Science.gov

Sample records for future scientists engineers

  1. Creating Future Scientists and Engineers. 2013 Keynote Speech

    ERIC Educational Resources Information Center

    Hicks, Stephen

    2013-01-01

    This article presents a summary of the keynote speech presented at the ITEEA Conference in Columbus, OH, March 4, 2013, by Steven Hicks. Hicks is former Director, Research & Development, Flavor & Fragrance Development Global Capability, for the Procter & Gamble Company. Educated as a chemical engineer, his outside interests include…

  2. Inspiring Future Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  3. Next Generation Lunar Scientists and Engineers: Effective Professional Development Experiences for Future Members of Lunar Science and Exploration

    NASA Astrophysics Data System (ADS)

    Santiago, D.; Bleacher, L.; Petro, N. E.; Bleacher, J. E.; Noble, S. K.

    2011-12-01

    The Next Generation Lunar Scientists and Engineers (NGLSE) group is a grass roots effort devoted to growing the community of early career lunar scientists and engineers. Recent lunar missions, along with an increase in funding opportunities for lunar science, have resulted in a substantial increase in the number of early career lunar scientists and engineers in recent years. With plans for future US and international lunar missions, the Moon will continue to be a place of intense scientific study. The lunar community is fortunate to be in a position to develop the next generation of lunar researchers and engineers with the support of the first generation of lunar scientists and engineers, ensuring continuity of lunar knowledge and expertise. Established informally in 2008 by early career scientists and education and public outreach (E/PO) professionals, the NGLSE group has since grown tremendously. With over 190 current members from academia, industry, and NASA, the NGLSE is building a representative cross-section of the lunar science and engineering communities. The group's founders have received funding to formally design and implement experience-building and networking activities for group members, such as professional development workshops and other community-building events. The professional development opportunities provided to the NGLSE group enable the members to become better equipped to contribute to the current and future success of the lunar program. The NGLSE has received NASA funding, as well as support from the NASA Lunar Science Institute, to host workshops and meetings for its members, including providing small travel stipends for student participants, in association with major lunar conferences, such as the NASA Lunar Science Forum (LSF) and the Lunar and Planetary Science Conference (LPSC). The goals of the workshops are to provide attendees with professional development, to familiarize them with best practices for communicating their science to

  4. Scientists vs. Engineers

    SciTech Connect

    Wiley, H. S.

    2010-07-01

    In the past, I have heard there was conflict between the “two cultures” of science and the humanities. I don’t see a lot of evidence for that type of conflict today, mostly because my scientific friends all are big fans of the arts and literature. However, the two cultures that I do see a great deal of conflict between are those of science and engineering.

  5. Supply and Demand for Scientists and Engineers. Second Edition.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    This report, which includes 51 tables and charts, examines past, present, and future imbalances in the supply of and demand for scientists and engineers. The supply is assessed by source and by field, and compared with current and short-range demand for new graduates and for experienced scientists and engineers, including assessment of the…

  6. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  7. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    NASA Technical Reports Server (NTRS)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  8. The Supply of Scientists and Engineers.

    ERIC Educational Resources Information Center

    Bueche, Arthur M.

    The supply of scientists and engineers should be viewed not only in terms of quantity, but also in terms of quality and preparation. Forecasts have proven inaccurate in the past so that industry must assure an adequate quantity of students entering the science and engineering fields by the promise of employment. The quality of the professionals…

  9. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    SciTech Connect

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  10. Transformation of Scientists and Engineers Into Managers.

    ERIC Educational Resources Information Center

    Bayton, James A.; Chapman, Richard L.

    Critical factors in the phenomenon of scientist's and engineer's transition from working as specialists to working as supervisors or managers were studied among 489 employees of the National Aeronautics and Space Administration and the National Institutes of Health to discover ways of avoiding or overcoming transition problems. Bench scientists…

  11. SCIENTISTS AND ENGINEERS STATISTICAL DATA SYSTEM (SESTAT)

    EPA Science Inventory

    SESTAT is a comprehensive and integrated system of information about the employment, educational, and demographic characteristics of scientists and engineers (S&E) in the United States. In concept it covers those with a bachelor's degree or higher who either work in or are educat...

  12. Career Management for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  13. The Technological Marketplace. Supply and Demand for Scientists and Engineers. Third Edition.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    Studies of past, present and projected supplies of scientists and engineers and their utilization in science and engineering are reviewed in this report. It is the intent of the study to explain the differences of opinion about the future supply and utilization of scientists and engineers and also to provide an assessment. Contents discuss: (1)…

  14. Young Engineers and Scientists: A Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Hooper, J.

    1996-09-01

    Southwest Research Institute (SwRI) hosts the Young Engineers and Scientists (YES) mentorship program instituted in 1993 in applied physical sciences, information sciences, and engineering for high school juniors and seniors living in San Antonio. The aim of YES is to increase the number of students, including females and minorities, seeking careers in these fields and to enhance the participants' chances of success in achieving their career goals. The program is divided into two parts: an intensive three-week group training session held at SwRI in the summer where students are paired with SwRI staff members on a one-to-one basis, and individual research projects completed during the academic year in which students earn credit at their high school. Several students have completed or are currently working on projects in astronomy. A brief description of the YES program is given with examples from the summer workshop and independent student projects.

  15. Business planning for scientists and engineers

    SciTech Connect

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  16. Young Engineers and Scientists: a Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  17. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Lin, C.; Clarac, T.

    2004-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  18. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Jahn, J.; Hummel, P.

    2003-12-01

    The Young Engineers and Scientists (YES) Program is a ommunity partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We gratefully acknowledge partial funding for the YES Program from a NASA EPO grant.

  19. Doctoral Scientists and Engineers in the United States. 1973 Profile.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    This is the first report on the composition of the nation's doctorate-level scientists and engineers from a survey conducted in the spring of 1973 by the National Academy of Sciences. The survey was based on the roster of doctoral scientists and engineers, which is one of the 3 sources of information about the scientific and engineering population…

  20. MATHEMATICAL ROUTINES FOR ENGINEERS AND SCIENTISTS

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The purpose of this package is to provide the scientific and engineering community with a library of programs useful for performing routine mathematical manipulations. This collection of programs will enable scientists to concentrate on their work without having to write their own routines for solving common problems, thus saving considerable amounts of time. This package contains sixteen subroutines. Each is separately documented with descriptions of the invoking subroutine call, its required parameters, and a sample test program. The functions available include: maxima, minima, and sort of vectors; factorials; random number generator (uniform or Gaussian distribution); complimentary error function; fast Fourier Transformation; Simpson's Rule integration; matrix determinate and inversion; Bessel function (J Bessel function for any order, and modified Bessel function for zero order); roots of a polynomial; roots of non-linear equation; and the solution of first order ordinary differential equations using Hamming's predictor-corrector method. There is also a subroutine for using a dot matrix printer to plot a given set of y values for a uniformly increasing x value. This package is written in FORTRAN 77 (Super Soft Small System FORTRAN compiler) for batch execution and has been implemented on the IBM PC computer series under MS-DOS with a central memory requirement of approximately 28K of 8 bit bytes for all subroutines. This program was developed in 1986.

  1. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  2. A systems engineering primer for every engineer and scientist

    SciTech Connect

    Edwards, William R.

    2001-12-10

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

  3. Developing Earth and Space Scientists for the Future

    NASA Astrophysics Data System (ADS)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  4. Training scientists and engineers for the year 2000

    SciTech Connect

    Trivelpiece, A.W.

    1990-05-08

    This paper is a transcript of testimony by Alvin W. Trivelpiece, director of ORNL, before Congressional Subcommittee on Science, Technology, and Space. Dr. Trivelpiece discusses the importance of training scientist and engineers for the year 2000. (FSD)

  5. Age distribution among NASA scientists and engineers

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.

    1989-01-01

    The loss of technical expertise through attrition in NASA and the aerospace industry is discussed. This report documents historical age-related information for scientific and engineering personnel in general and the NASA Lewis Research Center in particular, for 1968 through 1987. Recommendations are made to promote discussion and to establish the groundwork for action.

  6. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  7. The Study of Women Scientists/Engineers in Academe.

    ERIC Educational Resources Information Center

    Rose, Clare; And Others

    Academic employment and graduate enrollment trends of women scientists/engineers in eight scientific fields were studied, and the dynamics of their occupational choice and career stability were assessed. The eight fields were engineering, physical sciences, environmental sciences, medical sciences, psychology, and social sciences. The principal…

  8. Doctoral Scientists and Engineers in the United States. 1975 Profile.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    This report focuses primarily on the 1975 employment status of 1930-1974 recipients of doctorates in science and engineering residing in the United States. Approximately 63,400 persons of the 314,000 individuals on the 1975 Roster of Doctoral Scientists and Engineers compiled by the National Research Council were sampled. A variable sampling ratio…

  9. Computer Aids For Scientists And Engineers

    NASA Astrophysics Data System (ADS)

    de Maine, P. A. D.; de Maine, M. M.

    1989-03-01

    A General Expert Systems Package for Science and Engineering that is now being deve-loped consists of two Automatic Deductive, two Learning and eight Service Systems, each of which is an Expert System that can function independently. Operational prototypes exist for nine of the twelve systems. The Service Expert Systems perform operations that are common to many problems In science and engineering, such as high-speed information management, data compression, transporting high-level language code to different machine environments, curve-fitting and data description. The high-speed information management system, SOLID, which uses minimal storage, is both data (or information) and logically independent. SOLID executes all operations (retrieve, store, delete and update) at very high-speeds in bounded time. The data compression system, INTEGRAL, compresses and decompresses bit-strings at rates often in excess of 8 MBaud without loss of even a single significant binary-bit, to yield savings as high as 99.98%.

  10. TOUGH Short Course for Scientists and Engineers

    SciTech Connect

    Kowalsky, Michael B.; Finsterle, Stefan

    2006-08-01

    The TOUGH family of codes is a suite of computer programs for the simulation of multiphase fluid and heat flows in porous and fractured media with applications to geothermal reservoir engineering, nuclear waste disposal in geologic formations, geologic carbon sequestration, gas hydrate research, vadose zone hydrology, environmental remediation, oil and gas reservoir engineering, and other mass transport and energy transfer problems in complex geologic settings. TOUGH has been developed in the Earth Sciences Division of the Lawrence Berkeley National Laboratory (LBNL). Many modifications and enhancements have been made to TOUGH (at LBNL and elsewhere) from the time it was first released in 1987. TOUGH and its various descendants (such as iTOUGH2, T2VOC, TMVOC, EWASG, TOUGHREACT, TOUGH+ and many more) are currently in use in approximately 300 research laboratories, private companies, and universities in 33 countries. The LBNL group, headed by Karsten Pruess, serves as custodian of the code. The TOUGH simulators were developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases--and, in certain modules, a non-aqueous phase liquid (NAPL)--occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code includes Klinkenberg effects and binary diffusion in the gas phase, and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction (with thermal conductivity dependent on water saturation), convection, and binary diffusion, which includes both sensible and latent heat. The goal of this training course is to

  11. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  12. Teaching with Engineers and Scientists: What Role for Sociology?

    ERIC Educational Resources Information Center

    Kolack, Shirley; MacDougall, John

    This paper explores whether or not sociology may be integrated into courses on technology and values at the college level. Sociologists are interested in collaborating with scientists and engineers because many of the most urgent social issues of the late 20th century seem to lie at the interface of social values and technological change. The…

  13. The Information Needs of Scientists and Engineers in Aerospace.

    ERIC Educational Resources Information Center

    Raitt, D. I.

    The information seeking and use habits of more than 600 scientists and engineers on staff at the European Space Agency (ESA) were studied and compared with those of staff at five European organizations with similar missions: the United Nations Education, Scientific, and Cultural Organization (UNESCO) in France; the International Atomic Energy…

  14. Going "Green": Environmental Jobs for Scientists and Engineers

    ERIC Educational Resources Information Center

    Ramey, Alice

    2009-01-01

    Green is often used as a synonym for environmental or ecological, especially as it relates to products and activities aimed at minimizing damage to the planet. Scientists and engineers have long had important roles in the environmental movement. Their expertise is focused on a variety of issues, including increasing energy efficiency, improving…

  15. Doctoral Scientists and Engineers in the United States: 1995 Profile.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    This report profiles the demographic and employment characteristics of doctorate-level scientists and engineers in the United States. The data presented were collected through the 1995 Survey of Doctorate Recipients (SDR). The purpose of the SDR is to estimate the number of people holding research doctorates from U.S. institutions in science and…

  16. Business planning for scientists and engineers [3rd edition

    SciTech Connect

    Servo, Jenny C.

    1999-09-01

    This combination text/workbook is intended for use by scientists or engineers actively engaged in developing a product or technology to commercial production. The 'how' of planning is a central theme with special emphasis on development of operational plans and strategic thinking.

  17. Survey of Continuing Education Activities for Engineers and Scientists.

    ERIC Educational Resources Information Center

    Klus, John P.; Jones, Judy A.

    A study was done to provide baseline data on the continuing education opportunities that colleges, universities, and professional societies offer engineers and scientists and to determine how programs and courses are developed. Although degree credit courses were included, the focus was on noncredit education designed to increase or update…

  18. Educational and Demographic Characteristics of Energy-Related Scientists and Engineers, 1976.

    ERIC Educational Resources Information Center

    Finn, Michael G.; Bain, Trevor

    Presented is an analysis of the education, training, and age distribution of experienced scientists, engineers, energy-related scientists, and energy-related engineers. Data are from the 1976 National Survey of Natural and Social Scientists and Engineers, which is one of a series of longitudinal studies of 50,000 scientists in the labor force at…

  19. Shaping the Future of Research: a perspective from junior scientists

    PubMed Central

    MacKellar, Drew C.; Mazzilli, Sarah A.; Pai, Vaibhav P.; Goodwin, Patricia R.; Walsh, Erica M.; Robinson-Mosher, Avi; Bowman, Thomas A.; Kraemer, James; Erb, Marcella L.; Schoenfeld, Eldi; Shokri, Leila; Jackson, Jonathan D.; Islam, Ayesha; Mattozzi, Matthew D.; Krukenberg, Kristin A.; Polka, Jessica K.

    2015-01-01

    The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 nd and 3 rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes. PMID:25653845

  20. Advantage, Absence of Advantage, and Disadvantage Among Scientists and Engineers

    SciTech Connect

    Nancy DiTomaso

    2008-09-23

    DiTomaso talks about survey data on the career experiences of 3,200 scientists and engineers from 24 major companies. Her survey findings indicate that most people who do well in their careers and make significant contributions to their organizations get assistance from others in their workplace in many forms, including offering opportunities such as good projects, providing resources that make good performance more likely, and opening up networking possibilities.

  1. Identifying Future Scientists: Predicting Persistence into Research Training

    PubMed Central

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8–12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers. PMID:18056303

  2. Identifying future scientists: predicting persistence into research training.

    PubMed

    McGee, Richard; Keller, Jill L

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8-12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers. PMID:18056303

  3. Cultivating Scientist- and Engineer-Educators 2010: The Evolving Professional Development Program

    NASA Astrophysics Data System (ADS)

    Hunter, L.; Metevier, A. J.; Seagroves, S.; Kluger-Bell, B.; Porter, J.; Raschke, L.; Jonsson, P.; Shaw, J.; Quan, T. K.; Montgomery, R.

    2010-12-01

    The Professional Development Program (PDP) is at the heart of the education programs of the Institute for Scientist & Engineer Educators. The PDP was originally developed by the Center for Adaptive Optics, and since has been instrumental in developing and advancing a growing community of scientist- and engineer-educators. Participants come to the PDP early in their careers—most as graduate students—and they emerge as leaders who integrate research and education in their professional practice. The PDP engages participants in the innovative teaching and learning strategies of inquiry. Participants put new knowledge into action by designing inquiry activities and teaching their activities in undergraduate science and engineering laboratory settings. In addition to inquiry, members of the PDP community value and intentionally draw from diversity and equity studies and strategies, assessment strategies, education research, knowledge about effective education practices, and interdisciplinary dialogue. This paper describes the PDP, including goals, rationale, format, workshop sessions, outcomes from ten years, and future directions.

  4. The future of complexity engineering

    NASA Astrophysics Data System (ADS)

    Frei, Regina; Di Marzo Serugendo, Giovanna

    2012-06-01

    Complexity Engineering encompasses a set of approaches to engineering systems which are typically composed of various interacting entities often exhibiting self-* behaviours and emergence. The engineer or designer uses methods that benefit from the findings of complexity science and often considerably differ from the classical engineering approach of "divide and conquer". This article provides an overview on some very interdisciplinary and innovative research areas and projects in the field of Complexity Engineering, including synthetic biology, chemistry, artificial life, self-healing materials and others. It then classifies the presented work according to five types of nature-inspired technology, namely: (1) using technology to understand nature, (2) nature-inspiration for technology, (3) using technology on natural systems, (4) using biotechnology methods in software engineering, and (5) using technology to model nature. Finally, future trends in Complexity Engineering are indicated and related risks are discussed.

  5. Citation Analysis: A Case Study of Korean Scientists and Engineers in Electrical and Electronics Engineering.

    ERIC Educational Resources Information Center

    Rieh, Hae-young

    1993-01-01

    Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…

  6. Massive Data Collection: Scientists' Nuggets and Basis for the Future

    NASA Astrophysics Data System (ADS)

    Kisimoto, K.

    2007-12-01

    Particularly after the advent of the multi-beam echosounders (aka, swath mapping system), accumulation of high- resolution bathymetric data invoked tremendous impact on marine sciences worldwide. In the last two decades with rapid improvements of the swath-mapping technologies, our knowledge and view of the seafloor made great advancement. Japan as a coastal state has also been conducting quite extensive and intensive "Continental Shelf Survey" for many years now and has benefited from the swath mapping technology as well. Japanese EEZ covers wide area of the northwestern Pacific and shares borders with tectonically complex and scientifically challenged neighboring regions. The "Continental Shelf Survey" of Japan is a multi-institutional effort by private, academic and governmental sectors, administered by the government. Huge amounts of marine geological, geophysical and bathymetric data are still being collected, compiled and analyzed at each sector who has its responsibility and priority, so the full access to the compiled scientific data or the disclosure of the data to science community would take some more time in future. But the parts of scientific results and data have been presented and published as they come out, at the meetings and in journals, which is also the policy of the administering government. Eyes only preview of the ongoing compiled data is not prohibited, so the international scientific cooperation discussion, for example, could be started earlier and the session like this is a best opportunity for marine scientists to be aware of what we have and what we should have for regional/global sciences to the next step, which are generally costly pursued separately. I will present and discuss on the compiled bathymetric map of the northwestern Pacific together with geophysical data or meta-data in the same region, e.g. gravity, magnetic and seismic data compiled.

  7. Predicting the performance and innovativeness of scientists and engineers.

    PubMed

    Keller, Robert T

    2012-01-01

    A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed. PMID:21875172

  8. What does the future hold for healthcare scientists?

    PubMed

    Ison, Keith

    2006-03-01

    Healthcare scientists apply science and technology to clinical care. Yet health care depends increasingly on complex and sophisticated technology, for both diagnosis and treatment. The speed and extent of scientific research is accelerating; every day brings discoveries of new and exciting materials, methods and ideas which can be applied to improve existing techniques and open up new fields. Much is changing: how do healthcare scientists respond? This article briefly reviews the profile and changing role of healthcare scientists in the NHS. It considers how healthcare scientists might respond to changes in the NHS, both individually and collectively. It contains an update of material first presented to the IMI Annual Conference at York in 2005. PMID:16766309

  9. The Young Engineers and Scientists (YES) Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.; Lin, C.

    2004-11-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  10. The Young Engineers and Scientists (YES) mentorship program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  11. Outreach to Scientists and Engineers at the Hanford Technical Library

    SciTech Connect

    Buxton, Karen A.

    2008-06-17

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than the traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use of the

  12. Next Generation Lunar Scientists and Engineers Group: EPO for the NextGen

    NASA Astrophysics Data System (ADS)

    Petro, N. E.; Bleacher, L.; Bleacher, J. E.; Santiago, D.; Noble, S. K.

    2010-12-01

    With the recent lunar missions and increase in funding opportunities for lunar science, the number of early career lunar scientists and engineers has grown substantially in the last few years. With plans for future US and international orbital and landed spacecraft, the Moon will continue to be a place of intense scientific scrutiny. The Next Generation Lunar Scientists and Engineers (NGLSE) is a grass-roots effort at fostering the growing community of early career lunar scientists and engineers. We are fortunate to be in a position to develop the next generation of lunar enthusiasts with the support of the first generation of lunar scientists and engineers, ensuring continuity of a base of lunar knowledge. The need to foster the next generation of lunar scientists is recognized within NASA and the international community (e.g., International Lunar Exploration Working Group, Lunar Explorers Society, and the Canadian Lunar Research Network). A primary goal of the NASA Lunar Science Institute is to support “...the development of the lunar science community and training the next generation of lunar science researchers.” Additionally, NASA’s Optimizing Science and Exploration Working Group, which is comprised of representatives from several NASA Directorates and Centers, is tasked with the integration of science and engineering for the successful exploration of the Moon. In much the same way, the NGLSE aims to bring early career scientists and engineers together in order to create and support a network of next generation lunar scientists and engineers who will be able to work effectively together. Currently with over 150 members from academia, industry, and NASA, the NGLSE is building a representative cross-section of the lunar science and engineering communities. The NGLSE has received NASA funding to host workshops in association with major lunar conferences, most recently the 2010 NLSI Lunar Science Forum. At this workshop, participants worked with science

  13. Reviews of Data on Science Resources, No. 25. Doctoral Scientists and Engineers in Private Industry, 1973.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported are manpower data needed by those engaged in science and engineering policy activities. The information is collected from scientists and engineers themselves. The basis of this report is the first survey, in a biennial series, of the Doctoral Roster of Scientists and Engineers, conducted for the National Science Foundation by the…

  14. Students Engaged in Research - Young Engineers and Scientists (YES)

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.

    2009-09-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including geosciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  15. Young Engineers and Scientists (YES) -engaging students in research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Reiff, Patricia

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) during the past 18 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including space sciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students' preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  16. Education and training of future wetland scientists and managers

    USGS Publications Warehouse

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  17. Tissue engineering: current strategies and future directions.

    PubMed

    Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2011-04-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future. PMID:22111050

  18. Inspiring future experimental scientists through questions related to colour

    NASA Astrophysics Data System (ADS)

    Fairchild, Mark D.; Melgosa, Manuel

    2014-07-01

    In general, it can be stated that unfortunately in most countries the number of students interested in traditional scientific disciplines (e.g. physics, chemistry, biology, mathematics, etc.) for his/her future professional careers has considerably decreased during the past years. It is likely that among the reasons of this trend we can find that many students feel that these disciplines are particularly difficult, complex, abstract, and even boring, while they consider applied sciences (e.g. engineering) as much more attractive options to them. Here we aim to attract people of very different ages to traditional scientific disciplines, and promote scientific knowledge, using a set of colour questions related to everyday experiences. From our answers to these questions we hope that people can understand and learn science in a rigorous, relaxed and amusing way, and hopefully they will be inspired to continue exploring on their own. Examples of such colour questions can be found at the free website http://whyiscolor.org from Mark D. Fairchild. For a wider dissemination, most contents of this website have been recently translated into Spanish language by the authors, and published in the book entitled "La tienda de las curiosidades sobre el color" (Editorial University of Granada, Spain, ISBN: 9788433853820). Colour is certainly multidisciplinary, and while it can be said that it is mainly a perception, optics is a key discipline to understand colour stimuli and phenomena. The classical first approach in colour science as the result of the interaction of light, objects, and the human visual system will be also reviewed.

  19. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  20. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  1. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  2. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  3. The future for clinical scientists in laboratory medicine.

    PubMed

    Hallworth, M; Hyde, K; Cumming, A; Peake, I

    2002-08-01

    Clinical science in the UK has been presented with a range of opportunities and new initiatives in recent years. This review summarizes the contribution of clinical scientists to the changing face of laboratory medicine, and describes some recent UK Government initiatives to modernize the scientific service and develop the people who work in it. Recent changes in the regulation of professional practice and the need for maintenance of professional competence are also discussed. PMID:12181021

  4. Enhancing the Postdoctoral Experience for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Singer, M.

    2001-12-01

    The National Academies' Committee on Science, Engineering, and Public Policy has been concerned with many aspects of the education and training of scientists in the US. Its most recent effort was an intensive study of the experience of postdocs across all fields. The report concluded that postdocs have become essential in many research settings. It is largely they who carry out the day-to-day work of research and their efforts account for a great deal of the extraordinary productivity of US science. While there is substantial variation in the experiences of postdocs from field to field and among different types of laboratories, overall, the data indicated that employment conditions for postdocs, especially in universities, need to be signficantly improved if the US is to develop the human capital needed to sustain a healthy research enterprise and global leadership. The data collected will be summarized as will some of the more detailed conclusions and recommendations. An essential guiding principle was that the postdoctoral experience is first and foremost a period of apprenticeship for the purpose of gaining scientific, technical, and professional skills that advance the professional career. The Committee also concluded that improvement in the current situation will require efforts by postdocs, their advisers, the host institutions, the funding organizations, and professional societies. Besides reviewing the report, this presentation will summarize some of the actions that have been taken in response to the report since its publication more than a year ago.

  5. Nanomedical Engineering: shaping future nanomedicines

    PubMed Central

    Luo, Dandan; Carter, Kevin A; Lovell, Jonathan F

    2014-01-01

    Preclinical research in the field of nanomedicine continues to produce a steady stream of new nanoparticles with unique capabilities and complex properties. With improvements come promising treatments for diseases, with the ultimate goal of clinical translation and better patient outcomes compared to current standards of care. Here, we outline engineering considerations for nanomedicines, with respect to design criteria, targeting and stimuli-triggered drug release strategies. General properties, clinical relevance and current research advances of various nanomedicines are discussed in light of how these will realize their potential and shape the future of the field. PMID:25377691

  6. Energy-related doctoral scientists and engineers in the United States, 1977

    SciTech Connect

    Not Available

    1980-04-01

    Information is compiled about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data are for the year 1977 and are part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Data on mathematics, physics, chemistry, environmental engineering, engineering, life sciences, psychology, and social sciences doctoral degree specialties are included.

