Science.gov

Sample records for future scientists engineers

  1. Creating Future Scientists and Engineers. 2013 Keynote Speech

    ERIC Educational Resources Information Center

    Hicks, Stephen

    2013-01-01

    This article presents a summary of the keynote speech presented at the ITEEA Conference in Columbus, OH, March 4, 2013, by Steven Hicks. Hicks is former Director, Research & Development, Flavor & Fragrance Development Global Capability, for the Procter & Gamble Company. Educated as a chemical engineer, his outside interests include…

  2. Creating Future Scientists and Engineers. 2013 Keynote Speech

    ERIC Educational Resources Information Center

    Hicks, Stephen

    2013-01-01

    This article presents a summary of the keynote speech presented at the ITEEA Conference in Columbus, OH, March 4, 2013, by Steven Hicks. Hicks is former Director, Research & Development, Flavor & Fragrance Development Global Capability, for the Procter & Gamble Company. Educated as a chemical engineer, his outside interests include…

  3. Inspiring Future Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  4. Scientists vs. Engineers

    SciTech Connect

    Wiley, H. S.

    2010-07-01

    In the past, I have heard there was conflict between the “two cultures” of science and the humanities. I don’t see a lot of evidence for that type of conflict today, mostly because my scientific friends all are big fans of the arts and literature. However, the two cultures that I do see a great deal of conflict between are those of science and engineering.

  5. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  6. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    NASA Technical Reports Server (NTRS)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  7. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  8. Emeritus scientists, mathematicians, and engineers programs

    SciTech Connect

    Sharlin, H.I.

    1994-12-31

    The goal of the Emeritus Scientists, Mathematicians, and Engineers (ESME) Program is to introduce elementary school children to the fun and excitement of science and technology. The objective is to use hands-on experiments and demonstrations in the classroom. ESME recruits retired scientists and engineers in the metropolitan Washington, D.C. area. Working with the teachers as a team, the volunteers teach six hour-long classes, then take the children to a laboratory or a museum. Support comes from the D.C. Public School system, and professional societies and corporations. Funding has been provided by the NSF, public and private foundations. A professional evaluation is conducted every three years.

  9. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    SciTech Connect

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  10. Scientist and Engineer Shortage: Myth or Reality?

    ERIC Educational Resources Information Center

    Post, Jan F.

    2006-01-01

    With clockwork regularity, the real or perceived shortage of scientists and engineers in the US pops up as a topic of debate in academic and industry circles. Discussions of an imminent shortage have deep impact for education, career prospects, immigration, and "The American Dream." The purpose of this article is twofold. First, it poses a…

  11. SCIENTISTS AND ENGINEERS STATISTICAL DATA SYSTEM (SESTAT)

    EPA Science Inventory

    SESTAT is a comprehensive and integrated system of information about the employment, educational, and demographic characteristics of scientists and engineers (S&E) in the United States. In concept it covers those with a bachelor's degree or higher who either work in or are educat...

  12. Career Management for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  13. Differential forms for scientists and engineers

    NASA Astrophysics Data System (ADS)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  14. Doctoral Scientists and Engineers: A Decade of Change. Special Report. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Many feel that scientists and engineers play a critical role in expanding the frontiers and knowledge of science and engineering and in educating and training future generations of scientists and engineers. They may do so by providing leadership in areas of national interest including efforts to increase the international competitiveness and…

  15. Essential NMR for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Blömich, Bernhard

    ESSENTIAL NMR is a set of lecture notes for scientists and engineers who want to brush up on their knowledge of NMR. This book is also a compendium for graduate and postgraduate students of physics and chemistry as well as for their teachers, covering all fields of NMR, i.e. NMR methodology and hardware, chemical analysis, 2D-spectroscopy, NMR imaging, flow NMR, and quality control NMR. The material, selected and organized for a one-semester course, is presented with pairs of pages addressing particular topics.

  16. Business planning for scientists and engineers

    SciTech Connect

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  17. Emeritus scientists, mathematicians, and engineers handbook

    SciTech Connect

    Not Available

    1993-01-01

    The Emeritus Scientist, Mathematicians and Engineers (ESME) program is designed to supplement the teaching of math and science in primary schools. The program targets schools where youngsters have little or no contact with these professions. Purpose is to tap into the vast bases of knowledge, training, and experience of retired professionals and use them as a resource and a catalyst for learning. They make a limited commitment to work with a class for one unit of time (six 1- hour sessions plus a field trip, over a 6-week period); this does not include preparation time. Professionals interested in being part of ESME must first prepare a Profile''; a sample profile is given. ESME volunteers presently are working in 8 schools in Washington DC Metropolitan area. Experiments that have been done successfully are listed, as are possible field trips.

