios to quantify the darkening effect of aerosols on future mass loss. The effect of aerosols depends non-linearly on the temperature rise due to the feedback between aerosol accumulation and surface melt. According to our conceptual model, accounting for black carbon and dust in future projections of ice sheet changes until the year 3000 could induce an additional volume loss of 7 %. Since we have ignored some feedback processes, the impact might be even larger.

  1. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  2. Using Coastal Ice Cap Records to Investigate Maritime Climate and Ice Sheet Processes in West Greenland

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Evans, M. J.; Frey, K. E.; Osman, M. B.; Smith, B. E.; Stevens, L. A.; Trusel, L. D.; York, A.; Bingham, M.

    2014-12-01

    Recent changes, including outlet glacier retreat and speedup, and increased rates of surface melting, have dramatically increased the Greenland ice sheet contribution to sea-level rise over the past few decades. Increasingly studies point towards the influence of coupled ocean-ice processes in modulating Greenland ice sheet mass balance and glacier behavior in response to climate change, but many of these studies are limited to the past few years to decades, restricting our ability to understand these ocean-ice relationships over longer time periods. Ice core records have the potential to provide unique, high-resolution records of interest (e.g. accumulation and melt variability, as well as contemporaneous proxy records of regional air temperature and sea surface conditions), but suitable Greenland ice sheet coring regions are often located far inland (>200 km) from many maritime regions of interest. In this study we focus on new records from previously unstudied maritime ice caps (10-30 km from the coast) to reconstruct past environmental conditions in the Disko, Ummannaq and Baffin Bay regions. Here we present results from our recent 2014 field investigation of three high altitude ice caps (1300-2000 m) on Disko Island and the Nuussuaq Peninsula, as well as complementary results from two sites in the western ice sheet accumulation zone. Geophysical observations provide constraints on ice thickness, layering, and ice flow. Physical and chemical stratigraphic observations from snow pits and shallow firn cores are used to reconstruct recent accumulation rate and melt variability, as well as to develop and test environmental proxy relationships over the satellite era. Multi-century records from longer coastal ice cores, to be drilled in 2015, will contribute a key missing component to the existing observational record documenting ice, ocean and atmospheric changes in this region over a time period of dramatic change in Greenland ice sheet behavior (retreat and

  3. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  4. A simple holistic hypothesis for the self-destruction of ice sheets

    NASA Astrophysics Data System (ADS)

    Hughes, T.

    2011-07-01

    Ice sheets are the only components of Earth's climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets ( Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth's albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.

  5. Testing of SIR (a transformable robotic submarine) in Lake Tahoe for future deployment at West Antarctic Ice Sheet grounding lines of Siple Coast

    NASA Astrophysics Data System (ADS)

    Powell, R. D.; Scherer, R. P.; Griffiths, I.; Taylor, L.; Winans, J.; Mankoff, K. D.

    2011-12-01

    A remotely operated vehicle (ROV) has been custom-designed and built by DOER Marine to meet scientific requirements for exploring subglacial water cavities. This sub-ice rover (SIR) will explore and quantitatively document the grounding zone areas of the Ross Ice Shelf cavity using a 3km-long umbilical tether by deployment through an 800m-long ice borehole in a torpedo shape, which is also its default mode if operational failure occurs. Once in the ocean cavity it transforms via a diamond-shaped geometry into a rectangular form when all of its instruments come alive in its flight mode. Instrumentation includes 4 cameras (one forward-looking HD), a vertical scanning sonar (long-range imaging for spatial orientation and navigation), Doppler current meter (determine water current velocities), multi-beam sonar (image and swath map bottom topography), sub-bottom profiler (profile sub-sea-floor sediment for geological history), CTD (determine salinity, temperature and depth), DO meter (determine dissolved oxygen content in water), transmissometer (determine suspended particulate concentrations in water), laser particle-size analyzer (determine sizes of particles in water), triple laser-beams (determine size and volume of objects), thermistor probe (measure in situ temperatures of ice and sediment), shear vane probe (determine in situ strength of sediment), manipulator arm (deploy instrumentation packages, collect samples), shallow ice corer (collect ice samples and glacial debris), water sampler (determine sea water/freshwater composition, calibrate real-time sensors, sample microbes), shallow sediment corer (sample sea floor, in-ice and subglacial sediment for stratigraphy, facies, particle size, composition, structure, fabric, microbes). A sophisticated array of data handling, storing and displaying will allow real-time observations and environmental assessments to be made. This robotic submarine and other instruments will be tested in Lake Tahoe in September, 2011 and

  6. Arctic greenhouse-gas storage and release modulated by late-glacial ice sheet fluctuations

    NASA Astrophysics Data System (ADS)

    Portnov, Alexey; Mienert, Jurgen; Vadakkepuliyambatta, Sunil; Patton, Henry; Andreassen, Karin; Winsborrow, Monica; Knies, Jochen; Hubbard, Alun I.

    2016-04-01

    The subglacial footprint of the Barents Sea Ice sheet which advanced across northern Eurasia from 26 to 22 ka BP had a major impact on the underlying gas hydrate stability zone (GHSZ) leading to storage of methane and other hydrocarbons. With the onset of deglaciation, these hydrocarbon rich hydrates dissociated, releasing potent greenhouse gas into the ocean and possibly atmosphere over a period of thousands of years. We present a wide-range of observational data acquired from offshore western Svalbard and the Barents Sea to robustly constrain a coupled model of the subglacial evolution of gas hydrate reservoirs during and after the Last Glacial Maximum (LGM). Our results indicate that even under minimum ice thickness reconstructions, an extensive, ~500-meter thick GHSZ existed beneath the ice sheet in our study area offshore of western Svalbard (Portnov et al., 2016). An offshore corridor of methane release did though also persist throughout maximum ice conditions on the upper continental margin. Throughout the LGM a marine ice sheet directly comparable to those of Greenland and Antarctica today inundated the continental margin offshore of western Svalbard and the vast shelf areas of the Barents Sea. However, with climatic amelioration the Barents Sea ice sheet experienced a 4ka period of dynamic retreat with concurrent flooding of the shelf by rising sea levels, which provided a high magnitude perturbation to the substrate pressure and temperature domains. By analogy, the future response of Polar ice sheets is an emerging concern as their ongoing thinning and retreat will likewise perturb the present day subglacial GHSZ leading to potential widespread gas hydrate destabilisation and release. Portnov, Alexey, et al. "Ice-sheet-driven methane storage and release in the Arctic", Nature Comm. DOI: 10.1038/ncomms10314. (2016).

  7. Records of past ice sheet fluctuations in interior East Antarctica

    USGS Publications Warehouse

    Liu, Xiaohan; Huang, Feixin; Kong, Ping; Fang, Aimin; Li, Xiaoli

    2007-01-01

    The results of a land-based multi-disciplinary study of the past ice surface elevation in the Grove Mountains of interior East Antarctica support a dynamic evolution of the East Antarctic Ice Sheet (EAIS). Moraine boulders of sedimentary rocks and spore pollen assemblage imply a significant shrinkage of the EAIS, with its margin retreating south of the Grove Mountains (~450 km south of recent coast line) before the middle Pliocene. The exposure ages indicate that the ice sheet subsequently re-advanced, with the ice surface rising locally at least 450 m higher than today. It then went back down constantly from before 2.3 Ma to 1.6 Ma. The glacial topography and existence of soil show that the ice surface fluctuation continued since the early Quaternary, but with highest levels never exceeding ~100 m higher than today.

  8. Entrainment, transport and concentration of meteorites in polar ice sheets

    NASA Technical Reports Server (NTRS)

    Drewry, D. J.

    1986-01-01

    Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.

  9. Fluvial supraglacial landscape evolution on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Yang, Kang

    2016-03-01

    Supraglacial stream networks incise via thermal erosion of underlying ice, reflecting a balance between localized fluvial incision and dynamic topography from underlying ice flow. We analyze high-resolution digital elevation models of the ice surface and bedrock in the southwest Greenland Ice Sheet from 1000-1600 m elevation to quantify the importance of fluvial erosion. At wavelengths greater than ice thickness, bedrock dominates surface topography so supraglacial drainage basins are fixed spatially. At smaller wavelengths, fluvial erosion significantly affects topography. Stream longitudinal profiles exhibit positive mean curvature and consistent power law scaling between local channel slope and drainage area, suggestive of adjustment toward topographic steady state. We interpret these observations with a model for fluvial thermal erosion on top of a flowing ice substrate that predicts concave up steady state longitudinal profiles, where average concavity is most sensitive to melt rate and the relative magnitudes of ice flow and fluvial erosion.

  10. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model is first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.

  11. High-resolution coupled ice sheet-ocean modeling using the POPSICLES model

    NASA Astrophysics Data System (ADS)

    Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.

    2014-12-01

    It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.

  12. The GreenLand Ice Sheet monitoring Network (GLISN)

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Hanka, W.; Kanao, M.; Larsen, T.; McCormack, D.; Mykkeltveit, S.; Nettles, M.; Piana Agostinetti, N.; Tsuboi, S.; Voss, P.

    2009-12-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is a new, international, broadband seismic capability for Greenland, being installed and implemented through the joint collaboration of Denmark, Canada, Germany, Italy, Japan, Norway, Switzerland, and USA. GLISN is a real-time sensor array of 25 stations to enhance and upgrade the performance of the scarce existing Greenland seismic infrastructure for detecting, locating, and characterizing glacial earthquakes and other cryo-seismic phenomena, and contribute to our understanding of Ice Sheet dynamics. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems; the underlying geological and geophysical processes affecting the Greenland Ice Sheet; interactions between oceans, climate, and the cryosphere; and other multidisciplinary areas of interest to geoscience and climate dynamics. The glacial processes that induce seismic events (internal deformation, sliding at the base, disintegration at the calving front, drainage of supra-glacial lakes) are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behavior over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms and metrics relevant to ice sheet collapse, and will provide new constraints on Ice Sheet dynamic processes and their potential roles in sea-level rise during the coming decades. GLISN will provide a new, fiducial reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The GLISN development is focused on 1) upgrading equipment and adding real-time telemetry to existing seismic infrastructure in Greenland, 2) installing new

  13. Geological and geomorphological insights into Antarctic ice sheet evolution.

    PubMed

    Sugden, David E; Bentley, Michael J; O Cofaigh, Colm

    2006-07-15

    Technical advances in the study of ice-free parts of Antarctica can provide quantitative records that are useful for constraining and refining models of ice sheet evolution and behaviour. Such records improve our understanding of system trajectory, influence the questions we ask about system stability and help to define the ice-sheet processes that are relevant on different time-scales. Here, we illustrate the contribution of cosmogenic isotope analysis of exposed bedrock surfaces and marine geophysical surveying to the understanding of Antarctic ice sheet evolution on a range of time-scales. In the Dry Valleys of East Antarctica, 3He dating of subglacial flood deposits that are now exposed on mountain summits provide evidence of an expanded and thicker Mid-Miocene ice sheet. The survival of surface boulders for approximately 14Myr, the oldest yet measured, demonstrates exceptionally low rates of subsequent erosion and points to the persistence and stability of the dry polar desert climate since that time. Increasingly, there are constraints on West Antarctic ice sheet fluctuations during Quaternary glacial cycles. In the Sarnoff Mountains of Marie Byrd Land in West Antarctica, 10Be and 26Al cosmogenic isotope analysis of glacial erratics and bedrock reveal steady thinning of the ice sheet from 10400 years ago to the present, probably as a result of grounding line retreat. In the Antarctic Peninsula, offshore analysis reveals an extensive ice sheet at the last glacial maximum. Based on radiocarbon dating, deglaciation began by 17000cal yr BP and was complete by 9500cal yr BP. Deglaciation of the west and east sides of the Antarctic Peninsula ice sheet occurred at different times and rates, but was largely complete by the Early Holocene. At that time ice shelves were less extensive on the west side of the Antarctic Peninsula than they are today. The message from the past is that individual glacier drainage basins in Antarctica respond in different and distinctive

  14. CLIVAR Exchanges No. 62: Sea Level Rise, Ocean/Ice Shelf Interactions and Ice Sheets

    SciTech Connect

    Pirani, Anna; Danabasoglu, Gokhan; Griffies, Stephen; Marsland, Simon

    2013-08-01

    This special issue of CLIVAR Exchanges is devoted to presenting a selection of the science contributed by both speakers and poster presenters at the CLIVAR Workshop on Sea Level Rise, Ocean/Ice Shelf Interactions and Ice Sheets at CSIRO Marine and Atmospheric Research in Hobart, Australia, on 18-20 February 2013. The workshop brought together leading international scientists and early-career researchers from the ocean, ice-sheet, ice-shelf, and sea-level rise modelling and observational communities to explore the state-of-science and emerging pathways for development of the next generation of coupled climate models.

  15. Modelling the Laurentide Ice Sheet using improved ice margin chronologies and glacio-isostatic observations

    NASA Astrophysics Data System (ADS)

    Gowan, Evan; Tregoning, Paul; Purcell, Anthony; Lambeck, Kurt

    2013-04-01

    Creating models of the Laurentide ice sheet is challenging, due to the deficiency of chronological constraints and the uneven spatial resolution of data to determine the evolution of the glacio-isostatic response after deglaciation. Previous models relied on uncalibrated radiocarbon constrained margins that proved to have deficiencies in recent studies. Additionally, many recent Laurentide ice sheet models have been developed by incorporating climatic parameters that are poorly resolved for the late glacial period. We present a new ice sheet model by an iterative process of changing basal shear stress values and ice sheet margin location. A particular focus of this study is to determine the thickness and extent of the western Laurentide ice sheet, where there were few well dated observations of glacio-isostatic motion until recently. The volume of an ice sheet during long periods depends mostly on basal shear stress and margin position, which are the main parameters that we vary to fit our model to glacio-isostatic observations. We build our ice model using the assumption of perfectly plastic, steady-state conditions, with variable basal shear stress. Basal shear stress values depend on the surficial geology underlying the ice, and are at a minimum in offshore regions that have soft, deformable sediments, and at a maximum in areas with exposed crystalline bedrock. This approach may not capture dynamic and short lived features of the ice sheet, such as ice streams and stagnant ice, but gives an approximation of average conditions to produce ice volumes that fit geophysical observations. We adjust the margin location when the shear stress conditions alone cannot account for the observed glacio-isostatic response. The constraints on the response include relative sea level benchmarks, sea level highstand positions and proglacial lakes. We repeat the analysis using different rheological profiles to determine the dependence the Earth model has on the estimation of ice

  16. The response of the West Antarctic Ice Sheet to ocean warming beneath the Filchner Ronne Ice Shelf

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph; Thoma, Malte

    2015-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet (WAIS) is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf (FRIS) within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the sensitivity of the ice dynamics within the entire FRIS catchment to simulated future basal shelf melt rates. Our simulations indicate a high sensitivity of the ice dynamics for the Möller and the Institute Ice Stream but only very little response of other ice streams like Rutford, Foundation and Recovery Ice Stream to enhanced basal shelf melting. The grounding line between the Möller and Institute Ice Streams is located on a submarine ridge in front of a deep trough further inland. In this area, basal shelf melting causes a local thinning of the FRIS. The consequent initial retreat of the grounding line continues once it reaches the adjacent reverse-sloped bedrock. We state, that a possible 'point of no return' for a vast grounding line retreat along this steep reverse bedrock slope might have been crossed already even for simulated present-day melt rates, indicating that the WAIS is currently not in equlibrium. Furthermore, our simulations show an

  17. CO2 evasion from the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Jacobson, A. D.

    2010-12-01

    Greenland figures prominently in climate change predictions owing to the impact ice sheet melting will have on temperature, sea level, and possibly, ocean circulation. Here, we demonstrate that melting of the Greenland ice sheet also yields a sizable flux of atmospheric CO2 that will likely increase in a warmer world. We analyzed the major ion and dissolved carbonate geochemistry of the Akuliarusiarsuup Kuua River draining the Russell Glacier near Kangerlussuaq, Greenland. Water emerges from beneath the ice sheet with CO2 partial pressures 3 - 10X supersaturated with respect to atmospheric equilibrium. This CO2 may originate from microbial respiration beneath the ice sheet. During downstream transport, CO2 evades to the atmosphere, but the chemical weathering of highly reactive glacial till sequesters 2 - 7X more as HCO3, a temporary carbon sink. However, only a 2X increase in the initial CO2 partial pressure is required to reverse the balance between evasion and weathering, and we suggest that significantly greater increases could occur as retreat of the ice sheet margin and expansion of moulins exposes melt water to interior basal ice, which has CO2 partial pressures over 450X higher than the current atmospheric value (Souchez et al., 1995). Extrapolated across all of Greenland, worst-case model predictions suggest net evasion fluxes of 0.14 - 0.27 Pg C/yr by 2100 depending whether melting increases linearly or exponentially with time. These estimates are close to the lower range recently identified for permafrost thaw (Schuur et al., 2009). This study highlights a new and potentially important positive feedback between anthropogenic greenhouse forcing, ice sheet decay, and climate change.

  18. Assessing the links between Greenland Ice Sheet Surface Mass Balance and Arctic climate using Climate Models and Observations

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik; Langen, Peter; Sloth Madsen, Marianne; Høyer Svendsen, Synne; Yang, Shuting; Hesselbjerg Christensen, Jens; Olesen, Martin

    2016-04-01

    Changes in different parts of the Arctic cryosphere may have knock-on effects on other parts of the system. The fully coupled climate model EC-Earth, which includes the ice sheet model PISM, is a useful tool to examine interactions between sea ice, ice sheet, ocean and atmosphere. Here we present results from EC-Earth experimental simulations that show including an interactive ice sheet model changes ocean circulation, sea ice extent and regional climate with, for example, a dampening of the expected increase in Arctic temperatures under the RCP scenarios when compared with uncoupled experiments. However, the relatively coarse resolution of the climate model likely influences the calculated surface mass balance forcing applied to the ice sheet model and it is important therefore to evaluate the model performance over the ice sheet. Here, we assess the quality of the climate forcing from the GCM to the ice sheet model by comparing the energy balance and surface mass balance (SMB) output from EC-Earth with that from a regional climate model (RCM) run at very high resolution (0.05 degrees) over Greenland. The RCM, HIRHAM5, has been evaluated over a wide range of climate parameters for Greenland which allows us to be confident it gives a representative climate forcing for the Greenland ice sheet. To evaluate the internal variability in the climate forcing, we compare simulations from HIRHAM5 forced with both the EC-Earth historical emissions and the ERA-Interim reanalysis on the boundaries. The EC-Earth-PISM RCP8.5 scenario is also compared with an EC-Earth run without an ice sheet to assess the impact of an interactive ice sheet on likely future changes. To account for the resolution difference between the models we downscale both EC-Earth and HIRHAM5 simulations with a simple offline energy balance model (EBM).

  19. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic

    NASA Astrophysics Data System (ADS)

    Hawkings, Jon; Wadham, Jemma; Tranter, Martyn; Telling, Jon; Bagshaw, Elizabeth; Beaton, Alexander; Simmons, Sarah-Louise; Chandler, David; Tedstone, Andrew; Nienow, Peter

    2016-02-01

    The contribution of ice sheets to the global biogeochemical cycle of phosphorus is largely unknown, due to the lack of field data. Here we present the first comprehensive study of phosphorus export from two Greenland Ice Sheet glaciers. Our results indicate that the ice sheet is a hot spot of phosphorus export in the Arctic. Soluble reactive phosphorus (SRP) concentrations, up to 0.35 µM, are similar to those observed in Arctic rivers. Yields of SRP are among the highest in the literature, with denudation rates of 17-27 kg P km-2 yr-1. Particulate phases, as with nonglaciated catchments, dominate phosphorus export (>97% of total phosphorus flux). The labile particulate fraction differs between the two glaciers studied, with significantly higher yields found at the larger glacier (57.3 versus 8.3 kg P km-2 yr-1). Total phosphorus yields are an order of magnitude higher than riverine values reported in the literature. We estimate that the ice sheet contributes ~15% of total bioavailable phosphorus input to the Arctic oceans (~11 Gg yr-1) and dominates total phosphorus input (408 Gg yr-1), which is more than 3 times that estimated from Arctic rivers (126 Gg yr-1). We predict that these fluxes will rise with increasing ice sheet freshwater discharge in the future.

  20. Greenland ice sheet melting during the last interglacial

    NASA Astrophysics Data System (ADS)

    Langebroek, Petra M.; Nisancioglu, Kerim H.

    2016-04-01

    During the last interglacial period (LIG) peak temperatures over Greenland were several degrees warmer than today. The Greenland ice sheet (GIS) retreated causing a global sea-level rise in the order of several meters. Large uncertainties still exist in the exact amount of melt and on the source location of this melt. Here we examine the GIS response to LIG temperature and precipitation patterns using the SICOPOLIS ice sheet model. The LIG climate was simulated by forcing the Norwegian Earth System Model (NorESM) with the appropriate greenhouse gases and orbital settings. The resulting LIG ice volume evolution strongly depends on the chosen value of uncertain model parameters for the ice sheet (e.g. basal sliding parameter, PDD factors, and atmospheric temperature lapse rate). We reduce the uncertainty by evaluating an ensemble of model results against present-day observations of ice sheet size, elevation and stability, together with paleo information from deep ice cores. We find a maximum GIS reduction equivalent to 0.8 to 2.2m of global sea-level rise. In this model set-up most of the melting occurs in southwestern Greenland.

  1. An ice sheet model of reduced complexity for paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Neff, Basil; Born, Andreas; Stocker, Thomas F.

    2016-04-01

    IceBern2D is a vertically integrated ice sheet model to investigate the ice distribution on long timescales under different climatic conditions. It is forced by simulated fields of surface temperature and precipitation of the Last Glacial Maximum and present-day climate from a comprehensive climate model. This constant forcing is adjusted to changes in ice elevation. Due to its reduced complexity and computational efficiency, the model is well suited for extensive sensitivity studies and ensemble simulations on extensive temporal and spatial scales. It shows good quantitative agreement with standardized benchmarks on an artificial domain (EISMINT). Present-day and Last Glacial Maximum ice distributions in the Northern Hemisphere are also simulated with good agreement. Glacial ice volume in Eurasia is underestimated due to the lack of ice shelves in our model. The efficiency of the model is utilized by running an ensemble of 400 simulations with perturbed model parameters and two different estimates of the climate at the Last Glacial Maximum. The sensitivity to the imposed climate boundary conditions and the positive degree-day factor β, i.e., the surface mass balance, outweighs the influence of parameters that disturb the flow of ice. This justifies the use of simplified dynamics as a means to achieve computational efficiency for simulations that cover several glacial cycles. Hysteresis simulations over 5 million years illustrate the stability of the simulated ice sheets to variations in surface air temperature.