  7. Inspiring the Next Generation of Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Tambara, Kevin

    2013-04-01

    Students are usually not excited about abstract concepts, and teachers struggle to inject "pizzazz" into many of their lessons. K-12 teachers need opportunities and the associated pedagogical training to bring meaningful and authentic learning to their students. The professional educator community needs to develop a learning environment which connects desired content knowledge with science and engineering practices that students need to be successful future technology leaders. Furthermore, this environment must foster student exploration and discovery by encouraging them to use their natural creativity with newly acquired technical skills to complete assigned projects. These practices are explicitly listed in the US "Next Generation Science Standards" document that is due for final publication in the very near future. Education in America must unleash students' desires to create and make with their hands, using their intellect, and growing academic knowledge. In this submission I will share various student projects that I have created and implemented for middle and high school. For each project, students were required to learn and implement engineering best practices while designing, building, and testing prototype models, according to pre-assigned teacher specifications. As in all real-world engineering projects, students were required to analyze test data, re-design their models accordingly, and iterate the design process several times to meet specifications. Another key component to successful projects is collaboration between student team members. All my students come to realize that nothing of major significance is ever accomplished alone, that is, without the support of a team. I will highlight several projects that illustrate key engineering practices as well as lessons learned, for both student and teacher. Projects presented will include: magnetically levitated vehicles (maglev) races, solar-powered and mousetrap-powered cars and boats, Popsicle stick

  8. SESTAT: A Tool for Studying Scientists and Engineers in the United States.

    ERIC Educational Resources Information Center

    Kannankutty, Nirmala; Wilkinson, R. Keith

    The Scientists and Engineers Statistical Data System (SESTAT) is a comprehensive and integrated system of information about scientists and engineers in the United States. It comprises data collected through three national sample surveys supported by the National Science Foundation (NSF): The National Survey of College Graduates, the National…

  9. Continuing Education for Scientists and Engineers: Delivery Systems in North Carolina.

    ERIC Educational Resources Information Center

    Harrell, Daniel E.; Gibbs, Rebecca F.

    Focusing on the continuing education (CE) of scientists/engineers in North Carolina working in small (1-500 employees), geographically dispersed companies, this study: 1) identified and described CE resources currently being used by scientists/engineers to maintain and extend their professional competence and capabilities; 2) determined the extent…

  10. The UCSC Institute for Scientist & Engineer Educators: Supporting Multi-Level STEM Workforce Development

    ERIC Educational Resources Information Center

    St. John, Mark; Castori, Pam

    2014-01-01

    The Institute for Scientist & Engineer Educators (ISEE) is a national effort to improve STEM education and workforce development by transforming how the next generation of scientists and engineers teach and mentor. Housed at the University of California, Santa Cruz, ISEE is the legacy of the educational side of the Center for Adaptive Optics…

  11. The Science Race: Training and Utilization of Scientists and Engineers, US and USSR.

    ERIC Educational Resources Information Center

    Ailes, Catherine P.; Rushing, Francis W.

    This book represents a comparison of the systems of training and utilization of scientists/engineers in the United States and Soviet Union. Chapter 1 provides a general description of the economic structure and organization in which the training of scientists/engineers is conducted and in which such trained personnel are employed. In chapters 2-5,…

  12. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  13. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the

  14. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  15. Toward a Career-Based Theory of Job Involvement: A Study of Scientists and Engineers

    ERIC Educational Resources Information Center

    McKelvey, Bill; Sekaran, Uma

    1977-01-01

    Multiple regression analyses are used to determine the relative importance of 49 factors to job involvement in a study of 441 scientists and engineers. Of particular importance are career and personality factors. (Author)

  16. Highlights of Minority Women Scientists and Engineers Employed by the National Science Foundation.

    ERIC Educational Resources Information Center

    Moranda, Griselio

    2000-01-01

    Reviews the commitment of the National Science Foundation (NSF) to employing minority women scientists and engineers and the progress made in the decades since the equal opportunity plan was established in 1969. (WRM)

  17. The Teaching of Crystallography to Materials Scientists and Engineers.

    ERIC Educational Resources Information Center

    Wuensch, Bernhardt J.

    1988-01-01

    Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)

  18. The McBride Honors Program in Public Affairs for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.

    2006-12-01

    The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.

  19. A statement of the rights of scientists and engineers

    PubMed Central

    Hendee, W

    2009-01-01

    As the Editors of the Biomedical Imaging and Intervention Journal, we are pleased to introduce “The Bill of Rights” written by Dr William Hendee, Chair of the Publication Committee of the International Organization of Medical Physics (IOMP). This document covers the fundamental rights and responsibilities of a scientist - not just medical physicists but the entire biomedical imaging community, including the clinicians and researchers. The simultaneous publication of this document in worldwide leading medical physics and allied journals aims to disseminate these standards to the whole scientific world. We, as part of the wider biomedical imaging science community and as the editors of the biij, are fully committed to ensuring these rights are not infringed by anyone, anywhere. BJJ Abdullah and KH Ng Editors, Biomedical Imaging and Intervention Journal PMID:21611028

  20. A statement of the rights of scientists and engineers.

    PubMed

    Hendee, W

    2009-04-01

    As the Editors of the Biomedical Imaging and Intervention Journal, we are pleased to introduce "The Bill of Rights" written by Dr William Hendee, Chair of the Publication Committee of the International Organization of Medical Physics (IOMP). This document covers the fundamental rights and responsibilities of a scientist - not just medical physicists but the entire biomedical imaging community, including the clinicians and researchers. The simultaneous publication of this document in worldwide leading medical physics and allied journals aims to disseminate these standards to the whole scientific world. We, as part of the wider biomedical imaging science community and as the editors of the biij, are fully committed to ensuring these rights are not infringed by anyone, anywhere.BJJ Abdullah and KH NgEditors, Biomedical Imaging and Intervention Journal. PMID:21611028

  1. Reshaping the Graduate Education of Scientists and Engineers.

    ERIC Educational Resources Information Center

    Institute of Medicine (NAS), Washington, DC.

    In 1993 the Committee on Science, Engineering, and Public Policy issued a report titled "Science, Technology, and the Federal Government: National Goals for a New Era" (the Goals report) which proposed a framework for federal policy to support science and technology. This document can be considered a companion volume to the Goals report and aims…

  2. The Education and Training of America's Scientists and Engineers: 1962.

    ERIC Educational Resources Information Center

    Warkov, Seymour; Marsh, John

    As the second report on the postcensal survey, educational and training backgrounds of scientific and engineering manpower are analyzed on the basis of questionnaire responses from individuals covering 45 professional and technical occupations and college-graduate groups in the 1960 Decennial Census of Population. A total of 40 tables and 5 charts…

  3. Academic Science: Scientists and Engineers, January 1981. Detailed Statistical Tables. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Detailed findings are presented from the National Science Foundation's 1981 Survey of Scientific and Engineering Personnel Employed at Universities and Colleges. Information on characteristics of scientists and engineers employed by approximately 2,200 higher education institutions and data from 19 university-administered federally-funded research…

  4. Salaries of Scientists, Engineers and Technicians: A Summary of Salary Surveys. Eighth Edition.

    ERIC Educational Resources Information Center

    Babco, Eleanor L.

    This report brings together data on salaries of scientists, engineers, and technicians. The salary surveys were conducted by agencies and departments of the federal government, professional scientific and engineering societies, educational associations, magazine publishers, and other professional organizations. Most of the surveys were originally…

  5. An Evaluation of the 1973 Survey of Doctoral Scientists and Engineers.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    The Survey of Doctoral Scientists and Engineers (SDSE) itself was the first of a planned series of biennial surveys of manpower in the physical, life and social sciences, mathematics, and engineering, prepared for the National Science Foundation by the Commission on Human Resources of the National Research Council. This evaluation report attempted…

  6. Lived Experiences and Perceptions on Mentoring among Latina Scientists and Engineers

    ERIC Educational Resources Information Center

    San Miguel, Anitza M.

    2010-01-01

    The purpose of this qualitative study was to reveal the lived mentoring experiences of Latinas in science and engineering. The study also sought to understand how Latina scientists and engineers achieved high-level positions within their organizations and the impediments they encountered along their professional journey. The theoretical framework…

  7. Impact of Entrepreneurship Teaching in Higher Education on the Employability of Scientists and Engineers

    ERIC Educational Resources Information Center

    O'Leary, Simon

    2012-01-01

    This paper explores the impact effective entrepreneurship teaching has on the employability of scientists and engineers. Business teaching, guest speakers and work placements are part of many science and engineering degrees and this research indicates that entrepreneurship and related issues are also being addressed in a variety of ways and having…

  8. Successful Latina Scientists and Engineers: Their Lived Mentoring Experiences and Career Development

    ERIC Educational Resources Information Center

    San Miguel, Anitza M.; Kim, Mikyong Minsun

    2015-01-01

    Utilizing a phenomenological perspective and method, this study aimed to reveal the lived career mentoring experiences of Latinas in science and engineering and to understand how selected Latina scientists and engineers achieved high-level positions. Our in-depth interviews revealed that (a) it is important to have multiple mentors for Latinas'…

  9. Understanding the INTERNET: A guide for materials scientists and engineers

    NASA Astrophysics Data System (ADS)

    Meltsner, Kenneth J.

    1995-04-01

    Newspapers and magazines are full of stories about the Internet and the coming "information superhighway." Predictions for the future range from on-line video rentals and 500 channels of cable television to video telephones and global electronic libraries. Unfortunately, "infobahn" metaphors and hyperbole have obscured the fact that the the Internet is useful now and that it connects a significant fraction of the United States and the world. This article describes, without too many metaphors, the current and near-future capabilities of the Internet and provides basic information about access methods, popular services, and planned changes. In addition, the article also offers a brief introduction to "Net" culture and etiquette.

  10. Academic Science/Engineering: Scientists and Engineers, January 1982. Detailed Statistical Tables. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The data provided in the statistical tables in this publication are derived from the National Science Foundation's Survey of Scientific and Engineering Personnel Employed at Universities and Colleges, January 1982. The tables present statistics on the characteristics of scientists and engineers employed by institutions of higher education. The…

  11. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  12. Future of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1997-01-01

    In the new millennium, software engineering standards are expected to continue to influence the process of producing software-intensive systems which are cost-effetive and of high quality. These sytems may range from ground and flight systems used for planetary exploration to educational support systems used in schools as well as consumer-oriented systems.

  13. The Future Labor Force and Workplace and the Scientific and Engineering Workforce: Implications for Society and Business and Potential Solutions.

    ERIC Educational Resources Information Center

    Lightle, Juliana

    This report examines the future shortages of scientists and engineers and suggests potential solutions to the shortage. The first section presents general demographic data and trends and interprets what this information suggests for the future economy and business in general. The second section considers the supply of physical scientists and…

  14. Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2015-12-01

    The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.

  15. Engineering the Future: Cell 6

    NASA Technical Reports Server (NTRS)

    Stahl, P. H.

    2010-01-01

    This slide presentation reviews the development of the James Webb Space Telescope (JWST), explaining the development using a systems engineering methodology. Included are slides showing the organizational chart, the JWST Science Goals, the size of the primary mirror, and full scale mockups of the JSWT. Also included is a review of the JWST Optical Telescope Requirements, a review of the preliminary design and analysis, the technology development required to create the JWST, with particular interest in the specific mirror technology that was required, and views of the mirror manufacturing process. Several slides review the process of verification and validation by testing and analysis, including a diagram of the Cryogenic Test Facility at Marshall, and views of the primary mirror while being tested in the cryogenic facility.

  16. Future Prospects of Low Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Azim, M. A.

    2014-01-01

    This study presents a review and analysis of the effects of compression ratio and inlet air preheating on engine performance in order to assess the future prospects of low compression ignition engines. Regulation of the inlet air preheating allows some control over the combustion process in compression ignition engines. Literature shows that low compression ratio and inlet air preheating are more beneficial to internal combustion engines than detrimental. Even the disadvantages due to low compression ratio are outweighed by the advantages due to inlet air preheating and vice versa.

  17. Emeritus Scientists, Mathematicians and Engineers (ESME) program. Summary of activities for school year 1991--1992

    SciTech Connect

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children`s natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  18. NASA Science Mission Directorate Forum Support of Scientists and Engineers to Engage in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Grier, J.; Meinke, B. K.; Schneider, N. M.; Low, R.; Schultz, G. R.; Manning, J. G.; Fraknoi, A.; Gross, N. A.; Shipp, S. S.

    2015-12-01

    For the past six years, the NASA Science Education and Public Outreach (E/PO) Forums have supported the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums have fostered collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. As part of this work, in collaboration with the AAS Division of Planetary Sciences, we have interviewed SMD scientists, and more recently engineers, to understand their needs, barriers, attitudes, and understanding of education and outreach work. Respondents told us that they needed additional resources and professional development to support their work in education and outreach, including information about how to get started, ways to improve their communication, and strategies and activities for their teaching and outreach. In response, the Forums have developed and made available a suite of tools to support scientists and engineers in their E/PO efforts. These include "getting started" guides, "tips and tricks" for engaging in E/PO, vetted lists of classroom and outreach activities, and resources for college classrooms. NASA Wavelength (http://nasawavelength.org/), an online repository of SMD funded activities that have been reviewed by both educators and scientists for quality and accuracy, provides a searchable database of resources for teaching as well as ready-made lists by topic and education level, including lists for introductory college classrooms. Additionally, we have also supported scientists at professional conferences through organizing oral and poster sessions, networking activities, E/PO helpdesks, professional development workshops, and support for students and early careers scientists. For more information and to access resources for scientists and engineers, visit http://smdepo.org.

  19. Innovation Development--An Action Learning Programme for Medical Scientists and Engineers

    ERIC Educational Resources Information Center

    Beniston, Lee; Ellwood, Paul; Gold, Jeff; Roberts, James; Thorpe, Richard

    2014-01-01

    There is increasing evidence that action learning is valuable in a higher education setting. This paper goes on to report a personal development programme, based on principles of critical action learning, where the aim is to equip early-career scientists and engineers working in a university setting with the knowledge, skills and confidence to…

  20. Citizenship Ceremony for Dr. von Braun and German-Born Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    1955-01-01

    In a swearing-in ceremony held at Huntsville High School, one hundred and three German-born scientists and engineers, along with family members, took the oath of citizenship to become United States citizens. Among those taking the oath was Dr. Wernher von Braun, located in the second row, right side, third from the end.

  1. Midlife Career Transitions of Men Who Are Scientists and Engineers: A Narrative Study

    ERIC Educational Resources Information Center

    Liu, Yosen; Englar-Carlson, Matt; Minichiello, Victor

    2012-01-01

    This article summarizes the results of a qualitative study of career transition experiences of middle-aged male scientists and engineers in the current socioeconomic environment in the United States. The study addresses the effects of the transitions from psychosocial perspectives. The authors selected participants from research organizations,…

  2. Energy-Related Doctoral Scientists and Engineers in the United States - 1975.

    ERIC Educational Resources Information Center

    Blair, Larry M.

    This report provides information about the number and characteristics of doctoral level engineers and scientists in primarily energy-related activities for 1975. The data included are part of an attempt to monitor the supply and demand of energy technology professionals. Chapter titles which indicate the types and arrangement of data are: (1)…

  3. Using the Curriculum Vita To Study the Career Paths of Scientists and Engineers: An Assessment.

    ERIC Educational Resources Information Center

    Lane, Eliesh O'Neil; Dietz, James S.; Chompalov, Ivan; Bozeman, Barry; Park, Jongwon

    The usefulness of the curriculum vita (CV) as a data source for examining the career paths of scientists and engineers was studied. CVs were obtained in response to an e-mail message sent to researchers working in the area of biotechnology who were funded by the National Science Foundation (55 responses) or listed as authors (industry only) in the…

  4. Modelling the Information Seeking Patterns of Engineers and Research Scientists in an Industrial Environment.

    ERIC Educational Resources Information Center

    Ellis, David; Haugan, Merete

    1997-01-01

    Engineers and research scientists at Statoil's Research Center in Trondheim, Norway were interviewed to determine information-seeking patterns. Eight characteristics were identified: surveying, chaining, monitoring, browsing, distinguishing, filtering, extracting, and ending. The results showed that although there were differences in the features…

  5. Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See

    SciTech Connect

    Lienhard, John

    2004-07-12

    Public radio host Dr. John Lienhard gives a talk titled "Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See". Lienhard contends that spatial visualization is the subtlest of abilities. In his talk, he traces its evolution through the past five centuries and explains how remarkable aids to seeing may have been placing mental visualization under threat.

  6. Employment of Scientists and Engineers in the United States, 1950-66.

    ERIC Educational Resources Information Center

    Rosenthal, Neal H.

    Presented is an assessment of the growth of scientific and technical manpower from 1950 through 1966. The Bureau of Labor Statistics prepared annual estimates of employed natural scientists and engineers which were related to influential economic and social developments. Data were gathered on the supply, training, employment, and other personal…

  7. Nonacademic Scientists and Engineers: Trends from the 1980 and 1990 Censuses.

    ERIC Educational Resources Information Center

    Regets, Mark C.

    This report presents a broad picture of the characteristics of scientists and engineers (S&Es) outside academia and how these characteristics changed between 1980 and 1990. Data for this report come primarily from National Science Foundation tabulations of 1980 and 1990 Public Use Microdata Samples of the decennial census. Around one-third of…

  8. Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See

    ScienceCinema

    Lienhard, John [NPR, United States

    2010-09-01

    Public radio host Dr. John Lienhard gives a talk titled "Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See". Lienhard contends that spatial visualization is the subtlest of abilities. In his talk, he traces its evolution through the past five centuries and explains how remarkable aids to seeing may have been placing mental visualization under threat.

  9. High School Engineering: Pre-Engineering for Future Engineers.

    ERIC Educational Resources Information Center

    Sutter, Gary R.

    1998-01-01

    Describes a course that bridges the gap between pure science and pure technology called Pre-Engineering. This course gives junior and senior students a chance to investigate the possibility of choosing engineering as a major in college as well as to experience hands-on activities, projects, laboratories, problem solving, and computer simulations…

  10. Connecting Ocean Scientists with Future Educators - COSEE Florida's Research Experience for Pre-Service Teachers

    NASA Astrophysics Data System (ADS)

    Cook, S.; Cetrulo, B.; Capers, J.

    2012-12-01

    To bring real world ocean science into the classroom, COSEE Florida's Research Experience for Pre-Service Teachers (REPT) program provides an opportunity for future science teachers to work with marine scientists on research projects. In 2011 and 2012, eleven middle school education majors at Indian River State College in Fort Pierce, FL, participated in a seven week summer experience. Scientist teams at Harbor Branch Oceanographic Institute of Florida Atlantic University, the Smithsonian Marine Station, and the Ocean Research & Conservation Association each mentored two students for 20 hours of research per week with 5 hours of support from Indian River State College (IRSC) faculty. Mentors helped students develop a scientific poster describing their research and guided them in the production of a video vignette called a CSTAR (COSEE Student Teachers as Researchers). The CSTAR videos address a 'nature of science' Florida state standard, have been shown to a variety of audiences in and out of the classroom and are expected to be a more frequently used educational product than a single lesson plan. To showcase the REPT intern accomplishments, an 'end-of-program' symposium open to the COSEE and IRSC communities was held at IRSC. Evaluation data indicate that the first two iterations of the COSEE Florida REPT program have given future teachers an authentic and deeper understanding of scientific practices and have provided ocean scientists with a meaningful opportunity to contribute to ocean science education.

  11. Scientists versus regulators: precaution, novelty & regulatory oversight as predictors of perceived risks of engineered nanomaterials.

    PubMed

    Beaudrie, Christian E H; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of 'nano experts' to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  12. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  13. George Washington University Visa Project-Streamlining Our Visa and Immigration Systems for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Teich, Albert H.

    2014-03-01

    Many scientists believe that current U.S. visa and immigration systems are out of sync with today's increasingly globalized science and technology. This talk will highlight specific proposals that would facilitate the recruitment of promising STEM students by U.S. universities and better enable international scientists and engineers to visit the United States for scientific conferences and research collaboration. Most of these proposals could be implemented without additional resources and without compromising U.S. security. The talk is based on the results of an 18 month study conducted at the George Washington University's Center for International Science & Technology Policy.

  14. Inspiring our future citizens and scientists: follow the Blue Paths (Percorsi nel Blu)!

    NASA Astrophysics Data System (ADS)

    Mioni, Erika; Stroobant, Mascha; Merlino, Silvia; Traverso, Roberto

    2016-04-01

    Very often we hear about scientific communication and education as separate and disconnected domains: in fact while the first one is seen more as a moment of disclosure for disseminating results and latest achievements and consequences (a look to our direct future), the second is, instead, identified as a formative moment in the long term, that often is based on obsolete and dated programs that refer to the past. What would happen if these two domains were, instead, considered as inseparable? As stated by Andrea Schleicher (OECD): "Schools have to prepare students for jobs that have not yet been created, technologies that have not yet been invented and problems that we don't know will arise." How to manage this challenge? The European Commission has proposed seven recommendations to follow for improving Science education and to bring more and more young people closer to STEM (Science, Technology, Engineering and Mathematics) disciplines. Especially three of them (Reccomendation n. 1, 4 and 7) pin out the to-do list for improving communication an education in Science, indicating that "a primary goal of science education across the EU should be to educate students both about the major explanations of the material world that science offers and about the way science works. Moreover teachers of science of the highest quality should be provided for students in primary and lower secondary school; moreover the emphasis in science education before 14 should be on engaging students with science and scientific phenomena (extended investigative work and 'hands-on' experimentation and not through a stress on the acquisition of canonical concepts). Last but not least: good quality teachers, with up to date knowledge and skills, are the foundation of any system of formal science education. Systems to ensure the recruitment, retention and continuous professional training of such individuals must be a policy priority in Europe". Blue Paths (Percorsi nel Blu) is a transversal

  15. Future Cities Engineering: Early Engineering Interventions in the Middle Grades

    ERIC Educational Resources Information Center

    McCue, Camille; James, David

    2008-01-01

    This paper describes qualitative and quantitative research conducted with middle school students participating in a Future Cities Engineering course. Insights were sought regarding both affective and cognitive changes which transpired during the one-semester schedule of activities focused on modeling the infrastructure of a city built 150 years in…

  16. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well

  17. Future heavy duty trucking engine requirements

    NASA Technical Reports Server (NTRS)

    Strawhorn, L. W.; Suski, V. A.

    1985-01-01

    Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.

  18. Engineering a Cause and Cure to Climate Change; Working a culture change with our Future Engineers.

    NASA Astrophysics Data System (ADS)

    Hudier, E. J. J.

    2014-12-01

    Where scientist unravel the laws of nature giving the human race the means to remodel their environment, engineers are the tools that put together the very technologies that give humans this power. Early on, along our first steps through this industrialization era, development was the key word, nature could digest our waste products no matter what. We have managed to tamper with our atmosphere's gas composition and the climate is slowly remodelling our way of life. Engineers are now expected to be a key part of the solution. Engineering programs have evolved to include new dimensions such as ethics, communication and environment. We want future engineers to put these dimensions first while working on new machine designs, concepts and procedures. As undergraduate students with a deep science background we also want them to be a source of information for their co-workers and more. How well are we getting through? How good teachers our future engineers will be? This work take a look at the teaching/learning successes comparing engineering students with students attending an undergraduate program in biology. Methods emphasizing the acquisition of knowledge through lectures and reading assignments are tested along with activities aiming at unraveling the scientific fundamental behind environmental issues and putting forward original solutions to specific problematic. Concept knowledge scores, communications' quality and activities evaluations by students are discussed.

  19. Behavior analysis for information acquisition of scientists and engineers in industry (1)

    NASA Astrophysics Data System (ADS)

    Onodera, Natsuo; Mizukami, Masayuki; Marumo, Kazuaki; Nishimura, Kunio

    Information acquisition actions for a week were recorded by 660 scientists and engineers in about 60 industrial companies. Approximately 3600 records of the actions were analysed in terms of the kind of information to be acquired, the tools to be accessed for information acquisition, the cause for, and the purpase of, information acquisition, necessity and urgency of information to be acquired, the deqee of satisfaction for information abtained, and the pesiod needed for information acquisition. Additionally, a part of poinelists were rent a questionnaise and inteririewed to answer time and money spended for information acquisition and evaluation of various tools for information acquisition, particularly of commercial databases. The main accessing tools are various primary materials, personal connection and personal files. Commercial databases are used 0.44 times per week by a scientist/engineer.

  20. Behavior analysis for information acquisition of scientists and engineers in industry (2)

    NASA Astrophysics Data System (ADS)

    Onodera, Natsuo; Mizukami, Masayuki; Marumo, Kazuaki; Nishimura, Kunio

    Information acquisition actions for a week were recorded by 600 scientists and engineers in about 60 industrial companies. Approximately 3600 records of the actions were analysed in terms of the kind of information to be acquired, the tools to be accessed for information acquisition, the cause for, and the purpose of, information acquisition, necessity and urgency of information to be acquired, the degree of satisfaction for information obtained, and the period needed for information acquisition. Additionally, a part of panelists were sent a questionnaire and interviewed to answer time and money spended for information acquisition and evaluation of various tools for information acquisition, particularly of commercial databases. The main accessing tools are various primary materials, personal connection and personal files. Commercial databases are used 0.44 times per week by a scientist/engineer.

  1. Some Future Software Engineering Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Boehm, Barry

    This paper provides an update and extension of a 2006 paper, “Some Future Trends and Implications for Systems and Software Engineering Processes,” Systems Engineering, Spring 2006. Some of its challenges and opportunities are similar, such as the need to simultaneously achieve high levels of both agility and assurance. Others have emerged as increasingly important, such as the challenges of dealing with ultralarge volumes of data, with multicore chips, and with software as a service. The paper is organized around eight relatively surprise-free trends and two “wild cards” whose trends and implications are harder to foresee. The eight surprise-free trends are:

  2. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  3. An examination of undergraduate engineering students' stereotype of scientists and their career intentions

    NASA Astrophysics Data System (ADS)

    Stara, Michelle M.

    The US Government Accountability Office (GAO) (2013) has acknowledged that additional graduates are needed in engineering and related STEM fields. However, the GAO has also noted that it is difficult to determine if the additional graduates will align with employer demand at the time of entry into the workforce. This research study attempts to examine undergraduate engineering students' perceptions of scientists and if they were related to students' intentions to pursue science by examining the constructs of Stereotypes of Scientists (SOS) and Career Intentions in Science (CIS). While results of data analysis were not significant, patterns were seen that provided valuable information with regard to the variability of undergraduate engineering students and the complexity of what goes into stereotype formation and career choice. As a practitioner, there were pertinent applications that could be implemented from the results of this and related studies. From the perspective of practitioners, the findings may be used to target recruitment, retention, and specific teaching strategies to increase enrollment and graduate numbers in the lesser known engineering and STEM fields.