  18. Engineering the next generation of brain scientists.

    PubMed

    Litt, Brian

    2015-04-01

    New technologies to probe the nervous system are propelling innovation and discovery at blinding speed, but are our trainees prepared to maximize this power? The growing role of engineering in research, such as materials, computing, electronics, and devices, compels us to rethink neuroscience education. Core technology requirements, cross-disciplinary education, open-source resources, and experiential learning are new ways we can efficiently equip future leaders to make the next disruptive discoveries. PMID:25856480

  19. MATHEMATICAL ROUTINES FOR ENGINEERS AND SCIENTISTS

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The purpose of this package is to provide the scientific and engineering community with a library of programs useful for performing routine mathematical manipulations. This collection of programs will enable scientists to concentrate on their work without having to write their own routines for solving common problems, thus saving considerable amounts of time. This package contains sixteen subroutines. Each is separately documented with descriptions of the invoking subroutine call, its required parameters, and a sample test program. The functions available include: maxima, minima, and sort of vectors; factorials; random number generator (uniform or Gaussian distribution); complimentary error function; fast Fourier Transformation; Simpson's Rule integration; matrix determinate and inversion; Bessel function (J Bessel function for any order, and modified Bessel function for zero order); roots of a polynomial; roots of non-linear equation; and the solution of first order ordinary differential equations using Hamming's predictor-corrector method. There is also a subroutine for using a dot matrix printer to plot a given set of y values for a uniformly increasing x value. This package is written in FORTRAN 77 (Super Soft Small System FORTRAN compiler) for batch execution and has been implemented on the IBM PC computer series under MS-DOS with a central memory requirement of approximately 28K of 8 bit bytes for all subroutines. This program was developed in 1986.

  20. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  1. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  2. A systems engineering primer for every engineer and scientist

    SciTech Connect

    Edwards, William R.

    2001-12-10

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

  3. Training scientists and engineers for the year 2000

    SciTech Connect

    Trivelpiece, A.W.

    1990-05-08

    This paper is a transcript of testimony by Alvin W. Trivelpiece, director of ORNL, before Congressional Subcommittee on Science, Technology, and Space. Dr. Trivelpiece discusses the importance of training scientist and engineers for the year 2000. (FSD)

  4. The Effect of Military Personnel Requirements on the Future Supply of Scientists and Engineers in the United States. Papers and a Conference Report (Washington, D.C., June 10, 1981).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    This document contains two papers commissioned by the Human Resources Commission of the National Research Council to explore the potential effects of military personnel requirements on the supply of scientists and engineers, and reaction to the papers from a one-day seminar of invited participants. The first paper, by Dr. Dael Wolfle, considers…

  5. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  6. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  7. Age distribution among NASA scientists and engineers

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.

    1989-01-01

    The loss of technical expertise through attrition in NASA and the aerospace industry is discussed. This report documents historical age-related information for scientific and engineering personnel in general and the NASA Lewis Research Center in particular, for 1968 through 1987. Recommendations are made to promote discussion and to establish the groundwork for action.

  8. TOUGH Short Course for Scientists and Engineers

    SciTech Connect

    Kowalsky, Michael B.; Finsterle, Stefan

    2006-08-01

    The TOUGH family of codes is a suite of computer programs for the simulation of multiphase fluid and heat flows in porous and fractured media with applications to geothermal reservoir engineering, nuclear waste disposal in geologic formations, geologic carbon sequestration, gas hydrate research, vadose zone hydrology, environmental remediation, oil and gas reservoir engineering, and other mass transport and energy transfer problems in complex geologic settings. TOUGH has been developed in the Earth Sciences Division of the Lawrence Berkeley National Laboratory (LBNL). Many modifications and enhancements have been made to TOUGH (at LBNL and elsewhere) from the time it was first released in 1987. TOUGH and its various descendants (such as iTOUGH2, T2VOC, TMVOC, EWASG, TOUGHREACT, TOUGH+ and many more) are currently in use in approximately 300 research laboratories, private companies, and universities in 33 countries. The LBNL group, headed by Karsten Pruess, serves as custodian of the code. The TOUGH simulators were developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases--and, in certain modules, a non-aqueous phase liquid (NAPL)--occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code includes Klinkenberg effects and binary diffusion in the gas phase, and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction (with thermal conductivity dependent on water saturation), convection, and binary diffusion, which includes both sensible and latent heat. The goal of this training course is to teach participants with limited numerical modeling experience the fundamental concepts of modeling with the TOUGH family of codes. The material to be covered includes the following: Introduction to the TOUGH family of codes and applications; Underlying physics, mathematical models, and numerical approaches; Program structure and code installation; and Explanation of input and output files. The course will revolve around sample problems that are meant to familiarize users with TOUGH modeling concepts, such as grid generation, specification of material properties, initial and boundary conditions, and program control The most common equation of state (EOS) modules will be considered for a variety of applications and levels of complexity (ranging from isothermal problems with a single component and phase, to non-isothermal problems with multiple components and phases) Examples of advanced applications from the TOUGH family of codes, will be presented.