  2. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  3. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.

    PubMed

    Miles, Bertie W J; Stokes, Chris R; Jamieson, Stewart S R

    2016-05-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica. PMID:27386519

  4. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes

    PubMed Central

    Miles, Bertie W. J.; Stokes, Chris R.; Jamieson, Stewart S. R.

    2016-01-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974–1990, before switching to advance in every drainage basin during the two most recent periods, 1990–2000 and 2000–2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica. PMID:27386519

  5. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    NASA Astrophysics Data System (ADS)

    Ghattas, O.; Isaac, T.; Petra, N.; Stadler, G.

    2014-12-01

    The flow of ice from the interior of polar ice sheets is the primarycontributor to projected sea level rise. One of the main difficultiesfaced in modeling ice sheet flow is the uncertain spatially-varyingRobin boundary condition that describes the resistance to sliding atthe base of the ice. Satellite observations of the surface ice flowvelocity, along with a model of ice as a creeping incompressibleshear-thinning fluid, can be used to infer this uncertain basalboundary condition. We cast this ill-posed inverse problem in theframework of Bayesian inference, which allows us to infer not only thebasal sliding parameters, but also the associated uncertainty. Toovercome the prohibitive nature of Bayesian methods for large-scaleinverse problems, we exploit the fact that, despite the large size ofobservational data, they typically provide only sparse information onmodel parameters. We show results for Bayesian inversion of the basalsliding parameter field for the full Antarctic continent, anddemonstrate that the work required to solve the inverse problem,measured in number of forward (and adjoint) ice sheet model solves, isindependent of the parameter dimension, data dimension, and number ofprocessor cores.

  6. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Escolà, Roger; Roca, Mònica; Ambrózio, Américo; Restano, Marco; McMillan, Malcolm; Escorihuela, Maria Jose; Shepherd, Andrew; Thibaut, Pierre; Remy, Frederique

    2016-07-01

    Since the launch of ERS-1 in 1991, polar-orbiting satellite radar altimeters have provided a near continuous record of ice sheet elevation change, yielding estimates of ice sheet mass imbalance at the scale of individual ice sheet basins. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which limits their capacity to make reliable measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 by the European Space Agency heralded the start of a new era of SAR altimetry, although full SAR coverage of the polar ice sheets will only be achieved with the launch of the first Sentinel-3 satellite in February 2016. Because of the heritage of SAR altimetry provided by CryoSat-2, current SAR altimeter processing techniques have been optimized and evaluated for water and sea ice surfaces. This leaves several outstanding issues related to the development and evaluation of SAR altimetry for ice sheets, including improvements to SAR processing algorithms and SAR altimetry waveform retracking procedures. Here we will present interim results from SPICE (Sentinel-3 Performance Improvement for Ice Sheets), a 2 year project that focuses on the expected performance of Sentinel-3 SAR altimetry over the Polar ice sheets. The project, which began in September 2015 and is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, aims to contribute to the development and understanding of ice sheet SAR altimetry through the emulation of Sentinel-3 data from dedicated CryoSat SAR acquisitions made at several sites in Antarctica and Greenland. More specifically, the project aims to (1) evaluate and improve the current Delay-Doppler processing and SAR waveform retracking

  7. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  8. Estimating Freshwater Discharge from the Greenland Ice Sheet with MODIS

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.; Overeem, I.; Mikkelsen, A. B.; McGrath, D.; Syvitski, J. P.

    2013-12-01

    Freshwater discharge from the Greenland Ice Sheet (GrIS) has significant ecological importance, impacts ocean circulation and represents a major contribution to global sea level rise. Despite these factors, only one river in Greenland (accounting for less than one percent of land terminating river outlets) has a published discharge record. Due to logistical constrains future efforts to directly gauge river discharge will likely remain ad hoc. To overcome this deficiency, we developed a remote sensing technique that utilizes observations of sediment plume geometry as a proxy for freshwater discharge from the ice sheet. We use MODIS (Moderate Resolution Imaging Spectroradiometer) imagery, validated with a suite of oceanographic measurements from four fjords in southwest Greenland during the 2008, 2010, 2011 and 2012 summer seasons. From surface water samples collected during these campaigns we develop a robust retrieval algorithm for suspended sediment concentrations based on MODIS band one and two reflectance values (r2 =.84). This relationship allows us to accurately map sediment plume geometry of numerous river-fjord systems on all cloud-free days during the summer season. We then use in situ river discharge records from the Watson River at Kangerlussuaq (a six year record), ';Pakitsuup South' River near Illulisat (a two year record) and Naujat Kuat River near Nuuk (a three year record) to derive an empirical relationship between plume geometry and discharge volume. These fjords provide a robust test for this method, as fjord salinity for these locations span a continuum of river-dominated low salinity to ocean-dominated high salinity cases. We find high interannual stability in these relationships for individual sites, suggesting that this method may be suitable for estimating historical river discharges back to 2000 when Terra, the first satellite carrying MODIS was launched. Despite promise, variability in the empirical relationships found precludes

  9. The Role of Glacial Erosion in Limiting Ice Sheet Extents

    NASA Astrophysics Data System (ADS)

    Jamieson, S.; Hulton, N.

    2007-12-01

    We aim to identify and quantify feedbacks between ice dynamics and glacial erosion. Whilst geological and geomorphological evidence indicates that ice sheets generally oscillate in time with orbital forcing, their extents are not necessarily a direct function of the amplitude of this forcing. Benthic δ18O records document glacial-interglacial fluctuations and indicate that maximum Pleistocene global ice volume occurs around 400 ka. However, geomorphological evidence in a number of regions is contradictory, with the most extensive ice masses often occurring 100's of kyrs prior to peaks in the δ18O record. For example, the glacial landforms of Patagonia preserve a record of just such behaviour with each successive glacial advance since 1.15 Ma covering an area less extensive than the previous expansion. This implies that other processes are modifying the linkages between ice sheets and climate. We ask: Could glacial erosion of bedrock have caused ice sheets to self-regulate their extents? Ground-breaking experiments by Oerlemans (1984) demonstrated that erosion induced margin retreat was indeed possible. He showed that retreat could be achieved but only where eroding ice streams were smaller in width than the wavelength of lithospheric response. In Patagonia however, the scales of retreat are much larger than this lithospheric wavelength - but could erosion still be an important factor? We use the GLIMMER 3-D thermomechanical ice sheet model (Payne, 1999) with an added erosion component to simulate long-term landscape evolution under theoretical ice sheets (Jamieson et al., 2007). We show that models of glacial erosion can generate feedbacks on a significant scale such that ice sheets can self-limit their extents over periods of 105 - 106 years regardless of the flexural response of the land surface. Erosion around the ELA enables increasingly efficient ice drainage, and the mass balance of the ice sheet thus shifts towards a more negative state. At the same time

  10. A Reconciled Estimate of Ice-Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A.; Lenaerts, Jan T. M.; Li, Jilu; Ligtenberg, Stefan R. M.; Luckman, Adrian; Luthcke, Scott B.; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas,Julien P.; Paden, John; Payne, Antony J.; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sorensen, Louise Sandberg; Scambos, Ted A.; Yi, Dohngui; Zwally, H. Jay

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  11. Younger Dryas interval and outflow from the Laurentide ice sheet

    USGS Publications Warehouse

    Moore, T.C., Jr.; Walker, J.C.G.; Rea, David K.; Lewis, C.F.M.; Shane, L.C.K.; Smith, A.J.

    2000-01-01

    A boxmodel of the Great Lakes is used to estimate meltwater flow into the North Atlantic between 8000 and 14,000 calendar years B.P. Controls on the model include the oxygen isotopic composition of meltwaters and lake waters as measured in the shells of ostracodes. Outflow rates are highest when oxygen isotopic values of the lake waters are most negative, denoting a maximum glacial meltwater component. Flow rates reach maximum values before the onset of the Younger Dryas and after it ends. These maxima appear to be correlative with the major meltwater pulses MWP 1A and 1B. Although the resumption of North Atlantic Deep Water formation may be tied to the reduction in ice sheet melting, neither the onset nor the end of the Younger Dryas, as recorded in the Greenland Ice Sheet Project (GISP2) records, appear tied to maxima in meltwater outflow from the Laurentide ice sheet. Copyright 2000 by the American Geophysical Union.

  12. A reconciled estimate of ice-sheet mass balance.

    PubMed

    Shepherd, Andrew; Ivins, Erik R; A, Geruo; Barletta, Valentina R; Bentley, Mike J; Bettadpur, Srinivas; Briggs, Kate H; Bromwich, David H; Forsberg, René; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A; Lenaerts, Jan T M; Li, Jilu; Ligtenberg, Stefan R M; Luckman, Adrian; Luthcke, Scott B; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas, Julien P; Paden, John; Payne, Antony J; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sørensen, Louise Sandberg; Scambos, Ted A; Scheuchl, Bernd; Schrama, Ernst J O; Smith, Ben; Sundal, Aud V; van Angelen, Jan H; van de Berg, Willem J; van den Broeke, Michiel R; Vaughan, David G; Velicogna, Isabella; Wahr, John; Whitehouse, Pippa L; Wingham, Duncan J; Yi, Donghui; Young, Duncan; Zwally, H Jay

    2012-11-30

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise. PMID:23197528

  13. Using ice-penetrating radars to date ice-rise formation and Late Holocene ice-sheet retreat in the Ronne Ice Shelf region, West Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Hindmarsh, Richard; King, Edward; Corr, Hugh

    2015-04-01

    The history of the West Antarctic Ice Sheet in the region currently occupied by the Ronne Ice Shelf is poorly known. This reflects a lack of accessible recently deglaciated surfaces, which prohibits conventional paleo glaciological techniques that can provide evidence of past ice-sheet extent and retreat, for example ocean coring or exposure-dating of geological material. We use a glaciological technique, Raymond Effect Dating, to constrain the retreat of the ice sheet through the Ronne Ice Shelf region. During two Antarctic field seasons, we used a pulse-echo ice-penetrating radar to image the base and internal stratigraphy of four ice rises - areas of grounded ice containing ice divides. Towing the radar with skidoos, we conducted over 2000 km of surveys on the Skytrain, Korff, Henry and Fowler Ice Rises and the ice shelf between them. We also used a step-frequency radar called pRES to measure the vertical ice flow in the vicinity of each ice divide. Isochronal ice layers imaged during the surveys deforming in a predictable way with ice flow, meaning that their shape contains information about past ice flow. Directly beneath ice divides the downward motion of the ice is impeded by an ice-dynamical phenomenon called the Raymond Effect. This causes layers beneath the divides to form 'Raymond Arches' that grow over time. We will present the data and simulate the growth of the Raymond Arches using our pRES-measured vertical ice velocities and date the onset of ice-divide flow at each ice rise by comparing the size of simulated arches to the arches imaged during our radar surveys. We consider the main sources of uncertainty associated with these ice-rise formation dates and discuss what they can tell us about the retreat of the West Antarctic Ice Sheet through this region during the last few thousand years.

  14. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant

  15. Ice-sheet modelling accelerated by graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  16. Antarctic Ice Sheet melting in the southeast Pacific

    NASA Astrophysics Data System (ADS)

    Jacobs, Stanley S.; Hellmer, Hartmut H.; Jenkins, Adrian

    The first oceanographic measurements across a deep channel beneath the calving front of Pine Island Glacier reveal a sub-ice circulation driven by basal melting of 10-12 m yr-1. A salt box model described here gives a melt rate similar to that of ice balance and numerical models, 5-50 times higher than averages for the George VI and Ross Ice Shelves. Melting is fueled by relatively warm Circumpolar Deep Water that floods the deep floor of the Amundsen and Bellingshausen Sea continental shelves, reaching the deep draft of this floating glacier. A revised melt rate for ice shelves in the Southeast Pacific sector raises circumpolar ice shelf melting to 756 Gt yr-1. Given prior estimates of surface accumulation and iceberg calving, this suggests that the Antarctic Ice Sheet is currently losing mass to the ocean.

  17. Oxygen Isotope Mass-Balance Constraints on Pliocene Sea Level and East Antarctic Ice Sheet Stability

    NASA Astrophysics Data System (ADS)

    Winnick, M. J.; Caves, J. K.

    2015-12-01

    The mid-Pliocene Warm Period (MPWP, 3.3-2.9 Ma), with reconstructed atmospheric pCO2 of 350-450 ppm, represents a potential analogue for climate change in the near future. Current highly cited estimates place MPWP maximum global mean sea level (GMSL) at 21 ± 10 m above modern, requiring total loss of the Greenland (GIS) and marine West Antarctic Ice Sheets (WAIS) and a substantial loss of the East Antarctic Ice Sheet (EAIS), with only a concurrent 2-3 ºC rise in global temperature. Many estimates of Pliocene GMSL are based on the partitioning of oxygen isotope records from benthic foraminifera (δ18Ob) into changes in deep-sea temperatures and terrestrial ice sheets. These isotopic budgets are underpinned by the assumption that the δ18O of Antarctic ice (δ18Oi) was the same in the Pliocene as it is today, and while the sensitivity of δ18Ob to changing meltwater δ18O has been previously considered, these analyses neglect conservation of 18O/16O in the ocean-ice system. Using well-calibrated δ18O-temperature relationships for Antarctic precipitation along with estimates of Pliocene Antarctic surface temperatures, we argue that the δ18Oi of the Pliocene Antarctic ice sheet was at minimum 1‰-4‰ higher than present. Assuming conservation of 18O/16O in the ocean-ice system, this requires lower Pliocene seawater δ18O (δ18Osw) without a corresponding change in ice sheet mass. This effect alone accounts for 5%-20% of the δ18Ob difference between the MPWP interglacials and the modern. With this amended isotope budget, we suggest that Pliocene GMSL was likely 9-13.5 m and very likely 5-17 m above modern, which suggests the EAIS is less sensitive to radiative forcing than previously inferred from the geologic record.

  18. Modeling Abrupt Change in Global Sea Level Arising from Ocean - Ice-Sheet Interaction

    SciTech Connect

    Holland, David M

    2011-09-24

    It is proposed to develop, validate, and apply a coupled ocean ice-sheet model to simulate possible, abrupt future change in global sea level. This research is to be carried out collaboratively between an academic institute and a Department of Energy Laboratory (DOE), namely, the PI and a graduate student at New York University (NYU) and climate model researchers at the Los Alamos National Laboratory (LANL). The NYU contribution is mainly in the area of incorporating new physical processes into the model, while the LANL efforts are focused on improved numerics and overall model development. NYU and LANL will work together on applying the model to a variety of modeling scenarios of recent past and possible near-future abrupt change to the configuration of the periphery of the major ice sheets. The project's ultimate goal is to provide a robust, accurate prediction of future global sea level change, a feat that no fully-coupled climate model is currently capable of producing. This proposal seeks to advance that ultimate goal by developing, validating, and applying a regional model that can simulate the detailed processes involved in sea-level change due to ocean ice-sheet interaction. Directly modeling ocean ice-sheet processes in a fully-coupled global climate model is not a feasible activity at present given the near-complete absence of development of any such causal mechanism in these models to date.

  19. AMOC projections driven by global warming and Greenland Ice Sheet melt

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Schmittner, Andreas; Lenaerts, Jan; Abe-Ouchi, Ayako; Bi, Dave; van den Broeke, Michiel; Hu, Aixue; Beadling, Rebecca Lynn; Marsland, Simon; Mernhild, Sebastian H.; Ohgaito, Rumi; Rodehacke, Christian; Saenko, Oleg; Swingedouw, Didier; Yang, Shuting; Yin, Jianjun

    2016-04-01

    The evolution of the Atlantic meridional overturning circulation (AMOC) is one of the key uncertainties of future climate projections. State-of-art climate models that took part in the CMIP5 project show that over the 21st century the AMOC might reduce by 20-30% under the intermediate RCP4.5 scenario and by 36-44% under the high end RCP8.5 scenario relative to preindustrial values. However, these projections neglect enhanced meltwater input from the Greenland Ice Sheet and lack a thorough uncertainty assessment. We present results of a community effort to use state-of-the-science climate models to simulate the impact of the partial melt of the Greenland Ice Sheet on the AMOC under future global warming up to the year 2300 (AMOCMIP). A probabilistic uncertainty assessment is presented based on a physics-based AMOC emulator and includes uncertainties in the AMOC's sensitivity to temperature and salinity changes, as well as uncertainties of future global warming, regional temperature amplification and melt rates of the Greenland Ice Sheet. We find that the impact of increased Greenland Ice Sheet melt on the AMOC strength is non-negligible, albeit strongly model dependent. The uncertainty analysis shows that the chance of an collapse of the AMOC is negligible if global temperature change remains below 2°C, but becomes more probable for larger warming.

  20. Radar imaging of basement control on ice-sheet dynamics in West Antarctica

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; King, E. C.; Larter, R. D.; Ferraccioli, F.; Pritchard, H. D.; Smith, A.; Vaughan, D.

    2011-12-01

    Satellite remote sensing measurements show that ice streams draining the West Antarctic Ice Sheet (WAIS) to the Amundsen and Bellingshausen Sea Embayments are accelerating and thinning rapidly, contributing to ~10% of observed global sea-level rise. Losses are dominated by 'dynamic thinning,' the progressive acceleration, thinning and retreat of inland ice, likely forced by oceanic or atmospheric perturbations along the coastline. Recently highlighted as key to improving projections of future ice-sheet contributions to sea-level, the incorporation of dynamic thinning into numerical models has been restricted by lack of knowledge of basal topography so that, for much of the WAIS, the fundamental controls on its dynamic losses, hence the rate and ultimate extent of its potential retreat, remain difficult to quantify. Ice-penetrating radar systems offer the principal means by which we can acquire regional information on the basal conditions known theoretically to exert a strong control on dynamic thinning processes. Here we describe the detailed delineation, with radar, of a subglacial trench up to 2.5 km deep and 20 km wide, connecting the ice-sheet interior to the Bellingshausen margin, whose existence impacts profoundly on current ice-dynamic losses. We use ice-penetrating radar from 2 MHz oversnow radar (the British Antarctic Survey DELORES system) and airborne radar (from Operation IceBridge) in 2009/10 to map the geometry of the trench, and discuss its likely origins as a tectonic line of weakness. The trench represents a conduit through which a palaeo-ice stream was directed onto the continental shelf during glacial maxima, eroding the major Belgica Trough through Eltanin Bay, which today affords warm open-ocean water access to the ice front, promoting further dynamic thinning. We support recently reported findings from airborne geophysics over neighbouring Pine Island Glacier that the spatial configuration of West Antarctica's regions of inland dynamic

  1. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  2. The role of ice shelves in the Holocene evolution of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Rogozhina, Irina; Thomas, Maik

    2014-05-01

    Using the continental-scale ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of ice shelves on the Holocene evolution and present-day geometry of the Antarctic ice sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok ice core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of ice shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of ice shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of ice shelves (up to 20%) that gradually diminishes to a negligible level for the present-day ice shelf configuration. Thus, the present-day geometry of the Antarctic ice shelves can be attained even if an ice-shelf-free initial condition is chosen at the LGM. However, the grounded ice volume, thickness and dynamic states are found to be sensitive to the ice shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine ice at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded ice that remains significant over a period of 30 to 50 kyr. If ice-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded ice volumes are underestimated by up to 10%, as opposed to simulations incorporating ice shelf dynamics over longer periods. The use of ice-shelf-free LGM conditions thus results in 50 to over 200 meters thinner ice sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to

  3. Programme for Monitoring of the Greenland Ice Sheet - Ice Surface Velocities

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Ahlstrom, A. P.; Boncori, J. M.; Dall, J.

    2011-12-01

    In 2007, the Danish Ministry of Climate and Energy launched the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) as an ongoing effort to assess changes in the mass budget of the Greenland Ice Sheet. Iceberg calving from the outlet glaciers of the Greenland Ice Sheet, often termed the ice-dynamic mass loss, is responsible for an important part of the mass loss during the last decade. To quantify this part of the mass loss, we combine airborne surveys yielding ice-sheet thickness along the entire margin, with surface velocities derived from satellite synthetic-aperture radar (SAR). In order to derive ice sheet surface velocities from SAR a processing chain has been developed for GEUS by DTU Space based on a commercial software package distributed by GAMMA Remote Sensing. The processor, named SUSIE (Scripts and Utilities for SAR Ice-motion Estimation), can use both differential SAR interferometry and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error. So far surface velocities have been derived for a number of sites including Nioghalvfjerdsfjord Glacier, the Kangerlussuaq region, the Nuuk region, Helheim Glacier and Daugaard-Jensen Glacier using data from ERS-1/ERS-2, ENVISAT ASAR and ALOS Palsar. Here we will present these first results.

  4. Elastic response of a grounded ice sheet coupled to a floating ice shelf

    NASA Astrophysics Data System (ADS)

    Worster, M. G.; Sayag, R.

    2011-12-01

    An ice sheet that spreads into an ocean is forced to bend owing to its buoyancy, and detaches from the ground to form an ice shelf. The detachment position, called the grounding-line, behaves as a free boundary. Observational evidence suggests that the surface elevation of the ice at the grounding zone can be undulated and that the bed beneath the ice can deform. We present a theoretical and experimental study of an elastic sheet resting on a deformable elastic bed, coupled to an elastic shelf, with a free grounding line. We find that the grounding-line position is determined by the geometry of the bed and a lengthscale representing a balance of bending and buoyancy forces. We show that the undulated structure of the floating shelf depends on the bending-buoyancy lengthscale only, allowing us to calculate the bending stiffness of the elastic shelf independently of the bed slope or bed stiffness. We also find relations between features on the surface of the floating shelf and the grounding-line position. Our theoretical predictions agree with laboratory experiments made using thick elastic sheets acting as the ice, and a dense salt solution acting as the ocean. Our findings provide new insights on the dynamics near grounding lines, which may have important implications for ice-sheet dynamics and stability, as well as methods to infer the bending stiffness of ice sheets and the grounding line position from satellite altimetery.