  4. Knowledge Engineering for Preservation and Future use of Institutional Knowledge

    NASA Technical Reports Server (NTRS)

    Moreman, Douglas; Dyer, John

    1996-01-01

    This Project has two main thrusts-preservation of special knowledge and its useful representation via computers. NASA is losing the expertise of its engineers and scientists who put together the great missions of the past. We no longer are landing men on the moon. Some of the equipment still used today (such as the RL-10 rocket) was designed decades ago by people who are now retiring. Furthermore, there has been a lack, in some areas of technology, of new projects that overlap with the old and that would have provided opportunities for monitoring by senior engineers of the young ones. We are studying this problem and trying out a couple of methods of soliciting and recording rare knowledge from experts. One method is that of Concept Maps which produces a graphical interface to knowledge even as it helps solicit that knowledge. We arranged for experienced help in this method from John Coffey of the Institute of Human and Machine Technology at the University of West Florida. A second method which we plan to try out in May, is a video-taped review of selected failed missions (e.g., the craft tumbled and blew up). Five senior engineers (most already retired from NASA) will, as a team, analyze available data, illustrating their thought processes as they try to solve the problem of why a space craft failed to complete its mission. The session will be captured in high quality audio and with at least two video cameras. The video can later be used to plan future concept mapping interviews and, in edited form, be a product in itself. Our computer representations of the amassed knowledge may eventually, via the methods of expert systems, be joined with other software being prepared as a suite of tools to aid future engineers designing rocket engines. In addition to representation by multimedia concept maps, we plan to consider linking vast bodies of text (and other media) by hypertexting methods.

  5. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  6. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    SciTech Connect

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  7. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    SciTech Connect

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  8. Stereotyping at the undergraduate level revealed during interprofessional learning between future doctors and biomedical scientists.

    PubMed

    Lewitt, Moira S; Ehrenborg, Ewa; Scheja, Max; Brauner, Annelie

    2010-01-01

    Interprofessional education (IPE) involving undergraduate health professionals is expected to promote collaboration in their later careers. The role of IPE between doctors and biomedical scientists has not been explored at the undergraduate level. Our aim was to introduce IPE sessions for medical and biomedical students in order to identify the benefits and barriers to these groups learning together. Medical and biomedical students together discussed laboratory results, relevant literature, and ideas for developing new diagnostic tools. The programme was evaluated with questionnaires and interviews. While there was general support for the idea of IPE, medical and biomedical students responded differently. Biomedical students were more critical, wanted more explicit learning objectives and felt that their professional role was often misunderstood. The medical students were more enthusiastic but regarded the way the biomedical students communicated concerns about their perceived role as a barrier to effective interprofessional learning. We conclude that stereotyping, which can impede effective collaborations between doctors and biomedical scientists, is already present at the undergraduate level and may be a barrier to IPE. Effective learning opportunities should be supported at the curriculum level and be designed to specifically enable a broad appreciation of each other's future professional roles. PMID:20001546

  9. Uprated OMS engine status and future applications

    NASA Technical Reports Server (NTRS)

    Boyd, W. C.; Brasher, W. L.

    1986-01-01

    The baseline Orbital Maneuvering Engine (OME) of the Space Shuttle has the potential for significant performance uprating, leading to increased Shuttle performance capability. The approach to uprating that is being pursued at the NASA Lyndon B. Johnson Space Center is the use of a gas generator-driven turbopump to increase OME operating pressure. A higher pressure engine can have a greater nozzle expansion ratio in the same envelope and at the same thrust level, giving increased engine Isp. The results of trade studies and analyses that have led to the preferred uprated OME configuration are described. The significant accomplishments of a pre-development component demonstration program are also presented, including descriptions of test hardware and discussion of test results. It is shown that testing to date confirms the capability of the preferred uprated OME configuration to meet or exceed performance and life requirements. Potential future activities leading up to a full-scale development program are described, and the capability for the uprated OME to be used in future storable propellant upper stages is discussed.

  10. Work Activities of Employed Doctoral Scientists and Engineers in the U.S. Labor Force, July 1973. Reviews of Data on Science Resources, No. 24.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report presents tabular and graphical data on the characteristics of U.S. employed doctoral scientists and engineers, and includes data of the 1973 cohort; it augments data in a previous report, "Characteristics of Doctoral Scientists and Engineers in the United States, 1973," which reported on scientists and engineers who had received their…

  11. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Cléroux, Caroline; Fehrenbacher, Jennifer; Phipps, Steven; Rupper, Summer; Williams, Branwen; Kiefer, Thorsten

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well

  12. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    NASA Astrophysics Data System (ADS)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal

  13. Designers' Perspectives on Effective Professional Development for Scientist- and Engineer-Educators

    NASA Astrophysics Data System (ADS)

    Seagroves, S.; Metevier, A. J.; Hunter, L.; Porter, J.; Brown, C.; Jonsson, P.; Kluger-Bell, B.; Raschke, L.

    2010-12-01

    While preparing a formal description of the CfAO's Professional Development Program (PDP), some of the PDP's designers and instructors described its core values and unique aspects, for internal reference. However, these ideas are worth sharing, as they represent the insiders' perspectives on what makes the PDP successful. No single attribute described is completely unique to the PDP, but taken together these values and aspects combine and inter-relate to strengthen and distinguish the program. These attributes include: (1) the PDP's main participants, who are practicing scientists and engineers rather than pre-service teachers; (2) the importance of community among these participants; (3) the interdisciplinarity of the participants and the interdisciplinary nature of science/engineering education itself; (4) respect for education research and best practices; (5) a focus on diversity and equity in science/engineering education; (6) the university-level science/engineering lab (as opposed to the lecture) as a venue for innovation; (7) a focus on inquiry as an exemplar of effective science/engineering education; (8) an emphasis on being intentional with one's choices as an educator; (9) a cycle of experience-reflection-innovation-reflection; and (10) the agility of the PDP program and staff to nimbly try new ideas and/or respond to participants' needs. The authors believe that the PDP's unique combination of these values and aspects leads to such successes as high return-participation and over-subscription rates, and contributes to the program's success overall.

  14. The Relationship between Doctoral Completion Time, Gender, and Future Salary Prospects for Physical Scientists

    NASA Astrophysics Data System (ADS)

    Potvin, Geoff; Tai, Robert H.

    2012-03-01

    Drawing from a national survey of Ph.D.-holding physical scientists, we present evidence that doctoral completion time is a strong predictor of future salary prospects: each additional year in graduate school corresponds to a substantially lower average salary. This is true even while controlling for typical measures of scientific merit (grant funding and publication rates) and several other structural and career factors expected to influence salaries. Extending this picture to include gender effects, we show that women earn significantly less than men overall and experience no effect of doctoral completion time on their salaries, while men see a significant gain in salary stemming from earlier completion times. Doctoral completion time is shown to be largely unconnected to measures of prior academic success, research independence, and scientific merit suggesting that doctoral completion time is, to a great extent, out of the control of individual graduate students. Nonetheless, it can be influential on an individual's future career prospects, as can gender-related effects.

  15. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  16. Review: The future of cystatin engineering.

    PubMed

    van Wyk, Stefan G; Kunert, Karl J; Cullis, Christopher A; Pillay, Priyen; Makgopa, Matome E; Schlüter, Urte; Vorster, Barend J

    2016-05-01

    Plant cystatins are naturally occurring protease inhibitors that prevent proteolysis by papain-like cysteine proteases. Their protective action against environmental stresses has been relatively well characterised. Still, there is a need to greatly improve both potency and specificity based on the current rather poor performance of cystatins in biotechnological applications. Research in creating more potent and specific cystatins, including amino acid substitutions in either conserved cystatin motifs and/or at variable amino acid sites, is reviewed. Existing gaps for better understanding of cystatin-protease interactions are further explored. Current knowledge on multi-cystatins or hybrid protease inhibitors involving cystatins as an additional option for cystatin engineering is further outlined along with the nuances of how cystatins with rather unusual amino acid sequences might actually help in cystatin engineering. Finally, future opportunities for application of cystatins are highlighted which include applications in genetically modified transgenic plants for environmental stress protection and also as nutraceuticals, as part of more nutritious food. Further opportunities might also include the possible management of diseases and disorders, often associated with lifestyle changes, and the most immediate and promising application which is inclusion into plant-based recombinant protein production platforms. PMID:26993242

  17. Next generation of scientists and engineers: Who`s in the pipeline

    SciTech Connect

    Babco, E.L.

    1995-12-31

    Our ability to produce the next generation of scientists and engineers is dependent upon two important demographic changes: the trends in the number of births and the increasingly diverse racial and ethnic backgrounds of those already born. The number of births dropped 25% from 1956 to 1976. As a consequence, the number of high school graduates dropped from 3.1 million in 1977 to 2.4 million in 1992 and will not reach the 1977 high until after 2000. More than half of these graduates are women, and one of every four is a member of minority group. Women now make up more than half of all undergraduates and almost half of all graduate students, but are underrepresented in the natural science and engineering fields. Minority students are about half as likely to be enrolled in college as white students. About 32% of all precollege students and 20% of all college students are members of minority groups. Based on current graduate enrollment figures in natural science and engineering, there will be little increase in women`s share of doctorates in the next several years. The number of PhDs earned by American minorities continues to be very small. Not known is when our economy will require more professionals trained in science and engineering. But any serious attempt to increase the number of students eligible to choose college majors in science or engineering must take both sex and race/ethnicity into account. The nation cannot afford to waste the talent in two-thirds of our increasingly diverse population.

  18. Key Future Engineering Capabilities for Human Capital Retention

    NASA Astrophysics Data System (ADS)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  19. Role of military scientists and engineers in space (1980-2000)

    SciTech Connect

    Angelo, J.A. Jr

    1981-01-01

    The Space Transportation System provides military scientists and engineers exciting new capabilities to conduct a variety of pioneering experiments on orbit, taking unique advantage of the space environment itself or observing the planet firsthand from the vantage point of space. The reusable Shuttle/Spacelab configuration permits a more effective use of the human and material resources being committed to the space program in the next decade, and ensures the presence of man in space on a routine basis. However, full-scale exploitation of space for national defense will depend to a great extent on the skillful and successful utilization of the military payload specialists, who will fly and operate various Shuttle-based DoD experiments. This paper explores the doctrine, role, function, and training requirements for DoD payload specialists. The unique advantage of man-in-the-loop activities and the orbiting military scientist conducting experiments in situ is addressed in light of previous US manned space flight experience and the projected capabilities of the Shuttle. 4 figures.

  20. Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference

    SciTech Connect

    Beggs, W.J.

    1981-02-01

    This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; the analysis of variance; quality control procedures; and linear regression analysis.

  1. An Investigation of Factors Affecting How Engineers and Scientists Seek Information

    NASA Technical Reports Server (NTRS)

    Anderson, Claire J; Glassman, Myron; McAfee, R. Bruce; Pinelli, Thomas

    2001-01-01

    This study investigated how 872 US aerospace scientists and engineers select information carriers. When considering oral and written information carriers, the principle of least effort was supported with a strong preference for oral communication over written communication. In examining how the respondents select written carriers, the decision to use or not to use a written carrier was found to be primarily a function of the perceived importance of the carrier's information to a person's work. Task uncertainty and task complexity were found to be significant, but not the primary nor a totally consistent criteria. The perceived quality and accessibility of written carriers were not found significant. The findings reinforce the need for firms to hire knowledgeable employees, to provide them with comprehensive training programs, and to develop formal and informal communication networks.

  2. The Journey of a Science Teacher: Preparing Female Students in the Training Future Scientists after School Program

    ERIC Educational Resources Information Center

    Robinson-Hill, Rona M.

    2013-01-01

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed…

  3. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  4. STEMujeres: A case study of the life stories of first-generation Latina engineers and scientists

    NASA Astrophysics Data System (ADS)

    Vielma, Karina I.

    Research points to the many obstacles that first-generation, Latina students face when attempting to enter fields in science, technology, engineering, and mathematics, STEM. This qualitative, case study examined the personal and educational experiences of first-generation Latina women who successfully navigated the STEM educational pipeline earning bachelor's, master's, and doctoral degrees in various fields of engineering. Three research questions guided the study: (1) How does a first-generation Latina engineer and scientist describe her life experiences as she became interested in STEM? (2) How does she describe her educational experiences as she navigated the educational pipeline in the physics, mathematics, and/or engineering field(s)? (3) How did she respond to challenges, obstacles and microaggressions, if any, while navigating the STEM educational pipeline? The study was designed using a combination of Critical Race Theory frameworks---Chicana feminist theory and racial microaggressions. Through a life history case study approach, the women shared their stories of success. With the participants' help, influential persons in their educational paths were identified and interviewed. Data were analyzed using crystallization and thematic results indicated that all women in this study identified their parents as planting the seed of interest through the introduction of mathematics. The women unknowingly prepared to enter the STEM fields by taking math and science coursework. They were guided to apply to STEM universities and academic programs by others who knew about their interest in math and science including teachers, counselors, and level-up peers---students close in age who were just a step more advanced in the educational pipeline. The women also drew from previous familial struggles to guide their perseverance and motivation toward educational degree completion. The lives of the women where complex and intersected with various forms of racism including

  5. YES 2K6: A mentorship program for young engineers and scientists

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  6. Comparison: Direct thrust nuclear engine, nuclear electric engine, and a chemical engine for future space missions

    SciTech Connect

    Ramsthaler, J.H.; Sulmeisters, T.K.

    1988-01-01

    The need for an advanced direct thrust nuclear rocket propulsion engine has been identified in Project Forecast 2, Air Force Systems Command report which looks into future Air Force needs. The Air Force Astronautical Laboratory (AFAL) has been assigned responsibility for developing the nuclear engine, and they in turn have requested support from teams of contractors who have the full capability to assist in the development of the nuclear engine. The Idaho National Engineering Laboratory (INEL) has formed a team of experts with Martin Marietta for mission analysis. Science Applications International (SAIC) for flight safety analysis, Westinghouse for the nuclear subsystem, and Rocketdyne for the engine system. INEL is the overall program manager and manager for test facility design, construction and operation. The INEL team has produced plans for both the engine system and the ground test facility. AFAL has funded the INEL team to perform mission analyses to evaluate the cost, performance and operational advantages for a nuclear rocket engine in performing Air Force Space Missions. For those studies, the Advanced Nuclear Rocket Engine (ANRE), a scaled down NERVA derivative, was used as the baseline nuclear engine to compare against chemical engines and nuclear electric engines for performance of orbital transfer and maneuvering missions. 3 tabs.

  7. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  8. Helping Students Build Their Future in Engineering

    ERIC Educational Resources Information Center

    English, Vincent

    2014-01-01

    EngineeringUK estimates that the UK will require 87,000 new engineers a year over the next ten years. However, with skills shortages threatening to derail the UK's engineering industry, it is clear that immediate action needs to be taken if this quota is to be met. In this article, Vincent English, managing director of Vernier Europe, offers his…

  9. The landscape of Wageningen as an inspiring teaching environment for future environmental scientists

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Sonneveld, Marthijn

    2013-04-01

    Practical field work is an essential component in training future soil scientists. This is facilitated when a wide variety of geological materials geomorphological phenomena and soil patterns are within reach. One of the leading universities in soil science in the Netherlands, Wageningen University, was founded some hundred years ago in the small city of Wageningen because of the rich variety of soils and landscapes in its vicinity. Being located in the central part of the Netherlands, its region is famous because here Late-Pleistocene and Late-Holocene deposits meet. Wageningen is located on the slope of an ice pushed ridge which dates from the Saalien ice age, bordering a glacial tongue basin The ridge is mainly composed of pushed coarse grained fluvial deposits. In the Weichselien ice age cover sands have been deposited on the sides of this ridge. During the Holocene the ridge was eroded on the southern side, where the river Rhine has cut into the older deposits and deposited mainly fine grained fluvial deposits. Peat formation took place in the lower parts of the basin. In addition this region has been inhabited by people, who have worked, and fertilized the soil, creating a thickened A-horizon in some locations around Wageningen. This geological setting has created a palette of different sedimentary deposits which serve as mother material for a variety of soil types like podzols, brown forest soils, , fluvial clay to loamy soils, plaggen soils and peat soils. In our education we frequently use the soils in the surrounding as a teaching environment for our students. They are send out to use all their senses and look, feel, hear and sometimes even taste the soils. They use these impressions to describe the soils and understand why the soils are on that specific place in the landscape where we find it. We feel students benefit from this playground in our backyard, because, even though students work more and more in an individual and virtual environment where they

  10. The Future of Engineering Science & Engineering Technology: Collision or Convergence?

    ERIC Educational Resources Information Center

    Kenyon, Richard A.

    1985-01-01

    Discusses differences and similarities of engineering (theoretical/abstract) and engineering technology (practical/application-oriented) programs which the author believes are artificially divided. The fields overlap and should be reunited, but this will need more effective interaction among all engineering professionals and revision of…

  11. From Science to Business: Preparing Female Scientists and Engineers for Successful Transitions into Entrepreneurship--Summary of a Workshop

    ERIC Educational Resources Information Center

    Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria

    2012-01-01

    Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…

  12. The Effects of Nonresponse Bias on the Results of the 1975 Survey of Doctoral Scientists and Engineers.

    ERIC Educational Resources Information Center

    Spisak, Andrew W.; Maxfield, Betty D.

    This report is based on the results of the Survey of Doctoral Scientists and Engineers and the Nonresponse Bias Survey published by the Commission on Human Resources of the National Research Council in 1975. Possible biases in estimates of variables are examined. Estimates based on data from the 1975 survey respondents, plus the nonresponse bias…

  13. National Sample of Scientists and Engineers: Median Annual Salaries, 1974. Science Resources Studies Highlights, December 22, 1975.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported in this newsletter in narrative and tabular form is the result of a 1972 Professional Technical and Scientific Manpower Survey and a 1974 National Survey of Scientists and Engineers, which also contains information for 1973. The two surveys contributed information for a longitudinal file for which demographic, educational, and employment…

  14. Educational Experiences of Nigerian Scientists and Engineers: Problems of Technological Skill-Formation for National Self-Reliance.

    ERIC Educational Resources Information Center

    Ukaegbu, Chikwendu C.

    1985-01-01

    Summarizes data on educational experiences from a study exploring the effective job utilization of 266 Nigerian scientists and engineers. Compares experiences of foreign and locally trained personnel. Discusses existing notions about science and technology education in developing countries in general and Nigeria in particular. (NEC)

  15. Scientists, Engineers, and Technicians in Manufacturing Industries: 1983. Detailed Tables and Charts. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report presents national estimates of employment of scientists, engineers, and technicians (SETs) in manufacturing industries in 1983. The estimates are provided as data in five charts and three detailed statistical tables. Data in charts include: SETs by sector of employment; employment growth in high-technology and other manufacturing…

  16. Scientists, Engineers, and Technicians in Trade and Regulated Industries: 1982. Detailed Statistical Tables. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Statistical data on scientists, engineers, and technicians (SET) in trade and regulated industries in 1982 are provided in three sections: (1) SET in trade and regulated industries by major occupational group and detailed industry of employment; (2) SET in trade and regulated industries by detailed occupation and broad industry group of…

  17. Research and Development in Industry: 1979. Funds, 1979. Scientists and Engineers, January 1980. Surveys of Science Resources Series. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report analyzes data on research and development (R&D) performed by industry during 1979, examines historical trends for key R&D funding variables, and presents information on industry-employed R&D scientists and engineers. Areas addressed in the first section on R&D funds include: major R&D industries (aircraft/missiles, electrical…

  18. Asian and Pacific Islander Women Scientists and Engineers: A Narrative Exploration of Model Minority, Gender, and Racial Stereotypes.

    ERIC Educational Resources Information Center

    Chinn, Pauline W. U.

    2002-01-01

    Uses narrative methodology in a qualitative study to understand what becoming a scientist or engineer entails for women stereotyped as model minorities. Narratives revealed that Confucian cultural scripts shaped gender expectations even in families several generations in America. (Author/MM)

  19. The future of computational modelling in reaction engineering.

    PubMed

    Kraft, Markus; Mosbach, Sebastian

    2010-08-13

    In this paper, we outline the future of modelling in reaction engineering. Specifically, we use the example of particulate emission formation in internal combustion engines to demonstrate what modelling can achieve at present, and to illustrate the ultimately inevitable steps that need to be taken in order to create a new generation of engineering models. PMID:20603373

  20. Italy's contribution, from a medical standpoint, to the space safety of payload scientists, and perspectives for the future

    NASA Astrophysics Data System (ADS)

    Rotondo, G.; Ramacci, G. A.; Meineri, G.; Modugno, G. C.; Monesi, F.

    In Italy, the selection of the Italian payload scientists has been performed according to the Spacelab Program of ESA. Twenty-four subjects underwent a screening performed by the Health Service of Italian Air Force. They were requested to pass an exercise test on treadmill and another ten-minute test on centrifuge, subject to the effect of + 3 G z. The authors briefly describe the results of the test. Noteworthy is the determination of Central Flicker Fusion Frequency. This parameter makes it possible to assess the endurance level of the subject, much earlier than other techniques (e.g. EKG). The importance of an accurate preliminary screening is emphasized as well as of successive training periods. Future studies will be undertaken to compare evoked cortical potentials with behaviour parameters of space safety, with a view to setting up a subtle tool of evaluation for both future candidates and payload scientists.

  1. Young Engineers and Scientists (YES 2K6): Independent and Group Mentorship Projects

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2006-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 14 years, and YES 2K6 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences and engineering. YES 2K6 consists of two parts: 1) a three-week summer workshop and 2) a mentorship where students complete individual research projects during their academic year. The intensive workshop is held at SwRI where students experience the research environment first-hand. They also develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. YES 2K6 students developed a website for the Magnetospheric Multiscale (MMS) Mission from the perspective of a high school student. The collegial mentorship takes place during their academic year where students complete individual research projects under the guidance of their mentors and earn honors credit. At the end of the school year, students publicly present and display their work at their schools. This acknowledges their accomplishments and spreads career awareness to other students and teachers. Over the past 14 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the benefits of YES for their academic preparation and choice of college majors. We acknowledge E/PO funding from the NASA MMS Mission and local charitable foundations.

  2. YES 2K7: A Mentorship Program for Young Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P.

    2007-10-01

    The Young Engineers and Scientists 2007 (YES 2K7) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years, with YES 2K7 continuing this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K7 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  3. 1990 National Compensation Survey of Research and Development Scientists and Engineers

    SciTech Connect

    Not Available

    1990-11-01

    This report presents the results of the fourth in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1990 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on almost 41,000 degreed researchers in the hard'' sciences. The fundamental nature of the survey has not changed: the focus is still on medium- and large-sized establishments which employ at least 100 degreed S Es in R D. The 1990 Survey contains data which cover about 18% of all establishments eligible to participate, encompassing approximately 18% of all eligible employees. As in the last three years, the survey sample constitutes a fairly good representation of the entire population of eligible establishments on the basis of business sector, geographic location, and size. Maturity-based analyses of salaries for some 34,000 nonsupervisory researchers are provided, as are job content-based analyses of more than 27,000 individual contributors and almost 5000 first level supervisors and division directors. Compensation policies and practices data are provided for 102 establishments, and benefits plans for 62 establishments are analyzed.

  4. Preparing a New Generation of Citizens and Scientists to Face Earth's Future

    ERIC Educational Resources Information Center

    Bralower, Timothy J.; Feiss, P. Geoffrey; Manduca, Cathryn A.

    2008-01-01

    As the research interests and the focus of traditional earth scientists are transformed, so too must education in earth system science at colleges and universities across the country change. The required change involves not only the methods used to teach this new science, but also the essential place of the earth sciences in the panoply of…

  5. Public Outreach at RAL: Engaging the Next Generation of Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Corbett, G.; Ryall, G.; Palmer, S.; Collier, I. P.; Adams, J.; Appleyard, R.

    2015-12-01

    The Rutherford Appleton Laboratory (RAL) is part of the UK's Science and Technology Facilities Council (STFC). As part of the Royal Charter that established the STFC, the organisation is required to generate public awareness and encourage public engagement and dialogue in relation to the science undertaken. The staff at RAL firmly support this activity as it is important to encourage the next generation of students to consider studying Science, Technology, Engineering, and Mathematics (STEM) subjects, providing the UK with a highly skilled work-force in the future. To this end, the STFC undertakes a variety of outreach activities. This paper will describe the outreach activities undertaken by RAL, particularly focussing on those of the Scientific Computing Department (SCD). These activities include: an Arduino based activity day for 12-14 year-olds to celebrate Ada Lovelace day; running a centre as part of the Young Rewired State - encouraging 11-18 year-olds to create web applications with open data; sponsoring a team in the Engineering Education Scheme - supporting a small team of 16-17 year-olds to solve a real world engineering problem; as well as the more traditional tours of facilities. These activities could serve as an example for other sites involved in scientific computing around the globe.

  6. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  7. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  8. Scholarship program to benefit future engineers

    SciTech Connect

    Not Available

    1993-02-01

    ASDSO this year launched a new scholarship program for undergraduate students interested in dam safety engineering as a career. Two scholarships of $2,500 each will be granted to one junior and one senior, beginning with the 1993 school year. Students taking a full college course load and majoring in civil or agricultural engineering, geology, or a related field, were elgible. ASDSO, which plans to name the recipients by May 1993, received about two dozen applications for the scholarships.

  9. National Sample of Scientists and Engineers: Participation in National Programs and Changes in Educational Attainment, 1972-74. Science Resources Studies Highlights, August 5, 1975.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    In 1972 and 1974, the Bureau of the Census, with support of the National Science Foundation, conducted surveys of 50,000 scientists and engineers. The sample represented 1.4 million individuals who had been identified as scientists or engineers on the basis of a set of criteria which included occupation, personal identification, and major subject…

  10. Human Microbiome Engineering: The Future and Beyond

    PubMed Central

    2015-01-01

    Microbial flora of skin and mucosal surface are vital component of human biology. Current research indicates that this microbial constellation, rather than being inert commensals, has greater implications in health and disease. They play essential role in metabolism, immunity, inflammation, neuro-endocrine regulation and even moderate host response to cancer. Genetic engineering was a major breakthrough in medical research in 1970’s and it opened up newer dimensions in vaccinology, large-scale synthesis of bio-molecule and drug development. Engineering human microbiome is a novel concept. Recombinant DNA technology can be employed to modify the genome of critical components of resident microflora to achieve unprecedented goals. PMID:26500908

  11. Academic Science/Engineering: 1972-83. R&D Funds, Federal Support, Scientists and Engineers, Graduate Enrollment and Support. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This publication is the third in a series of biennial reports in which academic resources in science and engineering are analyzed. It is based primarily on findings from four National Science Foundation surveys that collect information on academic research and development (R&D) expenditures, federal obligations, employment of scientists and…

  12. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  13. The Demand for New Faculty in Science and Engineering. Proceedings of the Workshop of Specialists in Forecasts of Demand for Scientists and Engineers, 1979.

    ERIC Educational Resources Information Center

    McPherson, Michael S., Ed.

    Presented are selected analytical papers from a Workshop of Specialists in Forecasts of Demand for Scientists and Engineers, convened in 1979 in Washington, D.C. This workshop was part of a study by the Commission on Human Resources of the National Research Council charged with evaluating existing projections of the demand for young faculty in the…

  14. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  15. Educating future nursing scientists: Recommendations for integrating omics content in PhD programs.

    PubMed

    Conley, Yvette P; Heitkemper, Margaret; McCarthy, Donna; Anderson, Cindy M; Corwin, Elizabeth J; Daack-Hirsch, Sandra; Dorsey, Susan G; Gregory, Katherine E; Groer, Maureen W; Henly, Susan J; Landers, Timothy; Lyon, Debra E; Taylor, Jacquelyn Y; Voss, Joachim

    2015-01-01

    Preparing the next generation of nursing scientists to conduct high-impact, competitive, sustainable, innovative, and interdisciplinary programs of research requires that the curricula for PhD programs keep pace with emerging areas of knowledge and health care/biomedical science. A field of inquiry that holds great potential to influence our understanding of the underlying biology and mechanisms of health and disease is omics. For the purpose of this article, omics refers to genomics, transcriptomics, proteomics, epigenomics, exposomics, microbiomics, and metabolomics. Traditionally, most PhD programs in schools of nursing do not incorporate this content into their core curricula. As part of the Council for the Advancement of Nursing Science's Idea Festival for Nursing Science Education, a work group charged with addressing omics preparation for the next generation of nursing scientists was convened. The purpose of this article is to describe key findings and recommendations from the work group that unanimously and enthusiastically support the incorporation of omics content into the curricula of PhD programs in nursing. The work group also calls to action faculty in schools of nursing to develop strategies to enable students needing immersion in omics science and methods to execute their research goals. PMID:26123776

  16. Engineering the Future: The Social Necessity of Communicative Engineers

    ERIC Educational Resources Information Center

    Ravesteijn, Wim; De Graaff, Erik; Kroesen, Otto

    2006-01-01

    It is a long and winding road from invention to innovation. Starting from this observation, this paper presents a historical perspective on the capabilities engineers should possess to do their work. The importance of the "communicative competence" involved in creating a social base for innovation is underpinned. We will present a theoretical…

  17. UCS-PROMOVE: The Engineer of the Future

    ERIC Educational Resources Information Center

    Villas-Boas, V.

    2010-01-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called "The engineer of the future", with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a…

  18. Addressing the Misconceptions of Middle School Students About Becoming a Scientist or Engineer

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Sorge, C.; Hagerty, J. J.

    2000-01-01

    Assessment of our educational outreach program shows that students and their parents are excited about space science, but stereotypes about science and scientists drastically effect student attitudes about science and pursuing a technical career.

  19. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Koelle, D. E.; Parsley, R. C.

    1992-08-01

    Several feasible design options are presented for plug engine systems designed for future launch vehicle applications, including a plug nozzle engine with an annular combustion chamber, a segmented modular design, and an integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications, which include single-stage-to-orbit vehicles and upper stage vehicles such as the second stage of the Saenger HTOL launch vehicle concept.

  20. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-01-01

    ; utility options for setting sea-level rise and climate change scenarios; and ease or difficulty of storing, displaying, or interpreting model output. Coastal land managers, engineers, and scientists can benefit from this synthesis of tools and models that have been developed for projecting causes and consequences of sea-level change on the landscape and seascape.

  1. Ocular tissue engineering: current and future directions.

    PubMed

    Karamichos, D

    2015-01-01

    Tissue engineering (TE) is a concept that was first emerged in the early 1990s to provide solutions to severe injured tissues and/or organs [1]. The dream was to be able to restore and replace the damaged tissue with an engineered version which would ultimately help overcome problems such as donor shortages, graft rejections, and inflammatory responses following transplantation. While an incredible amount of progress has been made, suggesting that TE concept is viable, we are still not able to overcome major obstacles. In TE, there are two main strategies that researchers have adopted: (1) cell-based, where cells are been manipulated to create their own environment before transplanted to the host, and (2) scaffold-based, where an extracellular matrix is created to mimic in vivo structures. TE approaches for ocular tissues are available and have indeed come a long way, over the last decades; however more clinically relevant ocular tissue substitutes are needed. Figure 1 highlights the importance of TE in ocular applications and indicates the avenues available based on each tissue.[...]. PMID:25695336

  2. Engineering the Future: Embedding Engineering Permanently across the School-University Interface

    ERIC Educational Resources Information Center

    MacBride, G.; Hayward, E. L.; Hayward, G.; Spencer, E.; Ekevall, E.; Magill, J.; Bryce, A. C.; Stimpson, B.

    2010-01-01

    This paper describes the design, implementation, and evaluation of an educational program. Engineering the Future (EtF) sought to promote a permanent, informed awareness within the school community of high-level engineering by embedding key aspects of engineering within the education curriculum. The Scottish education system is used for a case…

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  4. Bone Tissue Engineering: Past-Present-Future.

    PubMed

    Quarto, Rodolfo; Giannoni, Paolo

    2016-01-01

    Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter. PMID:27236664

  5. Space Shuttle Main Engine (SSME) Options for the Future Shuttle

    NASA Technical Reports Server (NTRS)

    Jue, Fred; Kuck, Fritz; McCool, Alex (Technical Monitor)

    2002-01-01

    The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump

  6. Astrobiobound! Search for Life in the Solar System: Scientists and Engineers Bringing their Challenges to K-12 Students

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.

    2014-12-01

    The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.

  7. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    SciTech Connect

    Gorenstein, David

    2013-12-23

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  8. Critical Interfaces for Engineers and Scientists, 4 Appraisals. Proceedings of the Annual Joint Meeting of the Engineering Manpower Commission of Engineers Joint Council and the Scientific Manpower Commission, New York, May 18, 1967.

    ERIC Educational Resources Information Center

    Alden, John D.

    Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…

  9. A Perspective on the Future of High Efficiency Engines

    SciTech Connect

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  10. Employment of Academic Scientists and Engineers Increases from January 1974 to January 1975. Science Resources Studies Highlights. NSF 75-331.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    The number of scientists and engineers employed at universities and colleges has shown an increase in each of six consecutive surveys conducted between 1965 and 1975. Since 1965 the number of those employed full-time has expanded from 142,700 to 239,000 or 68 percent, while the number of part-time scientists and engineers grew from 36,200 to…

  11. UCS-PROMOVE: The engineer of the future

    NASA Astrophysics Data System (ADS)

    Villas-Boas, V.

    2010-06-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.

  12. Conventional engine technology. Volume 3: Comparisons and future potential

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.

    1981-01-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  13. Starting Early: Increasing Elementary (K-8) Student Science Achievement with Retired Scientists and Engineers

    ERIC Educational Resources Information Center

    Wilson, Judith; Krakowsky, Arthur M.; Herget, Charles J.

    2010-01-01

    Teaching Opportunities for Partners in Science (TOPS) is an outreach program using volunteers (the "partners") for: 1) assisting teachers in grades K-8 with preparation and delivery of science and engineering (S&E) lessons in the classroom; 2) providing content knowledge to teachers when needed to teach quality science and engineering lessons; 3)…

  14. Inspiring future scientists in middle-schools through synergy between classroom learning and water cycle research

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Kellagher, E.; Berkelhammer, M. B.; Raudzens Bailey, A.; Kaushik, A.

    2012-12-01

    Water is at the core of many issues in environmental change from local to global scales, and learning about the water cycle offers students an opportunity to explore core scientific concepts and their local environment. In climate research, there are significant uncertainties in the role water plays in the climate system. Water also acts as a central theme that provides opportunities for experiential science education at all levels. The "Water Spotters" program underway at University of Colorado exploits the synergy between needs for enrichment of middle-school science education and the needs for water sample collection to provide primary data for climate research. The program takes advantage of the prominent agricultural landscape of the region in eastern Colorado, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. In coordination with the St. Vrain Valley School District MESA (Math Engineering Science Achievement) program, middle-school students collect rain water samples that are analyzed and used as a core component of the research goals. In concert, new lessons have been developed in coordination with science teachers that emphasize both core scientific standards and application learning about the water cycle. We present the new curriculum modules developed for the program and that are distributed to middle-school teachers. The modules include original lessons and lessons with expanded original material to teach about water and water isotopes. Curriculum packages that include media resources are increasingly important to teachers. The Water Spotters program uses video to teach collection protocols and give background on the project. Weather station data from schools are disseminated online alongside the rainwater

  15. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  16. Building Better Futures: Leveraging Action Learning at Kentz Engineers & Constructors

    ERIC Educational Resources Information Center

    Karallis, Takis; Sandelands, Eric

    2011-01-01

    This article provides a case study of how Kentz Engineers & Constructors, with more than 10,000 employees in 26 countries, are leveraging learning to "Build better futures" for its stakeholders: clients, shareholders, employees and communities. Kentz provide opportunities for learning at all levels, ensuring that "no one is left behind". This case…

  17. Asian and Pacific Islander women scientists and engineers: A narrative exploration of model minority, gender, and racial stereotypes

    NASA Astrophysics Data System (ADS)

    Chinn, Pauline W. U.

    2002-04-01

    This qualitative study uses narrative methodology to understand what becoming a scientist or engineer entails for women stereotyped as model minorities. Interviews with four Chinese and Japanese women focused on the social contexts in which science is encountered in classrooms, families, and community. Interpretation was guided by theories that individuals construct personal narratives mediated by cultural symbolic systems to make meaning of experiences. Narratives revealed that Confucian cultural scripts shaped gender expectations even in families several generations in America. Regardless of parents' level of education, country of birth, and number of children, educational expectations, and resources were lower for daughters. Parents expected daughters to be compliant, feminine, and educated enough to be marriageable. Findings suggest K-12 gender equity science practices encouraged development of the women's interests and abilities but did not affect parental beliefs. The author's 1999 study of Hawaiians/Pacific Islander and Filipina female engineers is included in implications for teacher education programs sensitive to gender, culture, ethnicity, and language.

  18. A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  19. Study of the scientific reasoning methods: Identifying the salient reasoning characteristics exhibited by engineers and scientists in an R&D environment

    NASA Astrophysics Data System (ADS)

    Kuhn, William F.

    At the core of what it means to be a scientist or engineer is the ability to think rationally using scientific reasoning methods. Yet, typically if asked, scientist and engineers are hard press for a reply what that means. Some may argue that the meaning of scientific reasoning methods is a topic for the philosophers and psychologist, but this study believes and will prove that the answers lie with the scientists and engineers, for who really know the workings of the scientific reasoning thought process than they. This study will provide evidence to the aims: (a) determine the fundamental characteristics of cognitive reasoning methods exhibited by engineer/scientists working in R&D projects, (b) sample the engineer/scientist community to determine their views as to the importance, frequency, and ranking of each of characteristics towards benefiting their R&D projects, (c) make concluding remarks regarding any identified competency gaps in the exhibited or expected cognitive reasoning methods of engineer/scientists working on R&D projects. To drive these aims are the following three research questions. The first, what are the salient characteristics of cognitive reasoning methods exhibited by engineer/scientists in an R&D environment? The second, what do engineer/scientists consider to be the frequency and importance of the salient cognitive reasoning methods characteristics? And the third, to what extent, if at all, do patent holders and technical fellows differ with regard to their perceptions of the importance and frequency of the salient cognitive reasoning characteristics of engineer/scientists? The methodology and empirical approach utilized and described: (a) literature search, (b) Delphi technique composed of seven highly distinguish engineer/scientists, (c) survey instrument directed to distinguish Technical Fellowship, (d) data collection analysis. The results provide by Delphi Team answered the first research question. The collaborative effort validated

  20. Enhancing Diversity in the Public Health Research Workforce: The Research and Mentorship Program for Future HIV Vaccine Scientists

    PubMed Central

    Adamson, Blythe Jane S.; Andrasik, Michele P.; Flood, Danna M.; Wakefield, Steven F.; Stoff, David M.; Cook, Ryan S.; Kublin, James G.; Fuchs, Jonathan D.

    2015-01-01

    Objectives. We developed and evaluated a novel National Institutes of Health–sponsored Research and Mentorship Program for African American and Hispanic medical students embedded within the international, multisite HIV Vaccine Trials Network, and explored its impact on scientific knowledge, acquired skills, and future career plans. Methods. Scholars conducted social, behavioral, clinical, or laboratory-based research projects with HIV Vaccine Trials Network investigators over 8 to 16 weeks (track 1) or 9 to 12 months (track 2). We conducted an in-depth, mixed-methods evaluation of the first 2 cohorts (2011–2013) to identify program strengths, areas for improvement, and influence on professional development. Results. A pre–post program assessment demonstrated increases in self-reported knowledge, professional skills, and interest in future HIV vaccine research. During in-depth interviews, scholars reported that a supportive, centrally administered program; available funding; and highly involved mentors and staff were keys to the program’s early success. Conclusions. A multicomponent, mentored research experience that engages medical students from underrepresented communities and is organized within a clinical trials network may expand the pool of diverse public health scientists. Efforts to sustain scholar interest over time and track career trajectories are warranted. PMID:25122028

  1. Second-Guessing Scientists and Engineers: Post Hoc Criticism and the Reform of Practice in Green Chemistry and Engineering.

    PubMed

    Lynch, William T

    2015-10-01

    The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems. PMID:25218835

  2. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  3. Engineering mammalian cells in bioprocessing - current achievements and future perspectives.

    PubMed

    Lim, Yiping; Wong, Niki S C; Lee, Yih Yean; Ku, Sebastian C Y; Wong, Danny C F; Yap, Miranda G S

    2010-04-01

    Over the past 20 years, we have seen significant improvements in product titres from 50 mg/l to 5-10 g/l, a more than 100-fold increase. The main methods that have been employed to achieve this increase in product titre have been through the manipulation of culture media and process control strategies, such as the optimization of fed-batch processes. An alternative means to increase productivity has been through the engineering of host cells by altering cellular processes. Recombinant DNA technology has been used to over-express or suppress specific genes to endow particular phenotypes. Cellular processes that have been altered in host cells include metabolism, cell cycle, protein secretion and apoptosis. Cell engineering has also been employed to improve post-translational modifications such as glycosylation. In this article, an overview of the main cell engineering strategies previously employed and the impact of these strategies are presented. Many of these strategies focus on engineering cell lines with more efficient carbon metabolism towards reducing waste metabolites, achieving a biphasic production system by engineering cell cycle control, increasing protein secretion by targeting specific endoplasmic reticulum stress chaperones, delaying cell death by targeting anti-apoptosis genes, and engineering glycosylation by enhancing recombinant protein sialylation and antibody glycosylation. Future perspectives for host cell engineering, and possible areas of research, are also discussed in this review. PMID:20392202

  4. Suborbital Platforms as a Tool for a Symbiotic Relationship Between Scientists, Engineers, and Students

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    Sounding rockets started in-situ space experimentation over 60 years ago with scientific experiments replacing warheads on captured V- 2 German rockets. Prior to this, and still today, suborbital platforms such as airplanes and high-altitude balloons have provided advantageous remote sensing observations advancing many areas of Earth and Space science. There is still a place for first-rate science in both stand-alone missions as well as providing complimentary measurements to the larger orbital missions. Along with the aforementioned science, the cost effectiveness and development times provided by sub-orbital platforms allows for perfect hands-on and first rate educational opportunities for undergraduate and graduate students. This talk will give examples and discuss the mutually beneficial opportunities that scientists and students obtain in development of suborbital missions. Also discussed will be how the next generation of space vehicles should help eliminate the number one obstacle to these programs - launch opportunities.

  5. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  6. External Labor Markets and the Distribution of Black Scientists and Engineers in Academia.

    ERIC Educational Resources Information Center

    Kulis, Stephen; Shaw, Heather; Chong, Yinong

    2000-01-01

    Analyzes data from the 1989 Survey of Doctorate Recipients to evaluate racial segmentation of the academic labor market along geographic and disciplinary lines. Finds that black faculty in the sciences and engineering are found disproportionately in southern, historically black institutions; areas with sizable black populations; and, independent…

  7. Changing Employment Patterns of Scientists, Engineers, and Technicians in Manufacturing Industries: 1977-80. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report presents an analysis of science, engineering, and technician (SET) employment within manufacturing industries based on data from the 1977 and 1980 Occupational Employment Statistics survey. The purposes of the report are to: (1) summarize employment data for detailed SET occupations in manufacturing to describe demand patterns; (2)…

  8. THE CURRENT EMPLOYMENT MARKET FOR ENGINEERS, SCIENTISTS, AND TECHNICIANS, DECEMBER 1966.

    ERIC Educational Resources Information Center

    AUSMUS, NORMA F.; AND OTHERS

    FIELD REPORTS ON JUNE 1966 CONDITIONS IN 30 MAJOR LABOR AREAS FOR ENGINEERING, SCIENTIFIC, AND TECHNICAL OCCUPATIONS, PROVIDED BY AFFILIATES OF THE BUREAU OF EMPLOYMENT SECURITY, WERE THE BASIS FOR THIS SEMIANNUAL REPORT. THE NUMBER OF APPLICANTS HAD DECLINED 48 PERCENT TO A NEW 8-YEAR LOW, WHILE OPENINGS HAD RISEN TO 9,600, 58 PERCENT OVER THE…

  9. Overview of USPAS and its role in educating the next generation of accelerator scientists and engineers

    NASA Astrophysics Data System (ADS)

    Barletta, William

    2008-04-01

    Accelerators are essential engines of discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of particle beams and other non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear engineering departments have atrophied at many major universities. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, computational and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  10. THE CURRENT EMPLOYMENT MARKET FOR ENGINEERS, SCIENTISTS, AND TECHNICIANS, OCTOBER 1965.

    ERIC Educational Resources Information Center

    AUSMUS, NORMA F.; SAILE, ALVIN W.

    DATA ON JOB OPENINGS FOR SELECTED ENGINEERING, SCIENTIFIC, AND TECHNICAL OCCUPATIONS, PROVIDED BY THE BUREAU OF EMPLOYMENT SECURITY AFFILIATES FROM FIELD REPORTS ON JUNE 1965 CONDITIONS IN 30 MAJOR LABOR AREAS, ARE PRESENTED IN THIS SEMIANNUAL REPORT. NATIONWIDE DEMAND IN THESE JOB CATEGORIES INCREASED AND BACKLOGS OF APPLICANTS DECREASED BECAUSE…

  11. The Barrett Foundation: Undergraduate Research Program for Environmental Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Paul, M.; Farmer, C.; Larson, P.; Matt, J.; Sentoff, K.; Vazquez-Spickers, I.; Pearce, A. R.

    2007-12-01

    A new program sponsored by The Barrett Foundation in the University of Vermont College of Engineering and Mathematical Sciences (UVM) supports undergraduate students in Environmental Engineering, Earth and Environmental Sciences to pursue independent summer research projects. The Barrett Foundation, a non-profit organization started by a UVM Engineering alum, provided a grant to support undergraduate research. Students must work with at least two different faculty advisors to develop project ideas, then independently prepare a research proposal and submit it to a faculty panel for review. The program was structured as a scholarship to foster a competitive application process. In the last three years, fourteen students have participated in the program. The 2007 Barrett Scholars projects include: - Using bacteria to change the chemistry of subsurface media to encourage calcite precipitation for soil stability and pollutant sequestration - Assessing structural weaknesses in a historic post and beam barn using accelerometers and wireless data collection equipment - Using image processing filters to 1) evaluate leaf wetness, a leading indicator of disease in crops and 2) assess the movement of contaminants through building materials. - Investigating the impact of increased water temperature on cold-water fish species in two Vermont streams. - Studying the impacts of light duty vehicle tailpipe emissions on air quality This program supports applied and interdisciplinary environmental research and introduces students to real- world engineering problems. In addition, faculty from different research focuses are presented the opportunity to establish new collaborations around campus through the interdisciplinary projects. To date, there is a successful publication record from the projects involving the Barrett scholars, including students as authors. One of the objectives of this program was to provide prestigious, competitive awards to outstanding undergraduate engineers

  12. Academic Science, 1972-81: R & D Funds, Scientists and Engineers, Graduate Enrollment and Support. Final Report. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    Huckenpahler, J. G.; And Others

    The results of the 1972-1981 National Science Foundation surveys on academic research and development (R&D) funds, the employment and utilization of scientists and engineers, and the characteristics of graduate students enrolled in the sciences and engineering (S/E) are presented. Findings include the following: the steady growth to university S/E…

  13. Curiosity + Kindergarten = Future Scientists

    ERIC Educational Resources Information Center

    Flannagan, Jenny Sue; Rockenbaugh, Liesl

    2010-01-01

    Carefully crafted experiences in the early childhood classroom can create learning opportunities for children that allow one curiosity to lead to another. Learning how to find out answers to fascinating questions is what science is all about. In fact, it can be as simple as learning how an ordinary egg can be changed. For the past year, the…

  14. Primary-School Children's Attitudes towards Science, Engineering and Technology and Their Images of Scientists and Engineers

    ERIC Educational Resources Information Center

    Silver, Anne; Rushton, Brian S.

    2008-01-01

    The attitudes of Year 5 primary-school children towards science, engineering and technology (SET) were examined prior to studying the effects of the Horsham Greenpower Goblin Challenge (HGGC), a hands-on SET project. The data collection centred on pupil, parent and teacher questionnaires using Likert scales and picture/word images of scientists…

  15. Designing and Evaluating a Climate Change Course for Upper-Division Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Samson, P. J.

    2002-12-01

    AOSS 300, GLOBAL ENVIRONMENTAL IMPACT OF TECHNOLOGICAL CHANGE, was created to provide a mechanism for scientific exploration of the unexpected global environmental side effects of technological innovation with emphasis on issues of the atmosphere and oceans. The course is specifically designed to contribute to the desired Accreditation Board for Engineering and Technology (ABET) outcomes that engineering and science graduates possess "the broad education necessary to understand the impact of solutions in a global and societal context." To facilitate this new course a new suite of coupled Flash/PHP/MySQL tools have been created that allow personalization of the students' learning space and interaction with faculty. Using these tools students are challenged to actively participate in the construction of knowledge through development of on-line portfolios that influence course content. This paper reports on lessons learned in the first semester that will guide further course development.

  16. Environmental engineering education for developing countries: framework for the future.

    PubMed

    Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L

    2004-01-01

    This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework. PMID:15193088

  17. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    SciTech Connect

    Lagos, L.

    2013-07-01

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  3. The fraying web of life and our future engineers

    NASA Astrophysics Data System (ADS)

    Splitt, Frank G.

    2004-07-01

    Evidence abounds that we are reaching the carrying capacity of the earth -- engaging in deficit spending. The amount of crops, animals, and other biomatter we extract from the earth each year exceeds wth the earth can replace by an estimated 20%. Additionally, signs of climate change are precursors of things to come. Global industrialization and the new technologies of the 20th century have helped to stretch the capacities of our finite natural system to precarious levels. Taken together, this evidence reflects a fraying web of life. Sustainable development and natural capitalism work to reverse these trends, however, we are often still wedded to the notion that environmental conservation and economic development are the 'players' in a zero-sum game. Engineering and its technological derivatives can also help remedy the problem. The well being of future generations will depend to a large extent on how we educate our future engineers. These engineers will be a new breed -- developing and using sustainable technology, benign manufacturing processes and an expanded array of environmental assessment tools that will simultaneously support and maintain healthy economies and a healthy environment. The importance of environment and sustainable development cosiderations, the need for their widespread inclusion in engineering education, the impediments to change, and the important role played by ABET will be presented.

  4. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  5. From the wizard to the doubter: prototypes of scientists and engineers in fiction and non-fiction media aimed at Dutch children and teenagers.

    PubMed

    Van Gorp, Baldwin; Rommes, Els; Emons, Pascale

    2014-08-01

    The aim of this paper is to gain insight into the prototypical scientists as they appear in fiction and non-fiction media consumed by children and teenagers in The Netherlands. A qualitative-interpretive content analysis is used to identify seven prototypes and the associated characteristics in a systematic way. The results show that the element of risk is given more attention in fiction than in non-fiction. Also, eccentric scientists appear more often in fiction. In non-fiction, the dimension useful/useless is more important. Furthermore, fictional scientists are loners, although in practice scientists more often work in a team. In both fiction and non-fiction, the final product of the scientific process gets more attention than the process itself. The prototype of the doubter is introduced as an alternative to the dominant representations because it represents scientists and engineers in a more nuanced way. PMID:23825274

  6. A standard approach to measurement uncertainties for scientists and engineers in medicine.

    PubMed

    Gregory, K; Bibbo, G; Pattison, J E

    2005-06-01

    The critical nature of health care demands high performance levels from medical equipment. To ensure these performance levels are maintained, medical physicists and biomedical engineers conduct a range of measurements on equipment during acceptance testing and on-going quality assurance programs. Wherever there are measurements, there are measurement uncertainties with potential conflicts between the measurements made by installers, owners and occasionally regulators. Prior to 1993, various methods were used to calculate and report measurement uncertainties. In 1993, the International Organization for Standardization published the Guide to the Expression of Uncertainty in Measurement (GUM). The document was jointly published with six international organizations principally involved in measurements and standards. The GUM is regarded as an international benchmark on how measurement uncertainty should be calculated and reported. Despite the critical nature of these measurements, there has not been widespread use of the GUM by medical physicists and biomedical engineers. This may be due to the complexity of the GUM. Some organisations have published guidance on the GUM tailored to specific measurement disciplines. This paper presents the philosophy behind the GUM, and demonstrates, with a medical physics measurement example, how the GUM recommends uncertainties be calculated and reported. PMID:16060321

  7. The Future Scientists and Engineers Conferences: Using Community Resources to Enhance the Science Fair

    ERIC Educational Resources Information Center

    Sinsel, Jennifer

    2008-01-01

    Conference attendees arrive at the registration desk at 9:00 a.m. sharp, eager to start their day. While standing in line, they talk excitedly about the sessions they've chosen to see, the original investigation they'll be presenting, off-site field trips for which they've registered, and the businesses scheduled to have booths in the Exhibitor's…

  8. Pathways to space: A mission to foster the next generation of scientists and engineers

    NASA Astrophysics Data System (ADS)

    Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer

    2014-06-01

    The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and

  9. Real cases study through computer applications for futures Agricultural Engineers

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Durán, J. M.; Tarquis, A. M.

    2010-05-01

    One of the huge concerns on the higher engineer education is the lag of real cases study that the future professionals need in the work and corporation market. This concern was reflected in Bologna higher education system including recommendations in this respect. The knowhow as why this or other methodology is one of the keys to resolve this problem. In the last courses given in Department of Crop Production, at the Agronomy Engineer School of Madrid (Escuela Técnica Superior de Ingenieros Agrónomos, UPM) we have developed more than one hundred applications in Microsoft Excel®. Our aim was to show different real scenarios which the future Agronomic Engineers can be found in their professional life and with items related to crop production field. In order to achieve our target, each application in Excel presents a file text in which is explained the theoretical concepts and the objectives, as well as some resources used from Excel syntax. In this way, the student can understand and use of such application, even they can modify and customize it for a real case presented in their context and/or master project. This electronic monograph gives an answer to the need to manage data in several real scenarios showed in lectures, calculus resolution, information analysis and manage worksheets in a professional and student level.