  5. Susceptibility of the Antarctic ice sheet to changes in ice shelf buttressing

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes J.; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Gagliardini, Olivier

    2015-04-01

    Higher surface air temperatures over the Antarctic Peninsula are hypothesised to have caused melt-pond formation, destabilisation and sudden disintegration of the Larsen B ice shelf in 2002. The almost total removal of the shelf resulted in an acceleration of the extant glacier fronts, upstream thinning and unabated ice loss up to this day. Similar thinning is observed for Thwaites and Pine Island Glaciers in the Amundsen Sea sector, but here, ocean warming is suspected for enhancing the shelf melting. In both cases, shelf geometries were altered in a way that upstream buttressing was reduced, an explanation for the observed accelerations. Since more than half of all Antarctic glaciers extend into floating shelves and since most of them showed no significant accelerations in the recent past, it remains unclear how susceptible the upstream ice sheet is to geometric changes of the corresponding shelves under further warming in the future. In this context, we aim at quantifying the dynamic susceptibility using ice geometry and surface velocities inferred from observations. To obtain the stress distribution near the grounding line, the shelf viscosity field is determined using a variational inverse method that optimises the mismatch between observed and modelled surface velocities. This allows us to compute a buttressing factor along the grounding line. Using this factor as one criterion, we succeed to a priori discern the segments of the grounding line in the Amundsen Sea sector that, in fact, retreated by now. An abrupt drop-off in buttressing across the main trunk of Thwaites Glacier can explain its asymmetric retreat pattern. Moreover, other regions in this sector are recognised as susceptible to further loss of shelf buttressing, where, for now, perturbations remain too weak for a distinct migration of the grounding line. With the chosen criteria, we are able to localise the regions that are prone to changes in the downstream shelves. This identification enables

  6. Susceptibility of the Antarctic Ice Sheet to Changes in Ice Shelf Buttressing

    NASA Astrophysics Data System (ADS)

    Fürst, J. J.; Durand, G.; Gillet-chaulet, F.; Tavard, L.; Gagliardini, O.

    2014-12-01

    Higher surface air temperatures over the Antarctic Peninsula are hypothesised to have caused melt-pond formation, destabilisation and sudden disintegration of the Larsen B ice shelf in 2002. The almost total removal of the shelf resulted in an acceleration of the extant glacier fronts, upstream thinning and unabated ice loss up to this day. Similar thinning is observed for Thwaites and Pine Island Glaciers in the Amundsen Sea sector, but here, ocean warming is suspected for enhancing the shelf melting. In both cases, shelf geometries were altered in a way that upstream buttressing was reduced, an explanation for the observed accelerations. Since more than half of all Antarctic glaciers extend into floating shelves and since most of them showed no significant accelerations in the recent past, it remains unclear how susceptible the upstream ice sheet is to geometric changes of the corresponding shelves under further warming in the future. In this context, we aim at quantifying the dynamic susceptibility using ice geometry and surface velocities inferred from observations. To obtain the stress distribution near the grounding line, the shelf viscosity field is determined using a variational inverse method that optimises the mismatch between observed and modelled surface velocities. This allows us to compute a buttressing factor along the grounding line. Using this factor as one criterion, we succeed to a priori discern the segments of the grounding line in the Amundsen Sea sector that, in fact, retreated by now. An abrupt drop-off in buttressing across the main trunk of Thwaites Glacier can explain its asymmetric retreat pattern. Moreover, other regions in this sector are recognised as susceptible to further loss of shelf buttressing, where, for now, perturbations remain too weak for a distinct migration of the grounding line. With the chosen criteria, we are able to localise the regions that are prone to changes in the downstream shelves. This identification enables

  7. Ice sheet surface elevation retrieval from CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Lu, Xiaomei; Hu, Yongxiang

    2013-05-01

    The primary objective of the atmospheric profiling lidar aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission launched in April 2006 has been studying the climate impact of clouds and aerosols in the atmosphere. However, CALIPSO lidar also collects information about other components of the Earth's ecosystem, such as polar ice sheets. The purpose of this study is to propose a new technique to provide high resolution of polar ice sheet surface elevation from CALIPSO single shot lidar measurements (70 m spot size). The new technique relies on an empirical relationship between the peak signal ratio and the distance between the surface and the peak signal range bin center to achieve high altimetry resolution. The ice sheet surface elevation results in the region of Greenland and Antarctic compare very well with the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry measurements. The comparisons suggest that the obtained CALIPSO ice sheet surface elevation by the new technique is accurate to within 1 m. Based on the new technique, the preliminary data product of along-track topography retrieved from the CALIPSO lidar measurements is available to the altimetry community for evaluation.

  8. Discussing Progress in Understanding Ice Sheet-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Herraiz Borreguero, Laura; Mottram, Ruth; Cvijanovic, Ivana

    2010-11-01

    Advanced Climate Dynamics Course 2010: Ice Sheet-Ocean Interactions; Lyngen, Norway, 8-19 June 2010; Sea level rise is one of many expected consequences of climate change, with accompanying complex social and economic challenges. Major uncertainties in sea level rise projections relate to the response of ice sheets to sea level rise and the key role that interactions with the ocean may play. Recognizing that probably no comprehensive curriculum currently exists at any single university that covers this novel and interdisciplinary subject, the Advanced Climate Dynamics Courses (ACDC) team brought together a group of 40 international students, postdocs, and lecturers from diverse backgrounds to provide an overview and discussion of state-of-the-art research into ocean-ice sheet interactions and to propose research priorities for the next decade. Among the key issues addressed were small-scale processes near the Antarctic ice shelves and Greenland outlet glaciers. These are fast changing components in the climate system, often related to large-scale forcings (atmospheric teleconnections and oceanic circulation). Progress in understanding and modeling is hampered by the range of scales involved, the lack of observations, and the difficulties in constraining, initializing, and providing adequate boundary conditions for ice sheet and ocean models.

  9. The extreme melt across the Greenland ice sheet in 2012

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  10. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  11. Hydraulic geometry of Greenland Ice Sheet supraglacial streams

    NASA Astrophysics Data System (ADS)

    Chu, V. W.; Smith, L. C.; Rennermalm, A. K.; Forster, R. R.; Gleason, C. J.; Pitcher, L. H.; Moustafa, S.; Overstreet, B. T.; Legleiter, C. J.; Behar, A. E.; Tedesco, M.; Yang, K.

    2012-12-01

    Increasing surface melting on the Greenland ice sheet and rising sea level have heightened the need for understanding the complex pathways transporting meltwater from the ice sheet surface to the ice edge and the ocean. Supraglacial streams are abundant throughout the ablation zone, transporting large volumes of meltwater into moulins and the ice edge, yet these streams remain poorly studied. Here we present a study of supraglacial stream hydraulics and geometry in the ablation zone of western Greenland during summer 2012. We measured flow width, depth, velocity, and water surface slope at different elevations and stream network types at five locations in a 70 km transect spanning the ice edge at 500 m to 1420 m elevation. This transect includes two highly sampled catchments in very different environments, one at 500 m and one at 875 m elevation. Our data show that stream width is correlated with width-depth ratios, providing possibilities for extrapolating depths from high-resolution satellite imagery. Furthermore, we explore using average stream velocities and thalweg depths to determine discharge and provide confidence intervals to these calculations by utilizing over 30 full cross-sectional profiles of flow width, depth, velocity, and discharge. These relationships may be useful for scaling up to larger supraglacial rivers and estimating ablation zone meltwater fluxes at other ice sheet locations using high-resolution satellite imagery.

  12. Analysis and retracking of continental ice sheet radar altimeter waveforms

    NASA Technical Reports Server (NTRS)

    Martin, T. V.; Brenner, A. C.; Zwally, H. J.; Bindschadler, R. A.

    1983-01-01

    The Seasat-1 radar altimeter data set acquired over both the Antarctic and Greenland continental ice sheets is analyzed to obtain corrected ranges to the ice surface. The radar altimeter functional response over the continental ice sheets is considerably more complex than over the oceans. Causal factors identified in this complicated response include sloping surfaces, undulating ice surfaces with characteristic wavelengths on the same spatial scale as the altimeter beam-limited footprint, off-track reflections, and dynamic lag of the altimeter tracking circuit. Retracking methods using the altimeter return pulse waveforms give range corrections that are typically several meters. The entire set of Seasat-1 altimetry over the continental ice sheets is being retracked by fitting a multi-parameter function to each waveform. Many waveforms have double ramps indicating near-normal reflections from two distinct portions of the ice surface within the altimeter beam. Two independent range measurements differing by less than 25 m are obtained from retracking the double-ramp waveforms.

  13. Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise

    2015-04-01

    The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and

  14. Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  15. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  16. ESA Ice Sheets CCI: Overview and surface elevation change results for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Forsberg, R.; Meister, R.; Hogg, A.; Shepherd, A.; Khvorostovsky, K.; Dall, J.; Kusk, A.; Nagler, T.; Scharrer, K.; Andersen, S. B.; Andersen, M. L.

    2013-12-01

    With the climate changing and the Greenland Ice Sheet (GIS) losing mass at an accelerating rate, the European Space Agency has established the Climate Change Initiative (ESA CCI) project in order to provide selected Essential Climate Variables (ECVs) for the GIS. The ECV presented here is the Ice Sheets (http://www.esa-icesheets-cci.org/) in which four parameters are to be determined: Surface elevation changes (SEC), ice velocities, grounding line locations, and calving front locations. The resulting data sets are to be openly distributed via the CCI web-site in transparent and easy-to-use formats. The production of the final data sets, dating from 1991 - present, is well underway. This presentation will provide a status overview of all four ECV parameters. As a preparation for the final data set computations, all ECVs carried out an open Round Robin (RR) exercise in order to find the most optimal method for producing the most reliable estimates. In the RR, the scientific community was asked to submit their best estimate of the given parameters along with a feedback sheet describing methodology, pre- and post-processing steps, etc. We outline the results of the SEC RR, where 11 participants from various US and European institutions provided estimates over the Jakobshavn Isbræ drainage basin. The participants used either Envisat radar or ICESat laser altimetry, and cross-over (XO), repeat-track (RT), and overlapping footprint analyses were made. Especially one of the results, based on Envisat RT, provided the first evidence for the possibility of using radar altimetry to accurately derive SEC estimates in both interior and margin parts of the GIS. This illustrates the potential for the final SEC product, which will be based on Envisat, Cryosat-2, and Sentinel-3 data. Through inter-comparisons and validation of the submissions, the most optimal method for deriving SEC values was found to be a combination of RT and XO algorithms, exploiting the high spatial

  17. Evidence for a substantial West Antarctic ice sheet contribution to meltwater pulses and abrupt global sea level rise

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.

    2015-12-01

    During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.

  18. Observationally constrained projections of Antarctic ice sheet instability

    NASA Astrophysics Data System (ADS)

    Edwards, Tamsin; Ritz, Catherine; Durand, Gael; Payne, Anthony; Peyaud, Vincent; Hindmarsh, Richard

    2015-04-01

    Large parts of the Antarctic ice sheet lie on bedrock below sea level and may be vulnerable to a positive feedback known as Marine Ice Sheet Instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence MISI may be underway throughout the Amundsen Sea Embayment (ASE) of West Antarctica, induced by circulation of warm Circumpolar Deep Water. If this retreat is sustained the region could contribute up to 1-2 m to global mean sea level, and if triggered in other areas the potential contribution to sea level on centennial to millennial timescales could be two to three times greater. However, physically plausible projections of Antarctic MISI are challenging: numerical ice sheet models are too low in spatial resolution to resolve grounding line processes or else too computationally expensive to assess modelling uncertainties, and no dynamical models exist of the ocean-atmosphere-ice sheet system. Furthermore, previous numerical ice sheet model projections for Antarctica have not been calibrated with observations, which can reduce uncertainties. Here we estimate the probability of dynamic mass loss in the event of MISI under a medium climate scenario, assessing 16 modelling uncertainties and calibrating the projections with observed mass losses in the ASE from 1992-2011. We project losses of up to 30 cm sea level equivalent (SLE) by 2100 and 72 cm SLE by 2200 (95% credibility interval: CI). Our results are substantially lower than previous estimates. The ASE sustains substantial losses, 83% of the continental total by 2100 and 67% by 2200 (95% CI), but in other regions losses are limited by ice dynamical theory, observations, or a lack of projected triggers.

  19. Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron; Gogineni, S. Prasad; Leuschen, Carl; McConnell, Joseph R.

    2013-01-01

    The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.

  20. Surface Drifters Track the Fate of Greenland Ice Sheet Meltwater

    NASA Astrophysics Data System (ADS)

    Hauri, Claudine; Truffer, Martin; Winsor, Peter; Lennert, Kunuk

    2014-07-01

    Understanding the fate and influence of glacial meltwater in heavily ice-covered fjord systems has proven difficult because previous measurement platforms were con­strained to deeper water to keep instrumentation safe from drifting icebergs. Now, using novel, satellite-tracked devices that can with­ stand multiple collisions with ice blocks (see Figure 1) without incurring much damage, scientists have obtained new and detailed data about the role of Greenland Ice Sheet meltwater and its trajectories through God­thåbsfjord in western Greenland.

  1. Modelling the marine advance of the last Cordilleran ice sheet

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina

    2014-05-01

    Marine advance of the last Cordilleran ice sheet onto the north-eastern Pacific continental shelf may have caused rapid fluctuations of sea level and potentially impacted upon human migration into North America. However the position of the former ice front was critically controlled by a process that remains poorly understood: glacier calving. Geomorphological reconstructions show that part of the presently oceanic areas were ice-covered, allowing for downstream formation of the well-studied Puget and Juan de Fuca lobes. Here we use a numerical glacier model (PISM) to reconstruct the former marine front of the Cordilleran ice sheet and its impact on upstream ice dynamics. Our simulations show that the use of a thickness-based calving law leads to a strong deficit of marine ice cover in the areas where existing reconstructions suggest its advance. In contrast, a physically-based parametrization of glacier calving using the main components of the strain rate tensor (eigencalving; A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin, The Cryosphere, 6, 273-286, 2012) reproduces the geomorphologically inferred ice extent.

  2. The impact of the North American ice sheet on the evolution of the Eurasian ice sheet during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Liakka, J.; Löfverström, M.; Colleoni, F.

    2015-11-01

    Modeling studies show that the massive ice sheet expanding over the North American and Eurasian continents in the last glacial cycle has a large impact on the atmospheric stationary waves and thus yielded a glacial climate distinctly different from the present. However, to what extent the two ice sheets influenced each others growth trajectories remains largely unexplored. In this study we investigate how ice sheets in North America influence the downstream evolution of the Eurasian ice sheet, using a thermomechanical ice-sheet model forced by climate data from snapshot simulations of three distinctly different phases of the last glacial cycle: the Marine Isotope Stages 5b, 4 and 2 (LGM). Our results suggest that changes in the North American paleo-topography may have had a large influence on evolution of the Eurasian ice sheet. In the MIS4 and LGM experiments, the Eurasian ice sheet migrates westward towards the Atlantic sector - largely consistent with geological data and contemporary ice-sheet reconstructions - due to a low wavenumber stationary wave response, which yields a cooling in Europe and a warming in northeastern Siberia. The expansion of the North American ice sheet between MIS4 and LGM amplifies the Siberian warm anomaly, which limits the glaciation there and may therefore help to explain the progressive westward migration of the Eurasian ice sheet over this time period. While the Eurasian ice sheet in the MIS4 and LGM experiments appears to be in equilibrium with the simulated climate conditions, the MIS5b climate forcing is too warm to grow an ice sheet. First-order sensitivity experiments suggest that most of the MIS5b ice sheet was established during preceding colder stages.

  3. Mantle viscosity and ice-age ice sheet topography

    SciTech Connect

    Peltier, W.R.

    1996-09-06

    Ice-age paleotopography and mantle viscosity can both be inferred from observations of Earth`s response to the most recent deglaciation event of the current ice age. This procedure requires iterative application of a theoretical model of the global process of glacial isostatic adjustment. Results demonstrate that the iterative inversion procedure converges to a paleotopography that is extremely close to that from the ICE-4G model. The accompanying mantle viscosity profile is furthermore shown to reconcile the requirements of aspherical geoid anomalies related to the mantle convection process, thus resolving a fundamental issue concerning mantle rheology. The combined model also explains postglacial sea level histories for the east cost of the United States. 28 refs., 9 figs.

  4. Supraglacial meltwater runoff from the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Chu, V.; Yang, K.; Rennermalm, A. K.; Legleiter, C. J.; Gleason, C. J.; Pitcher, L. H.; Moustafa, S.; Overstreet, B. T.; Behar, A.; Tedesco, M.; Forster, R. R.

    2013-12-01

    This presentation summarizes collaborative field and remote sensing research studying Greenland ice sheet meltwater flux through supraglacial rivers flowing over its surface and in proglacial rivers that emerge along its edge. High-resolution visible/near-infrared WorldView-2 satellite images were acquired simultaneously with in situ measurements of river hydraulic properties, including flow velocities from autonomous GPS drifters and ADCP, bathymetric depth soundings, water surface slopes, and hydraulic roughness. High-resolution mapping of supraglacial lake and river depths across the ablation zone were enabled through calibration of WorldView-2 images with in situ field spectra and water depth soundings collected from an unmanned autonomous watercraft. Fusion of these satellite and in situ datasets permits quantitative estimation of meltwater flux flowing over the ice sheet surface and entering moulins, and in situ proglacial measurements enable estimation of total meltwater export leaving the ice sheet. Analysis suggests that these supra- and pro-glacial rivers represent critical pathways for transport of meltwater runoff from the ice sheet surface to the global ocean.

  5. Workshop Advances Interdisciplinary Polar Science and Fast Ice Sheet Drilling

    NASA Astrophysics Data System (ADS)

    Tulaczyk, Slawek; Clow, Gary D.; Elliott, David H.; Powell, Ross D.; Priscu, John C.

    Over the last 50 years, the polar ice sheets covering Antarctica and Greenland have become natural scientific laboratories. Thanks to their unique environments, they yield discoveries that advance different geophysical disciplines and capture the imagination of the general public. The scientific community interested in sampling polar ice sheets and their substrata has been growing recently, and now incorporates biologists, geologists, geophysicists, glaciologists,and paleo-climatologists. This multidisciplinary interest is opening new research frontiers. Significantly advancing our scientific understanding along many of these frontiers will require targeted sampling strategies and the acquisition of data from arrays of deep access holes on spatial scales ranging from local to continent-wide. With this challenge in mind, more than 50 polar researchers and drilling engineers convened at a workshop to discuss scientific opportunities and technological challenges of fast-access ice sheet drilling. The overarching goal of the workshop was to begin the process of matching specific drilling and sampling technologies to broad objectives of interdisciplinary polar sciences. For convenience, the planned technological platform has been dubbed FASTDRILL. All scientific disciplines represented at the workshop identified several top-level questions that can be addressed with aid of the FASTDRILL platform. Biologists are interested in investigating life in icy environments as a potential analog for extraterrestrial life, and to better understand the origin and evolution of life on our planet. Interactions between tectonic processes and ice-sheet evolution are of primary importance to geologists and geophysicists.

  6. Microbial nitrogen cycling on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Telling, J.; Stibal, M.; Anesio, A. M.; Tranter, M.; Nias, I.; Cook, J.; Bellas, C.; Lis, G.; Wadham, J. L.; Sole, A.; Nienow, P.; Hodson, A.

    2012-07-01

    Nitrogen inputs and microbial nitrogen cycling were investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) during the main ablation season in summer 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes on Leverett Glacier, within 7.5 km of the ice sheet margin, suggested microbial uptake and ammonification respectively. Positive in situ acetylene assays indicated nitrogen fixation both in a debris-rich 100 m marginal zone and up to 5.7 km upslope on Leverett Glacier (with rates up to 16.3 μmoles C2H4 m-2 day-1). No positive acetylene assays were detected > 5.7 km into the ablation zone of the ice sheet. Potential nitrogen fixation only occurred when concentrations of dissolved and sediment-bound inorganic nitrogen were undetectable. Estimates of nitrogen fluxes onto the transect suggest that nitrogen fixation is likely of minor importance to the overall nitrogen budget of Leverett Glacier and of negligible importance to the nitrogen budget on the main ice sheet itself. Nitrogen fixation is however potentially important as a source of nitrogen to microbial communities in the debris-rich marginal zone close to the terminus of the glacier, where nitrogen fixation may aid the colonization of subglacial and moraine-derived debris.

  7. West Antarctic Ice Sheet formed earlier than thought

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    About 34 million years ago, Earth transitioned from a warm "greenhouse" climate to a cold "icehouse" climate, marking the transition between the Eocene and Oligocene epochs. This transition has been associated with the formation of a large ice sheet on Antarctica.

  8. An ice sheet model of reduced complexity for paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Neff, B.; Born, A.; Stocker, T. F.

    2015-08-01

    IceBern2D is a vertically integrated ice sheet model to investigate the ice distribution on long timescales under different climatic conditions. It is forced by simulated fields of surface temperature and precipitation of the last glacial maximum and present day climate from a comprehensive climate model. This constant forcing is adjusted to changes in ice elevation. Bedrock sinking and sea level are a function of ice volume. Due to its reduced complexity and computational efficiency, the model is well-suited for extensive sensitivity studies and ensemble simulations on extensive temporal and spatial scales. It shows good quantitative agreement with standardized benchmarks on an artificial domain (EISMINT). Present day and last glacial maximum ice distributions on the Northern Hemisphere are also simulated with good agreement. Glacial ice volume in Eurasia is underestimated due to the lack of ice shelves in our model. The efficiency of the model is utilized by running an ensemble of 400 simulations with perturbed model parameters and two different estimates of the climate at the last glacial maximum. The sensitivity to the imposed climate boundary conditions and the positive degree day factor β, i.e., the surface mass balance, outweighs the influence of parameters that disturb the flow of ice. This justifies the use of simplified dynamics as a means to achieve computational efficiency for simulations that cover several glacial cycles. The sensitivity of the model to changes in surface temperature is illustrated as a hysteresis based on 5 million year long simulations.