  10. Future Engineering Professors' Conceptions of Learning and Teaching Engineering

    ERIC Educational Resources Information Center

    Torres Ayala, Ana T.

    2012-01-01

    Conceptions of learning and teaching shape teaching practices and are, therefore, important to understanding how engineering professors learn to teach. There is abundant research about professors' conceptions of teaching; however, research on the conceptions of teaching of doctoral students, the future professors, is scarce. Furthermore,…

  11. A Review of Engine Seal Performance and Requirements for Current and Future Army Engine Platforms

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2008-01-01

    Sand ingestion continues to impact combat ground and air vehicles in military operations in the Middle East. The T-700 engine used in Apache and Blackhawk helicopters has been subjected to increased overhauls due to sand and dust ingestion during desert operations. Engine component wear includes compressor and turbine blades/vanes resulting in decreased engine power and efficiency. Engine labyrinth seals have also been subjected to sand and dust erosion resulting in tooth tip wear, increased clearances, and loss in efficiency. For the current investigation, a brief overview is given of the history of the T-700 engine development with respect to sand and dust ingestion requirements. The operational condition of labyrinth seals taken out of service from 4 different locations of the T-700 engine during engine overhauls are examined. Collaborative efforts between the Army and NASA to improve turbine engine seal leakage and life capability are currently focused on noncontacting, low leakage, compliant designs. These new concepts should be evaluated for their tolerance to sand laden air. Future R&D efforts to improve seal erosion resistance and operation in desert environments are recommended

  12. Software architecture and engineering for patient records: current and future.

    PubMed

    Weng, Chunhua; Levine, Betty A; Mun, Seong K

    2009-05-01

    During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment. PMID:19562959

  13. Introducing future engineers to sustainable ecology problems: a case study

    NASA Astrophysics Data System (ADS)

    Filipkowski, A.

    2011-12-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and industrial design. The energy, which they consume, is increasing the greenhouse effect and the waste poisons the environment. So far, most courses on ecology are offered to specialists in environmental engineering. These courses are filled with many details. The Warsaw Academy of Computer Science, Management and Administration teaches students in the direction of management and production engineering. Upon completion, the students receive the degree of 'engineer'. Their future work will mainly concern management of different types of industrial enterprises and they will be responsible for organising it in such a way as to avoid a dangerous contribution to environmental pollution and climate change. This is why it was decided to introduce a new course entitled 'Principles of Ecology and Environmental Management'. This course is quite broad, concerning almost all technical, law and organisational aspects of the problem. The presentation is made in a spectacular way, aiming to convince students that their future activity must be environmentally friendly. It contains information about international activities in ecology, legal aspects concerning pollution, technical and information methods of monitoring and, finally, the description of 'green' solutions. Altogether, 27 hours of lectures and 15 hours of discussions and students' presentations complete the course. Details of this course are described in this paper.

  14. Future market for ceramics in vehicle engines and their impacts

    SciTech Connect

    Vyas, A.; Hanson, D.; Stodolsky, F. |

    1995-02-01

    Ceramic engine components have potential to improve vehicle fuel economy. Some recent tests have also shown their environmental benefits, particularly in reducing particulate emissions in heavy-duty diesel engines. The authors used the data from a survey of the US vehicle engine and component manufacturers relating to ceramic engine components to develop a set of market penetration models. The survey identified promising ceramic components and provided data on the timing of achieving introductory shares in light and heavy-duty markets. Some ceramic components will penetrate the market when the pilot-scale costs are reduced to one-fifth of their current values, and many more will enter the market when the costs are reduced to one-tenth of the current values. An ongoing ceramics research program sponsored by the US Department of Energy has the goal of achieving such price reductions. The size and value of the future ceramic components market and the impacts of this market in terms of fuel savings, reduction in carbon dioxide emissions, and potential reduction in other criteria pollutants are presented. The future ceramic components market will be 9 million components worth $29 million within 5 years of introduction and will expand to 692 million components worth $3,484 million within 20 years. The projected annual energy savings are 3.8 trillion Btu by 5 years, increasing to 526 trillion Btu during the twentieth year. These energy savings will reduce carbon dioxide emissions by 41 million tons during the twentieth year. Ceramic components will help reduce particulate emissions by 100 million tons in 2030 and save the nation`s urban areas $152 million. The paper presents the analytical approach and discusses other economic impacts.

  15. The NGWA Experience with Education and Core Competencies for Groundwater Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    McCray, K. B.

    2014-12-01

    Since 1988, the National Ground Water Association has formally supported recognition, through certification or some other means, of the unique qualifications necessary to perform hydrogeologic investigations. NGWA has believed reliance on professional engineers or individuals certified in an allied field without a determination as to their knowledge of groundwater science is not a justified position. Observation today suggests a need remains for greater hydrogeologic awareness among those that may create infrastructure intrusions into the groundwater environment, such as those designing and installing large-scale installations of geothermal heating and cooling systems. NGWA has responded with development of hydrogeologic guidelines for such projects. Also in partial response to the above named circumstances, the Association has begun development of an ANSI/NGWA standard defining the skills and competencies of groundwater personnel - from the trades to the science, and has explored the potential value of creating a career pathways guidance document for groundwater science professionals. Historically, NGWA scientific members have resisted the idea of accreditation of academic geosciences programs, including those for hydrogeology, although such discussions continue to be raised from time to time by groups such as the Geological Society of America and the American Geosciences Institute. The resistance seems to have been born out of recognition of the multi-disciplinary reality of groundwater science. NGWA funded research found that more than half of the respondents to a study of the business development practices for consulting groundwater professionals had been involved with groundwater issues for more than 20 years, and less than one percent had worked in the field for fewer than two years, raising the question of whether too few young people are being attracted to hydrogeology. Some speculate the seemingly minor emphasis on Earth science education in the U.S. K-12

  16. The NASA Suborbital Center of Excellence - preparing the next generation of scientists and engineers (ESA SE-058)

    NASA Astrophysics Data System (ADS)

    Merritt, Bernice; Hottman, Steve; Hansen, Kathy; Cathey, Henry M., Jr.

    2003-08-01

    The NASA Suborbital Center of Excellence (SCE) is charting new territory. From an idea to promote science and engineering education and outreach, the SCE is working toward the objective of increasing numbers of college graduates choosing a career in suborbital programs. Educational outreach initiatives for young children to university students are presented. These include hands-on experiments, demonstrations, and suborbital educational materials. Approaches to excite university students to want to pursue these careers through relevant and useful work experiences are also presented. A key component of this is the SCE co-op program. Future programs and initiatives are presented. The SCE is evolving, meeting the needs to promote science and engineering education and outreach.

  17. Mechatronics: the future of mechanical engineering; past, present, and a vision for the future

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, M. K.

    2001-08-01

    Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.

  18. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    NASA Astrophysics Data System (ADS)

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is

  19. The Relationship between Seven Variables and the Use of U.S. Government Technical Reports by U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Describes a project sponsored by the National Aeronautics and Space Administration (NASA) and the Department of Defense that investigated the relationship between the use of U.S. government technical reports by aerospace engineers and scientists and seven independent sociometric variables. The conceptual framework is explained, and relevant…

  20. Manufacturing Industries with High Concentrations of Scientists and Engineers Lead in 1965-77 Employment Growth. Science Resources Studies Highlights, April 20, 1979.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Presented are the results of a survey of over 100,000 manufacturing establishments, conducted for the National Science Foundation by the Bureau of Labor Statistics, covering average annual employment for calendar year 1977. Industries whose relative concentration of scientists and engineers was high in 1977, such as petroleum refining, chemicals,…

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  2. Preparing the Future Workforce: Science, Technology, Engineering and Math (STEM) Policy in K-12 Education

    ERIC Educational Resources Information Center

    Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob

    2009-01-01

    Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in enabling…

  3. Systems engineering in the global environment : a wicked future.

    SciTech Connect

    Griego, Regina M.

    2010-12-01

    This presentation discusses the following questions: (1) What are the Global Problems that require Systems Engineering; (2) Where is Systems Engineering going; (3) What are the boundaries of Systems Engineering; (4) What is the distinction between Systems Thinking and Systems Engineering; (5) Can we use Systems Engineering on Complex Systems; and (6) Can we use Systems Engineering on Wicked Problems?

  4. Future Jet Technologies. Part B. F-35 Future Risks v. JS-Education of Pilots & Engineers

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2011-09-01

    Design of “Next-Generation” airframes based on supermarket-jet-engine-components is nowadays passé. A novel integration methodology [Gal-Or, “Editorial-Review, Part A”, 2011, Gal-Or, “Vectored Propulsion, Supermaneuverability and Robot Aircraft”, Springer Verlag, Gal-Or, Int'l. J. of Thermal and Fluid Sciences 7: 1-6, 1998, “Introduction”, 2011] is nowadays in. For advanced fighter aircraft it begins with JS-based powerplant, which takes up to three times longer to mature vis-à-vis the airframe, unless “committee's design” enforces a dormant catastrophe. Jet Steering (JS) or Thrust Vectoring Flight Control, is a classified, integrated engine-airframe technology aimed at maximizing post-stall-maneuverability, flight safety, efficiency and flight envelopes of manned and unmanned air vehicles, especially in the “impossible-to-fly”, post-stall flight domains where the 100+ years old, stall-spin-limited, Conventional Flight Control fails. Worldwide success in adopting the post-stall, JS-revolution, opens a new era in aviation, with unprecedented design variables identified here for a critical review of F-35 future risks v. future fleets of jet-steered, pilotless vehicles, like the X-47B/C. From the educational point of view, it is also instructive to comprehend the causes of long, intensive opposition to adopt post-stall, JS ideas. A review of such debates may also curb a future opposition to adopt more advanced, JS-based technologies, tests, strategies, tactics and missions within the evolving air, marine and land applications of JS. Most important, re-education of pilots and engineers requires adding post-stall, JS-based studies to curriculum & R&D.

  5. Corneal Tissue Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena

    2015-01-01

    To address the growing need for corneal transplants two main approaches are being pursued: allogenic and synthetic materials. Allogenic tissue from human donors is currently the preferred choice; however, there is a worldwide shortage in donated corneal tissue. In addition, tissue rejection often limits the long-term success of this approach. Alternatively, synthetic homologs to donor corneal grafts are primarily considered temporary replacements until suitable donor tissue becomes available, as they result in a high incidence of graft failure. Tissue engineered cornea analogs would provide effective cornea tissue substitutes and alternatives to address the need to reduce animal testing of commercial products. Recent progress toward these needs is reviewed here, along with future perspectives. PMID:25434371

  6. Engineering brain-computer interfaces: past, present and future.

    PubMed

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community. PMID:24819489

  7. Finding a new continent versus mapping all the rivers: Recognition, ownership, and the scientific epistemological development of practicing scientists and engineers

    NASA Astrophysics Data System (ADS)

    Verdan, Andrea Marie

    Maintaining our nation's standing as a leader of innovative and premier science and engineering research requires that those on the trajectory of these careers receive both rigorous and exceptional training. In addition to educating students in the content knowledge of these disciplines, it is also necessary to train them in the professional skills associated with being competent and conscientious scientists and engineers. In the attempts to understand the best strategies to teach these skills, research during the past few decades has shown a steadily increasing interest in improving the scientific literacy of students in science and engineering disciplines. Researchers agree that fostering this literacy---particularly with respect to understanding the nature of science, i.e., scientific epistemology---is an important component in developing students' abilities to become successful practitioners of science and engineering. This research was motivated by the need to further elucidate the formative experiences that contribute to science and engineering faculty members' personal epistemologies of science. To examine the development of these epistemologies, a phenomenographical study was designed to elucidate academic scientists' and engineers' understandings of contributions, collaborations, and credit assignment. The results and inductive, grounded-theory analysis of interviews with faculty members in the College of Engineering and Science at a large, southeastern institution revealed a model of scientific epistemological development and its possible ties to professional identity development. This model can help inform changes in mentorship and training practices to better prepare students to manage the challenges posed by being scientists and engineers in the 21st-century.

  8. Germ-line engineering, freedom, and future generations.

    PubMed

    Cooke, Elizabeth F

    2003-02-01

    New technologies in germ-line engineering have raised many questions about obligations to future generations. In this article, I focus on the importance of increasing freedom and the equality of freedom for present and future generations, because these two ideals are necessary for a just society and because they are most threatened by the wide-scale privatisation of GLE technologies. However, there are ambiguities in applying these ideals to the issue of genetic technologies. I argue that Amartya Sen's capability theory can be used as a framework to ensure freedom and equality in the use of GLE technology. Capability theory articulates the goal of equalising real freedom by bringing all people up to a threshold of basic human capabilities. Sen's capability theory can clarify the proper moral goal of GLE insofar as this technology could be used to bring people up to certain basic human capabilities, thereby increasing their real freedom. And by increasing the freedom of those who lack basic human capabilities, GLE can aid in decreasing the inequalities of freedom among classes of people. PMID:12718332

  9. Medical Scientists

    MedlinePlus

    ... scientists typically have a Ph.D., usually in biology or a related life science. Some medical scientists ... specialize in this field seek to understand the biology of aging and investigate ways to improve the ...

  10. The Stirling Engine: A Wave of the Future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video describes the Stirling engine, an external combustion engine which creates heat energy to power the motor, and can use many types of fuel. It can be used for both stationary and propulsion purposes and has advantages of better fuel economy and cleaner exhaust than internal combustion engines. The engine is shown being road tested at Langley Air Force Base.

  11. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  12. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  13. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Two pilot studies were conducted that investigated the technical communications practices of U.S. and European aerospace engineers and scientists. Both studies had the same five objectives: (1) solicit opinions regarding the importance of technical communications; (2) determine the use and production of technical communications; (3) seek views about the appropriate content of an undergraduate course in technical communications; (4) determine use of libraries, information centers, and online database; (5) determine use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected aerospace engineers and scientists, with a slightly modified version sent to European colleagues. Their responses to selected questions are presented in this paper.

  14. The role and responsibilities of industrial photonics and laser companies in the training of the next generation of scientists and engineers

    NASA Astrophysics Data System (ADS)

    Mobarhan, Kamran S.

    2005-10-01

    The science of photonics and optics has emerged to be one of the leading fields of scientific and engineering innovation in the 21st century. One key factor in keeping this wave of innovation and advancement going at full momentum is the effort spent in the training and educating of the next generation of photonics scientists and engineers. More and more students are becoming interested in this field at a younger age, starting at high school or even earlier. This talk explores the role and responsibilities of the industrial photonics and lasers companies in reaching and encouraging this next generation of professionals.

  15. Tissue engineering and regenerative medicine: past, present, and future.

    PubMed

    Salgado, António J; Oliveira, Joaquim M; Martins, Albino; Teixeira, Fábio G; Silva, Nuno A; Neves, Nuno M; Sousa, Nuno; Reis, Rui L

    2013-01-01

    Tissue and organ repair still represents a clinical challenge. Tissue engineering and regenerative medicine (TERM) is an emerging field focused on the development of alternative therapies for tissue/organ repair. This highly multidisciplinary field, in which bioengineering and medicine merge, is based on integrative approaches using scaffolds, cell populations from different sources, growth factors, nanomedicine, gene therapy, and other techniques to overcome the limitations that currently exist in the clinics. Indeed, its overall objective is to induce the formation of new functional tissues, rather than just implanting spare parts. This chapter aims at introducing the reader to the concepts and techniques of TERM. It begins by explaining how TERM have evolved and merged into TERM, followed by a short overview of some of its key aspects such as the combinations of scaffolds with cells and nanomedicine, scaffold processing, and new paradigms of the use of stem cells for tissue repair/regeneration, which ultimately could represent the future of new therapeutic approaches specifically aimed at clinical applications. PMID:24083429

  16. Science Writer-At-Sea: A New InterRidge Education Outreach Project Joining Scientists and Future Journalists

    NASA Astrophysics Data System (ADS)

    Kusek, K. M.; Freitag, K.; Devey, C.

    2005-12-01

    The Science Writer-at-Sea program is one small step in a marathon need for improved coverage of science and environmental issues. It targets two significant links in the Earth science communication pipeline: marine scientists and journalists; and attempts to reconnect people with the Earth by boosting their understanding of Earth science and its relevance to society. How it works: Journalism graduate students are invited to participate in oceanographic expeditions affiliated with InterRidge, an international organization dedicated to promoting ocean ridge research. InterRidge's outreach coordinator and science writer prepares each student for the expedition experience using materials she developed based on years of at-sea reporting. The students work side-by-side with the science writer and the scientists to research and write innovative journalistic stories for a general audience that are featured on a uniquely designed multimedia website that includes videos and images. The science, journalism and public communities benefit from this cost-effective program: science research is effectively showcased, scientists benefit from interactions with journalists, science outreach objectives are accomplished; student journalists enjoy a unique hands-on, `boot camp' experience; and the website enhances public understanding of `real' Earth science reported `on scene at sea.' InterRidge completed its first pilot test of the program in August 2005 aboard a Norwegian research cruise. A student writer entering the science journalism program at Columbia University participated. The results exceeded expectations. The team discovered the world's northernmost vent fields on the cruise, which expanded the original scope of the website to include a section specifically designed for the international press. The student was inspired by the cruise, amazed at how much she learned, and said she entered graduate school with much more confidence than she had prior to the program. The site

  17. J-2X, The Engine of the Future

    NASA Technical Reports Server (NTRS)

    Smith, Gail

    2009-01-01

    My project was two-fold, with both parts involving the J-2X Upper Stage engine (which will be used on both the Ares I and V). Mainly, I am responsible for using a program called Iris to create visual represen tations of the rocket engine's telemetry data. Also, my project includes the application of my newly acquired Pro Engineer skills in develo ping a 3D model of the engine's nozzle.

  18. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  19. How Can Engineering Education Contribute to a Sustainable Future?

    ERIC Educational Resources Information Center

    Pritchard, J.; Baillie, C.

    2006-01-01

    In the present paper we question how engineering education (and engineering) can support greater participation and inclusiveness in decision making and science and technology. We consider the work "relating" to engineering and society that is conducted by the scholars of science and technology studies, but which is rarely read or considered by the…

  20. Diversity and Equity in the Lab: Preparing Scientists and Engineers for Inclusive Teaching in Courses and Research Environments

    NASA Astrophysics Data System (ADS)

    Hunter, L.; Seagroves, S.; Metevier, A. J.; Kluger-Bell, B.; Raschke, L.; Jonsson, P.; Porter, J.; Brown, C.; Roybal, G.; Shaw, J.

    2010-12-01

    Despite high attrition rates in college-level science, technology, engineering, and math (STEM) courses, with even higher rates for women and underrepresented minorities, not enough attention has been given to higher education STEM classroom practices that may limit the retention of students from diverse backgrounds. The Professional Development Program (PDP) has developed a range of professional development activities aimed at helping participants learn about diversity and equity issues, integrate inclusive teaching strategies into their own instructional units, and reflect on their own teaching practices. In the PDP, all participants develop and teach a STEM laboratory activity that enables their students to practice scientific inquiry processes as they gain an understanding of scientific concepts. In addition, they are asked to consider diversity and equity issues in their activity design and teaching. The PDP supports participants in this challenging endeavor by engaging them in activities that are aligned with a PDP-defined Diversity & Equity Focus Area that includes five emphases: 1) Multiple ways to learn, communicate and succeed; 2) Learners' goals, interests, motivation, and values; 3) Beliefs and perceptions about ability to achieve; 4) Inclusive collaboration and equitable participation; 5) Social identification within STEM culture. We describe the PDP Diversity & Equity focus, the five emphases, and the supporting activities that have been designed and implemented within the PDP, as well as future directions for our diversity and equity efforts.

  1. Developmental Potential among Creative Scientists

    ERIC Educational Resources Information Center

    Culross, Rita R.

    2008-01-01

    The world of creative scientists is dramatically different in the 21st century than it was during previous centuries. Whether biologists, chemists, physicists, engineers, mathematicians, or computer scientists, the livelihood of research scientists is dependent on their abilities of creative expression. The view of a solitary researcher who…

  2. The GATE studies - Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies have been completed that explore the opportunities for future General Aviation Turbine Engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Key technology areas were recommended for NASA support in order to realize proposed improvements.

  3. Future Modeling Needs in Pulse Detonation Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    Meade, Brian; Talley, Doug; Mueller, Donn; Tew, Dave; Guidos, Mike; Seymour, Dave

    2001-01-01

    This paper presents a performance model rocket engine design that takes advantage of pulse detonation to generate thrust. The contents include: 1) Introduction to the Pulse Detonation Rocket Engine (PDRE); 2) PDRE modeling issues and options; 3) Discussion of the PDRE Performance Workshop held at Marshall Space Flight Center; and 4) Identify needs involving an open performance model for Pulse Detonation Rocket Engines. This paper is in viewgraph form.

  4. Urban Futures - Innovation Engines or Slums? A Stellar Evolution Model of Urban Growth

    NASA Astrophysics Data System (ADS)

    Shutters, S. T.; Timmes, F.; Desouza, K.

    2015-12-01

    Why, as cities grow in size and density, do some "ignite" into global engines of innovation and prosperity while others grow into dense slums? This is our overarching question as we explore a novel framework for thinking about the evolution of cities and, more specifically, the divergent trajectories they may take. We develop a speculative framework by examining the analogies between the evolution of cities and the evolution of stars. Like cities, stellar gas clouds can grow in mass, eventually reaching temperature and density thresholds at which they ignite the hydrogen fuel in their cores to become full-fledged stars. But not all gas and dust clouds share this fate. Some never achieve the critical conditions and do not unleash the energy we witness emanating from our own star. Some stars, after exhaustion of their initial fuel, evolve to incredible density but lack the temperature to ignite the next fuel needed to maintain the critical interactions that release so much energy. Instead they fade away to an object of intense density, but without the vibrant emission of light and energy associated with non-degenerate stars. The fate of cities, too, depends on the density of interactions - not of gas molecules, but of people. This elevated rate of face-to-face interactions in an urban core is critical for the transition to an innovative and creative economy. Yet, density is not enough, as evidenced both by many megacities in the developing world and degenerate stars. What is this missing element that, along with density, ignites a city and turns it into an innovation engine? With these analogies in mind, we explore whether they are useful for framing future research on cities, what questions they may help pose, and, more broadly, how physical, social, and natural scientists can all contribute to an interdisciplinary endeavor to understand cities more deeply.

  5. Current and future engine applications of Gr/PI composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Schmid, T. E.

    1985-01-01

    The application of organic matrix composites to gas turbine engine components has been the subject of numerous government and company funded programs since the 1960's. The possibility of significant weight reductions, performance improvements and lower component costs have made the organic matrix composites extremely attractive to aircraft engine designers. Very little of this potential was incorporated into production engines over the years even though a significant number of components were designed, fabricated and tested. Some of the reasons behind the slow rate of incorporation include the following: (1) criticality; (2) engine operating temperature; (3) small component size; (4) small production volume; (5) high production cost; and (6) interfacing with metal parts.

  6. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    ERIC Educational Resources Information Center

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  7. The Future for Industrial Engineers: Education and Research Opportunities

    ERIC Educational Resources Information Center

    Mummolo, Giovanni

    2007-01-01

    EU graduation and the recruitment of industrial engineers (IEs) have been investigated. An increasing demand is observed for graduates in almost all industrial engineering (IE) subjects. The labour market in the EU is evolving towards the service sector even if manufacturing still represents a significant share of both IE employment and gross…

  8. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  9. Engineering Education in the United States: Past, Present, and Future.

    ERIC Educational Resources Information Center

    Prados, John W.

    Over the past half-century, engineering education in the United States has undergone a profound transformation, from a strong focus on engineering practice and design before World War II to the current emphasis on scientific fundamentals and mathematical analysis. This change was driven by the Cold War and the accompanying major federal investment…

  10. Inspire Future Engineers with the Concrete Canoe Competition!

    ERIC Educational Resources Information Center

    Cramer, Steven; Kurten, Jaime

    2005-01-01

    While classroom instruction can and should still be used to teach students the fundamentals of engineering, the key to their ultimate success is learning to use that knowledge in a real-world setting. Out-of-class activities, like the American Society of Civil Engineers' (ASCE) National Concrete Canoe Competition, not only give students a hands-on…

  11. Engineering Education: The Key to a Sustainable Future

    ERIC Educational Resources Information Center

    Thomas, Jason

    2012-01-01

    It is obvious that engineering played a significant role in the development of the world. Many contributions engineers have given are visible in the world and in people's daily lives. Unfortunately, humans often learn through trial and error, and much of the world has been developed in ways that did not contribute to the well-being of the planet…

  12. Editorial: Looking to the Future of Hydrologic Engineering

    EPA Science Inventory

    Being one of the more recent journals of the American Society of Civil Engineers, the Journal of Hydrologic Engineering (JHE) has made significant strides under the forward-thinking leadership of previous editors (M. Levent Kavvas 1996-2004, and V. P. Singh, 2004-2012) si...

  13. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Parsley, R. C.

    1993-06-01

    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  15. New opportunities for future, small, General-Aviation Turbine Engines (GATE)

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1980-01-01

    The results of four independent contracted studies to explore the opportunities for future small turbine engines are summarized in a composite overview. Candidate advanced technologies are screened, various cycles and staging arrangements are parametrically evaluated, and optimum conceptual engines are identified for a range of 300 to 600 horsepower applications. Engine improvements of 20 percent in specific fuel consumption and 40 percent in engine cost were forecast using high risk technologies that could be technically demonstrated by 1988. The ensuing economic benefits are in the neighborhood of 20 to 30 percent for twin-engine aircraft currently powered by piston engines.

  16. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  17. Stem cells and tissue engineering: past, present, and future.

    PubMed

    Polak, Julia M; Bishop, Anne E

    2006-04-01

    Tissue engineering is an interdisciplinary field that brings together the principles of the life sciences and medicine with those of engineering. The increase in its development over the past decade has resulted from a variety of factors; advances in genomics and proteomics, the advent of new biomaterials as potential templates for tissue growth, improvements in bioreactor design, and increased understanding of healing processes. Possibly the greatest contribution has come from our increased knowledge and understanding of stem cell biology, which is paving the way for the generation of unlimited cells of specific phenotypes for incorporation into engineered tissue constructs. Thus, tissue engineering approaches for expanding and engrafting the differentiated progeny of embryonic, fetal, or adult stem cells have major potential for tissue repair and will make a major contribution to medicine in the 21st century. PMID:16831937

  18. Organizational stress and individual strain: A social-psychological study of risk factors in coronary heart disease among administrators, engineers, and scientists

    NASA Technical Reports Server (NTRS)

    Caplan, R. D.

    1971-01-01

    It is hypothesized that organizational stresses, such as high quantitative work load, responsibility for persons, poor relations with role senders, and contact with alien organizational territories, may be associated with high levels of psychological and physiological strain which are risk factors in coronary heart disease. It is further hypothesized that persons with coronary-prone Type A personality characteristics are most likely to exhibit strain under conditions of organizational stress. Measures of these stresses, personality traits, and strains were obtained from 205 male NASA administrators, engineers, and scientists. Type A personality measures included sense of time urgency, persistence, involved striving, leadership, and preference for competitive and environmentally overburdening situations.

  19. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  20. Assessment of existing and future launch vehicle liquid engine development

    NASA Astrophysics Data System (ADS)

    Stampfl, E.; Meyer, L.

    Existing liquid propellant engines for large launch vehicles are described in terms of pertinent engine and propellant parameters and their launch vehicle application. The development approach and the maturity of engine technology which prevailed prior to and early in specific engine development programs are discussed including lessons learned. New engines, including improved conventional and new concepts that could support the next generation launch vehicle, are delineated with emphasis on technology. The technology maturity and development needed to alleviate the potential development risk are presented along with projected gains in performance, operability, reusability, reliability and producibility. A technology ranking methodology which incorporates a relative transportation system life cycle cost (LCC) as the payoff function is developed. The methodology is useful for establishing preliminary but timely cost effectiveness rankings of various technologies. The methodology uses conventional cost estimating relations (CER) in non-dimensional form. The relative overall transportation system payoff resulting from the implementation of new propulsion system technology is developed from recurring and non-recurring costs of major transportation system elements including the vehicle, operations and launch complex. A ranking of engine concepts and associated technologies is given for several transportation system candidates which serve a high activity mission model.

  1. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  2. The gate studies: Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  4. Small engine technology payoffs for future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Kaehler, H.; Schneider, W.

    1986-01-01

    High payoff technologies for a year 2000 regenerative cycle turboprop engine were identified for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. Four advanced technologies are recommended to achieve a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential direct operating cost (DOC) benefit of 12.5 percent is obtained. At $2.00 per gallon, the potential DOC benefit increases to 17.0 percent.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  6. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  7. Mathematical Education of Engineers--A Future Perspective.

    ERIC Educational Resources Information Center

    Bajpai, A. C.; James, D. J. G.

    1985-01-01

    Topics and issues related to the mathematics education of engineers are discussed. Major areas addressed include industrial requirements; influences on the mathematics curriculum; and problems related to implementing recommendations made concerning changes in the mathematics curriculum. Indicates that a reappraisal of the position of mathematics…

  8. Automation and Engineering Psychology: A Look to the Future.

    ERIC Educational Resources Information Center

    Parsons, H. McIlvaine

    Various aspects of automation are explained to differentiate it from technology and mechanization and to show the difference between using equipment to help humans and using equipment to replace humans. Five reasons are given for engineering psychology to focus its attention on automation. Automation issues in a number of areas are discussed,…

  9. A Vision of the Chemical Engineering Curriculum of the Future

    ERIC Educational Resources Information Center

    Armstrong, Robert C.

    2006-01-01

    A dramatic shift in chemical engineering undergraduate education is envisioned, based on discipline-wide workshop discussions that have taken place over the last two years. Faculty from more than 53 universities and industry representatives from 19 companies participated. Through this process broad consensus has been developed regarding basic…

  10. Introducing Future Engineers to Sustainable Ecology Problems: A Case Study

    ERIC Educational Resources Information Center

    Filipkowski, A.

    2011-01-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and…

  11. Earth and space scientists Visit Capitol Hill

    NASA Astrophysics Data System (ADS)

    O'Riordan, Catherine

    AGU's Office of Public Affairs organizes frequent opportunities for members to meet with Congress. Recently AGU members participated in two events: an annual Congressional Visits Day and the Coalition for National Science Funding congressional reception.Over 200 scientists and engineers met with key legislators and their staffs on Capitol Hill in Washington, D.C. as part of the 10th annual Science, Engineering, and Technology Congressional Visits Day (CVD) held on 10-11 May. In their meetings, participants advocated this year's CVD theme: Federally funded research secures our nation's future.

  12. Biomimetics: forecasting the future of science, engineering, and medicine

    PubMed Central

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  13. Biomimetics: forecasting the future of science, engineering, and medicine.

    PubMed

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  14. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  15. Bone tissue engineering: state of the art and future trends.

    PubMed

    Salgado, António J; Coutinho, Olga P; Reis, Rui L

    2004-08-01

    Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents. PMID:15468269

  16. A Strategic Approach for Supporting the Future of Civil Engineering Education in Europe

    ERIC Educational Resources Information Center

    Angelides, Demos C.; Loukogeorgaki, Eva

    2005-01-01

    A new strategic vision of the extensively debated European higher education is proposed with focus on civil engineering. Civil engineering education for the future is considered with relevance to potential world-wide trends and anticipated societal requirements and, therefore, required employee qualifications of the construction-related providers…

  17. Characteristics of Doctoral Scientists and Engineers in the United States: 2006. Detailed Statistical Tables. NSF 09-317

    ERIC Educational Resources Information Center

    Foley, Daniel J.

    2009-01-01

    This report presents data from the 2006 Survey of Doctorate Recipients (SDR). The SDR is a panel survey that collects longitudinal data, biennially, on demographic and general employment characteristics of individuals who have received a doctorate in a science, engineering, or health field from a U.S. academic institution. Sampled individuals are…

  18. Access and Success for African American Engineers and Computer Scientists: A Case Study of Two Predominantly White Public Research Universities

    ERIC Educational Resources Information Center

    Newman, Christopher Bufford

    2011-01-01

    Over the past decade, three rationales have emerged for emphasizing the reinforcement of the United States' science, technology, engineering, and mathematics (STEM) pipeline. The first rationale pertains to U.S. global competitiveness, the second revolves around the benefits of a diverse workforce, and the third argument points to social justice…

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  20. Charting the pipeline: Identifying the critical elements in the development of successful African American scientists, engineers, and mathematicians

    NASA Astrophysics Data System (ADS)

    Williams, Brian Anthony

    Many educational researchers are concerned with the apparent poor performance of different racial and ethnic groups in the fields of science, engineering, and mathematics in the United States. Despite improvements in the performance of African Americans, Hispanic Americans, and Native Americans in these areas over the past decade, these groups are still less likely to enroll in advanced math and science courses or score at or above the proficient level in mathematics. Furthermore, these groups continue to be underrepresented in the nation's technical and scientific workforce. The purpose of this study was to identify the critical elements related to the success of African Americans in science, engineering, and mathematics. Specifically, this study was designed to answer the following questions as they pertained to African American graduate students: What factors were perceived to have contributed to the students' initial interest in science, engineering, or mathematics? What factors were perceived to have contributed to the students' decisions to continue their studies in their specific areas of interest? What factors, associated with the K--12 schooling experience, were perceived to have contributed to the students' success in science, engineering, or mathematics? The data for the study were acquired from interviews with 32 African American students (16 males and 16 females) who were engaged in graduate work in science, engineering, or mathematics. Four major themes emerged from the analysis of the interview data. The first was that all students were involved in experiences that allowed a significant level of participation in science, engineering, and mathematics. Second, all of the students experienced some form of positive personal intervention by another person. Third, all students possessed perceptions of these fields that involved some sort of positive outcome. Finally, all of the of the students believed they possessed intrinsic qualities that qualified and

  1. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically. PMID:22788100

  2. Playing Scientist

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2012-01-01

    Engaging students in the study of genetics is essential to building a deep understanding of heredity, a core idea in the life sciences (NRC 2012). By integrating into the curriculum the stories of famous scientists who studied genetics (e.g., Mendel, Franklin, Watson, and Crick), teachers remind their students that science is a human endeavor.…

  3. Citizen Scientists

    ERIC Educational Resources Information Center

    Bennett, Katherine

    2010-01-01

    The Harvard Forest Schoolyard Ecology Program provides teachers and students with the opportunity and materials to participate in regionally focused ecological studies under the guidance of a mentor scientist working on a similar study. The Harvard Forest is part of a national network of ecological research sites known as the Long Term Ecological…

  4. History and future of genetically engineered food animal regulation: an open request.

    PubMed

    Wells, Kevin D

    2016-06-01

    Modern biotechnology resulted from of a series of incremental improvements in the understanding of DNA and the enzymes that nature evolved to manipulate it. As the potential impact of genetic engineering became apparent, scientists began the process of trying to identify the potential unintended consequences. Restrictions to recombinant DNA experimentation were at first self-imposed. Collaborative efforts between scientists and lawyers formalized an initial set of guidelines. These guidelines have been used to promulgate regulations around world. However, the initial guidelines were only intended as a starting point and were motivated by a specific set of concerns. As new data became available, the guidelines and regulations should have been adapted to the new knowledge. Instead, other social drivers drove the development of regulations. For most species and most applications, the framework that was established has slowly allowed some products to reach the market. However, genetically engineered livestock that are intended for food have been left in a regulatory state of limbo. To date, no genetically engineered food animal is available in the marketplace. A short history and a U.S.-based genetic engineer's perspective are presented. In addition, a request to regulatory agencies is presented for consideration as regulation continues to evolve. Regulators appear to have shown preference for the slow, random progression of evolution over the efficiency of intentional design. PMID:26924471

  5. Recruiting Future Engineers Through Effective Guest Speaking In Elementary School Classrooms

    SciTech Connect

    Kevin Young

    2007-11-01

    In this paper, the author describes how engineers can increase the number of future engineers by volunteering as guest speakers in the elementary school classroom. The paper is divided into three main subjects. First, the importance of engineers speaking directly with young students is discussed. Next, several best practice techniques for speaking with young students are described. Finally, information on getting started as a guest speaker is presented, and a list of resources available to guest speakers is provided. The guest engineer speaking to an elementary school audience (ages 6-11) performs a critical role in encouraging young students to pursue a career in engineering. Often, he or she is the first engineer these students meet in person, providing a crucial first impression of the engineering career field and a positive visual image of what an engineer really looks like. A dynamic speaker presenting a well-delivered talk creates a lasting, positive impression on students, influencing their future decisions to pursue careers in engineering. By reaching these students early in life, the guest speaker will help dispel the many prevailing stereotypes about engineers which discourage so many students, especially young women, from considering this career. The guest speaker can ensure young students gain a positive first impression of engineers and the engineering career field by following some best practice techniques in preparing for and delivering their presentation. The author, an electrical engineer, developed these best practice techniques over the past 10 years while presenting over 350 talks on engineering subjects to elementary school students as a volunteer speaker with the U.S. Department of Energy, Idaho National Laboratory’s Speakers Bureau. Every engineer can make a meaningful contribution toward reversing the predicted shortfall of future engineers by volunteering to speak with young students at the elementary school level. Elementary school

  6. Investing in the Best and Brightest: Increased Fellowship Support for American Scientists and Engineers. Discussion Paper 2006-09

    ERIC Educational Resources Information Center

    Freeman, Richard B.

    2006-01-01

    There is widespread concern that the United States faces a problem in maintaining its position as the scientific and technological leader in the world and that loss of leadership threatens future economic well-being and national security. Business, science, and education groups have issued reports that highlight the value to the country of…

  7. Engineering Lessons Learned and Technical Standards Integration: Capturing Key Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mellen, Daniele P.; Garcia, Danny; Vaughan, William W.

    2003-01-01

    Capturing engineering lessons learned derived from past experiences and new technologies, then integrating them with technical standards, provides a viable process for enhancing engineering capabilities. The development of future space missions will require ready access, not only to the latest technical standards, but also to lessons learned derived from past experiences and new technologies. The integration of this information such that it is readily accessible by engineering and programmatic personnel is a key aspect of enabling technology. This paper addresses the development of a new and innovative Lessons Learned/Best Practices/Applications Notes--Standards Integration System, including experiences with its initial implementation as a pilot effort within the NASA Technical Standards Program. Included are metrics on the Program, feedbacks from users, future plans, and key issues that are being addressed to expand the System's utility. The objective is the enhancement of engineering capabilities on all aspects of systems development applicable to the success of future space missions.

  8. National science policy and scientific manpower: Funding effects on job mobility of scientists and engineers in the United States, 1958--1972

    SciTech Connect

    Lyman, K.L.

    1993-01-01

    Science policy in the United States between 1958 and 1972 was intended to influence the research and development (R D) labor force indirectly, through government funding. An event history analysis of professional R D jobs in five scientific disciplines shows that, while federal funding influences the job mobility of scientists and engineers, other social and economic factors are also significant in explaining mobility patterns. Federal funding significantly decreases the rates of job mobility in all disciplines during the period, stabilizing the employment structure. Indicators of reward-resource arguments-salary, age, and education-significantly affect job mobility. Consistent with human capital and job matching arguments, salary and age significantly reduce mobility. Education is significant only in life science, physical science, and engineering, where higher education leads to increased mobility. Indicators of limited opportunity arguments-socioeconomic background, sex, and ethnicity-show mixed empirical results. Labour markets also significantly affect mobility. In engineering and physical science, a neo-institutional model, which accounts for the degree of government oversight, fits the data best. Social science and life science are best fit by performance sectors, which highlight the importance of universities as employers for these disciplines. Mathematical science is best fit by a model of industrial sectors, consistent with differential expansion of the economy that disproportionately affected this discipline. Federal funding has acted to institutionalize R D in the economy and stabilize employment; it has not insulated workers from general socioeconomic factors such as human capital, discrimination and labour markets.

  9. Thiopeptide engineering: a multidisciplinary effort towards future drugs.

    PubMed

    Just-Baringo, Xavier; Albericio, Fernando; Álvarez, Mercedes

    2014-06-23

    The recent development of thiopeptide analogues of antibiotics has allowed some of the limitations inherent to these naturally occurring substances to be overcome. Chemical synthesis, semisynthetic derivatization, and engineering of the biosynthetic pathway have independently led to complementary modifications of various thiopeptides. Some of the new substances have displayed improved profiles, not only as antibiotics, but also as antiplasmodial and anticancer drugs. The design of novel molecules based on the thiopeptide scaffold appears to be the only strategy to exploit the high potential they have shown in vitro. Herein we present the most relevant achievements in the production of thiopeptide analogues and also discuss the way the different approaches might be combined in a multidisciplinary strategy to produce more sophisticated structures. PMID:24861213

  10. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.

    2008-01-01

    This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  12. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E. (Editor); Sato, Yuko (Editor); Barclay, Rebecca O. (Editor); Kennedy, John M. (Editor)

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: (1) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; (2) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; (3) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  14. Exploring Native American Students' Perceptions of Scientists

    NASA Astrophysics Data System (ADS)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p < 0.05). The results suggest that NA students who practise cultural traditions at home are more able to function fluidly between indigenous knowledge and modern western science than their non-practising counterparts. Overall, these NA students do not see themselves as scientists, which may influence their educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  15. Final project memorandum: sea-level rise modeling handbook: resource guide for resource managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.

    2015-01-01

    Coastal wetlands of the Southeastern United States are undergoing retreat and migration from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. Much of the literature describing potential sea-level rise projections and modeling predictions are found in peer-reviewed academic journals or government technical reports largely suited to reading by other Ph.D. scientists who are more familiar or engaged in the climate change debate. Various sea-level rise and coastal wetland models have been developed and applied of different designs and scales of spatial and temporal complexity for predicting habitat and environmental change that have not heretofore been synthesized to aid natural resource managers of their utility and limitations. Training sessions were conducted with Federal land managers with U.S. Fish and Wildlife Service, National Park Service, and NOAA National Estuarine Research Reserves as well as state partners and nongovernmental organizations across the northern Gulf Coast from Florida to Texas to educate and to evaluate user needs and understanding of concepts, data, and modeling tools for projecting sea-level rise and its impact on coastal habitats and wildlife. As a result, this handbook was constructed from these training and feedback sessions with coastal managers and biologists of published decision-support tools and simulation models for sea-level rise and climate change assessments. A simplified tabular context was developed listing the various kinds of decision-support tools and ecological models along with criteria to distinguish the source, scale, and quality of information input and geographic data sets, physical and biological constraints and relationships, datum characteristics of water and land elevation components, utility options for setting sea-level rise and climate change scenarios, and ease or difficulty of storing, displaying, or interpreting model output. The handbook is designed

  16. Sustainable water management under future uncertainty with eco-engineering decision scaling

    USGS Publications Warehouse

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  17. Sustainable water management under future uncertainty with eco-engineering decision scaling

    NASA Astrophysics Data System (ADS)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  18. Whichever way the wind blows, scientists and engineers try to find ways to protect people and property

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Timothy Marshall, a failure and damage consultant with the Haag Engineering Company in Dallas, Texas, possesses a passion for storm chasing. On the afternoon of May 3, 1999, with atmospheric conditions creating a potentially explosive situation, Marshall drove several hours north to central Oklahoma to spot tornadoes. A storm started blowing up near Lawton and moved parallel to Interstate 44, with Marshall ahead of it in his Chevy pickup. He parked on the Newcastle overpass bridge, videotaping the long-tracked twister for later study At 7:04 p.m. local time, with the vortex now just one mile away and moving straight toward him, it started appearing three-dimensional, debris and projectiles flying about, the tornado roaring like freight trains, wind howling, red mud raining down, and things “getting a little out of hand,” Marshall recalled. He drove out of its path, only to watch the tornado tear through the suburban streets and houses of Moore, on its way to Oklahoma City.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  20. Sustainable Scientists

    SciTech Connect

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.

  1. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  2. Fewer scientists immigrating

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A recent decline in the number of scientists and engineers immigrating to the United States could indicate that a surge throughout the 1980s and early 1990s may have been temporary.The number of people with science and engineering degrees admitted to the United States on permanent visas with work certificates dropped 26% between 1993 and 1994—from 23,534 to 17,403—according to a new National Science Foundation (NSF) data brief that analyzes information from the Immigration and Naturalization Service. A lack of demand for employment-based admissions caused the decline, according to the INS.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  4. International evaluation of current and future requirements for environmental engineering education.

    PubMed

    Morgenroth, E; Daigger, G T; Ledin, A; Keller, J

    2004-01-01

    The field of environmental engineering is developing as a result of changing environmental requirements. In response, environmental engineering education (E3) needs to ensure that it provides students with the necessary tools to address these challenges. In this paper the current status and future development of E3 is evaluated based on a questionnaire sent to universities and potential employers of E3 graduates. With increasing demands on environmental quality, the complexity of environmental engineering problems to be solved can be expected to increase. To find solutions environmental engineers will need to work in interdisciplinary teams. Based on the questionnaire there was a broad agreement that the best way to prepare students for these future challenges is to provide them with a fundamental education in basic sciences and related engineering fields. Many exciting developments in the environmental engineering profession will be located at the interface between engineering, science, and society. Aspects of all three areas need to be included in E3 and the student needs to be exposed to the tensions associated with linking the three. PMID:15193089

  5. The Academy for Future Science Faculty: randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists

    PubMed Central

    2014-01-01

    Background Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This

  6. New opportunities for future small civil turbine engines - Overviewing the GATE studies

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    This paper presents an overview of four independent studies that explore the opportunities for future General Aviation Turbine Engines (GATE) in the 150-1000 SHP class. Detroit Diesel Allison, Garrett/AiResearch, Teledyne CAE, and Williams Research participated along with several airframers. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. All four companies predicted sizable performance gains (e.g., 20% SFC decrease), and three predicted large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class. Key technology areas were recommended for NASA support in order to realize these improvements.

  7. CIVIL ENGINEERS AT THE CROSSROADS - HOW CONSULTING ENGINEERS CAN DRAW ON THE PAST TO FURTHER OUR EXPERTISE FOR THE FUTURE

    NASA Astrophysics Data System (ADS)

    Hirotani, Akihiko

    This paper first discusses the role of civil engineers in the development of Japan's infrastructure during the period of post-war reconstruction and subsequent high economic growth. The paper highlights the importance of practical skills in a world where the role of civil engineers is expected to become increasingly diverse, and emphasizes the importance of seizing opportunities to further develop international competitiveness. In the post-war era, civil engineers raised their expertise and acquired advanced technologies from overseas and made further improvements through the course of applying those technologies. By adopting many state-of-the-art technologies civil engineers helped develop the infrastructure that now serves as Japan's social and economic backbone. Current trends such as the shrinking and aging population and globalization are destined to have large-scale impacts on Japan's social systems. In the context of such dynamics, this paper discusses civil engineers' perception of our current position in history, and how we will raise the standards of our profession for the future.

  8. On the Training of Radio and Communications Engineers in the Decades of the Immediate Future.

    ERIC Educational Resources Information Center

    Klyatskin, I.G.

    A list of 11 statements relating to the change in training programs for radio and communications engineers is presented in this article, in preparation for future developments in the field. Semiconductors, decimeter and centimeter radio frequency ranges, and a statistical approach to communications systems are analyzed as the three important…

  9. Future Critical Issues and Problems Facing Technology and Engineering Education in the Commonwealth of Virginia

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Moye, Johnny J.

    2012-01-01

    The purpose of this research was to determine the future critical issues and problems facing the K-12 technology and engineering education profession in the Commonwealth of Virginia. This study was based on the Wicklein nationwide studies (1993a, 2005). Even though this study did not exactly replicate the Wicklein studies--since it was limited to…

  10. Shaping the Future. Volume II: Perspectives on Undergraduate Education in Science, Mathematics, Engineering, and Technology.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This is a companion study to "Shaping the Future: New Expectations for Undergraduate Education in Science, Math, Engineering, and Technology (SMET)" (NSF 96-139). Both the original report and Volume 2 focus on a collaborative approach to developing and implementing strategies to improve undergraduate SMET education. The reports, compiled by the…

  11. Development of Alternative Continuing Educational Systems for Preventing the Technological Obsolescence of Air Force Scientists and Engineers. Volume 2. Survey of Continuing Educational Programs Within Selected Industries and Universities.

    ERIC Educational Resources Information Center

    Lisez, Louis; Slebodnick, Edward B.

    Survey data obtained from industries and universities are summarized and analyzed from the standpoint of the Air Force's requirement for updating its military scientists and engineers.It is concluded that the wide range of innovative methods of continuing education (CE), in use or in development within selected industries and universities, can be…

  12. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    NASA Astrophysics Data System (ADS)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  13. An engineering dilemma: sustainability in the eyes of future technology professionals.

    PubMed

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study. PMID:23197313

  14. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    SciTech Connect

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  17. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Jones, Carl P.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) delivers space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides U.S. capability for both crew and cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010, as outlined in the 2006 NASA Strategic Plan. I In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle/Orion Crew Exploration Vehicle and the Ares V Cargo Launch Vehicle/Altair Lunar Lander. The goals for this new system include increased safety and reliability, coupled with lower operations costs that promote sustainable space exploration over a multi-decade schedule. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity against predictions made by modern modeling and simulation analysis. It also will give information about the work in progress for the Ares I-X developmental test flight planned in 2009 to provide key data before the Ares I Critical Design Review. Activities such as these will help prove and refine mission concepts of operation, while supporting the spectrum of design and development tasks being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments. Ultimately, the work performed will lead to the fielding of a robust space transportation solution that will

  18. Training the next generation of Space and Earth Science Engineers and Scientists through student design and development of an Earth Observation Nanosatellite, AlbertaSat-1

    NASA Astrophysics Data System (ADS)

    Lange, B. A.; Bottoms, J.

    2011-12-01

    science industry through a student satellite development program is one of the best methods of developing the next generation of space and earth science engineers and scientists.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  20. Helmet-mounted display human factor engineering design issues: past, present, and future

    NASA Astrophysics Data System (ADS)

    Licina, Joseph R.; Rash, Clarence E.; Mora, John C.; Ledford, Melissa H.

    1999-07-01

    An often overlooked area of helmet-mounted display (HMD) design is that of good human factors engineering. Systems which pass bench testing with flying colors can often find less enthusiastic acceptance during fielding when good human factors engineering principles are not adhered to throughout the design process. This paper addresses lessons learned on the fielding of the AH-64 Apache Integrated Helmet and Display Sight System (IHADSS) and the Aviator's Night Vision Imaging System (ANVIS). These lessons are used to develop guidance for future HMDs in such diverse areas as: user adjustments, anthropometry, fit and comfort, manpower and personnel requirements, and equipment compatibility.

  1. Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Gawrylowicz, H. T.

    1986-01-01

    NASA is conducting a program which will establish a technology base for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure oxygen-hydrogen rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components.

  2. Present and future of CFD on the aero-engine development in IHI

    NASA Astrophysics Data System (ADS)

    Tanaka, Atsushige

    1990-09-01

    Advances in aircraft engine performance and economy are achieved by a fusion of many individual advances in technology. Especially striking advances in the evolution of aerodynamic technology have appeared in the development and utilization of computational fluid dynamics (CFD). CFD already may have attained the level and continues to demonstrate extraordinarily valuable possibilities, in which it is an essential complement to testing and experimentation. A brief review is presented of the current status and the future of CFD on aircraft engine development in IHI.

  3. Long-term land use future scenarios for the Idaho National Engineering Laboratory

    SciTech Connect

    1995-08-01

    In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use.

  4. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  5. SED Alumni---breeding ground for scientists

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2006-04-01

    In 1943 the US Army established the Special Engineering Detachment (SED), in which mostly drafted young soldiers possessing some scientific credentials (though usually quite minimal) were reassigned from other duties to the Manhattan Project to assist in various research and development aspects of nuclear weapons. The Los Alamos contingent, never more than a few hundred GIs, worked with more senior scientists and engineers, often assuming positions of real responsibility. An unintended consequence of this circumstance was the fact that being in the SEDs turned out to be a fortuitous breeding ground for future physicists, chemists, and engineers. SEDs benefited from their close contacts with established scientists, working with them side by side, attended lectures by luminaries, and gained invaluable experience that would help them establish academic and industrial careers later in life. I will discuss some of these individuals (I list only those of whom I am personally aware). These include Henry ``Heinz'' Barschall*, Richard Bellman*-RAND Corporation, Murray Peshkin-ANL, Peter Lax-Courant Institute, NYU, William Spindel*-NRC,NAS, Bernard Waldman- Notre Dame, Richard Davisson*-U of Washington, Arnold Kramish- RAND, UNESCO, Josef Hofmann- Acoustic Research Corp, Val Fitch- Princeton U. *deceased

  6. United States National Sewage Sludge Repository at Arizona State University--a new resource and research tool for environmental scientists, engineers, and epidemiologists.

    PubMed

    Venkatesan, Arjun K; Done, Hansa Y; Halden, Rolf U

    2015-02-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a "sink" for recalcitrant, hydrophobic, and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the US Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize future opportunities and invite collaborative use of the NSSR by the research community. The H2O at ASU represents a new resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants, (ii) provide spatial and temporal trends of contaminants, (iii) inform and evaluate the effectiveness of environmental policy-making and

  7. United States National Sewage Sludge Repository at Arizona State University – A New Resource and Research Tool for Environmental Scientists, Engineers, and Epidemiologists

    PubMed Central

    Venkatesan, Arjun K.; Done, Hansa Y.; Halden, Rolf U.