  9. Ice Sheets from Space: The Big Picture View (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Joughin, I. R.

    2012-04-01

    Instead of heroic efforts to acquire a few dozen field-based measurements of ice-flow velocity at some of the Earth's most remote locations, computer servers now crunch satellite data to spew out millions of measurements, providing a whole new perspective on how ice sheets function. Prior to such observations, outlet glaciers and ice streams were perceived to respond slowly to climate change, with little change at timescales of months to decades. While some glaciers flow at steady rates, a remarkable number have responded to recent warming with large variations in speed over periods as short as seconds. A wide variety of behavior is observed with some glaciers steadily gaining speed, others accelerating and then leveling off, and a handful varying substantially with no clear trend. While in the minority, a few glaciers have steadily decelerated over the last decade. As examples ofrecent change, two of the most rapidly changing glaciers are examined: Jakobshavn Isbrae in Greenland and Pine Island Glacier in West Antarctica. In addition to documenting the dramatic changes on these glaciers, satellite observations provide important new spatio-temporal data sets with which to understand such change, particularly when used in conjunction with ice sheet models. Although models constrained by these data reveal that ice-shelf buttressing is an important control on ice-sheet flow, the actual speedups are a complex response to the loss of buttressing, involving several other feedbacks that contribute to the acceleration.Although satellite observations have produced tremendous progress in understanding ice sheets, so far these data have raised more questions than they have answered. The contribution that ice dynamics will make to future sea level remains poorly understood and remains a grand challenge for glaciology. The ongoing record of spaceborne measurements is and will remain a key component in addressing this challenge.

  10. Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed.

    PubMed

    Bougamont, M; Christoffersen, P; Hubbard, A L; Fitzpatrick, A A; Doyle, S H; Carter, S P

    2014-01-01

    The dynamic response of the Greenland Ice Sheet (GrIS) depends on feedbacks between surface meltwater delivery to the subglacial environment and ice flow. Recent work has highlighted an important role of hydrological processes in regulating the ice flow, but models have so far overlooked the mechanical effect of soft basal sediment. Here we use a three-dimensional model to investigate hydrological controls on a GrIS soft-bedded region. Our results demonstrate that weakening and strengthening of subglacial sediment, associated with the seasonal delivery of surface meltwater to the bed, modulates ice flow consistent with observations. We propose that sedimentary control on ice flow is a viable alternative to existing models of evolving hydrological systems, and find a strong link between the annual flow stability, and the frequency of high meltwater discharge events. Consequently, the observed GrIS resilience to enhanced melt could be compromised if runoff variability increases further with future climate warming. PMID:25262753

  11. Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed

    NASA Astrophysics Data System (ADS)

    Bougamont, M.; Christoffersen, P.; Hubbard, A. L.,; Fitzpatrick, A. A.; Doyle, S. H.; Carter, S. P.

    2014-09-01

    The dynamic response of the Greenland Ice Sheet (GrIS) depends on feedbacks between surface meltwater delivery to the subglacial environment and ice flow. Recent work has highlighted an important role of hydrological processes in regulating the ice flow, but models have so far overlooked the mechanical effect of soft basal sediment. Here we use a three-dimensional model to investigate hydrological controls on a GrIS soft-bedded region. Our results demonstrate that weakening and strengthening of subglacial sediment, associated with the seasonal delivery of surface meltwater to the bed, modulates ice flow consistent with observations. We propose that sedimentary control on ice flow is a viable alternative to existing models of evolving hydrological systems, and find a strong link between the annual flow stability, and the frequency of high meltwater discharge events. Consequently, the observed GrIS resilience to enhanced melt could be compromised if runoff variability increases further with future climate warming.

  12. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    NASA Astrophysics Data System (ADS)

    Pattyn, F.; Schoof, C.; Perichon, L.; Hindmarsh, R. C. A.; Bueler, E.; de Fleurian, B.; Durand, G.; Gagliardini, O.; Gladstone, R.; Goldberg, D.; Gudmundsson, G. H.; Huybrechts, P.; Lee, V.; Nick, F. M.; Payne, A. J.; Pollard, D.; Rybak, O.; Saito, F.; Vieli, A.

    2012-05-01

    Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  13. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    NASA Astrophysics Data System (ADS)

    Pattyn, F.; Schoof, C.; Perichon, L.; Hindmarsh, R. C. A.; Bueler, E.; de Fleurian, B.; Durand, G.; Gagliardini, O.; Gladstone, R.; Goldberg, D.; Gudmundsson, G. H.; Lee, V.; Nick, F. M.; Payne, A. J.; Pollard, D.; Rybak, O.; Saito, F.; Vieli, A.

    2012-01-01

    Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady-state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including in fixed-grid models that generally perform poorly at coarse resolution. Fixed grid models with nested grid representations of the grounding line are able to generate accurate steady-state positions, but can be inaccurate over transients. Only one full Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full Stokes models remains to be determined in detail, especially during transients.

  14. Sedimentary record of ice divide migration and ice streams in the Keewatin core region of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hodder, Tyler J.; Ross, Martin; Menzies, John

    2016-06-01

    The Aberdeen Lake region of central mainland Nunavut is a former core region of the Laurentide Ice Sheet that is characterized by streamlined glacial landforms classified into multiple crosscutting flow sets and near continuous till blanket. The presence of widespread till near the centre of the Keewatin Ice Dome raises questions about its origin. Detailed drillcore logging revealed a complex stratigraphy consisting of at least 6 till units, variably preserved across the study area. Till provenance analysis indicates deposition by near opposite-trending ice flow phases, interpreted as evidence of reconfiguration of the Keewatin Ice Divide. At the surface, large north-northwesterly aligned landforms are present across the study area. The till stratigraphy within these landforms indicates the same NNW ice flow phase is responsible for considerable till production. This ice flow phase is also correlated to a long regional dispersal train of erratics toward the Gulf of Boothia. The production of an extensive, thick (~ 12 m), till sheet during the NNW-trending ice flow phase occurred far from the ice margin at a time of extensive ice cover of mainland Nunavut, likely from an east-west oriented ice divide. A deglacial westerly trending ice flow phase formed small drumlins atop the larger NNW streamlined till ridges and deposited a surficial till unit that is too thin to mask the NNW flow set across the study area. It is proposed that the Boothia paleo-ice stream catchment area propagated deep into the Laurentide Ice Sheet and contributed to significant till production in this core region of the Keewatin Sector prior to the westerly ice flow shift. The apparent relationship between till thickness and the size of the associated or correlated drumlins, flow sets, and dispersal trains indicates complex erosion/deposition interplay is involved in the formation of streamlined subglacial landforms.

  15. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes. PMID:16782604

  16. Radar measurements of melt zones on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.

    1994-01-01

    Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland Ice Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer ice lens formation within the previous winter's snow pack. This observation has important implications for monitoring and understanding changes in ice sheet volume using spaceborne microwave sensors.

  17. Recession of Thwaites Glacier: inferring relevant processes using the ice sheet model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Durand, Gael; Gillet-Chaulet, Fabien; Gourmelen, Noel; Stumpf, Andre; Lampert, Thomas; Gagliardini, Olivier

    2014-05-01

    Numerous studies focusing on ice sheets mass balance clearly show an increasing ice discharge mainly induced by the acceleration of ice flow through coastal outlet glaciers. As a crucial impact, imbalance of both Greenland and Antarctica is today an essential driver of the current sea level rise. In the specific case of West Antarctica, the Amundsen Sea sector is the most impacted region and current recession may be the first sign of a large, unstable and irrevocable retreat of the whole region. Projecting the forthcoming behavior of that sector in general, and the most out of balance Pine Island and Thwaites Glacier is therefore a large matter of concern. Using notably the 3D full-Stokes ice sheet model Elmer/Ice, a recent study has shown that the Pine Island Glacier retreat is currently driven by marine ice sheet instability. Here, we use similar methodologies to investigate the condition of stability of the neighboring Thwaites glacier. In particular, we focus on the effect of ice rises and induced crevasses onto the ice flow and show that their impact is of crucial importance prior to any attempt of projecting the short term response of Twaites glacier.

  18. How might the North American ice sheet influence the Northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Kageyama, M.; Dumas, C.; Ritz, C.

    2015-01-01

    During the last glacial period (∼21 000 years ago), two continental-scale ice sheets covered the Canada and northern Europe. It is now widely acknowledged that these past ice sheets exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet through simulated changes in the past glacial atmospheric circulation. Using the LMDz5 atmospheric circulation model, we carried out twelve experiments run under constant Last Glacial Maximum (LGM) conditions for insolation, greenhouse gases and ocean. In the all experiments, the Eurasian ice sheet is removed. The twelve experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows to disentangle the albedo and the topographic impacts of the North American ice sheet onto the climate. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, we show that the only albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice sheet case, causing a cooling of the Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet imply summer warming in Northwestern Eurasia. In winter, the Scandinavian and the Barents-Kara regions respond differently to the albedo effect: in response to atmospheric circulation changes, Scandinavia is warmed up and precipitation is more abundant whereas Barents-Kara area is cooled down, decreasing convection process and thus leading to less precipitation. The

  19. Reducing uncertainties in Antarctic ice sheet mass loss projections

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank; Durand, Gaël

    2014-05-01

    Climate model projections are often aggregated into multi-model averages of all models participating in an Intercomparison Project, such as CMIP. Several authors have questioned whether this is the best use of the information and whether the community is ready to move beyond the 'one-model-one-vote' approach, based on the intrinsic quality of each of the models. Ice sheet models are not as far developed as climate or ocean models. Many of these models are still struggling over basic thermo-mechanical issues related to ice deformation, while at the same time disproportionate efforts are made on the interaction with the atmosphere, basal hydrology, sliding, sediment deformation, ice/ocean interaction, calving, grounding-line migration, etc. We can therefore reasonably question whether averaging all model results at equal weight is the best strategy and to which extent coupling of ice sheet models that are lacking the representation of crucial physical processes, to other components of the climate system could lead to spurious errors. We now have tools available to test parts of the response of marine ice sheet models to perturbations of climatic and/or oceanic origin. Results show that the type of model as well as the way boundary conditions are implemented greatly affects the response of each ice sheet system. Based on MISMIP experimental output as well as the experimental response of Antarctic glaciers and drainage basins to ocean perturbations (e.g. Favier et al., 2014), we provide a guidance for the evaluation of model-response to perturbations on Century time scales.

  20. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions

    NASA Astrophysics Data System (ADS)

    Gowan, Evan J.; Tregoning, Paul; Purcell, Anthony; Lea, James; Fransner, Oscar J.; Noormets, Riko; Dowdeswell, J. A.

    2016-05-01

    We describe a program that produces paleo-ice sheet reconstructions using an assumption of steady-state, perfectly plastic ice flow behaviour. It incorporates three input parameters: ice margin, basal shear stress and basal topography. Though it is unlikely that paleo-ice sheets were ever in complete steady-state conditions, this method can produce an ice sheet without relying on complicated and unconstrained parameters such as climate and ice dynamics. This makes it advantageous to use in glacial-isostatic adjustment ice sheet modelling, which are often used as input parameters in global climate modelling simulations. We test this program by applying it to the modern Greenland Ice Sheet and Last Glacial Maximum Barents Sea Ice Sheet and demonstrate the optimal parameters that balance computational time and accuracy.

  1. An ice-sheet wide framework for englacial attenuation and basal reflection from ice penetrating radar data

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas; Bamber, Jonathan; Williams, Chris; Paden, John; Siegert, Martin; Huybrechts, Philippe; Gagliardini, Olivier; Gillet-Chaulet, Fabien

    2016-04-01

    (~5 dB). Finally, using the attenuation rate solution as a proxy for depth-averaged temperature, we demonstrate agreement with ice core temperature profiles and the known temperature biases of the ice-sheet models. In future work the new algorithm will be applied to ~ 10 years of Operation Ice Bridge data from the Greenland Ice-Sheet. The overall goal is produce digital data products for basal reflection and basal melt that will accompany the next generation of Greenland bed elevation data products.

  2. Modeling of Firn Compaction for Estimating Ice-Sheet Mass Change from Observed Ice-Sheet Elevation Change

    NASA Technical Reports Server (NTRS)

    Li, Jun; Zwally, H. Jay

    2011-01-01

    Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.

  3. Antarctic Ice Sheet dynamics in the Ross Sea during the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Levy, Richard; Harwood, David; Florindo, Fabio; DeConto, Robert; Golledge, Nicholas; Hoffmann, Stefan; Kuhn, Gerhard; McKay, Robert; Naish, Timothy; Pollard, David; Sangiorgi, Francesca; von Eynatten, Hilmar

    2015-04-01

    A 1138-meter sediment core (AND-2A) recovered from the Southern McMurdo Sound sector of the Ross Sea comprises a near-continuous record of Antarctic climate and ice sheet variability through the Early to early Middle Miocene (20.2 to 14.5 million years ago), including an interval of inferred sustained global warmth known as the Miocene Climatic Optimum (MCO). The record preserves 55 sedimentary sequences that reflect cycles of glacial advance and retreat. A new analysis of proxy environmental data from the AND-2A core, and synthesis with regional geological information, show that the early to middle Miocene Antarctic climate ranged from cold polar conditions, similar to Antarctica during the Holocene, to those that characterise modern sub-polar environments. Four disconformities that punctuate the sedimentary sequence coincide with regionally mapped seismic discontinuities and reflect transient expansion of marine-based ice across the Ross Sea. The timing of these major marine-based ice sheet advances correlates with shifts in highly-resolved deep sea isotope records and major drops in eustatic sea-level indicating the global nature of these events. In contrast, three distinct intervals in the core indicate that this high latitude site was periodically influenced by an ice sheet margin that had retreated beyond the coastline. These relatively large-scale changes in climate and ice sheet extent occurred under atmospheric carbon dioxide concentrations that generally varied between 300 to 500 ppm. Therefore, our reconstructions suggest that Antarctica's climate and ice sheets were sensitive to modest changes in greenhouse gas forcing and support previous studies, which indicate that marine-based portions of the WAIS and EAIS can retreat under climatic conditions that were similar to those projected for our future under current levels of atmospheric CO2.

  4. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure

    NASA Astrophysics Data System (ADS)

    Pollard, David; DeConto, Robert M.; Alley, Richard B.

    2015-02-01

    Geological data indicate that global mean sea level has fluctuated on 103 to 106 yr time scales during the last ∼25 million years, at times reaching 20 m or more above modern. If correct, this implies substantial variations in the size of the East Antarctic Ice Sheet (EAIS). However, most climate and ice sheet models have not been able to simulate significant EAIS retreat from continental size, given that atmospheric CO2 levels were relatively low throughout this period. Here, we use a continental ice sheet model to show that mechanisms based on recent observations and analysis have the potential to resolve this model-data conflict. In response to atmospheric and ocean temperatures typical of past warm periods, floating ice shelves may be drastically reduced or removed completely by increased oceanic melting, and by hydrofracturing due to surface melt draining into crevasses. Ice at deep grounding lines may be weakened by hydrofracturing and reduced buttressing, and may fail structurally if stresses exceed the ice yield strength, producing rapid retreat. Incorporating these mechanisms in our ice-sheet model accelerates the expected collapse of the West Antarctic Ice Sheet to decadal time scales, and also causes retreat into major East Antarctic subglacial basins, producing ∼17 m global sea-level rise within a few thousand years. The mechanisms are highly parameterized and should be tested by further process studies. But if accurate, they offer one explanation for past sea-level high stands, and suggest that Antarctica may be more vulnerable to warm climates than in most previous studies.

  5. Stable microbial community composition on the Greenland Ice Sheet.

    PubMed

    Musilova, Michaela; Tranter, Martyn; Bennett, Sarah A; Wadham, Jemma; Anesio, Alexandre M

    2015-01-01

    The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered 'hot spots' for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria, and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ(13)C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers. PMID:25852658

  6. Heinrich events modeled with a coupled complex ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Ziemen, Florian; Rodehacke, Christian; Mikolajewicz Mikolajewicz, Uwe

    2013-04-01

    We investigate glacial climate variability with a coupled ice sheet model (ISM) - atmosphere-ocean-vegetation general circulation model (AOVGCM) system, focusing on one of the most prominent features of glacial climate variability, the Heinrich events. Modeling past climates and periods of past climate change is an important test of the capability of climate models to correctly represent future climate changes. Only if we can correctly represent past climates and climate changes, we can be confident about our predictions of future climate changes. We show results from two experiments: (1) a steady-state LGM experiment where the ice sheet model is accelerated by a factor of 10 compared to the climate model covering 30 kyrs in the ISM (3 kyrs in the AOVGCM) and (2) a synchronously coupled experiment focusing in on one ice sheet collapse covering 3.2 kyrs in both models. For the experiments, we coupled a modified version of the Parallel Ice Sheet Model (mPISM) bidirectionally with the AOVGCM ECHAM5/MPIOM/LPJ. ECHAM5 and LPJ were run in T31 resolution (~ 3.75°), MPIOM on a grid with a nominal resolution of 3° and poles over Greenland and Antarctica, mPISM on a 20 km grid covering most of the northern hemisphere. In the models, as well as in the coupling, no flux correction or anomaly maps are applied. The ice sheet surface mass balance is computed using a positive degree day scheme with lapse rate correction and height desertification effect. In the experiments, the surges of the Hudson Strait Ice Stream reach discharge rates of 60000 m3/s and show a typical recurrence interval of 7 kyrs, matching the basic characteristics for Heinrich events inferred from proxy data. The surges are consequences of an internal instability mechanism suggested by MacAyeal (1993) and various parts of the ice sheets show repeated surging. The large ice discharge during a surge of the Hudson Strait Ice Stream causes an expansion of the sea ice cover in the Labrador Sea and the adjacent

  7. Elastic response of a grounded ice sheet coupled to a floating ice shelf.

    PubMed

    Sayag, Roiy; Worster, M Grae

    2011-09-01

    An ice sheet that spreads into an ocean is forced to bend owing to its buoyancy and detaches from the bedrock to form a floating ice shelf. The location of the transition between the grounded sheet and the floating shelf, defined as the grounding line, behaves as a free boundary. We develop a model of an elastic grounded sheet resting on a deformable elastic bed and coupled to an elastic floating shelf. We find that the grounding-line position is determined by the geometry of the bed and the bending-buoyancy length scale of the system. These two contributions depend on the reaction modulus of the bed in opposite ways. We show that the structure of the floating shelf depends on the bending-buoyancy length scale only, allowing us to calculate the bending stiffness of the elastic sheet independently of the properties of the bed. Relations between the structure of the floating shelf and the grounding-line position are also developed. Our theoretical predictions agree with laboratory experiments made using thick elastic sheets and a dense salt solution. Our findings may provide new insights into the dynamics near grounding lines, as well as methods to infer the bending stiffness of ice sheets and the grounding-line position from satellite altimetery that can be applied to elastic sheets in general. PMID:22060460

  8. Modelling the climate, ice sheet and thermohaline circulation during the ice age termination

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Ohgaito, R.; Chikamoto, M. O.; Oka, A.; Yoshimori, M.; Yokoyama, Y.

    2009-12-01

    One of the challenges of earth system modeling is to explain the mechanism of ice age cycle by simulating it and to understand the uniqueness or necessity of the present state of climate and cryosphere. Whether Milankovitch cycle or CO2 is the driver and why the dominant periodicity of ice age cycle switched from 40 ka cycle to 100ka cycle and why a sharp termination occur for each ice age cycle have been remained unsolved. Here we simulate the glacial cycle and investigate the origin of saw-tooth shape 100ka cycle using a three dimensional ice sheet model with the input examined by GCM. The model is forced by the orbital parameters (Berger, 1978) and atmospheric CO2 content obtained by ice cores (Vostok, EPICA and DomeF), whose dating is partly given by a new method using the N2/O2 ratio. The ice sheet model includes the thermo-mechanical coupling process of ice sheet with the process of delayed isostatic rebound with a typical time constant. In order to estimate the climate sensitivity to Milankovitch forcing and atmospheric CO2 indicated by ice core data we used an atmospheric GCM (part of MIROC GCM) coupled to a slab ocean and full MIROC AOGCM in part of the work. Within the range of possibilities of the model, ice age cycles with a saw-tooth shape 100 ka cycle, the major NH ice sheets’ volume and the geographical distribution at the glacial maximum are successfully simulated. Moreover the role of Atmospheric stationary wave feedback are found to be important to sharpen the termination. It is shown by sensitivity studies that this 100ka cycle is mainly obtained by the slowly acting ice sheet response to Milankovitch forcing even without the CO2 cycle. The CO2 change amplifies the cycle and affects the global climate change, while the delay of crustal rebound sharpens the termination of every ice age cycle. In order to study the effect of thermohaline circulation, the sensitivity of AOGCM (by MIROC) is separately studied by applying time slice experiments of

  9. Reconstruction of Greenland Ice Sheet Changes from Laser Altimetry Measurements

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; van der Veen, C. J.; Krabill, W. B.

    2009-12-01

    The ability to predict rates of global climatic change, melting ice, and rising seas through the next century relies on an accurate understanding and modeling of glacier and ice-sheet behavior. To quantify ice sheet mass balance, investigate dynamic behavior and to improve predictive ice-sheet models, accurate seasonal, annual and inter-annual elevation changes are of paramount importance. Starting in 1978 an ever-increasing fleet of satellites are monitoring the polar ice sheets. These measurements as well as elevations from NASA’s Airborne Topographic Mapper (ATM) laser altimeter campaigns provide estimates of ice sheet volume changes and mass balance. However, comparison of mass balance estimates derived from these data reveal some glaring differences. The bias between different estimates can be attributed to various factors, for example uncertainties in firn-compaction rates, preferential sampling of local high points by radar altimetry or errors introduced by the interpolation of sparse laser altimetry observations. Moreover change detection methods have significant difficulty to estimate changes over rugged, steep slopes, especially when repeat measurements not perfectly overlap. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which determines surface changes by a simultaneous reconstruction of surface topography. The method is based on fitting analytical functions to laser points within repeat tracks or cross-over areas for estimating the ice sheet surface topography. The mathematical model of the change detection algorithm is based on the assumption that for a small surface area, e.g. 1 km by 1 km, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs of a small surface patch contribute to the shape parameters, and the laser points of each time period determine the absolute elevation of the surface patch at that

  10. Greenland Ice Sheet sediment dynamics with Landsat: Island-wide mapping shows sediment export controlled by ice discharge

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.; Overeem, I.; Syvitski, J. P.; Mikkelsen, A. B.; Hasholt, B.; Morlighem, M.