    2014-01-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic-carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a ‘sink’ for recalcitrant, hydrophobic and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the U.S. Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize new future opportunities and invite collaborative use the NSSR by the research community. The H2O at ASU represents a resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants; (ii) provide spatial and temporal trends of contaminants; (iii) inform and evaluate the effectiveness of environmental policy

  8. Attrition of NASA scientists

    NASA Astrophysics Data System (ADS)

    During the past 3 1/2 years the number of physical scientists employed by the National Aeronautics and Space Administration (NASA) has dropped by more than 15%. The number of mathematics personnel also dropped by about 13%. NASA says these figures represent a trend to increase the agency's emphasis on its primary activity—aerospace engineering—that began with the completion of the Apollo missions.For the same period the number of NASA personnel falling into the categories of aero-space engineering and electronic engineering increased slightly—by 1.2% and 3.1%, respectively. The decrease in both total NASA personnel and total scientific work force was about the same; NASA's scientific work force declined about 2.8%, compared with a total agency work force decrease of 2.9% .

  9. Intestinal Tissue Engineering: Current Concepts and Future Vision of Regenerative Medicine in the Gut

    PubMed Central

    Bitar, Khalil N.; Raghavan, Shreya

    2011-01-01

    Background and Purpose Functional tissue engineering of the gastrointestinal (GI) tract is a complex process aiming to aid the regeneration of structural layers of smooth muscle, intrinsic enteric neuronal plexuses, specialized mucosa and epithelial cells as well as interstitial cells. The final tissue engineered construct is intended to mimic the native GI tract anatomically and physiologically. Physiological functionality of tissue engineered constructs is of utmost importance while considering clinical translation. The construct comprises of cellular components as well as biomaterial scaffolding components. Together, these determine the immune-response a tissue engineered construct would elicit from a host upon implantation. Over the last decade, significant advances have been made to mitigate adverse host reactions. These include a quest for identifying autologous cell sources like embryonic and adult stem cells, bone marrow-derived cells, neural crest-derived cells and muscle-derived stem cells. Scaffolding biomaterials have been fabricated with increasing biocompatibility and biodegradability. Manufacturing processes have advanced to allow for precise spatial architecture of scaffolds in order to mimic in vivo milieu closely and achieve neovascularization. This review will focus on the current concepts and the future vision of functional tissue engineering of the diverse neuromuscular structures of the GI tract from the esophagus to the internal anal sphincter. PMID:22188325

  10. The Host Immune Response to Tissue-Engineered Organs: Current Problems and Future Directions.

    PubMed

    Wiles, Katherine; Fishman, Jonathan M; De Coppi, Paolo; Birchall, Martin A

    2016-06-01

    As the global health burden of chronic disease increases, end-stage organ failure has become a costly and intractable problem. De novo organ creation is one of the long-term goals of the medical community. One of the promising avenues is that of tissue engineering: the use of biomaterials to create cells, structures, or even whole organs. Tissue engineering has emerged from its nascent stage, with several proof-of-principle trials performed across various tissue types. As tissue engineering moves from the realm of case trials to broader clinical study, three major questions have emerged: (1) Can the production of biological scaffolds be scaled up accordingly to meet current and future demands without generating an unfavorable immune response? (2) Are biological scaffolds plus or minus the inclusion of cells replaced by scar tissue or native functional tissue? (3) Can tissue-engineered organs be grown in children and adolescents given the different immune profiles of children? In this review, we highlight current research in the immunological response to tissue-engineered biomaterials, cells, and whole organs and address the answers to these questions. PMID:26701069

  11. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    PubMed

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. PMID:24319010

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  14. WFIRST CGI Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  15. Finding Meaningful Roles for Scientists in science Education Reform

    NASA Astrophysics Data System (ADS)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  16. AGU scientists meet with legislators during Geosciences Congressional Visits Day

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2011-10-01

    This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.

  17. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  18. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni

  19. Successful collaborations between scientists and schools

    SciTech Connect

    Ostwald, T.

    1994-12-31

    There are many ways for scientists to support science education in the schools; each method reflects the motivation and goals of the provider. In order to be most effective it is essential to find out the needs of the teacher and the best way to support his/her work in the classroom. Four models of interaction between scientists and teachers are described including: Summer teacher professional development programs; Adopt-a-Scientist; Industry initiated visits by industrial scientists; and, Bringing students into scientists` laboratories. It is crucial not to forget that science and engineering involve doing something. The projects must be ones the students can do and find exciting.

  20. Challenging and Future of Homogeneous Charge Compression Ignition Engines; an Advanced and Novel Concepts Review

    NASA Astrophysics Data System (ADS)

    Elkelawy, Medhat; Yu-Sheng, Zhang; Hagar, Alm El-Din; Yu, Jing-Zhou

    The potential of HCCI combustion to reduce the internal combustion engines exhaust emissions, particularly NOX and soot emissions, and to delimit the application range of this technique as well as a detailed analysis of previous and current results of combustion chemistry, emission behaviors, the challenging facing this technique, and all controlling parameters including transient states are introduced. From HCCI combustion chemistry and emissions analysis it was found that, the heavy fuels displays two-stage heat release or two stage combustion process involving low temperature oxidation (LTO) stage followed by high temperature oxidation (HTO) stage separated by a time delay between them is attributed to negative temperature coefficient (NTC), the advantage of NOX emissions reduction from HCCI engine diminishing at high load condition, HC production is reduced with increasing the engine load, and the soot ejection is negligible during all operating conditions. Valve timing, compression ratio, inlet air temperature, and EGR show an advanced control on the HCCI combustion behaviors over a wide range of speed and load. The use of EGR in HCCI operation is limited at EGR-rates about 70% at this point the reaction rates and ignition timing are so much reduced and retarded, respectively, and leads to misfiring and production of HC-emissions. Homogenization of fuel, air, and recycled burnt gases prior to ignition in addition to the control of ignition and combustion timing, and heat release rates are obstructs that must be overcome in order to realize the advantages of HCCI engine in the future.

  1. The software engineering journey: From a naieve past into a responsible future

    SciTech Connect

    Chapa, S.K.

    1997-08-01

    All engineering fields experience growth, from early trial & error approaches, to disciplined approaches based on fundamental understanding. The field of software engineering is making the long and arduous journey, accomplished by evolution of thinking in many dimensions. This paper takes the reader along a trio of simultaneous evolutionary paths. First, the reader experiences evolution from a zero-risk mindset to a managed-risk mindset. Along this path, the reader observes three generations of security risk management and their implications for software system assurance. Next is a growth path from separate surety disciplines to an integrated systems surety approach. On the way, the reader visits safety, security, and dependability disciplines and peers into a future vision which coalesces them. The third and final evolutionary path explored here transitions the software engineering field from best practices to fundamental understanding. Along this road, the reader observes a framework for developing a {open_quotes}science behind the engineering{close_quotes}, and methodologies for software surety analysis.

  2. T cell engineering as therapy for cancer and HIV: our synthetic future.

    PubMed

    June, Carl H; Levine, Bruce L

    2015-10-19

    It is now well established that the immune system can control and eliminate cancer cells. Adoptive T cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Application of the emerging discipline of synthetic biology to cancer, which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities, is the subject of this overview. Various chimeric antigen receptor designs, manufacturing processes and study populations, among other variables, have been tested and reported in recent clinical trials. Many questions remain in the field of engineered T cells, but the encouraging response rates pave a wide road for future investigation into fields as diverse as cancer and chronic infections. PMID:26416683

  3. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being †

    PubMed Central

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795

  4. 2014 Future Earth Young Scientists Conference on integrated science and knowledge co-production for ecosystems and human well-being.

    PubMed

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-11-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25-31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a "good" anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with "sustainable development goals". PMID:25390795

  5. Computational Intelligence and Its Impact on Future High-Performance Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1996-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Intelligence held at the Virginia Consortium of Engineering and Science Universities, Hampton, Virginia, June 27-28, 1995. The presentations addressed activities in the areas of fuzzy logic, neural networks, and evolutionary computations. Workshop attendees represented NASA, the National Science Foundation, the Department of Energy, National Institute of Standards and Technology (NIST), the Jet Propulsion Laboratory, industry, and academia. The workshop objectives were to assess the state of technology in the Computational intelligence area and to provide guidelines for future research.

  6. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris; Pinkus, Oscar

    2000-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  7. WISH Inspires Future Female Explorers

    NASA Video Gallery

    Some of the next generation’s future female explorers and problem solvers got a real-world look at what it takes to be a scientist or engineer. Through the Women in STEM High School Aerospace Sch...

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  9. Engineering the future of military tactical vehicles and systems with modeling and simulation

    NASA Astrophysics Data System (ADS)

    Loew, Matthew; Watters, Brock

    2005-05-01

    Stewart & Stevenson has developed a Modeling and Simulation approach based on Systems Engineering principles for the development of future military vehicles and systems. This approach starts with a requirements analysis phase that captures and distills the design requirements into a list of parameterized values. A series of executable engineering models are constructed to allow the requirements to be transformed into systems with definable architectures with increasing levels of fidelity. Required performance parameters are available for importation into a variety of modeling and simulation tools including PTC Pro/ENGINEER (for initial engineering models, mechanisms, packaging, and detailed 3-Dimensional solid models), LMS International Virtual.Lab Motion (for vehicle dynamics and ride analysis) and AVL Cruise (Powertrain simulations). Structural analysis and optimization (performed in ANSYS, Pro/MECHANICA, and Altair OptiStruct) is based on the initial geometry from Pro/ENGINEER. Spreadsheets are used for requirements analysis, design documentation and first-order studies. Collectively, these models serve as templates for all design activities. Design variables initially studied within a simplified system model can be cascaded down as the new requirements for a sub-system model. By utilizing this approach premature decisions on systems architectures can be avoided. Ultimately, the systems that are developed are optimally able to meet the requirements by utilizing this top-down approach. Additionally, this M&S approach is seen as a life-cycle tool useful in initially assisting with project management activities through the initial and detail design phases and serves as a template for testing and validation/verification activities. Furthermore, because of the multi-tiered approach, there is natural re-use possible with the models as well.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  11. Professional Ethics for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  12. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.

    PubMed

    Fischer, Simon; Handrick, René; Otte, Kerstin

    2015-12-01

    Chinese hamster ovary (CHO) cells represent the most frequently applied host cell system for industrial manufacturing of recombinant protein therapeutics. CHO cells are capable of producing high quality biologics exhibiting human-like post-translational modifications in gram quantities. However, production processes for biopharmaceuticals using mammalian cells still suffer from cellular limitations such as limited growth, low productivity and stress resistance as well as higher expenses compared to bacterial or yeast based expression systems. Besides bioprocess, media and vector optimizations, advances in host cell engineering technologies comprising introduction, knock-out or post-transcriptional silencing of engineering genes have paved the way for remarkable achievements in CHO cell line development. Furthermore, thorough analysis of cellular pathways and mechanisms important for bioprocessing steadily unravels novel target molecules which might be addressed by functional genomic tools in order to establish superior production cell factories. This review provides a comprehensive summary of the most fundamental achievements in CHO cell engineering over the past three decades. Finally, the authors discuss the potential of novel and innovative methodologies that might contribute to further enhancement of existing CHO based production platforms for biopharmaceutical manufacturing in the future. PMID:26523782

  13. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, Donald; Mathias, Donovan; Reuther, James; Garn, Michelle

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  14. Introduction to current and future protein therapeutics: A protein engineering perspective

    SciTech Connect

    Carter, Paul J.

    2011-05-15

    Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies.

  15. Women Scientists in Training

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Women scientists in training at Marshall Space Flight Center, (top to bottom) Carolyn Griner, Ann Whitaker, and Dr. Mary Johnston, are shown simulating weightlessness while undergoing training in the Neutral Buoyancy Simulator. These women were part of a special program dedicated to gaining a better understanding of problems involved in performing experiments in space. The three were engaged in designing and developing experiments for space, such as materials processing for Spacelabs. Dr. Johnston specialized in metallurgical Engineering, Dr. Whitaker in lubrication and surface physics, and Dr. Griner in material science. Dr. Griner went on to become Acting Center Director at Marshall Space Flight Center from January to September 1998. She was the first woman to serve

  16. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy.

    PubMed

    Cunningham, Colin; Russell, Adrian

    2012-08-28

    Since the dawn of civilization, the human race has pushed technology to the limit to study the heavens in ever-increasing detail. As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements. To do this, they have pushed the art and science of precision engineering to extremes. Some of the critical steps are described in the evolution of precision engineering from the first telescopes to the modern generation telescopes and ultra-sensitive instruments that need a combination of precision manufacturing, metrology and accurate positioning systems. In the future, precision-engineered technologies such as those emerging from the photonics industries may enable future progress in enhancing the capabilities of instruments, while potentially reducing the size and cost. In the modern era, there has been a revolution in astronomy leading to ever-increasing light-gathering capability. Today, the European Southern Observatory (ESO) is at the forefront of this revolution, building observatories on the ground that are set to transform our view of the universe. At an elevation of 5000 m in the Atacama Desert of northern Chile, the Atacama Large Millimetre/submillimetre Array (ALMA) is nearing completion. The ALMA is the most powerful radio observatory ever and is being built by a global partnership from Europe, North America and East Asia. In the optical/infrared part of the spectrum, the latest project for ESO is even more ambitious: the European Extremely Large Telescope, a giant 40 m class telescope that will also be located in Chile and which will give the most detailed view of the universe so far. PMID:22802494

  17. Chemical engineering challenges of nuclear waste cleanup: The future in tank processing

    SciTech Connect

    Quinn, R.K.

    1996-10-01

    The 103 million gallons of mixed chemical and radioactive waste in DOE`s 241 underground storage tanks are as complex and heterogenous a material as man has ever created. The future of tank waste processing - of all waste processing - lies in establishing programs that integrate the interdisciplinary efforts of basic, applied, and process scientists at every stage of the technology development and deployment life cycle. In this way, a technically broad based foundation is developed that allows scientifically-sound and technically-defensible decisions to be made regarding waste remediation. In DOE`s national tank waste remediation technology development programs, Tanks Focus Area, we have begun to establish these activities. Examples of these, which will be discussed, include a tank process chemistry effort which focuses on developing an understanding of the chemical and physical properties of tank wastes affecting the development of process technologies, particularly the colloidal properties of the waste; a process control effort which applies this information to generate the chemical intelligence and understanding necessary to make informed decisions on how to use technology to remediate tank wastes and includes sensor and micro scale analytical methods development; and an aggressive effort in waste forms to develop a fundamental understanding of structure-function-performance relations in potential inorganic ion exchange materials and glasses.

  18. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    ERIC Educational Resources Information Center

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  19. Industry is Largest Employer of Scientists

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1977

    1977-01-01

    Cites statistics of a National Science Foundation report on scientists and engineers in 1974. Reports that chemists are better educated, older, have a better chance of being employed, and do more work for industry, than other scientific personnel. (MLH)

  20. Design of an Advanced Expander Test Bed. [for future space engines

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is the key element for development of technology for future space engines. The AETB will be used to validate the high pressure expander cycle concept, investigate system interactions and conduct investigations of advanced mission focused components and new health monitoring techniques. The AETB will use oxygen/hydrogen propellants and a split expander cycle with nominal operation at a combustion chamber pressure of 1200 psia, a mixture ratio of 6.0, and an equivalent vacuum thrust of 20,000 lbf. It will function over a wide range of conditions including throttling to 5 percent thrust, operation at a mixture ratio of 12.0, and operation in tank head idle and pumped idle modes.

  1. Engineering Hepadnaviruses as Reporter-Expressing Vectors: Recent Progress and Future Perspectives

    PubMed Central

    Bai, Weiya; Cui, Xiaoxian; Xie, Youhua; Liu, Jing

    2016-01-01

    The Hepadnaviridae family of small, enveloped DNA viruses are characterized by a strict host range and hepatocyte tropism. The prototype hepatitis B virus (HBV) is a major human pathogen and constitutes a public health problem, especially in high-incidence areas. Reporter-expressing recombinant viruses are powerful tools in both studies of basic virology and development of antiviral therapeutics. In addition, the highly restricted tropism of HBV for human hepatocytes makes it an ideal tool for hepatocyte-targeting in vivo applications such as liver-specific gene delivery. However, compact genome organization and complex replication mechanisms of hepadnaviruses have made it difficult to engineer replication-competent recombinant viruses that express biologically-relevant cargo genes. This review analyzes difficulties associated with recombinant hepadnavirus vector development, summarizes and compares the progress made in this field both historically and recently, and discusses future perspectives regarding both vector design and application. PMID:27171106

  2. Engineering Hepadnaviruses as Reporter-Expressing Vectors: Recent Progress and Future Perspectives.

    PubMed

    Bai, Weiya; Cui, Xiaoxian; Xie, Youhua; Liu, Jing

    2016-01-01

    The Hepadnaviridae family of small, enveloped DNA viruses are characterized by a strict host range and hepatocyte tropism. The prototype hepatitis B virus (HBV) is a major human pathogen and constitutes a public health problem, especially in high-incidence areas. Reporter-expressing recombinant viruses are powerful tools in both studies of basic virology and development of antiviral therapeutics. In addition, the highly restricted tropism of HBV for human hepatocytes makes it an ideal tool for hepatocyte-targeting in vivo applications such as liver-specific gene delivery. However, compact genome organization and complex replication mechanisms of hepadnaviruses have made it difficult to engineer replication-competent recombinant viruses that express biologically-relevant cargo genes. This review analyzes difficulties associated with recombinant hepadnavirus vector development, summarizes and compares the progress made in this field both historically and recently, and discusses future perspectives regarding both vector design and application. PMID:27171106

  3. Cranial Neural Crest Cell Contribution to Craniofacial Formation, Pathology, and Future Directions in Tissue Engineering

    PubMed Central

    Snider, Taylor Nicholas; Mishina, Yuji

    2015-01-01

    This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons. PMID:25227212

  4. Scientists and Science Education: Working at the Interface

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  5. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  6. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  7. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.

    2003-08-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  8. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  9. The Lives of Scientists.

    ERIC Educational Resources Information Center

    Traver, Rob

    1998-01-01

    Discusses the value of reading biographical material on scientists to enhance student understanding of scientific developments and the roles of individual scientists. Contains a list of recommended books and suggests techniques for selecting the most appropriate literature. (AIM)

  10. The Responsibility of Scientists.

    ERIC Educational Resources Information Center

    Williams, W. F.

    1983-01-01

    Discusses several kinds of responsibilities scientists have, including moral/ethical responsibilities related to research methodology. Areas addressed include use of science in war, approaches to decision-making, scientists and smoking, importance of education related to social responsibility. (JN)

  11. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP. turbomachinery; and low-boiloff propellant management; and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be $hown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  12. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    SciTech Connect

    Ballard, Richard O.

    2008-01-21

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  13. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Astrophysics Data System (ADS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  14. Scientists in the Classroom Activities at LLNL

    NASA Astrophysics Data System (ADS)

    Correll, Donald; Albala, Joanna; Farnsworth, Richard; Meyer, William

    2013-10-01

    LLNL fusion and plasma education activities are broadening into the ``Scientists in the Classroom'' collaboration between LLNL's Science Education Program (http://education.llnl.gov) and California's San Joaquin County Office of Education (SJCOE). Initial activities involved Grades 6-12 teachers attending the SCJOE 2013 summer workshop addressing the physical sciences content within the Next Generation Science Standards (NGSS) as described at http://www.nextgenscience.org/. The NGSS Science and Engineering Practices in Physics workshop (June 22-26, 2013) that took place at the University of the Pacific included participation by the first author using video conferencing facilities recently added to the Edward Teller Education Center adjacent to LLNL. ETEC (http://etec.llnl.gov/) is a partnership between LLNL and the UC Davis School of Education to provide professional development for STEM teachers. Current and future activities using fusion science and plasma physics to enhance science education associated with ``Scientists in the Classroom'' and NGSS will be presented. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-639990.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  16. Scientists: Engage the Public!

    PubMed

    Shugart, Erika C; Racaniello, Vincent R

    2015-01-01

    Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or "Sagan effect" associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist's career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633

  17. Educating Engineers: Designing for the Future of the Field. Book Highlights

    ERIC Educational Resources Information Center

    Sheppard, Sheri D.; Macatangay, Kelly; Colby, Anne; Sullivan, William M.

    2008-01-01

    This multi-year study of undergraduate engineering education in the United States initiated questions about the alignment of engineering programs with the demands of current professional engineering practice. While describing engineering education from within the classroom and the lab, the report on the study offers new possibilities for teaching…

  18. Employment of Scientists and Engineers Increased Between 1976 and 1978 but Declined in Some Science Fields. Science Resources Studies Highlights, March 19, 1980.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    The data presented in this report are estimates based on information produced by the National Science Foundation (NSF) Scientific and Technical Personnel Characteristics System (STPCS) and other systems of the Foundation, other government agencies and private organizations. Information includes: (1) the U.S. science/engineering force grew by 2%…

  19. Sex and Ethnic Differentials in Employment and Salaries Among Federal Scientists and Engineers. Reviews of Data on Science Resources, No. 34, December 1979.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    An analysis of salary differentials shows that although women and racial or ethnic minorities in the federal Civil Service science and engineering workforce earn less than their male and white counterparts, the differentials are much less than those shown by other studies for other occupations in the economy. These results show that: (1) salary…

  20. Finding a New Continent versus Mapping All the Rivers: Recognition, Ownership, and the Scientific Epistemological Development of Practicing Scientists and Engineers

    ERIC Educational Resources Information Center

    Verdan, Andrea Marie

    2012-01-01

    Maintaining our nation's standing as a leader of innovative and premier science and engineering research requires that those on the trajectory of these careers receive both rigorous and exceptional training. In addition to educating students in the content knowledge of these disciplines, it is also necessary to train them in the professional…

  1. Development of Alternative Continuing Educational Systems for Preventing the Technological Obsolescence of Air Force Scientists and Engineers. Volume 1. Basic Study.

    ERIC Educational Resources Information Center

    Slebodnick, Edward B.; And Others

    Volume 1 of the study reports a work effort to define and give guidelines for the acquisition of cost-effective alternative continuing education (CE) systems to prevent the technological obsolescence of Air Force military scientific and engineering officer personnel. A detailed background survey of the problem was conducted using questionnaires,…

  2. Developing a Scientist: A retrospective look

    NASA Astrophysics Data System (ADS)

    Jones, Gail; Taylor, Amy; Forrester, Jennifer H.

    2011-08-01

    Although one of the goals of science education is to educate and nurture the next generation of scientists and engineers, there is limited research that investigates the pathway from childhood to becoming a scientist. This study examined the reflections of 37 scientists and engineers about their in- and out-of-school experiences as well as their memories of significant people who may have influenced their careers. In-depth, semi-structured interviews were conducted and the interview transcripts were analyzed for potential influences on career decisions. Analysis showed several commonalities in participants' reported experiences that influenced career decisions in science and engineering. Informal advising and mentoring by teachers and family members were noted as important. Across participants, tinkering, building models, and exploring science independently in and out of school were viewed as factors that influenced interests in science and engineering. Implications of these results for formal and informal educational programs are discussed.

  3. Proceedings. National Seminar on Educating the Engineer of the Future (Bangalore, India, January 7-10, 1979).

    ERIC Educational Resources Information Center

    Institution of Engineers (India).

    This volume of proceedings contains the keynote addresses, theme papers, and reports of the various technical sessions of the National Seminar on Educating the Engineers of the Future. A total of 10 technical sessions were held. Areas addressed included: (1) social and technological scenarios and technological forecasting; (2) technologies…

  4. In Genes We Trust: Germline Engineering, Eugenics, and the Future of the Human Genome.

    PubMed

    Powell, Russell

    2015-12-01

    Liberal proponents of genetic engineering maintain that developing human germline modification technologies is morally desirable because it will result in a net improvement in human health and well-being. Skeptics of germline modification, in contrast, fear evolutionary harms that could flow from intervening in the human germline, and worry that such programs, even if well intentioned, could lead to a recapitulation of the scientifically and morally discredited projects of the old eugenics. Some bioconservatives have appealed as well to the value of retaining our "given" human biological nature as a reason for restraining the development and use of human genetic modification technologies even where they would tend to increase well-being. In this article, I argue that germline intervention will be necessary merely to sustain the levels of genetic health that we presently enjoy for future generations-a goal that should appeal to bioliberals and bioconservatives alike. This is due to the population-genetic consequences of relaxed selection pressures in human populations caused by the increasing efficacy and availability of conventional medicine. This heterodox conclusion, which I present as a problem of intergenerational justice, has been overlooked in medicine and bioethics due to certain misconceptions about human evolution, which I attempt to rectify, as well as the sordid history of Darwinian approaches to medicine and social policy, which I distinguish from the present argument. PMID:26475170

  5. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    PubMed Central

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells. PMID:26246809

  6. The Tissue-Engineered Vascular Graft—Past, Present, and Future

    PubMed Central

    Pashneh-Tala, Samand; MacNeil, Sheila

    2016-01-01

    Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented. PMID:26447530

  7. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.; Tomsia, Antoni P.

    2011-01-01

    The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models. PMID:21912447

  8. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Astrophysics Data System (ADS)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  9. The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; McGowan, Anna-Maria Rivas

    2012-01-01

    Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the

  10. Present Challenges, Critical Needs, and Future Technological Directions for NASA's GN and C Engineering Discipline

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.

  11. Lessons Learned at LPI for Scientists in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Kramer, G. Y.; Gross, J.; Shaner, A. J.; Dalton, H.; Grier, J.; Buxner, S.; Shipp, S. S.; Hackler, A. S.

    2015-12-01

    The Lunar and Planetary Institute (LPI) has engaged scientists in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, communication workshops, and outreach events. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the lessons we have learned through these experiences, including the value of collaborations between scientists and educators, the importance of understanding the audience's interests and knowledge, and the insights that audiences gain during unstructured discussion and interactions with scientists. LPI has also worked with the NASA Science Mission Directorate E/PO community to determine ways to enable scientists and engineers to engage in E/PO and STEM learning, including examining the research and programs for becoming involved in the preparation of future teachers (see the Menu of Opportunities at http://www.lpi.usra.edu/education/pre_service_edu/). We will share key research-based best practices that are recommended for scientists and engineers interested in participating in E/PO activities.

  12. Scientists: Engage the Public!

    PubMed Central

    Shugart, Erika C.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or “Sagan effect” associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist’s career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633

  13. Computer networking for scientists.

    PubMed

    Jennings, D M; Landweber, L H; Fuchs, I H; Farber, D J; Adrion, W R

    1986-02-28

    Scientific research has always relied on communication for gathering and providing access to data; for exchanging information; for holding discussions, meetings, and seminars; for collaborating with widely dispersed researchers; and for disseminating results. The pace and complexity of modern research, especially collaborations of researchers in different institutions, has dramatically increased scientists' communications needs. Scientists now need immediate access to data and information, to colleagues and collaborators, and to advanced computing and information services. Furthermore, to be really useful, communication facilities must be integrated with the scientist's normal day-to-day working environment. Scientists depend on computing and communications tools and are handicapped without them. PMID:17740290

  14. A Modest Proposal Regarding the Future of Engineering Technology Education in America.

    ERIC Educational Resources Information Center

    Cheshier, Stephen R.

    1985-01-01

    Compares and contrasts engineering (theoretical/abstract) and engineering technology (practical/application-oriented) baccalaureate programs. Although the perpetuated independent development of the programs has created a negative impact on the profession, changes in accreditation criteria/categories might help engineering technology programs…

  15. Social scientist's viewpoint on conflict management

    USGS Publications Warehouse

    Ertel, Madge O.

    1990-01-01

    Social scientists can bring to the conflict-management process objective, reliable information needed to resolve increasingly complex issues. Engineers need basic training in the principles of the social sciences and in strategies for public involvement. All scientists need to be sure that that the information they provide is unbiased by their own value judgments and that fair standards and open procedures govern its use.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  17. Engineering for Operation of a Future Belgian Deep Geological Repository for ILW and HLW - 12379

    SciTech Connect

    Haverkamp, B.; Biurrun, E.; Nieder-Westermann, G.H.; Van Humbeeck, H.

    2012-07-01

    In Belgium, an advanced conceptual design is being elaborated for deep geologic disposal of high level waste (HLW) and for low and intermediate level waste (LILW) not amenable for surface disposal. The concept is based on a shielded steel and concrete container for disposal of HLW, i.e., the Super-container. LILW will be disposed of in separately designed concrete caissons. The reference host rock is the Boom Clay, a poorly indurated clay formation in northeastern Belgium. Investigations into the potential host rock are conducted at the HADES underground research laboratory in Mol, Belgium. In 2009 the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) initiated a four year research project aimed at confirming the fundamental feasibility of building and operating a repository. The goal of the program is to demonstrate at a detailed conceptual level that the proposed geologic disposal system can be safely constructed, operated, and progressively closed. Part of the broader research efforts being conducted includes evaluations optimization of the waste transportation shaft, subsurface transportation system, ventilation system, and evaluation of backfilling and sealing concepts for the repository design. The potential for implementation of a waste retrieval strategy encompassing the first 100 years after emplacement is also considered. In the framework of a four year research program aimed at confirming the fundamental feasibility of building and operating a repository in poorly indurated clay design studies have been underway to optimize the waste transportation shaft, subsurface transportation system, and ventilation system. Additionally backfilling and sealing concepts proposed for the potential repository have been reviewed in conjunction with impacts related to the potential future inclusion of a retrievability requirement in governing regulations. The main engineering challenges in the Belgian repository concept are

  18. Young Scientists Discuss Recent Advances, Future Challenges.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1989-01-01

    Discusses a National Academy of Science forum at which a group of outstanding young researchers in astronomy, molecular and developmental biology, physics, chemistry, mathematics, atmospheric science, and materials science met for three days of formal presentations and informal conversations. Provides a short synopsis of major speakers. (MVL)

  19. Astronomy Olympiads a Challenge for Future Scientists

    NASA Astrophysics Data System (ADS)

    Ninkovic, S.

    2013-05-01

    Contests in astronomy for secondary school pupils, very often called "Astronomy Olympiads", have acquired a general recognition in many countries. They are regarded in various manners: as the best way to attract to science young talented people in general, the possibility to discriminate the most successful participants, who are then in position to be offered to become students of famous universities which is viewed as the beginning of a nice career, the possibility of affirmation of astronomy in secondary schools, the way to put together young amateur astronomers from various parts of the world, etc. On the other hand, there are some organisational problems which follow such events; they concern the relationship with the International Astronomical Union, outreach of the contests in different countries and many others. Serbia has been a member in the Astronomy-Olympiad Movement from 2002.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 64: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: 1.) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; 2.) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; 3.) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  1. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  2. Stories of Scientists.

    ERIC Educational Resources Information Center

    Mascazine, John R.

    2001-01-01

    Presents three biographical sketches of scientists including John Wesley Powell (first to explore the geology of the Grand Canyon), Joseph von Fraunhofer (his work in optics led to the science of spectroscopy), and Gregor Mendel (of Mendelian genetics fame). Other scientists are mentioned along with sources for additional biographical information.…

  3. Just like Real Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat

    2009-01-01

    How do you inspire students to keep records like scientists? Share the primary research of real scientists and explicitly teach students how to keep records--that's how! Therefore, a group of third-grade students and their teacher studied the work of famous primatologist Jane Goodall and her modern-day counterpart Ian Gilby. After learning about…

  4. Scientists as Writers.

    ERIC Educational Resources Information Center

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-01-01

    Establishes an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines, and contrasts this image with an actual prototypical image of scientists as writers of science. Assesses scientists' writing habits, beliefs, strategies, and perceptions of…

  5. University Scientists as Entrepreneurs.

    ERIC Educational Resources Information Center

    Richter, Maurice N. Jr.

    1986-01-01

    The formation of business firms by academic scientists is an example of the deteriorating boundary between the academic and business world. The conditions and routes contributing to this phenomenon are explored. This challenge to establish academic and scientific values and norms is resulting in enhanced autonomy for university scientists. (ETS)

  6. Ethics and the scientist.

    PubMed

    Marion, J E

    1991-02-01

    Ethical issues are receiving considerable attention in the scientific community just as in other areas of society. Scientists who have in the past been accorded a select position in society are no longer guaranteed that status just by virtue of their occupation. Science, and scientists, may not yet be subject to the same intense scrutiny as some other professions, but the trend is evident. Scientists do have special obligations due to the nature of their profession, yet incidences of indiscretion are documented. Expectations of scientists in specific areas such as consulting, animal rights, and advocacy are discussed, and some thoughts on the scientist as an administrator are presented. A short summary of actions being taken in the field of ethics is included. PMID:2027833

  7. Rehabilitation engineering training for the future: influence of trends in academics, technology, and health reform.

    PubMed

    Winters, J M

    1995-01-01

    A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree. PMID:10159863

  8. Mentoring Among Scientists: Implications of Interpersonal Relationships within a Formal Mentoring Program

    SciTech Connect

    Bryan D. Maughan

    2006-11-01

    Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protégé relationship significantly influences a protégé’s learning experience which carries repercussions into their career intentions. The mentor-protégé relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry.

  9. Mentoring among scientists: Implications of interpersonal relationships within a formal mentoring program

    SciTech Connect

    Maughan, B. D.

    2006-07-01

    Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protege relationship significantly influences a protege's learning experience which carries repercussions into their career intentions. The mentor-protege relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry. (authors)

  10. Investigation of the Secondary School Students' Images of Scientists

    ERIC Educational Resources Information Center

    Akgün, Abuzer

    2016-01-01

    The overall purpose of this study is to explore secondary school students' images of scientists. In addition to this comprehensive purpose, it is also investigated that if these students' current images of scientists and those in which they see themselves as a scientist in the near future are consistent or not. The study was designed in line with…

  11. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  12. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.

  13. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  14. Scientists Like Me: Faces of Discovery

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  15. High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Wójcik, Magdalena; Telzerow, Aline; Quax, Wim J.; Boersma, Ykelien L.

    2015-01-01

    Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms. PMID:26492240

  16. Future Directions for Engineering Education: System Response to a Changing World.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Center for Policy Alternatives.

    This report consolidates information on the engineering population - numbers, employment patterns, educational levels, personality, technical obsolescence - and probes the implications of current social and employment trends. Included are: data and analyses of the engineering education system seen in the context of the changing world; the…

  17. The Education of Future Aeronautical Engineers: Conceiving, Designing, Implementing and Operating

    ERIC Educational Resources Information Center

    Crawley, Edward F.; Brodeur, Doris R.; Soderholm, Diane H.

    2008-01-01

    This paper will outline answers to the two central questions regarding improving engineering education: (1) What is the full set of knowledge, skills, and attitudes that engineering students should possess as they leave the university, and at what level of proficiency?; and (2) How can we do better at ensuring that students learn these skills? The…

  18. A Response to Advancing Technologies. Repositioning Engineering Education to Serve America's Future.

    ERIC Educational Resources Information Center

    Glower, Donald D., Ed.; Saline, Lindon E., Ed.

    This publication is a summary of 20 papers which examine the status and impact of computers and related technologies on engineering, design practices and production in the private sector, and on engineering curricula and teaching methodology; and their role in assuring social and economic vitality. Chapter 1 discusses how technology impacts the…

  19. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges

    PubMed Central

    Kumar, Vivek A.; Brewster, Luke P.; Caves, Jeffrey M.; Chaikof, Elliot L.

    2012-01-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research. PMID:23181145

  20. 100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  1. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  2. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  3. Bioinspired Engineering of Exploration Systems (BEES) - its Impact on Future Missions

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Hine, Butler; Zornetzer, Steve

    2004-01-01

    This paper describes an overview of our "Bioinspired Engineering of Exploration Systems for Mars" ( "BEES for Mars") project. The BEES approach distills selected biologically inspired strategies utilizing motion cues/optic flow, bioinspired pattern recognition, biological visual and neural control systems, bioinspired sensing and communication techniques, and birds of prey inspired search and track algorithmic systems. Unique capabilities so enabled, provide potential solutions to future autonomous robotic space and planetary mission applications. With the first series of tests performed in September 2003, August 2004 and September 2004, we have demonstrated the BEES technologies at the El Mirage Dry Lakebed site in the Mojave Desert using Delta Wing experimental prototypes. We call these test flyers the "BEES flyer", since we are developing them as dedicated test platform for the newly developed bioinspired sensors, processors and algorithmic strategies. The Delta Wing offers a robust airframe that can sustain high G launches and offers ease of compact stowability and packaging along with scaling to small size and low ReynOld's number performance for a potential Mars deployment. Our approach to developing light weight, low power autonomous flight systems using concepts distilled from biology promises to enable new applications, of dual use to NASA and DoD needs. Small in size (0.5 -5 Kg) BEES Flyers are demonstrating capabilities for autonomous flight and sensor operability in Mars analog conditions. The BEES project team spans JPL, NASA Ames, Australian National University (ANU), Brigham Young University(BYU), DC Berkeiey, Analogic Computers Inc. and other institutions. The highlights from our recent flight demonstrations exhibiting new Mission enabling capabilities are described. Further, this paper describes two classes of potential new missions for Mars exploration: (1) the long range exploration missions, and (2) observation missions, for real time imaging of

  4. Scientists and Human Rights

    NASA Astrophysics Data System (ADS)

    Makdisi, Yousef

    2012-02-01

    The American Physical Society has a long history of involvement in defense of human rights. The Committee on International Freedom of Scientists was formed in the mid seventies as a subcommittee within the Panel On Public Affairs ``to deal with matters of an international nature that endangers the abilities of scientists to function as scientists'' and by 1980 it was established as an independent committee. In this presentation I will describe some aspects of the early history and the impetus that led to such an advocacy, the methods employed then and how they evolved to the present CIFS responsibility ``for monitoring concerns regarding human rights for scientists throughout the world''. I will also describe the current approach and some sample cases the committee has pursued recently, the interaction with other human rights organizations, and touch upon some venues through which the community can engage to help in this noble cause.

  5. Ask a Climate Scientist

    NASA Video Gallery

    Have a question that's always confounded you about Earth's climate? Wonder why it matters that the climate is changing now if it has changed before? Or how scientists know changes seen in recent de...

  6. Scientists as writers

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  7. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting.

    PubMed

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children's stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander-Serving Institution. We examined the reliability and validity of the survey, and characterized students' comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  8. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    PubMed Central

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  9. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  10. Impact of broad-specification fuels on future jet aircraft. [engine components and performance

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1978-01-01

    The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.

  11. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  12. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  13. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  14. Summary of safeguards interactions between Los Alamos and Chinese scientists

    SciTech Connect

    Eccleston, G.W.

    1994-04-20

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions.

  15. Biographies of Women Scientists for Young Readers.

    ERIC Educational Resources Information Center

    Bettis, Catherine; Smith, Walter S.

    The participation of women in the physical sciences and engineering woefully lags behind that of men. One significant vehicle by which students learn to identify with various adult roles is through the literature they read. This annotated bibliography lists and describes biographies on women scientists primarily focusing on publications after…

  16. U.S. Ethnic Scientists and Entrepreneurs

    ERIC Educational Resources Information Center

    Kerr, William R.

    2007-01-01

    Immigrants are exceptionally important for U.S. technology development, accounting for almost half of the country's Ph.D. workforce in science and engineering. Most notably, the contribution of Chinese and Indian scientists and entrepreneurs in U.S. high-technology sectors increased dramatically in the 1990s. These ethnic scientific communities…

  17. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast. PMID:22388689

  18. STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES

    SciTech Connect

    Dunn, M

    2003-08-24

    Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of

  19. CHO microRNA engineering is growing up: Recent successes and future challenges☆

    PubMed Central

    Jadhav, Vaibhav; Hackl, Matthias; Druz, Aliaksandr; Shridhar, Smriti; Chung, Cheng-Yu; Heffner, Kelley M.; Kreil, David P.; Betenbaugh, Mike; Shiloach, Joseph; Barron, Niall; Grillari, Johannes; Borth, Nicole

    2013-01-01

    microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines. PMID:23916872

  20. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Man's Responsibility to His Future

    ERIC Educational Resources Information Center

    Hoagland, Hudson

    1972-01-01

    Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)

  1. Viewgraph description of Penn State's Propulsion Engineering Research Center: Activity highlights and future plans

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    Viewgraphs are presented that describe the progress and status of Penn State's Propulsion Engineering Research Center. The Center was established in Jul. 1988 by a grant from NASA's University Space Engineering Research Centers Program. After two and one-half years of operation, some 16 faculty are participating, and the Center is supporting 39 graduate students plus 18 undergraduates. In reviewing the Center's status, long-term plans and goals are reviewed and then the present status of the Center and the highlights and accomplishments of the past year are summarized. An overview of plans for the upcoming year are presented.

  2. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  3. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  4. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    PubMed

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding. PMID:22527196

  5. Can We Expect to Recruit Future Engineers among Students Who Have Never Repaired a Toy?

    ERIC Educational Resources Information Center

    Virtic, Mateja Ploj; Šorgo, Andrej

    2016-01-01

    Education has traditionally focused primarily on content and cognitive goals. While content knowledge is important, to enter to the labour market today, graduates must also develop manual skills and technical literacy. The paper deals with engineering and technology education in Slovenia. It portrays the problem of the decline in interest in…

  6. Engineers of the Future: The Colorado School of Mines' McBride Honors Program.

    ERIC Educational Resources Information Center

    Olds, Barbara M.

    1988-01-01

    More educators argue that science and technology students must be more liberally educated. The McBride Honors Program at Colorado School of Mines addresses the needs of a global society by preparing engineers to be technically competent, with strong communication skills, and knowledge of societal issues. (MLW)

  7. The University of Tulsa centennial petroleum engineering symposium: Proceedings. Future petroleum technology -- Vision 2020

    SciTech Connect

    1994-12-31

    This conference proceedings contains 40 papers which have individually been abstracted and indexed. These papers deal with aspects of oil and gas well drilling, secondary and tertiary recovery methods, well design, drilling equipment, and reservoir engineering and simulation. There are some papers on well servicing, scale control, and artificial lifts.

  8. A Joint Learning Activity in Process Control and Distance Collaboration between Future Engineers and Technicians

    ERIC Educational Resources Information Center

    Deschênes, Jean-Sebastien; Barka, Noureddine; Michaud, Mario; Paradis, Denis; Brousseau, Jean

    2013-01-01

    A joint learning activity in process control is presented, in the context of a distance collaboration between engineering and technical-level students, in a similar fashion as current practices in the industry involving distance coordination and troubleshooting. The necessary infrastructure and the setup used are first detailed, followed by a…

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  11. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1985-01-01

    Describes experiments using fluidyne engines. These engines (which have liquid pistons), started by external heat sources, are used primarily for pumping water. Examples of various engines built from U-shaped tubes or from coiled tubes in fruit jars are provided. (DH)

  12. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective.

    PubMed

    Díaz-Zuccarini, V; Narracott, A J; Burriesci, G; Zervides, C; Rafiroiu, D; Jones, D; Hose, D R; Lawford, P V

    2009-07-13

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202

  13. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective

    PubMed Central

    Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.

    2009-01-01

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202

  14. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.

  15. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions. Revised

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris; Pinkus, Oscar

    2002-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof. O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial, and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic bearings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  16. From Atmospheric Scientist to Data Scientist

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.

    2015-12-01

    Most of my career has been spent analyzing data from research projects in the atmospheric sciences. I spent twelve years researching boundary layer interactions in the polar regions, which included five field seasons in the Antarctic. During this time, I got both a M.S. and Ph.D. in atmospheric science. I learned most of my data science and programming skills throughout this time as part of my research projects. When I graduated with my Ph.D., I was looking for a new and fresh opportunity to enhance the skills I already had while learning more advanced technical skills. I found a position at the University of Colorado Boulder as a Data Research Specialist with Research Computing, a group that provides cyber infrastructure services, including high-speed networking, large-scale data storage, and supercomputing, to university students and researchers. My position is the perfect merriment between advanced technical skills and "softer" skills, while at the same time understanding exactly what the busy scientist needs to understand about their data. I have had the opportunity to help shape our university's data education system, a development that is still evolving. This presentation will detail my career story, the lessons I have learned, my daily work in my new position, and some of the exciting opportunities that opened up in my new career.

  17. Women Scientists. American Profiles.

    ERIC Educational Resources Information Center

    Veglahn, Nancy, J.

    This book contains the life stories of 11 American female scientists who had outstanding achievements in their branch of science. The lives of the 11 women included in this book cover a combined time period of more than 120 years. This book argues against the belief that mathematics and science are not for girls and gives examples of very…

  18. Nurturing the Child Scientist

    ERIC Educational Resources Information Center

    Rodgers, Lisa; Basca, Belinda

    2011-01-01

    The natural world fascinates young children. Treasured leaves, shells, stones, and twigs always find their way into the kindergarten classroom. A kindergarten study of collections channels and deepens children's innate impulse to explore and collect. It also lays the foundation for understanding how scientists approach the study of objects in…

  19. Early Primary Invasion Scientists

    ERIC Educational Resources Information Center

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  20. Working Like Real Scientists

    ERIC Educational Resources Information Center

    Lunn, Stephen

    2006-01-01

    "Real" science is about formulating and trying to solve practical and conceptual problems on the basis of shared beliefs about the world. Scientists build theories and test hypotheses by observation and experiment. They try their best to eliminate personal bias, and are "extremely canny in their acceptance of the claims of others" (Ziman, 2000).…

  1. Today's Authors, Tomorrow's Scientists

    ERIC Educational Resources Information Center

    Porter, Diana

    2009-01-01

    Although not all teachers can invite scientists into classrooms on a regular basis, they can invite them into their students' worlds through literature. Here the author shares how she used the nonfiction selection, "Science to the Rescue" (Markle 1994), as an opportunity for students to investigate socially significant problems and empower them to…

  2. Doctoral Scientists in Oceanography.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  3. Becoming a Spider Scientist

    ERIC Educational Resources Information Center

    Patrick, Patricia; Getz, Angela

    2008-01-01

    In this integrated unit, third grade students become spider scientists as they observe spiders in their classroom to debunk some common misconceptions about these intimidating creatures. "Charlotte's Web" is used to capture students' interest. In addition to addressing philosophical topics such as growing-up, death, and friendship; E.B. White's…

  4. Bringing Scientists to Life

    ERIC Educational Resources Information Center

    Casey, Peter

    2010-01-01

    In this article, the author describes how he brings scientists to life when he visits schools. Having retired from teaching Drama and Theatre Studies in Liverpool for more than thirty years, the author set up his one-man Theatre-in-Education company, Blindseer Productions, and now takes his portrayals of Darwin, Galileo and Einstein to schools…

  5. Talk Like a Scientist

    ERIC Educational Resources Information Center

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  6. Developing Scientists' "Soft" Skills

    NASA Astrophysics Data System (ADS)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  7. Reading as Scientists

    ERIC Educational Resources Information Center

    Shanahan, Marie-Claire

    2010-01-01

    Using an adapted version of a recently published scientific article, a group of sixth graders worked together identifying conclusions, deciding on appropriate evidence, suggesting improvements for the study, and recommending further investigations for scientists. This experience provided opportunities for these students to use reading to decide on…

  8. Teaming Up with Scientists.

    ERIC Educational Resources Information Center

    Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia

    2001-01-01

    Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…

  9. Future Land Use and Concerns About the Idaho National Engineering and Environmental Laboratory: A Survey of Urban Dwellers.

    PubMed

    Burger; Roush; Wartenberg; Gochfeld

    1999-11-01

    / We examined environmental concerns and future land-use preferences of 487 people attending the Boise River Festival in Boise, Idaho, USA, about the Idaho National Engineering and Environmental Laboratory (INEEL), owned by the US Department of Energy (DOE). We were particularly interested in the perceptions of urban dwellers living at some distance from the facility, since attitudes and perceptions are usually examined for people living near such facilities. More than 50% of the people were most worried about contamination and about waste storage and transport, another 23% were concerned about human health and accidents and spills, and the rest listed other concerns such as jobs and the economy or education. When given a list of possible concerns, accidents and spills, storage of current nuclear materials, and storage of additional nuclear materials were rated the highest. Thus both open-ended and structured questions identified nuclear storage and accidents and spills as the most important concerns, even for people living far from a DOE site. The highest rated future land uses were: National Environmental Research Park, recreation (including hiking, camping, fishing and hunting), and returning the land to the Shoshone-Bannock tribes; the lowest rated future land uses were homes and increased nuclear waste storage. These relative rankings are similar to those obtained for other Idahoans living closer to the site and for people living near the Savannah River Site, another DOE facility in South Carolina. The concern expressed about accidents and spills and waste storage translated into a desire not to see additional waste brought to INEEL and a low rating for using INEEL for building homes.KEY WORDS: Future land use; Perceptions; Recreation; Hazardous waste; Department of Energy; Idaho National Engineering and Environmental Laboratory.http://link.springer-ny.com/link/service/journals/00267/bibs/24n4p532.html

  10. Tissue engineering and the future of hip cartilage, labrum and ligamentum teres

    PubMed Central

    Stubbs, Allston J.; Howse, Elizabeth A.; Mannava, Sandeep

    2016-01-01

    As the field of hip arthroscopy continues to evolve, the biological understanding of orthopaedic tissues, namely articular cartilage, labral fibro-cartilage and the ligamentum teres continues to expand. Similarly, the need for biological solutions for the pre-arthritic and early arthritic hip continues to be a challenge for the sports medicine surgeon and hip arthroscopist. This article outlines existing biological and tissue-engineering technologies, some being used in clinical practice and other technologies being developed, and how these biological and tissue-engineering principals may one day influence the practice of hip arthroscopy. This review of hip literature is specific to emerging biological technologies for the treatment of chondral defects, labral tears and ligamentum teres deficiency. Of note, not all of the technologies described in this article have been approved by the United States Food and Drug Administration and some of the described uses of the approved technologies should be considered ‘off-label’ uses. PMID:27026815

  11. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope

  12. Tissue engineering and the future of hip cartilage, labrum and ligamentum teres.

    PubMed

    Stubbs, Allston J; Howse, Elizabeth A; Mannava, Sandeep

    2016-04-01

    As the field of hip arthroscopy continues to evolve, the biological understanding of orthopaedic tissues, namely articular cartilage, labral fibro-cartilage and the ligamentum teres continues to expand. Similarly, the need for biological solutions for the pre-arthritic and early arthritic hip continues to be a challenge for the sports medicine surgeon and hip arthroscopist. This article outlines existing biological and tissue-engineering technologies, some being used in clinical practice and other technologies being developed, and how these biological and tissue-engineering principals may one day influence the practice of hip arthroscopy. This review of hip literature is specific to emerging biological technologies for the treatment of chondral defects, labral tears and ligamentum teres deficiency. Of note, not all of the technologies described in this article have been approved by the United States Food and Drug Administration and some of the described uses of the approved technologies should be considered 'off-label' uses. PMID:27026815

  13. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  14. Future fuels and engines for railroad locomotives. Volume 2: Technical document

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.

  15. Risk perception, future land use and stewardship: comparison of attitudes about Hanford Site and Idaho National Engineering and Environmental Laboratory.

    PubMed

    Burger, J; Sanchez, J; Roush, D; Gochfeld, M

    2001-04-01

    With the ending of the Cold War, the Department of Energy (DOE) is evaluating mission, future land use and stewardship of departmental facilities. This paper compares the environmental concerns and future use preferences of 351 people interviewed at Lewiston, Idaho, about the Hanford Site and Idaho National Engineering and Environmental Laboratory (INEEL), two of DOE's largest sites. Although most subjects lived closer to Hanford than INEEL, most resided in the same state as INEEL. Therefore their economic interests might be more closely allied with INEEL, while their health concerns might be more related to Hanford. Few lived close enough to either site to be directly affected economically. We test the null hypotheses that there are no differences in environmental concerns and future land-use preferences as a function of DOE site, sex, age and education. When asked to list their major concerns about the sites, more people listed human health and safety, and environmental concerns about Hanford compared to INEEL. When asked to list their preferred future land uses, 49% of subjects did not have any for INEEL, whereas only 35% did not know for Hanford. The highest preferred land uses for both sites were as a National Environmental Research Park (NERP), and for camping, hunting, hiking, and fishing. Except for returning the land to the tribes and increased nuclear storage, subjects rated all future uses as more preferred at INEEL than Hanford. Taken together, these data suggest that the people interviewed know more about Hanford, are more concerned about Hanford, rate recreational uses and NERP as their highest preferred land use, and feel that INEEL is more suited for most land uses than Handford. Overall rankings for future land uses were remarkably similar between the sites, indicating that for these stakeholders, DOE lands should be preserved for research and recreation. These preferences should be taken into account when planning for long-term stewardship at

  16. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering.

    PubMed

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  17. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy.

    PubMed

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering-stem cells, scaffolds, and signaling molecules-has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  18. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  19. Developing a Consensus-Driven, Core Competency Model to Shape Future Audio Engineering Technology Curriculum: A Web-Based Modified Delphi Study

    ERIC Educational Resources Information Center

    Tough, David T.

    2009-01-01

    The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…

  20. Physician as Scientist: Preparation, Performance, and Prospects

    ERIC Educational Resources Information Center

    Castle, William B.

    1976-01-01

    Greatly modifying the present medical curriculum for the future physician-scientist is not recommended. The value of his having a PhD is questioned and the importance of his working in a hospital-based clinical department is stressed. The author contends that emphasizing the interrelationship between basic and applied research will increase public…