    2014-12-01

    We conducted a satellite-based survey of Greenland Ice Sheet (GrIS) sediment processes using all images of Greenland in the Landsat7 archive (1999 - 2013). Imaging over 150 proglacial rivers near their ice sheet source to calculate median suspended sediment concentration (SSC) for the Landsat7 era, we find ice sheet evacuation of suspended sediment via rivers is highly spatially variable, with a small percentage of ice sheet termini evacuating sediment at elevated SSCs. Most (67 %) of termini had a median SSC value less than 1000 mg/l, while only 8% had values greater than 2000 mg/l, yet these termini with SSC in excess of 2000 mg/l export ~90 % of suspended sediment from the ice sheet. Combining surface ice velocity data and ice thickness data we find that ice discharge at ice sheet termini largely drives this spatial variability in SSC. Though 1% of the Earth's land surface area, using modeled ice sheet runoff we estimate that the GrIS exports 6 to 11 % of the total sediment export to the global ocean if all sediment is assumed to reach the ocean. Finally, we find river mouth SSC high enough to cause hyperpycnal flow to occur. Hence, sediment can at times be efficiently mobilized from ice sheet directly to fjord bottom/continental shelf.

  11. The GreenLand Ice Sheet monitoring Network (GLISN)

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Anderson, K. R.; Beaudoin, B. C.; Butler, R.; Clinton, J. F.; Dahl-Jensen, T.; Ekstrom, G.; Giardini, D.; Hanka, W.; Kanao, M.; McCormack, D.; Mykkelveit, S.; Nettles, M.; Piana Agostinetti, N.; Tsuboi, S.; Voss, P.

    2010-05-01

    The GreenLand Ice Sheet monitoring Network (GLISN) is a new, international, broadband seismic capability for Greenland, being installed and implemented through the joint collaboration of USA, Denmark, Switzerland, Germany, Canada, Italy, Japan and Norway. GLISN is a real-time sensor array consisting of more than 20 broad band stations. The purpose of the project is to enhance and upgrade the performance of the scarce existing Greenland seismic infrastructure for detecting, locating, and characterizing both tectonic and in particular glacial earthquakes and other cryo-seismic phenomena. Complementing data from satellites, geodesy, and other sources, and in concert with these technologies, GLISN will provide a powerful tool for detecting change, and will advance new frontiers of research in the glacial systems as well as in the underlying geological and geophysical processes affecting the Greenland Ice Sheet. The glacial processes that induce seismic events are all integral to the overall dynamics of glaciers, and seismic observations of glaciers therefore provide a quantitative means for monitoring changes in their behaviour over time. Long-term seismic monitoring of the Greenland Ice Sheet will contribute to identifying possible unsuspected mechanisms, and also detect if the areas of cryo-seismic events change and expand in the coming decades. GLISN will provide a new reference network in and around Greenland for monitoring these phenomena in real-time, and for the broad seismological study of Earth and earthquakes. The GLISN development takes its starting point in the existing permanent and long-time stations in and around Greenland operated by members of GLISN. These stations will be upgraded to a common standard with real-time telemetry. The network will be expanded by installing new, telemetered, broadband seismic stations on Greenland's perimeter and ice sheet. An open virtual network is established were all GLISN data can be downloaded. In collaboration with

  12. New Insights into Antarctic Ice-Sheet Retreat During the Last Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Kuhn, G.; Clark, P. U.; Sprenk, D.

    2010-12-01

    . The third phase relates to Meltwater Pulse 1A; the fourth phase falls roughly into period of the Younger Dryas. Since all four phases manifested at times when atmospheric temperature rise over East Antarctica accelerated, we interpret all phases as ice-sheet retreat signals. Since models can only produce a fraction of the required global meltwater from NH ice sheets, and most phases relate to prominent global meltwater pulses, there is also indication that Antarctica contributed a substantial amount of meltwater to global sea-level rise during the four phases, with the EAIS as a major contributor during the first three phases, and the WAIS contributing mainly to the last phase when the Antarctic Cold Reversal had ended. In any case, our study shows that the oceanic record in the Weddell and Scotia Seas, the atmospheric temperature development over East Antarctica, and global sea-level rise are closely related, with possibly severe impacts on future climate and ice-sheet modeling studies.

  13. Mass Gains of the Antarctic Ice Sheet Exceed Losses

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui; Brenner, Anita; Bromwich, David

    2012-01-01

    During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change. The net gain (86 Gt/yr) over the West Antarctic (WA) and East Antarctic ice sheets (WA and EA) is essentially unchanged from revised results for 1992 to 2001 from ERS radar altimetry. Imbalances in individual drainage systems (DS) are large (-68% to +103% of input), as are temporal changes (-39% to +44%). The recent 90 Gt/yr loss from three DS (Pine Island, Thwaites-Smith, and Marie-Bryd Coast) of WA exceeds the earlier 61 Gt/yr loss, consistent with reports of accelerating ice flow and dynamic thinning. Similarly, the recent 24 Gt/yr loss from three DS in the Antarctic Peninsula (AP) is consistent with glacier accelerations following breakup of the Larsen B and other ice shelves. In contrast, net increases in the five other DS of WA and AP and three of the 16 DS in East Antarctica (EA) exceed the increased losses. Alternate interpretations of the mass changes driven by accumulation variations are given using results from atmospheric-model re-analysis and a parameterization based on 5% change in accumulation per degree of observed surface temperature change. A slow increase in snowfall with climate waRMing, consistent with model predictions, may be offsetting increased dynamic losses.

  14. A microbial ecosystem beneath the West Antarctic ice sheet.

    PubMed

    Christner, Brent C; Priscu, John C; Achberger, Amanda M; Barbante, Carlo; Carter, Sasha P; Christianson, Knut; Michaud, Alexander B; Mikucki, Jill A; Mitchell, Andrew C; Skidmore, Mark L; Vick-Majors, Trista J

    2014-08-21

    Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems. PMID:25143114

  15. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions. PMID:26691594

  16. The formation of ice rises, their dynamics and role in the deglaciation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Favier, Lionel; Pattyn, Frank

    2015-04-01

    Numerous underwater mountains emerge from the edge of the continental shelf around the Antarctic ice sheet. During the last deglaciation, those features gave birth to ice rises, each being small scale copies of a continental ice sheet characterised by an ice divide and a local flow going outwards embedded within the fringing ice shelves. The well-known millenium-scale stability of ice rises can be strong indicators for the past deglaciation termination. However, the interpretation of physical measurements of an ice rise is not straightforward due to unknown past ice dynamics. Here, using the Bisicles ice-sheet model, we investigate for the first time the formation of an ice rise on top of an underwater mountain during the retreat of an ideal Antarctic-like ice sheet (i.e., including both grounded and floating ice flow). Prior to the retreat, the underwater mountain is barely detectable from the ice surface geometry and velocity. During the ice sheet retreat, induced by an increase of the sea level, an ice divide develops quickly above the underwater mountain. Within a short period of hundreds of years, the ice rise adopts a thousand years stability along with two main features: (i) a shifted upstream position of the ice rise compared to the mountain underneath and (ii) a geometrical asymmetry of the ice rise showing a gentle slope upstream and a steep slope downstream. We also investigate the influence of a non uniform surface mass balance on the migration of the ice divide. Our results provide additional ice dynamical constraints to facilitate numerical reconstructions of the last deglacial history in Antarctica as we demonstrate that ice rises are stable, but transient features of the ice shelf, stabilizing fast outlet flow. The timing of pinning and unpinning therefore becomes crucial in simulating the episodes of slow and fast grounding line retreat, respectively.

  17. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; Herzfeld, Ute; Jacskon, Charles; Johnson, Jesse; Khroulev, Constantine; Larour, Eric; Levermann, Anders; Lipscomb, William H.; Martin, Maria A.; Morlighem, Mathieu; Parizek, Byron R; Pollard, David; Price, Stephen F.; Seroussi, Helene; Walker, Ryan; Wang, Wei Li

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  18. An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Jordan, T. M.; Bamber, J. L.; Williams, C. N.; Paden, J. D.; Siegert, M. J.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F.

    2016-07-01

    Radar inference of the bulk properties of glacier beds, most notably identifying basal melting, is, in general, derived from the basal reflection coefficient. On the scale of an ice sheet, unambiguous determination of basal reflection is primarily limited by uncertainty in the englacial attenuation of the radio wave, which is an Arrhenius function of temperature. Existing bed-returned power algorithms for deriving attenuation assume that the attenuation rate is regionally constant, which is not feasible at an ice-sheet-wide scale. Here we introduce a new semi-empirical framework for deriving englacial attenuation, and, to demonstrate its efficacy, we apply it to the Greenland Ice Sheet. A central feature is the use of a prior Arrhenius temperature model to estimate the spatial variation in englacial attenuation as a first guess input for the radar algorithm. We demonstrate regions of solution convergence for two input temperature fields and for independently analysed field campaigns. The coverage achieved is a trade-off with uncertainty and we propose that the algorithm can be "tuned" for discrimination of basal melt (attenuation loss uncertainty ˜ 5 dB). This is supported by our physically realistic ( ˜ 20 dB) range for the basal reflection coefficient. Finally, we show that the attenuation solution can be used to predict the temperature bias of thermomechanical ice sheet models and is in agreement with known model temperature biases at the Dye 3 ice core.

  19. Modelling West Antarctic ice sheet growth and collapse through the past five million years.

    PubMed

    Pollard, David; DeConto, Robert M

    2009-03-19

    The West Antarctic ice sheet (WAIS), with ice volume equivalent to approximately 5 m of sea level, has long been considered capable of past and future catastrophic collapse. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around approximately 15 kyr ago before retreating to near-modern locations by approximately 3 kyr ago. Prior collapses during the warmth of the early Pliocene epoch and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments. Until now, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at

  20. Major Subglacial Meltwater Channels Reveal Former Dynamic Ice Sheet in West Antarctica

    NASA Astrophysics Data System (ADS)

    Rose, Kathryn; Ross, Neil; Bingham, Robert; Corr, Hugh; Ferraccioli, Fausto; Jordan, Tom; LeBrocq, Anne; Rippin, David; Siegert, Martin

    2014-05-01

    The Eocene-Oligocene boundary (ca. 34 Ma) marks the onset of widespread, continental-scale glaciation in Antarctica, due to declining atmospheric carbon dioxide levels and the opening of the Drake Passage. The marine-based West Antarctic Ice Sheet (WAIS) is considered highly susceptible to change, experiencing numerous oscillations since its formation. In order to assess how past changes to the WAIS are relevant for understanding its future behaviour, it is important to comprehend the glaciological processes involved in those changes. Central to this is an appreciation of climate and ice flow regimes, in particular the extent to which former ice sheets have experienced surface melting (as in Greenland today). Geomorphic analysis of subglacial topography has played a key role in reconstructing the nature of former ice masses in Antarctica, as landscape form can be linked to glacial process. While radio-echo sounding (RES) is the primary tool used to map boundary conditions beneath ice sheets, recent developments have demonstrated that satellite imagery of the ice surface can provide insights into subglacial topography, where RES is unavailable. Using this combination of datasets, we have identified a series of major, elongate subglacial features, which we interpret as preserved subglacial channels, developed through the action of water. They are incised into a subglacial plateau in the region between the Möller and Foundation ice streams (MIS and FIS, respectively), in West Antarctica. The channels are observed across an area of ~17,700 km2 and extend 200 km inland from the grounding line. They are located below sea level and track over present-day reverse slopes, indicating a subglacial (rather than pre-glacial) fluvial origin. In order to form, these channels require significant, probably periodic (seasonal), meltwater inputs to the base of the ice sheet. We suggest the channels are the result of meltwater inputs to the subglacial environment from the ice surface

  1. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012)

    NASA Astrophysics Data System (ADS)

    Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric

    2016-06-01

    Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related

  2. How might the North American ice sheet influence the northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the

  3. Radiostratigraphy of the Greenland ice sheet from the 2009-2012 Operation IceBridge surveys

    NASA Astrophysics Data System (ADS)

    MacGregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Paden, J. D.; Wagman, B. M.; Rybarski, S. C.; Young, S. K.; Mabrey, A. N.

    2012-12-01

    We are developing a comprehensive radiostratigraphy of the Greenland ice sheet from the nearly two decades (1993-2012) of airborne radar-sounding surveys collected by the University of Kansas and other institutions. This radiostratigraphy will be used to investigate the ice sheet's basal condition in conjunction with 1-D vertical strain-rate modeling and other remote-sensing data. It will also be gridded at the same resolution as upcoming surface- and bed-elevation models, so that next-generation ice-sheet models can treat these isochrones as internal boundary conditions. To trace this stratigraphy efficiently, we are using several new and recently developed semi-automatic methods (phase tracking, layer-dip mapping, and amplitude flattening). Here we present initial results derived from Operation IceBridge surveys between 2009 and 2012. These radar surveys recorded the common depth pattern of the Greenland ice sheet's internal stratigraphy across thousands of line kilometers (strong reflections in the Holocene, a hiatus between ~15-30 ka, and then a distinct reflector triplet). This pattern is most easily observed in its northern sector. However, intermittent basal freeze-on within this sector can disrupt the overlying internal stratigraphy significantly, despite high-resolution along-track sampling (< 1 m). This disruption is likely due to the unusual depth profiles of vertical strain rate there. In heavily disrupted regions, fewer than half a dozen reflectors can typically be traced reliably, whereas in undisrupted regions more than two dozen reflectors can often be traced across distances of several hundred kilometers. This dataset includes multiple reflectors dated to the last glacial period and which are widely observable throughout the Greenland ice sheet. Thus, radiostratigraphy has the potential to strongly constrain models of its evolution since the last interglacial period.

  4. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials. PMID:25119027

  5. Abrupt glacial climate shifts controlled by ice sheet changes

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-01

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

  6. Abrupt drainage cycles of the Fennoscandian Ice Sheet

    PubMed Central

    Soulet, Guillaume; Ménot, Guillemette; Bayon, Germain; Rostek, Frauke; Ponzevera, Emmanuel; Toucanne, Samuel; Lericolais, Gilles; Bard, Edouard

    2013-01-01

    Continental ice sheets are a key component of the Earth’s climate system, but their internal dynamics need to be further studied. Since the last deglaciation, the northern Eurasian Fennoscandian Ice Sheet (FIS) has been connected to the Black Sea (BS) watershed, making this basin a suitable location to investigate former ice-sheet dynamics. Here, from a core retrieved in the BS, we combine the use of neodymium isotopes, high-resolution elemental analysis, and biomarkers to trace changes in sediment provenance and river runoff. We reveal cyclic releases of meltwater originating from Lake Disna, a proglacial lake linked to the FIS during Heinrich Stadial 1. Regional interactions within the climate–lake–FIS system, linked to changes in the availability of subglacial water, led to abrupt drainage cycles of the FIS into the BS watershed. This phenomenon raised the BS water level by ∼100 m until the sill of the Bosphorus Strait was reached, flooding the vast northwestern BS shelf and deeply affecting the hydrology and circulation of the BS and, probably, of the Marmara and Aegean Seas. PMID:23569264

  7. Abrupt drainage cycles of the Fennoscandian Ice Sheet.

    PubMed

    Soulet, Guillaume; Ménot, Guillemette; Bayon, Germain; Rostek, Frauke; Ponzevera, Emmanuel; Toucanne, Samuel; Lericolais, Gilles; Bard, Edouard

    2013-04-23

    Continental ice sheets are a key component of the Earth's climate system, but their internal dynamics need to be further studied. Since the last deglaciation, the northern Eurasian Fennoscandian Ice Sheet (FIS) has been connected to the Black Sea (BS) watershed, making this basin a suitable location to investigate former ice-sheet dynamics. Here, from a core retrieved in the BS, we combine the use of neodymium isotopes, high-resolution elemental analysis, and biomarkers to trace changes in sediment provenance and river runoff. We reveal cyclic releases of meltwater originating from Lake Disna, a proglacial lake linked to the FIS during Heinrich Stadial 1. Regional interactions within the climate-lake-FIS system, linked to changes in the availability of subglacial water, led to abrupt drainage cycles of the FIS into the BS watershed. This phenomenon raised the BS water level by ∼100 m until the sill of the Bosphorus Strait was reached, flooding the vast northwestern BS shelf and deeply affecting the hydrology and circulation of the BS and, probably, of the Marmara and Aegean Seas. PMID:23569264

  8. Microbial nitrogen cycling on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Telling, J.; Stibal, M.; Anesio, A. M.; Tranter, M.; Nias, I.; Cook, J.; Lis, G.; Wadham, J. L.; Sole, A.; Nienow, P.; Hodson, A.

    2011-10-01

    Microbial nitrogen cycling was investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) in early August 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes within 7.5 km of the ice sheet margin suggested microbial uptake and ammonification respectively. Nitrogen fixation (<4.2 μmoles C2H4 m-2 day-1 to 16.3 μmoles C2H4 m-2 day-1) was active in some cryoconite holes at sites up to 5.7 km from the ice sheet margin, with nitrogen fixation inversely correlated to concentrations of inorganic nitrogen. There may be the potential for the zone of nitrogen fixation to progressively extend further into the interior of the GrIS as the melt season progresses as reserves of available nitrogen are depleted. Estimated annual inputs of nitrogen from nitrogen fixation along the transect were at least two orders of magnitude lower than inputs from precipitation, with the exception of a 100 m long marginal debris-rich zone where nitrogen fixation could potentially equal or exceed that of precipitation. The average estimated contribution of nitrogen fixation to the nitrogen demand of net microbial growth at sites along the transect ranged from 0% to 17.5%.

  9. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years

    PubMed Central

    Hein, Andrew S.; Woodward, John; Marrero, Shasta M.; Dunning, Stuart A.; Steig, Eric J.; Freeman, Stewart P. H. T.; Stuart, Finlay M.; Winter, Kate; Westoby, Matthew J.; Sugden, David E.

    2016-01-01

    Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial–interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present. PMID:26838462

  10. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years.

    PubMed

    Hein, Andrew S; Woodward, John; Marrero, Shasta M; Dunning, Stuart A; Steig, Eric J; Freeman, Stewart P H T; Stuart, Finlay M; Winter, Kate; Westoby, Matthew J; Sugden, David E

    2016-01-01

    Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial-interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present. PMID:26838462

  11. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years

    NASA Astrophysics Data System (ADS)

    Hein, Andrew S.; Woodward, John; Marrero, Shasta M.; Dunning, Stuart A.; Steig, Eric J.; Freeman, Stewart P. H. T.; Stuart, Finlay M.; Winter, Kate; Westoby, Matthew J.; Sugden, David E.

    2016-02-01

    Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial-interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present.

  12. Quantifying Ice-sheet/Ice-shelf Dynamics and Variability with Meter-scale DEM and Velocity Timeseries

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Moratto, Z. M.; Porter, C.; Morin, P. J.

    2012-12-01

    Both the Antarctic and Greenland ice sheets are losing mass at an increasing rate, although loss due to accelerating flow and dynamic thinning remains poorly understood. We are using complementary data from repeat satellite and airborne observations to investigate the relationship between ice-sheet/ice-shelf dynamics and geometry on seasonal to interannual timescales. High-resolution along-track stereo imagery from commercial satellite vendors DigitalGlobe and GeoEye provides unprecedented spatial (~0.5 m/px with ~17 km swath width) and temporal (weekly/monthly) resolution for these efforts. We have developed an automated pipeline using open-source software to produce orthoimage, DEM, and surface velocity products from DigitalGlobe imagery. High-contrast surface texture (e.g. sastrugi, crevasses) visible at sub-meter resolution provides near-perfect image correlation (~99% success rate) during DEM and velocity map derivation. Elevation data from IceBridge ATM/LVIS, ICESat GLAS, and GPS campaigns are used to correct DEMs and perform accuracy assessment. Preliminary tests over exposed bedrock provide relative vertical accuracy estimates of <1-2 m for Worldview-1/2 DEMs. Velocity data from TerraSAR-X and GPS campaigns provide validation for surface velocity products, with horizontal error estimates of <10 m. Velocity and elevation change products with 2-4 m/px spatial resolution allow for unprecedented 3D dynamic characterization of sub-km flow transition zones (e.g. grounding lines, shear margins), capturing both local and regional variations due to melting and dynamic thinning. We present timeseries for West Greenland (Jakobshavn front - 20 observations, Jakobshavn south catchment - 10) and West Antarctica (Pine Island and Thwaites - 5 each) from 2009-2012. These observations complement ongoing efforts to measure and model outlet glacier dynamics, with implications for future ice-sheet mass balance estimates.

  13. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse.

    PubMed

    Holloway, Max D; Sime, Louise C; Singarayer, Joy S; Tindall, Julia C; Bunch, Pete; Valdes, Paul J

    2016-01-01

    Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming. PMID:27526639

  14. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse

    PubMed Central

    Holloway, Max D.; Sime, Louise C.; Singarayer, Joy S.; Tindall, Julia C.; Bunch, Pete; Valdes, Paul J.

    2016-01-01

    Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming. PMID:27526639

  15. New eyes in the sky measure glaciers and ice sheets

    USGS Publications Warehouse

    Kieffer, Hugh; Kargel, Jeffrey S.; Barry, Roger G.; Bindschadler, Robert; Bishop, Michael P.; MacKinnon, David; Ohmura, Atsumu; Raup, Bruce; Antoninetti, Massimo; Bamber, Jonathan; Braun, Mattias; Brown, Ian; Cohen, Denis; Copland, Luke; DueHagen, Jon; Engeset, Rune V.; Fitzharris, Blair; Fujita, Koji; Haeberli, Wilfried; Hagen, Jon Oue; Hall, Dorothy; Hoelzle, Martin; Johansson, Maria; Kaab, Andi; Koenig, Max; Konovalov, Vladimir; Maisch, Max; Paul, Frank; Rau, Frank; Reeh, Niels; Rignot, Eric; Rivera, Andres; De Ruyter de Wildt, Martiyn; Scambos, Ted; Schaper, Jesko; Scharfen, Greg; Shroder, Jack; Solomina, Olga; Thompson, David; van der Veen, Kees; Wohlleben, Trudy; Young, Neal

    2000-01-01

    The mapping and measurement of glaciers and their changes are useful in predicting sea-level and regional water supply, studying hazards and climate change [Haeberli et al., 1998],and in the hydropower industry Existing inventories cover only about 67,000 of the world's estimated 160,000 glaciers and are based on data collected over 50 years or more [e.g.,Haeberli et al., 1998]. The data available have proven that small ice bodies are disappearing at an accelerating rate and that the Antarctic ice sheet and its fringing ice shelves are undergoing unexpected, rapid change. According to many glaciologists, much larger fluctuations in land ice—with vast implications for society—are possible in the coming decades and centuries due to natural and anthropogenic climate change [Oppenheimer, 1998].

  16. Electromagnetic Scattering Model Performance Assessment of the Global Ice Sheet Mapping Orbiter Concept

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Gogineni, P.; Jezek, K. C.

    2006-12-01

    Conditions beneath polar ice are important factors in ice dynamics. Obtaining information on subsurface structures that may be under several km of ice requires use of low frequency electromagnetic sensors. Such measurements have been demonstrated from both ground and airborne platforms in recent experimental campaigns. For larger scale measurements, the Global Ice Sheet Mapping Orbiter (GISMO) mission has been proposed. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an INSAR strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. Current simulations of GISMO performance and interpretability are limited by a lack of knowledge of possible electromagnetic scattering interactions at the ice base, including the influence of the base topographical structure and the presence or absence of any water layers. An improved electromagnetic wave scattering model is therefore needed in order to describe the possible range of scattering effects at the basal layered rough surface, and to include these effects in GISMO simulations. This presentation will discuss three distinct electromagnetic models for scattering from a layered rough surface: the Small Perturbation Method (SPM), the Kirchhoff approximation (also know as physical optics (PO)) and the associated geometrical optics method, and numerical methods based on exact simulations of the electromagnetic boundary value problem. The formulation of each of these approaches will be reviewed, as well as the associated advantages and limitations of each. Sample scattering results from the three models for a one-dimensional surface profile will be illustrated for varying assumed base-layers in order

  17. Combining ice core records and ice sheet models to explore the evolution of the East Antarctic Ice sheet during the Last Interglacial period

    NASA Astrophysics Data System (ADS)

    Bradley, S. L.; Siddall, M.; Milne, G. A.; Masson-Delmotte, V.; Wolff, E.

    2013-01-01

    This study evaluates the influence of plausible changes in East Antarctic Ice sheet (EAIS) thickness and the subsequent glacio-isostatic response as a contributor to the Antarctic warming indicated by ice core records during the Last Interglacial period (LIG). These higher temperatures have been estimated primarily using the difference in the δD peak (on average ~ 15‰) in these LIG records relative to records for the Present Interglacial (PIG). Using a preliminary exploratory modelling study, it is shown that introducing a relatively moderate reduction in the amount of thickening of the EAIS over the LIG period introduces a significant increase (up to 8‰) in the predicted elevation-driven only δD signal at the central Antarctic Ice sheet (AIS) ice core sites compared to the PIG. A sensitivity test in response to a large prescribed retreat of marine-based ice in the Wilkes and Aurora subglacial basins (equivalent to ~ 7 m of global mean sea-level rise) results in a distinct elevation signal that is resolvable within the ice core stable isotope records at three sites (Taylor Dome, TALDICE and EPICA Dome C). These findings have two main implications. First, EAIS elevation's only effects could account for a significant fraction of the LIG warming interpreted from ice core records. This result highlights the need for an improved estimate to be made of the uncertainty and size of this elevation-driven δD signal which contributes to this LIG warming and that these effects need to be deconvolved prior to attempting to extract a climatic-only signal from the stable isotope data. Second, a fingerprint of significant retreat of ice in the Wilkes and Aurora basins should be detectable from ice core δD records proximal to these basins and therefore used to constrain their contribution to elevated LIG sea levels, after accounting for ice sheet-climate interactions not considered in our approach.

  18. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  19. Backscatter for Ice Sheet 2 Growth Phase in the Winter 1994 Winter Sea Ice Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.

    1996-01-01

    None. This is raw data from a data set taken during the CRRELEX94 experiment. The data are polarimetric C-band radar measurements of a saline ice sheet grown in the outdoor Geophysical Research Facility at the Cold Regions Research and Engineering Lab. See references for other descriptions of data.

  20. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating

  1. Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bierman, Paul R.; Corbett, Lee B.; Graly, Joseph A.; Neumann, Thomas Allen; Lini, Andrea; Crosby, Benjamin T.; Rood, Dylan H.

    2014-01-01

    Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets

  2. Contrasting ice sheet response to early and late summer rapid supraglacial lake drainage events on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Stevens, L. A.; Behn, M. D.; Das, S. B.; Joughin, I. R.; Herring, T.; King, M. A.; McGuire, J. J.

    2013-12-01

    Across much of the ablation region of the western Greenland Ice Sheet, hydro-fracture events related to supraglacial lake drainages rapidly deliver large volumes of meltwater to the bed and create conduits providing efficient surface-to-bed drainage networks for the remainder of the summer melt season. Using a network of 20 GPS stations installed in 2011, and supplemented with a smaller network operating back to 2006, we observe ice surface motion during a series of lake draining hydro-fracture events. These data are used to investigate (1) the location and propagation geometry of the fracture opening and (2) the acceleration of ice in response to the rapid input of surface meltwater to the bed. Observations at the same location show varying surface motion following early versus late summer rapid lake drainage events from multiple years. During a late-season (July 29) rapid drainage in 2006, results from a single GPS station show velocity in the direction of mean ice flow and surface uplift returned to pre-drainage values within ~24 hours (Das et al., 2008), indicating the large subglacial meltwater pulse was efficiently dissipated into the subglacial hydrologic network. In contrast, an early-season (June 11) rapid drainage at the same lake in 2011 induced uplift that persisted for much longer. Specifically, we find that elevations at stations nearest the moulin did not return to pre-drainage elevations for 4 to 8 days post-drainage, suggesting a more inefficient subglacial hydrologic system during the early summer season. These results indicate that the ice-sheet response is modulated, at least in part, by the seasonal evolution of the subglacial hydrological system. We also plan to investigate new GPS data from 2 rapid drainage events in the early portion of the melt season in 2012 and 2013. Findings from these events will ultimately improve our understanding of the mechanics of ice-sheet hydro-fracture and the influence of surface meltwater on ice-sheet flow.

  3. Numerical and theoretical treatment of grounding line movement and ice shelf buttressing in marine ice sheets

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel N.

    Understanding the dynamics of marine ice sheets is integral to studying the evolution of the Antarctic Ice Sheet in both the short and long terms. An important component of the dynamics, grounding line migration, has proved difficult to represent in numerical models, with undesirable behavior such as sensitivity to grid resolution having been observed. Most successful attempts at representing grounding line migration have made use of techniques that are only readily applicable to flowline models, such as Arbitrary Lagrangian-Eulerian schemes. It remains unclear whether a purely Eulerian flowline model can reproduce the actual solution of the governing differential equations, as well as what the theoretical properties of that solution are. In addition, in order to capture the stress transmission involved in another important dynamic component, the buttressing of a marine ice sheet by its ice shelf, the transverse flow direction must also be resolved. Here a numerical model is developed that solves the time-dependent Shelfy-Stream equations [MacAyeal, 1989] and makes use of mesh adaption techniques to overcome the difficulties typically associated with the numerics of grounding line migration. In the special case of a flowline model, it is shown that the Shelfy-Stream equations have a unique solution provided constraints on the initial condition and the forcing are satisfied, and the convergence properties of the model are examined. Model output is also compared with a recent benchmark for flowline models. It is shown that our model yields an accurate solution while using far less resources than would be required without mesh adaption. It is also shown that the mesh adapting techniques extend to two horizontal dimensions. Experiments are carried out to determine how both ice shelf buttressing and ice rises affect the marine instability predicted for an ice sheet on a foredeepened bed. It is found that buttressing is not always sufficient to stabilize such a sheet but

  4. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012)

    NASA Astrophysics Data System (ADS)

    Alexander, P. M.; Tedesco, M.; Schlegel, N.-J.; Luthcke, S. B.; Fettweis, X.; Larour, E.

    2015-11-01

    Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the 2003-2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -179 and -240 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, there are significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or unaccounted-for processes related to ice dynamics or hydrology may lead to the observed differences. This highlights the need for further evaluation of modelled processes at regional and seasonal scales, and further study of ice sheet processes not

  5. A ``triple sea-ice state'' mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Sayag, Roiy; Tziperman, Eli

    2004-09-01

    Abrupt, switch-like, changes in sea ice cover are proposed as a mechanism for the large-amplitude abrupt warming that seemed to have occurred after each Heinrich event. Sea ice changes are also used to explain the colder-than-ambient glacial conditions around the time of the glacier discharge. The abrupt warming events occur in this mechanism, owing to rapid sea ice melting which warmed the atmosphere via the strong sea ice albedo and insulating feedbacks. Such abrupt sea ice changes can also account for the warming observed during Dansgaard-Oeschger events. The sea ice changes are caused by a weak (order of 5 Sv) response of the thermohaline circulation (THC) to glacier discharges. The main point of this work is therefore that sea ice may be thought of as a very effective amplifier of a weak THC variability, explaining the abrupt temperature changes over Greenland. Synchronous ice sheet collapses from different ice sheets around the North Atlantic, indicated by some proxy records, are shown to be possible via the weak coupling between the different ice sheets by the atmospheric temperature changes caused by the sea ice changes. This weak coupling can lead to a "nonlinear phase locking" of the different ice sheets which therefore discharge synchronously. It is shown that the phase locking may also lead to "precursor" glacier discharge events from smaller ice sheets before the Laurentide Ice Sheet discharges. The precursor events in this mechanism are the result rather than the cause of the major glacier discharges from the Laurentide Ice Sheet.

  6. Nature and History of Cenozoic Polar Ice Covers: The Case of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Spielhagen, R.; Thiede, J.

    2009-04-01

    The nature of the modern climate System is characterized by steep temperature gradients between the tropical and polar climatic zones and finds its most spectacular expression in the formation of ice caps in high Northern and Southern latitudes. While polar regions of Planet Earth have been glaciated repeatedly in the long course of their geological history, the Cenozoic transition from a „greenhouse" to an „icehouse" has in fact produced a unique climatic scenario with bipolar glacation, different from all previous glacial events. The Greenland ice sheet is a remainder of the Northern Hemisphere last glacial maximum ice sheets and represents hence a spectacular anomaly. Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both on the Southern as well on the Northern hemisphere since Eocene times, aqpprox. 45 Mio. years ago. While this was well known in the case of Antarctica already for some time, previous ideas about the origin of Northern hemisphere glaciation during Pliocene times (approx. 2-3 Mio. years ago) have been superceded by the dramatic findings of coarse, terrigenous ice rafted detritus in Eocene sediments from Lomonosov Ridge (close to the North Pole) apparently slightly older than the oldest Antarctic records of ice rafting.The histories of the onset of Cenozoic glaciation in high Northern and Southern latitudes remain enigmatic and are presently subjects of international geological drilling projects, with prospects to reveal some of their secrets over the coming decades. By virtue of the physical porperties of ice and the processes controlling the dynamics of the turn-over of the ice-sheets only young records of glacial ice caps on Antarctica and on Greemnland have been preserved, on Greenland with ice probably not older than a few hundred thousand years, on Antarctica potentially as old as 1.5-2 Mio. years. Deep-sea cores with their records od ice

  7. SeaRISE experiments revisited: potential sources of spread in multi-model projections of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Saito, F.; Abe-Ouchi, A.; Takahashi, K.; Blatter, H.

    2016-01-01

    The present paper revisits the future surface-climate experiments on the Greenland ice sheet proposed by the Sea-level Response to Ice Sheet Evolution (SeaRISE; Bindschadler et al., 2013) study. The projections of the different SeaRISE participants show dispersion, which has not been examined in detail to date. A series of sensitivity experiments are conducted and analyzed using the ice-sheet model for integrated Earth-system studies (IcIES) by replacing one or more formulations of the model parameters with those adopted in other model(s). The results show that large potential sources of the dispersion among the projections of the different SeaRISE participants are differences in the initialization methods and in the surface mass balance methods, and both aspects have almost equal impact on the results. The treatment of ice-sheet margins in the simulation has a secondary impact on the dispersion. We conclude that spinning up the model using fixed topography through the spin-up period while the temperature is allowed to evolve according to the surface temperature history is the preferred representation, at least for the experiment configuration examined in the present paper. A benchmark model experimental setup that most of the numerical models can perform is proposed for future intercomparison projects, in order to evaluate the uncertainties relating to pure ice-sheet model flow characteristics.

  8. Tertiary ice sheet dynamics: The snow gun hypothesis

    SciTech Connect

    Prentice, M.L. ); Matthews, R.K. )

    1991-04-10

    The authors abserve strong negative correlation between Tertiary low- to mid-latitude planktonic foraminiferal {delta}{sup 18}O and the difference between these data and coeval benthic foraminiferal {delta}{sup 18}O. Late Quaternary data do not show this correlation. Coupling statistical model/{delta}{sup 18}O comparisons and evidence for Antarctic ice and ocean temperature variation, they infer that Tertiary ice volume, recorded by tropical planktonic {delta}{sup 18}O became lost in the noise. This renders low correlation between Teritiary planktonic and benthic {delta}{sup 18}O time series compared to late Quaternary data. They contend that Tertiary ice sheet growth was commonly driven by warming of deep water from low- to mid-latitude, cooled. Because tectonic forcing and orbital forcing at low-latitude primarily controlled production and temperature variations of this Warm Saline Deep Water, these influences largely dictated Tertiary ice volume fluctuations. Through the Tertiary, they infer ice volume fluctuations to be an important component of sea level history on timescales between 10{sup 3} and 10{sup 7} years.

  9. A Resilient Greenland Ice Sheet More Than 900,000 Years Old.

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.; Funder, S.; Schmidt, A. Z. M.; Solgaard, A.; Steffensen, J. P.; Willerslev, E.

    2014-12-01

    The Greenland Ice Sheet (GRIS) has the potential of causing a 7.36 m global sea level rise (GSLR) if it were to melt away. To properly assess risk of future melting, it is crucial to understand the formation and growth of the GRIS during past climate regimes. However, despite decades of research, it remains debated when and in what environment GRIS got established and to what extent GRIS changed in size during past warm interglacials, such as MIS 5e some 130 kyr BP. Here, we present results from analyses of environmental DNA, 10Be/36Cl, 234U/238U, single grain optically stimulated luminescence (OSL), palaeomagnetics, macrofossils and molecular clock dating of basal ice from the Camp Century ice core in north western Greenland and the Kap København Formation in North Greenland. We combine these with results from the DYE 3 and GRIP ice cores from southern and central Greenland to evaluate the evolution of the GRIS. We find evidence that the present GRIS formed quickly some time before 900 kyr BP in a largely forested Greenland and that it has changed by only 30-40% of its present volume since it was established. Our DNA findings of boreal forest imply that warming of more than 10oC is needed to have an ice-free Greenland. This threshold is higher than earlier predictions and the corresponding palaeo-calibration of the GRIS contribution to sea level changes suggests a sensitivity of 0.3-0.5 m GSLR per degree Celsius of warming over Greenland. Ice core data from the deep Greenland ice cores can be used to reconstruct the size of the ice sheet during the present interglacial (the Holocene) and the last interglacial (the Eemian). Reconstructions based on stable water isotopes and gas content is used to validate the resilience of the GRIS.

  10. Ice-rafted debris associated with binge/purge oscillations of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Macayeal, D. R.

    1994-08-01

    The North Atlantic sediment record suggests quasi-periodic (7000- to 12,000-year period) ice-rafted debris (IRD) depositions during at least the last glacial period. The cause of these Heinrich events, as they are commonly known, is not fully understood; however, they may point to surges of the ice stream that drained the Hudson Bay/Hudson Strait region of the Laurentide Ice Sheet. We investigate a simple conceptual model of ice stream instability (the binge/purge model) to suggest ways in which the ice stream could have entrained sufficient debris to account for the estimated mass of IRD associated with a typical Heinrich IRD layer in the North Atlantic (1.0 ± 0.3 × 1015 kg). We find that freezing of debris-laden ice at the bed of the ice stream during the brief (≈ 750 years) surge phase of the ice stream's hypothesized binge/purge cycle can incorporate up to 5.1 × 1015 kg. This amount is sufficient to meet the constraints of the North Atlantic sediment record but by no means verifies the binge/purge model as the cause of Heinrich events.

  11. Expanded Late Wisconsinan ice cap and ice sheet margins in the western Queen Elizabeth Islands, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Nixon, F. Chantel; England, John H.

    2014-05-01

    Recent mapping of surficial geology and geomorphology in the western Canadian High Arctic (Melville and Eglinton islands), together with new radiocarbon dates acquired from ice-contact raised marine sediments, document expanded late Wisconsinan ice limits for the northwest Laurentide Ice Sheet and the western Innuitian Ice Sheet. An extension of the northwestern margin of the Laurentide Ice Sheet onto Eglinton Island is proposed based on evidence from till containing erratics derived from the Canadian Shield and a pattern of meltwater channels indicating ice retreat offshore into M'Clure Strait. Expansion of the western Melville Island Ice Cap (part of the western, lowland sector of the Innuitian Ice Sheet) to its offshore late Wisconsinan limit was facilitated by coalescence with the Laurentide Ice Sheet, whose buttressing allowed thickening to occur. Estimates of ice extent and thickness (>500 m) of the western Melville Island Ice Cap are in agreement with high marine limits (≤70 m asl). Lateral and proglacial meltwater channels, moraines and glaciomarine, glaciolacustrine and glaciofluvial deposits indicate radial retreat of the western Melville Island Ice Cap onto central highlands after ˜13.0 cal ka BP. Older marine limit shorelines on southern Eglinton Island (˜13.6 cal ka BP) are broadly synchronous with the early and rapid deglaciation of other areas formerly glaciated by the northwestern Laurentide Ice Sheet to the southeast and southwest (˜14.2-13.6 cal ka BP). The collapse of the northwest Laurentide Ice Sheet in M'Clure Strait beginning at ˜14.2 cal ka BP, in addition to prior inferred thinning, opens the possibility that it made a significant contribution to meltwater pulse 1A.

  12. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet during sustained climate warming - implications for wider ice sheet hydrology-dynamics coupling

    NASA Astrophysics Data System (ADS)

    Nienow, P. W.; Tedstone, A. J.; Gourmelen, N.; Dehecq, A.; Goldberg, D. N.; Hanna, E.

    2015-12-01

    The relationship between surface melting and ice motion will affect how the Greenland Ice Sheet (GrIS) responds to climate and the structure of the subglacial drainage system may be crucial in controlling how changing melt-rates impact ice motion. Ice sheet motion varies over seasonal time-scales in response to varying surface meltwater inputs to the ice-sheet bed which lubricate the ice-bed interface, resulting in periods of faster ice motion. However, the impact of hydro-dynamic coupling on ice motion over decadal timescales remains poorly constrained. Here we utilise remotely-sensed optical Landsat imagery to generate a record of annual motion spanning three decades extending back to 1985. Our observations cover an ˜8000 km2 area along ˜170 km of predominantly land-terminating margin of the west GrIS, and extend ˜50 km inland to 1100 m asl. We find that that annual ice motion was 12% slower in 2007-2014 compared to 1985-1994, despite a corresponding 50% increase in surface meltwater production. Less than 1/3 of the observed slowdown can be explained by a reduction in internal deformation caused by marginal ice sheet thinning, and we therefore hypothesise that increases in subglacial drainage efficiency, associated with sustained larger melt volumes, have reduced basal lubrication resulting in slower ice flow. Our findings suggest that hydro-dynamic coupling in this section of the ablation zone resulted in net ice motion slowdown over decadal timescales — not speedup as previously postulated. Increases in meltwater production from projected climate warming may therefore further reduce the motion of land-terminating margins of the ice-sheet indicating such margins are more resilient to the dynamic impacts of enhanced meltwater production than previously thought. The implications of these observations for wider ice sheet hydrology-dynamics coupling are considered.

  13. Documenting Melting Features of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, M.

    2011-12-01

    There is an increasing interest in studying the Greenland Ice Sheet, its hydrology and dynamics over the short term and longer term because of the potential impact of a warming Arctic. Major studies concern about whether increased surface melting will lead to changes in production of supraglacial lakes and subglacial water pressures and hence , potentially, rates of ice movement. In this talk I will show movies recorded over the past three years form fieldwork activities carried out over the West Greenland ice sheet. In particular, I will project and comment movies concerning surface streams and supraglacial lakes, as the one at http://www.youtube.com/watch?v=QbuFphwJn4c. I will discuss the importance of observing such phenomena and how the recorded videos can be used to summarize scientific studies and communicate the relevance of scientific findings. I will also show, for the first time, the video of the drainage of a supraglacial lake, an event during which a lake ~ 6 m deep and ~ 1 km drained in ~ 1.5 hours. This section of the movie is under development as video material was collected during our latest expedition in June 2011.

  14. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  15. Surface elevation contours of Greenland and Antarctic ice sheets

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Bindschadler, R. A.; Brenner, A. C.; Martin, T. V.; Thomas, R. H.

    1983-01-01

    Preliminary results from Seasat radar altimetry over Antarctica north of 72 deg S and Greenland south of 72 deg N are presented. Surface elevations of the ice sheets, obtained from computer retracking of the radar altimeter waveforms, are contoured at 50-m intervals for Greenland and at 100-m intervals for Antarctica. Elevation differences at orbital crossover points are analyzed to obtain a precision of 1.9 m; this figure is partly determined by radial errors of approximately 1.0 m in orbital determination and partly by noise due to ice surface irregularities. Adjustment of the radial components of the orbits to minimize the differences in elevations at crossovers over a small, relatively flat region reduces the rms difference to 0.25 m, which is indicative of the optimum precision obtainable over the ice sheets. However, the precision degrades as the slope of the surface or amplitude of the undulations increases, yielding an overall precision of + or - 1.6 m.

  16. Reconstructing the last Irish Ice Sheet 1: changing flow geometries and ice flow dynamics deciphered from the glacial landform record

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The glacial geomorphological record provides an effective means to reconstruct former ice sheets at ice sheet scale. In this paper we document our approach and methods for synthesising and interpreting a glacial landform record for its palaeo-ice flow information, applied to landforms of Ireland. New, countrywide glacial geomorphological maps of Ireland comprising >39,000 glacial landforms are interpreted for the spatial, glaciodynamic and relative chronological information they reveal. Seventy one 'flowsets' comprising glacial lineations, and 19 ribbed moraine flowsets are identified based on the spatial properties of these landforms, yielding information on palaeo-ice flow geometry. Flowset cross-cutting is prevalent and reveals a highly complex flow geometry; major ice divide migrations are interpreted with commensurate changes in the flow configuration of the ice sheet. Landform superimposition is the key to deciphering the chronology of such changes, and documenting superimposition relationships yields a relative 'age-stack' of all Irish flowsets. We use and develop existing templates for interpreting the glaciodynamic context of each flowset - its palaeo-glaciology. Landform patterns consistent with interior ice sheet flow, ice stream flow, and with time-transgressive bedform generation behind a retreating margin, under a thinning ice sheet, and under migrating palaeo-flowlines are each identified. Fast ice flow is found to have evacuated ice from central and northern Ireland into Donegal Bay, and across County Clare towards the south-west. Ice-marginal landform assemblages form a coherent system across southern Ireland marking stages of ice sheet retreat. Time-transgressive, 'smudged' landform imprints are particularly abundant; in several ice sheet sectors ice flow geometry was rapidly varying at timescales close to the timescale of bedform generation. The methods and approach we document herein could be useful for interpreting other ice sheet histories

  17. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    PubMed

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  18. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  19. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  20. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    NASA Astrophysics Data System (ADS)

    Cornford, S. L.; Martin, D. F.; Payne, A. J.; Ng, E. G.; Le Brocq, A. M.; Gladstone, R. M.; Edwards, T. L.; Shannon, S. R.; Agosta, C.; van den Broeke, M. R.; Hellmer, H. H.; Krinner, G.; Ligtenberg, S. R. M.; Timmermann, R.; Vaughan, D. G.

    2015-08-01

    We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet, deploying sub-kilometer resolution around the grounding line since coarser resolution results in substantial underestimation of the response. Each of the simulations begins with a geometry and velocity close to present-day observations, and evolves according to variation in meteoric ice accumulation rates and oceanic ice shelf melt rates. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rate anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions and ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Within the Amundsen Sea Embayment the largest single source of variability is the onset of sustained retreat in Thwaites Glacier, which can triple the rate of eustatic sea level rise.

  1. Quantifying supraglacial lake volumes on the Greenland ice sheet from spaceborne optical sensors

    NASA Astrophysics Data System (ADS)

    Moussavi, Mahsa S.

    The acceleration of mass loss from the Greenland ice sheet (GrIS) over the last two decades is of great significance when considering the associated increasing rates of its contribution to sea level rise. With meltwater runoff accounting for more than half of Greenland's contribution to sea level, it is imperative to improve our understanding of the ice sheet hydrologic processes. This dissertation describes research to quantify surface meltwater volumes, specifically stored in supraglacial lakes, over large areas of the ablation region from spaceborne observations made by current and future optical sensors. Methods for remote-derivation and validation of supraglacial water depths from WorldView-2, Landsat 7's Enhanced Thematic Mapper (ETM+), and Landsat 8's Operational Land Imager (OLI) are discussed. While enabling large-scale assessments of lake volumes with unprecedented levels of accuracy and precision, these methods address the major limitation of spaceborne bathymetry, which is its dependence on the availability of costly in-situ measurements. This dissertation also investigates the potential capability of the future ICESat-2 laser altimetry mission in providing depth information over supraglacial lakes, which could be used in conjunction with passive optical data to assess lake volumes. A nominal (first-order) prediction of ICESat-2's performance suggests that it might be able to retrieve lake depths down to 6 m. Given such a premise, this dissertation takes one step further to develop an automatic depth-retrieval algorithm from simulated ICESat-2 datasets, provided by the mission's Project team at Goddard Space Flight Center (GSFC). By developing a surface detection algorithm for the most complex surfaces that ICESat-2 will be looking at, namely forested ecosystems, this dissertation provides a method applicable to land ice, sea ice, and water surfaces. Furthermore, as part of ICESat-2's science definition team efforts and in direct support of the mission

  2. Rate-limiting processes during rapid deglaciation of marine ice sheets

    NASA Astrophysics Data System (ADS)

    Vaughan, D. G.

    2009-04-01

    The debate concerning the stability of marine ice sheets has continued for many years. Recent contributions have advanced the debate substantially, and shown that under specific conditions, marine ice sheet margins could be unstable. This insight has reinforced widely held concerns that marine ice-sheet collapse could substantially add to sea-level rise in coming centuries. However, determination of the stability-condition of marine ice sheet margins is only one step towards evaluating the risk inherent in such ice sheets. This risk crucially depends on the rate at which collapse could occur. For example; if collapse occurred over several millennia then the additional rate of sea-level rise would be comparable to that arising from other sources, and would probably be considered manageable by many coastal defence planners; conversely, collapse of a major marine ice sheet in less than one millennia, would have profound and costly implications. In this paper, I will consider the most rapidly changing, and probably the most vulnerable marine ice sheet remaining on the planet; the Amundsen Sea Embayment of West Antarctica. And in particular, ask what would be required to deglaciate this ice sheet within a period of around 500 years. This rate of collapse implies a loss of ice from the ice sheet, at roughly 10-times the current balance flux. To maintain such a retreat, would require that the extra ice-loss would either have to be melted in situ, or exported from the continental shelf as icebergs. I will argue that it is highly unlikely that ice-loss at this rate could be achieved while maintaining an ice-sheet configuration comparable to what we see today, and in particular, that the maintenance of ice shelves is unlikely. With this constraint in mind, I discuss two possible configurations that could maintain ice-loss at this rate, and discuss the rate-limiting processes that might govern the retreat rates that could be achieved. I conclude that the critical processes

  3. An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model

    NASA Technical Reports Server (NTRS)

    Pollard, D.

    1978-01-01

    The astronomical theory of the Quaternary ice ages is incorporated into a simple climate model for global weather; important features of the model include the albedo feedback, topography and dynamics of the ice sheets. For various parameterizations of the orbital elements, the model yields realistic assessments of the northern ice sheet. Lack of a land-sea heat capacity contrast represents one of the chief difficulties of the model.

  4. Evolution of supra-glacial lakes across the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Sundal, A. V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P.

    2009-04-01

    We have used 268 cloud-free Moderate-resolution Imaging Spectroradiometer (MODIS) images spanning the 2003 and 2005-2007 melt seasons to study the seasonal evolution of supra-glacial lakes in three different regions of the Greenland Ice Sheet. Lake area estimates were obtained by developing an automated classification method for their identification based on 250 m resolution MODIS surface reflectance observations. Widespread supra-glacial lake formation and drainage is observed across the ice sheet, with a 2-3 weeks delay in the evolution of total supra-glacial lake area in the northern areas compared to the south-west. The onset of lake growth varies by up to one month inter-annually, and lakes form and drain at progressively higher altitudes during the melt season. A correlation was found between the annual peak in total lake area and modelled annual runoff across all study areas. Our results indicate that, in a future warmer climate (Meehl et al., 2007), Greenland supra-glacial lakes can be expected to form at higher altitudes and over a longer time period than is presently the case, expanding the area and time period over which connections between the ice sheet surface and base may be established (Das et al., 2008) with potential consequences for ice sheet discharge (Zwally et al., 2002). Das, S., Joughin, M., Behn, M., Howat, I., King, M., Lizarralde, D., & Bhatia, M. (2008). Fracture propagation to the base of the Greenland Ice Sheet during supra-glacial lake drainage. Science, 5877, 778-781. Meehl, G.A., Stocker, T.F., Collins W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. & Zhao, Z.C. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor

  5. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Hillenbrand, Claus-Dieter; Kuhn, Gerhard; Larter, Robert D.; Graham, Alastair G. C.; Ehrmann, Werner; Moreton, Steven G.; Forwick, Matthias

    2011-03-01

    The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding line, and iii) seasonal open marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg-rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal yr BP), reaching the mid-shelf by 13

  6. How do icebergs affect the Greenland ice sheet under pre-industrial conditions? - a model study with a fully coupled ice-sheet-climate model

    NASA Astrophysics Data System (ADS)

    Bügelmayer, M.; Roche, D. M.; Renssen, H.

    2015-05-01

    Icebergs have a potential impact on climate since they release freshwater over a widespread area and cool the ocean due to the take-up of latent heat. Yet, so far, icebergs have never been modelled using an ice-sheet model coupled to a global climate model. Thus, in climate models their impact on climate has been restricted to the ocean. In this study, we investigate the effect of icebergs on the climate of the mid- to high latitudes and the Greenland ice sheet itself within a fully coupled ice-sheet (GRenoble model for Ice Shelves and Land Ice, or GRISLI)-earth-system (iLOVECLIM) model set-up under pre-industrial climate conditions. This set-up enables us to dynamically compute the calving sites as well as the ice discharge and to close the water cycle between the climate and the cryosphere model components. Further, we analyse the different impact of moving icebergs compared to releasing the ice discharge at the calving sites directly. We performed a suite of sensitivity experiments to investigate the individual role of the different factors that influence the impact of the ice release on the ocean: release of ice discharge as icebergs versus as freshwater fluxes, and freshening and latent heat effects. We find that icebergs enhance the sea-ice thickness around Greenland, thereby cooling the atmosphere and increasing the Greenland ice sheet's height. Melting the ice discharge directly at the calving sites, thereby cooling and freshening the ocean locally, results in a similar ice-sheet configuration and climate as the simulation where icebergs are explicitly modelled. Yet, the simulation where the ice discharge is released into the ocean at the calving sites while taking up the latent heat homogeneously underestimates the cooling effect close to the ice-sheet margin and overestimates it further away, thereby causing a reduced ice-sheet thickness in southern Greenland. We conclude that in our fully coupled atmosphere-ocean-cryosphere model set-up the spatial

  7. Dynamic Inland Propagation of Thinning Due to Ice Loss at the Margins of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Wang, Wei Li; Li, Jun J.; Zwally, H. Jay

    2012-01-01

    Mass-balance analysis of the Greenland ice sheet based on surface elevation changes observed by the European Remote-sensing Satellite (ERS) (1992-2002) and Ice, Cloud and land Elevation Satellite (ICESat) (2003-07) indicates that the strongly increased mass loss at lower elevations (<2000 m) of the ice sheet, as observed during 2003-07, appears to induce interior ice thinning at higher elevations. In this paper, we perform a perturbation experiment with a three-dimensional anisotropic ice-flow model (AIF model) to investigate this upstream propagation. Observed thinning rates in the regions below 2000m elevation are used as perturbation inputs. The model runs with perturbation for 10 years show that the extensive mass loss at the ice-sheet margins does in fact cause interior thinning on short timescales (i.e. decadal). The modeled pattern of thinning over the ice sheet agrees with the observations, which implies that the strong mass loss since the early 2000s at low elevations has had a dynamic impact on the entire ice sheet. The modeling results also suggest that even if the large mass loss at the margins stopped, the interior ice sheet would continue thinning for 300 years and would take thousands of years for full dynamic recovery.

  8. Controls on Greenland Ice Sheet Runoff from a Land Terminating Glacier

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Smith, L. C.; Chu, V. W.; Forster, R. R.; Hagedorn, B.; Box, J. E.; van den Broeke, M. R.

    2011-12-01

    Modeling studies show that ice sheet mass loss in the form of meltwater runoff constitutes a large fraction of the total mass loss of the Greenland ice sheet. However, the controls on Greenland ice sheet runoff to the ocean are not well understood in part because few direct observations of ice sheet meteorological conditions and meltwater runoff in rivers draining the ice sheet are available to constrain model development. Here, analysis and modeling using such observational data were carried out. West-central Greenland's ice sheet margin near Kangerlussuaq was monitored between 2008 - 2010, yielding data from two automatic weather stations on the ice sheet, and three pro-glacial riverine discharge stations. These data were used to construct regression models to separate influences from fast flowing supra glacial meltwater runoff, and delayed runoff from meltwater releases from en- and pro-glacial storages. These models show that supra glacial runoff explains the majority of meltwater runoff, with en- and pro-glacial storages also significant and less predictable. Finally, a simple extrapolation model confirms that most meltwater runoff originates from the ice sheet margin, with only a small amount released from the ice sheet interior.

  9. Fractals in fluctuations of Antarctic ice sheet surface elevation

    NASA Astrophysics Data System (ADS)

    Kotlyakov, V. M.; Vasiliev, L. N.; Kachalin, A. B.; Moskalevsky, M. Yu.; Tyuflin, A. S.

    2015-11-01

    Progress in reconstructing the mechanism of the influence of drifting snow on changes in the ice surface elevation, when it moves with velocity of 2-5 m/year, was achieved owing to space-based laser altimetry and the discovery of fractal patterns of the elevation fluctuations. They consist in the growth of variance of elevation changes by an increased lag. The variance grows in the power law dependence in the scaling range of 70 km. The wavelet analysis revealed a wide spectrum of spatial frequencies and demonstrated that they occur in the range of 1.4-22.5 km-1. The discovered properties of changes in the surface elevation subordinate to the Gaussian distribution with zero mean indicate dynamic equilibrium of the present-day Antarctic ice sheet.

  10. Ice tectonics during the rapid tapping of a supraglacial lake on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Hubbard, A. L.; Dow, C. F.; Jones, G. A.; Fitzpatrick, A.; Gusmeroli, A.; Kulessa, B.; Lindback, K.; Pettersson, R.; Box, J. E.

    2012-09-01

    The hydraulic fracture of ice during the rapid tapping of supraglacial lakes is proposed as one mechanism to establish efficient surface-to-bed hydraulic pathways through kilometre-thick ice. This study presents detailed records of lake discharge, ice motion, and passive seismicity capturing the behaviour and processes preceding, during and following the rapid (~2 h) tapping of a large (~4 km2) supraglacial lake through 1.1 km of the western margin of the Greenland Ice Sheet. Peak discharge (3300 m3s-1) was coincident with maximal rates of horizontal displacement and vertical uplift, indicating that surface water accessed the ice-bed interface causing widespread hydraulic separation and enhanced basal motion. The differential motion of four GPS located around the lake, record the opening and closure of fractures suggesting that on short time-scales the brittle fracture of ice dominates ice flow. We hypothesise that during lake tapping, drainage occurred through a ~3 km long longitudinal fracture with a mean width of ~0.4 m. The perennial location of the supraglacial lake and the observed pattern of fracturing and surface uplift evince control by the local subglacial topography and the gradient of hydraulic potential. Our observations support the assertion that water-filled crevasses can propagate without longitudinal extension. The tapping of the lake coincided with the rapid drainage of a cluster of supraglacial lakes located within the same elevation band coincident with a notable and isolated peak in the catchment-wide, proglacial Watson River hydrograph.

  11. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  12. Rapid thinning of parts of the southern greenland ice sheet

    PubMed

    Krabill; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    1999-03-01

    Aircraft laser-altimeter surveys over southern Greenland in 1993 and 1998 show three areas of thickening by more than 10 centimeters per year in the southern part of the region and large areas of thinning, particularly in the east. Above 2000 meters elevation the ice sheet is in balance but thinning predominates at lower elevations, with rates exceeding 1 meter per year on east coast outlet glaciers. These high thinning rates occur at different latitudes and at elevations up to 1500 meters, which suggests that they are caused by increased rates of creep thinning rather than by excessive melting. Taken as a whole, the surveyed region is in negative balance. PMID:10066172

  13. A Regional Coupled Model System to Examine Ocean-Atmosphere-Sea Ice, Ice Sheet and Permafrost Interactions in the Arctic: HIRHAM5 - HYCOM - CICE - PISM - GIPL

    NASA Astrophysics Data System (ADS)

    Christensen, J. H.; Mottram, R.; Langen, P. L.; Madsen, K. S.; Stendel, M.; Rodehacke, C. B.; Romanovsky, V. E.; Marchenko, S. S.

    2014-12-01

    We introduce a high resolution fully coupled regional model system that describes ocean, atmosphere and sea ice processes in the Arctic Ocean and North Atlantic and treats atmosphere / ocean / ice sheet interactions as well as land and sub-sea permafrost processes in an advanced semi-coupled form. The system has been developed using five existing model components: the high resolution regional climate model HIRHAM5, the regional ocean model HYCOM and the CICE model that describes sea ice dynamics, the PISM ice sheet model and the GIPL permafrost model. These models have been interactively coupled which enables us to perform experiments examining the relative importance of ocean and atmospheric forcing as well as internal dynamics, to explain the recent rapid decline of Arctic sea ice, recent changes in the Greenland ice sheet mass balance together with both land and sub-sea permafrost conditions. Analysis of the model results indicates the model can successfully reproduce the interannual and seasonal variability in sea ice extent, describe recent changes in the Greenland ice sheet surface mass balance as well as permafrost conditions around Greenland and possibly under the Arctic Ocean sea floor. This opens up the possibility of a range of process based experiments as well as simulations to project the future and study the past of Arctic sea ice that we plan to run using the EC-Earth GCM as boundary forcing. Examples, focusing on various coupling issues will be presented and the need for further refinements will be assessed by highlighting processes that appear to be essential to the interactions and hence possibly important at climate scales.

  14. The darkening of the Greenland ice sheet: trends, drivers and projections (1981-2100)

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Doherty, S.; Fettweis, X.; Alexander, P.; Jeyaratnam, J.; Noble, E.; Stroeve, J.

    2015-10-01

    The surface energy balance and meltwater production of the Greenland ice sheet (GrIS) are modulated by snow and ice albedo through the amount of absorbed solar radiation. Here we show, using spaceborne multispectral data collected during the three decades from 1981 to 2012, that summertime surface albedo over the GrIS decreased at a statistically significant (99 %) rate of 0.02 decade-1 between 1996 and 2012. The negative trend is confined to the regions of the GrIS that undergo melting in summer with the dry-snow zone showing no trend. The period 1981-1996 showed no statistically significant trend. The analysis of the outputs of a regional climate model indicates that the drivers of the observed albedo decrease is imputable to a combination of increased near-surface temperatures, which enhanced melt and promoted growth in snow grain size and the expansion of bare ice areas, as well as by trends in light-absorbing impurities on the snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland, suggesting that their apparent increase in snow and ice might be related to the exposure of a "dark band" of dirty ice and to the consolidation of impurities at the surface with melt. Albedo projections through the end of the century under different warming scenarios consistently point to continued darkening, with albedo anomalies in 2100 averaged over the whole ice sheet lower than in 2000 by 0.08, driven solely by a warming climate. Future darkening is likely underestimated because of known underestimates in projected melting and because the model albedo scheme does not currently include light-absorbing impurities and the effect of biological activity, which themselves have a positive feedback, leading to increased melting, grain growth and darkening.

  15. Observations from the Programme for Monitoring of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Ahlstrom, A. P.; Andersen, M. L.; Box, J. E.; Citterio, M.; Colgan, W. T.; Fausto, R. S.; van As, D.; Forsberg, R.; Skourup, H.; Sandberg Sørensen, L.; Kristensen, S. S.; Dall, J.; Kusk, A.; Petersen, D.

    2014-12-01

    The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) is as an on-going effort initiated in 2007 to monitor changes in the mass budget of the Greenland Ice Sheet. The aim of the programme is to quantify the mass loss of the Greenland ice sheet and track changes in the extent of the glaciers, ice caps and ice sheet margin. Specifically, PROMICE aims to estimate the mass loss derived from three fundamentally different sources: Surface melt water runoff from the ice sheet margin Iceberg production Mass loss of individual glaciers and ice caps surrounding the ice sheet The first is observed by a network of automatic weather stations (AWS) on the ice sheet margin measuring ice ablation as well as meteorological parameters. The second is determined by establishing a so-called 'flux gate' along the entire ice sheet margin and keeping track of the ice passing through this gate. The flux gate is obtained from airborne surveys of ice sheet surface elevation and thickness. The volume of the ice passing through the gate is derived from maps of the surface velocity of the ice sheet, produced from satellite radar. The third is investigated through regular mapping of area and elevation of the approximately 20.000 individual glaciers and ice caps in Greenland. Mapping is carried out using recent satellite imagery as well as aerial ortho-photos. Within PROMICE data sets from these activities are collected. They include observations from the network of currently about 20 AWS on the margin of the Greenland ice sheet. Airborne surveys, yielding surface elevation and ice depth along the entire margin of the Greenland ice sheet carried out in 2007 and 2011. A map of all Greenland ice masses, based on the highest detail aero-photogrammetric maps produced from mid-80's aerial photographs. Real-time data from the PROMICE AWS network is shown at the web site www.promice.org and the data is freely available for download. Data from the airborne surveys and mapping activities are

  16. Ross Ice Shelf Seismic Survey and Future Drilling Recommendation

    NASA Astrophysics Data System (ADS)

    van Haastrecht, Laurine; Ohneiser, Christian; Gorman, Andrew; Hulbe, Christina

    2016-04-01

    The Ross Ice Shelf (RIS) is one of three gateways through which change in the ocean can be propagated into the interior of West Antarctica. Both the geologic record and ice sheet models indicate that it has experienced widespread retreat under past warm climates. But inland of the continental shelf, there are limited data available to validate the models. Understanding what controls the rate at which the ice shelf will respond to future climate change is central to making useful climate projections. Determining the retreat rate at the end of the last glacial maximum is one part of this challenge. In November 2015, four lines of multi-channel seismic data, totalling over 45 km, were collected on the Ross Ice Shelf, approximately 300 km south of Ross Island using a thumper seismic source and a 96 channel snow streamer. The seismic survey was undertaken under the New Zealand Antarctic Research Institute (NZARI) funded Aotearoa New Zealand Ross Ice Shelf Programme to resolve bathymetric details and to image sea floor sediments under a proposed drilling site on the ice shelf, at about 80.7 S and 174 E. The thumper, a purpose-built, trailer mounted, weight-drop seismic source was towed behind a Hägglund tracked vehicle to image the bathymetry and sediments underneath the RIS. Seismic data collection on an ice shelf has unique challenges, in particular strong attenuation of the seismic energy by snow and firn, and complex multiple ray paths. The thumper, which consists of a heavy weight (250kg) that is dropped on a large, ski mounted steel plate, produced a consistent, repeatable higher energy signal when compared to sledge hammer source and allowed for a greater geographic coverage and lower environmental impact than an explosive source survey. Our survey revealed that the seafloor is smooth and that there may be up to 100 m of layered sediments beneath the seafloor and possibly deeper, more complex structures. A multiple generated by internally reflected seismic energy

  17. Ice sheet runoff and Dansgaard-Oeschger Cycles

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Wolff, Eric; Fowler, Andrew; Clark, Chris; Evatt, Geoff; Johnson, Helen; Munday, David; Rickaby, Ros; Stokes, Chris

    2016-04-01

    Many northern hemisphere climate records, particularly those from around the North Atlantic, show a series of rapid climate changes that recurred on centennial to millennial timescales throughout most of the last glacial period. These Dansgaard-Oeschger (D-O) sequences are observed most prominently in Greenland ice cores, although they have a global signature, including an out of phase Antarctic signal. They consist of warming jumps of order 10°C, occurring in typically 40 years, followed generally by a slow cooling (Greenland Interstadial, GI) lasting between a few centuries and a few millennia, and then a final rapid temperature drop into a cold Greenland Stadial (GS) that lasts for a similar period. Most explanations for D-O events call on changes in Atlantic meridional overturning circulation strength, and the majority of such explanations use changes in freshwater delivery from ice sheets as a trigger. Many have relied on large inputs of freshwater from singular events (such as lake outbursts or iceberg armadas) to push the AMOC into its cold state. However the evidence for such events at the right time in each cycle is sparse. Here we investigate mechanisms that would arise from a change in the rate of ice sheet runoff, which would be a natural feedback from each rapid warming or cooling event. Recent work has suggested that AMOC is most easily disrupted by freshwater delivered through the Arctic. We investigate whether the proposed AMOC changes could have occurred as part of a natural oscillation, in which runoff from the Laurentide ice sheet into the Arctic is controlled by temperature around the North Atlantic. The Arctic buffers the salinity changes, but under warm conditions, high runoff eventually leads to water entering the North Atlantic with low enough salinity to switch AMOC into its weaker state. Under the colder conditions now prevailing, the Arctic is starved of runoff, and the salinity rises until a further switch occurs. Contrary to many

  18. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Rooney, Alan D.; Selby, David; Lloyd, Jeremy M.; Roberts, David H.; Lückge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-04-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35-0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  19. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    USGS Publications Warehouse

    Rooney, Alan D.; Selby, David; Llyod, Jeremy M.; Roberts, David H.; Luckge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-01-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  20. Union Glacier: a new exploration gateway for the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Zamora, R.; Uribe, J. A.; Jaña, R.; Oberreuter, J.

    2014-02-01

    Union Glacier (79°46' S/83°24' W) in the West Antarctic Ice Sheet (WAIS), has been used by the private company Antarctic Logistic and Expeditions (ALE) since 2007 for their landing and commercial operations, providing a unique logistic opportunity to perform glaciological research in a vast region, including the Ice divide between Institute and Pine Island glaciers and the Subglacial Lake Ellsworth. Union glacier is flowing into the Ronne Ice Shelf, where future migrations of the grounding line zone (GLZ) in response to continuing climate and oceanographic changes have been modelled. In order to analyse the potential impacts on Union glacier of this scenario, we installed an array of stakes, where ice elevation, mass balance and ice velocities have been measured since 2007, resulting in near equilibrium conditions with horizontal displacements between 10 and 33 m yr-1. GPS receivers and three radar systems have been also used to map the subglacial topography, the internal structure of the ice and the presence of crevasses along surveyed tracks. The resulting radar data showed a subglacial topography with a minimum of 858 m below sea level, much deeper than estimated before. The below sea level subglacial topography confirms the potential instability of the glacier in foreseen scenarios of GLZ upstream migration during the second half of the XXI century.

  1. Increasing temperature forcing reduces the Greenland Ice Sheet's response time scale

    NASA Astrophysics Data System (ADS)

    Applegate, Patrick J.; Parizek, Byron R.; Nicholas, Robert E.; Alley, Richard B.; Keller, Klaus

    2015-10-01

    Damages from sea level rise, as well as strategies to manage the associated risk, hinge critically on the time scale and eventual magnitude of sea level rise. Satellite observations and paleo-data suggest that the Greenland Ice Sheet (GIS) loses mass in response to increased temperatures, and may thus contribute substantially to sea level rise as anthropogenic climate change progresses. The time scale of GIS mass loss and sea level rise are deeply uncertain, and are often assumed to be constant. However, previous ice sheet modeling studies have shown that the time scale of GIS response likely decreases strongly with increasing temperature anomaly. Here, we map the relationship between temperature anomaly and the time scale of GIS response, by perturbing a calibrated, three-dimensional model of GIS behavior. Additional simulations with a profile, higher-order, ice sheet model yield time scales that are broadly consistent with those obtained using the three-dimensional model, and shed light on the feedbacks in the ice sheet system that cause the time scale shortening. Semi-empirical modeling studies that assume a constant time scale of sea level adjustment, and are calibrated to small preanthropogenic temperature and sea level changes, may underestimate future sea level rise. Our analysis suggests that the benefits of reducing greenhouse gas emissions, in terms of avoided sea level rise from the GIS, may be greatest if emissions reductions begin before large temperature increases have been realized. Reducing anthropogenic climate change may also allow more time for design and deployment of risk management strategies by slowing sea level contributions from the GIS.

  2. Ice-age simulations with a caving ice-sheet model

    SciTech Connect

    Pollard, D.

    1982-01-01

    Further extensions and results of a simple northern hemispheric ice-sheet model are described for the Quaternary ice ages. The basic model predicts ice thickness and bedrock deformation in a north-south cross section, with a prescribed snow-budget distribution shifted uniformly in space to represent the orbital perturbations. An ice calving parameterization crudely representing proglacial lakes or marine incursions can attack the ice whenever the tip drops below sea level. As in Pollard (1982a) the basic model produces a large approx. 100,000-yr response and agrees fairly well with the delta/sup 18/O deep-sea core records. Three extensions of the model are described: an alternative treatment of bedrock deformation, a more realistic ice-shelf model of ice calving, and a generalized parameterization for such features as the North Atlantic deglacial meltwater layer. Much the same ice-age simulations and agreement with the delta/sup 18/O records as with the original model are still obtained. The observed phase-correlation between the 100,000-yr cycles and eccentricity is examined. First, the model is shown to give a approx. 100,000-yr response to nearly any kind of higher-frequency forcing. Although over the last two million years the model phase is mainly controlled by the precessional modulation due to eccentricity, over just the last 600,000-yr the observed phase can also be simulated with eccentricity held constant. A definitive conclusion on the phase-control of the Quaternary ice ages is prevented by uncertainty in the deep-sea core time scales before approx. 600,000-yr B.P. In an appendix the model is applied to West Antarctica where unforced internal oscillations occur with periods of about 50,000-yr.

  3. Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Behrendt, John C.

    1993-01-01

    Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.

  4. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  5. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  6. Inter-annual and geographical variations in the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS satellite images

    NASA Astrophysics Data System (ADS)

    Shimada, Rigen; Takeuchi, Nozomu; Aoki, Teruo

    2016-04-01

    Areas of dark ice have appeared on the Greenland ice sheet every summer in recent years. These are likely to have a great impact on the mass balance of the ice sheet because of their low albedo. We report annual and geographical variations in the bare ice and dark ice areas that appeared on the Greenland Ice Sheet from 2000 to 2014 by using MODIS satellite images. The July monthly mean of the extent of bare ice showed a positive trend over these 15 years, and large annual variability ranging from 89,975 km2 to 279,075 km2, 5% and 16% of the entire ice sheet, respectively. The extent of dark ice also showed a positive trend and varied annually, ranging from 3,575 km2 to 26,975 km2, 4% and 10% of the bare ice extent. These areas are geographically varied, and their expansion is the greatest on the western side, particularly the southwestern side of the ice sheet. The bare ice extent correlates strongly with the monthly mean air temperature in July, suggesting that the extent was determined by snow melt. The dark ice extent also correlates with the air temperature; however, the correlation is weaker. The dark ice extent further correlates negatively with solar radiation. This suggests that the extent of dark ice is not only controlled by snow melt on the ice, but also by changes in the surface structures of the bare ice surface, such as cryoconite holes, which are associated with impurities appearing on the ice surface.

  7. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    Livingstone, S. J.; Clark, C. D.; Woodward, J.; Kingslake, J.

    2013-11-01

    We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.

  8. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet.

    PubMed

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-12-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet. PMID:23018772

  9. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet

    PubMed Central

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-01-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet. PMID:23018772

  10. Dynamic Antarctic ice sheet during the early to mid-Miocene.

    PubMed

    Gasson, Edward; DeConto, Robert M; Pollard, David; Levy, Richard H

    2016-03-29

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability. PMID:26903645

  11. Dynamic Antarctic ice sheet during the early to mid-Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, Edward; DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-03-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability.

  12. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed

    2006-01-01

    The glaciers and ice sheets of the world contain enough ice to raise sea level by approximately 70 meters if they were to disappear entirely, and most of this ice is located in the climatically sensitive polar regions. Fortunately changes of this magnitude would probably take many thousands of years to occur, but recent discoveries indicate that these ice masses are responding to changes in today s climate more rapidly than previously thought. These responses are likely to be of great societal significance, primarily in terms of their implications for sea level, but also in terms of how their discharge of freshwater, through melting or calving, may impact ocean circulation. For millions of years, oceans have risen and fallen as the Earth has warmed and cooled, and ice on land has shrunk and grown. Today is no different in that respect, as sea levels have been rising at a rate of nearly 2 m per year during the last century (Miller and Douglas 2004), and 3 mm/yr in the last 12 years (Leuliette et al. 2004). What is different today, however, is that tens - perhaps hundreds - of millions of people live in coastal areas that are vulnerable to changes in sea level. Rising seas erode beaches, increase flood potential, and reduce the ability of barrier islands and coastal wetlands to mitigate the effects of major storms and hurricanes. The costs associated with a one-meter rise in sea level are estimated to be in the hundreds of billions of dollars in the United States alone. The worldwide costs in human terms would be far greater as some vulnerable low-lying coastal regions would become inundated, especially in poorer nations that do not have the resources to deal with such changes. Such considerations are particularly important in light of the fact that a one meter sea level rise is not significantly outside the 0.09 to 0.88 range of predictions for this century (IPCC 2001), and rises of this magnitude have occurred in the past in as little as 20 years (Fairbanks 1989

  13. The effects of climate uncertainty on the stability of the Antarctic ice sheet during the mid-Pliocene warm period

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Häfliger, Tonio; Rogozhina, Irina; Thomas, Maik

    2015-04-01

    The mid-Pliocene (3.15 to 2.85 million years before present) is the most recent period in Earth's history when temperatures and CO2 concentrations were sustainedly higher than pre-industrial values [1], representing an ideal interval for studying the climate system under conditions similar to those projected for the end of this century. In these projections, the response of the Antarctic ice sheet (AIS) remains uncertain, including areas generally considered stable under a warming climate. Therefore, a better understanding of AIS's behaviour during periods like the mid-Pliocene will provide valuable information on the potential vulnerability of the composite parts of the AIS in the future. For this purpose, we have designed numerical experiments of the AIS dynamics during the mid-Pliocene warm period using the continental-scale ice sheet-shelf model SICOPOLIS [2]. To account for the uncertainties in the configuration of the AIS and climate conditions prior to this period, we employ a wide range of initial ice sheet configurations and climatologies, including modern observations, the results from the Pliocene Model Intercomparison Project (PlioMIP) climate experiments [3], and perturbations to single climatic fields, allowing us to assess the vulnerability of different AIS sectors to specific forcing mechanisms. Our simulations show that the West Antarctic ice sheet remains largely ice-free under the chosen range of climate conditions, except for small portions grounded above sea level. On the contrary, the East Antarctic ice sheet (EAIS) shows no signs of potential collapse, with an ice loss over a few peripheral sectors largely compensated by an increase in ice volume over the interior due to increased precipitation rates and surface temperatures remaining well below the freezing point. Furthermore, our results contrast with existing hypotheses that cast doubt on the stability of the EAIS during the mid-Pliocene warm period. References [1] Cook, C. P., et al

  14. The gravitationally consistent sea-level fingerprint of future terrestrial ice loss

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Spada, G.; Hurkmans, R. T.

    2012-12-01

    We solve the sea-level equation to investigate th6 e pattern of the gravitationally self-consistent sea-level variations (fingerprints) corresponding to modeled scenarios of future terrestrial ice melt. These were obtained from separate ice dynamics and surface mass balance models for the Greenland and Antarctic ice sheets and by a regionalized mass balance model for glaciers and ice caps. For our mid-range scenario, the ice melt component of total sea-level change attains its largest amplitude in the equatorial oceans, where we predict a cumulative sea-level rise of _ 25 cm and rates of change close to 3 mm/yr from ice melt alone by 2100. According to our modeling, in low-elevation densely populated coastal zones, the gravitationally consistent sea- level variations due to continental ice loss will range between 60 and 144 % of the global mean. This includes the effects of glacial-isostatic adjustment, which mostly contributes across the lateral forebulge regions in North America. While the mid range ocean-averaged elastic-gravitational sea-level variations compare with those associated with thermal expansion and ocean circulation, their combination shows a complex regional pattern, where the former component dominates in the Equatorial Pacific Ocean and the latter in the Arctic Ocean.; RSL for mid-range (MR) and high-end (HE) terrestrial ice melt scenarios from the ice sheet/glacier models. The pattern, here, is for ice melt only: it does not include steric.

  15. Probabilistic framework for assessing the ice sheet contribution to sea level change

    PubMed Central

    Little, Christopher M.; Urban, Nathan M.; Oppenheimer, Michael

    2013-01-01

    Previous sea level rise (SLR) assessments have excluded the potential for dynamic ice loss over much of Greenland and Antarctica, and recently proposed “upper bounds” on Antarctica’s 21st-century SLR contribution are derived principally from regions where present-day mass loss is concentrated (basin 15, or B15, drained largely by Pine Island, Thwaites, and Smith glaciers). Here, we present a probabilistic framework for assessing the ice sheet contribution to sea level change that explicitly accounts for mass balance uncertainty over an entire ice sheet. Applying this framework to Antarctica, we find that ongoing mass imbalances in non-B15 basins give an SLR contribution by 2100 that: (i) is comparable to projected changes in B15 discharge and Antarctica’s surface mass balance, and (ii) varies widely depending on the subset of basins and observational dataset used in projections. Increases in discharge uncertainty, or decreases in the exceedance probability used to define an upper bound, increase the fractional contribution of non-B15 basins; even weak spatial correlations in future discharge growth rates markedly enhance this sensitivity. Although these projections rely on poorly constrained statistical parameters, they may be updated with observations and/or models at many spatial scales, facilitating a more comprehensive account of uncertainty that, if implemented, will improve future assessments. PMID:23404697

  16. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  17. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.

    PubMed

    Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H

    2014-12-30

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers. PMID:25512537

  18. Evolution of the subglacial hydrologic system beneath the rapidly decaying Cordilleran Ice Sheet caused by ice-dammed lake drainage: implications for meltwater-induced ice acceleration

    NASA Astrophysics Data System (ADS)

    Burke, Matthew J.; Brennand, Tracy A.; Perkins, Andrew J.

    2012-09-01

    A positive correlation between ice-dammed lake drainage and ice acceleration at Antarctic Ice Sheets (AIS) and land-terminating sections of the Greenland Ice Sheet (GrIS) has been implicated in enhanced ice sheet decay. However, the paucity of direct measurements at the ice sheet bed restricts our understanding of subglacial drainage system evolution in response to transient water inputs. We present evidence that two meltwater corridors on the former bed of the thin (˜600 m at Last Glacial Maximum over the interior Plateaus of British Columbia) and rapidly decaying Cordilleran Ice Sheet (CIS) were generated subglacially in response to the drainage of an ice-dammed lake and operated as canals (tunnel channels). Geomorphological, ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) data reveal a simple event sequence that includes initial propagation of a broad (at least 2.5 km wide) floodwave (inefficient drainage) from an ice-dammed lake, over relatively short (3-24 km) zones at the corridor heads that collapsed into efficient canals (large (up to 0.25-2.5 km wide) channels incised down into the sediment bed and up into the ice) downglacier. Canal formation on the southern Fraser Plateau involved synchronous (along the full canal length) system development, including elements of headward erosion and plunge pool formation. Our data suggest that ice-dammed lake drainage beneath a rapidly decaying thin ice mass that has an efficient antecedent drainage network is not conducive to large-scale ice acceleration. These data may aid better assessment of the role of ice-dammed lake drainage on the dynamics of former, as well as contemporary, ice sheets.

  19. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kageyama, M.; Braconnot, P.; Harrison, S. P.; Lambeck, K.; Otto-Bliesner, B. L.; Peltier, W. R.; Tarasov, L.; Peterschmitt, J.-Y.; Takahashi, K.

    2015-11-01

    We describe the creation of a data set describing changes related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and elevation of ice-free land at the Last Glacial Maximum (LGM), which were used in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice-sheet extent in the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets, although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Although largely confined to the ice-covered regions, differences between the climate response to the individual LGM reconstructions extend over the North Atlantic Ocean and Northern Hemisphere continents, partly through atmospheric stationary waves. Differences between the climate response to the CMIP5/PMIP3 composite and any individual ice-sheet reconstruction are smaller than those between the CMIP5/PMIP3 composite and the ice sheet used in the last phase of PMIP (PMIP2).

  20. Ice-Sheet Enhancement of Volcanism and Geothermal Heat Flux: a Stress Modeling Approach

    NASA Astrophysics Data System (ADS)

    Stevens, N. T.; Parizek, B. R.; Alley, R. B.

    2015-12-01

    Bore-hole and geophysically inferred geothermal heat fluxes beneath the Greenland Ice Sheet, particularly at the head of the Northeast Greenland Ice Stream, are in some places higher than suggested by the underlying geology. Geologically rapid changes in lithospheric loading during ice-sheet growth and decay produce large changes in the effective stress state beneath and nearby. Oscillating loads will cause oscillating melt volume in deep rocks, and the nonlinear increase of melt migration velocity with melt fraction means that extended ice-age cycling will enhance upward melt migration. Our numerically efficient simulations of ice-sheet/lithosphere interactions produce crustal stresses similar to values estimated to allow dike emplacement and vug-wave migration. Maximum tensile and shear stresses shift both horizontally and vertically during ice sheet growth and decay, suggesting multi-step transport of melt upwards to or near the base of the ice sheet. We thus suggest that regions of high geothermal heat flux arose from cyclic ice-sheet loading, which enhanced melt extraction from a deep source (possibly linked to passage of the Iceland hot spot). We further suggest that similar processes may have been important elsewhere beneath or near present or former ice sheets, potentially enhancing volcanism as well as geothermal flux.

  1. A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Gowan, Evan J.; Tregoning, Paul; Purcell, Anthony; Montillet, Jean-Philippe; McClusky, Simon

    2016-05-01

    We present the results of a new numerical model of the late glacial western Laurentide Ice Sheet, constrained by observations of glacial isostatic adjustment (GIA), including relative sea level indicators, uplift rates from permanent GPS stations, contemporary differential lake level change, and postglacial tilt of glacial lake level indicators. The later two datasets have been underutilized in previous GIA based ice sheet reconstructions. The ice sheet model, called NAICE, is constructed using simple ice physics on the basis of changing margin location and basal shear stress conditions in order to produce ice volumes required to match GIA. The model matches the majority of the observations, while maintaining a relatively realistic ice sheet geometry. Our model has a peak volume at 18,000 yr BP, with a dome located just east of Great Slave Lake with peak thickness of 4000 m, and surface elevation of 3500 m. The modelled ice volume loss between 16,000 and 14,000 yr BP amounts to about 7.5 m of sea level equivalent, which is consistent with the hypothesis that a large portion of Meltwater Pulse 1A was sourced from this part of the ice sheet. The southern part of the ice sheet was thin and had a low elevation profile. This model provides an accurate representation of ice thickness and paleo-topography, and can be used to assess present day uplift and infer past climate.

  2. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    The West Antarctic Ice Sheet (WAIS) is assumed to be inherently unstable because it is grounded below sea level in a large part, where the bedrock deepens from today's grounding line towards the interior of the ice sheet. Idealized simulations have shown that bedrock uplift due to isostatic adjustment of the solid Earth and the associated sea-level fall may stop the retreat of such a marine-based ice sheet (Gomez et al., 2012). Here, we employ a coupled model for ice-sheet dynamics and solid-Earth dynamics, including a gravitationally consistent description of sea level, to investigate the influence of the viscoelastic Earth structure on the WAIS' future stability (Konrad et al. 2015). For this, we start from a steady-state condition for the Antarctic Ice Sheet close to present-day observations and apply atmospheric and oceanic forcing of different strength to initiate the retreat of the WAIS and investigate the effect of the viscoelastic deformation on the ice evolution for a range of solid-Earth rheologies. We find that the climate forcing is the primary control on the occurrence of the WAIS collapse. However, for moderate climate forcing and a weak solid-Earth rheology associated with the West Antarctic rift system (asthenosphere viscosities of 3x10^19 Pa s or less), we find that the combined effect of bedrock uplift and gravitational sea-level fall limits the retreat to the Amundsen Sea embayment on millennial time scales. In contrast, a stiffer Earth rheology yields a collapse under these conditions. Under a stronger climate forcing, weak Earth structures do not prevent the WAIS collapse; however, they produce a delay of up to 5000 years in comparison to a stiffer solid-Earth rheology. In an additional experiment, we test the impact of sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet. In cases when the climatic forcing is too weak to force WAIS collapse by itself, the additional rise in sea-level leads to disintegration of the WAIS

  3. Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada

    USGS Publications Warehouse

    Stumpf, A.J.; Broster, B.E.; Levson, V.M.

    2000-01-01

    In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flo