  9. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  10. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  11. Utilization of and Demand for Engineers and Scientists in Industrial Research.

    ERIC Educational Resources Information Center

    Alden, John D.

    A survey of the employment and demand for scientists and engineers in industrial research laboratories was made among all companies belonging to the Industrial Research Institute and a number of other organizations early in 1972. A questionnaire was used to analyze such aspects as reliability of future estimates, employment trends, personnel…

  12. Handbook of applied mathematics for engineers and scientists

    SciTech Connect

    Kurtz, M.

    1991-12-31

    This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.

  13. The Information Needs of Scientists and Engineers in Aerospace.

    ERIC Educational Resources Information Center

    Raitt, D. I.

    The information seeking and use habits of more than 600 scientists and engineers on staff at the European Space Agency (ESA) were studied and compared with those of staff at five European organizations with similar missions: the United Nations Education, Scientific, and Cultural Organization (UNESCO) in France; the International Atomic Energy…

  14. Survey of Continuing Education Activities for Engineers and Scientists.

    ERIC Educational Resources Information Center

    Klus, John P.; Jones, Judy A.

    A study was done to provide baseline data on the continuing education opportunities that colleges, universities, and professional societies offer engineers and scientists and to determine how programs and courses are developed. Although degree credit courses were included, the focus was on noncredit education designed to increase or update…

  15. Going "Green": Environmental Jobs for Scientists and Engineers

    ERIC Educational Resources Information Center

    Ramey, Alice

    2009-01-01

    Green is often used as a synonym for environmental or ecological, especially as it relates to products and activities aimed at minimizing damage to the planet. Scientists and engineers have long had important roles in the environmental movement. Their expertise is focused on a variety of issues, including increasing energy efficiency, improving…

  16. Shaping the Future of Research: a perspective from junior scientists

    PubMed Central

    MacKellar, Drew C.; Mazzilli, Sarah A.; Pai, Vaibhav P.; Goodwin, Patricia R.; Walsh, Erica M.; Robinson-Mosher, Avi; Bowman, Thomas A.; Kraemer, James; Erb, Marcella L.; Schoenfeld, Eldi; Shokri, Leila; Jackson, Jonathan D.; Islam, Ayesha; Mattozzi, Matthew D.; Krukenberg, Kristin A.; Polka, Jessica K.

    2015-01-01

    The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 nd and 3 rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes. PMID:25653845

  17. Preparing scientists and engineers to interact with NRC

    SciTech Connect

    Berkowitz, L.; Bjerstedt, T.; Desell, L.J.; Kouts, C.

    1995-12-01

    The U.S. Department of Energy (DOE) is developing a Civilian Radioactive Waste Management System (CRWMS) pursuant to the provisions of the Nuclear Waste Policy Act, as amended. This task includes investigations which are being carried out at the frontiers of earth science and involves DOE and many of the scientists and engineers working on its behalf in interactions with the U.S. Nuclear Regulatory Commission (NRC), i.e., in the NRC licensing process. Because this process is one with which the DOE and most of its participants have not been familiar, DOE decided that it should provide its personnel and the scientists and engineers involved in the development of the CRWMS with an understanding of the licensing process and their role in the process. This paper discusses DOE`s experience in developing and conducting workshops to help provide this understanding.

  18. Advantage, Absence of Advantage, and Disadvantage Among Scientists and Engineers

    SciTech Connect

    Nancy DiTomaso

    2008-09-23

    DiTomaso talks about survey data on the career experiences of 3,200 scientists and engineers from 24 major companies. Her survey findings indicate that most people who do well in their careers and make significant contributions to their organizations get assistance from others in their workplace in many forms, including offering opportunities such as good projects, providing resources that make good performance more likely, and opening up networking possibilities.

  19. Identifying Future Scientists: Predicting Persistence into Research Training

    PubMed Central

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8–12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers. PMID:18056303

  20. Cultivating Scientist- and Engineer-Educators 2010: The Evolving Professional Development Program

    NASA Astrophysics Data System (ADS)

    Hunter, L.; Metevier, A. J.; Seagroves, S.; Kluger-Bell, B.; Porter, J.; Raschke, L.; Jonsson, P.; Shaw, J.; Quan, T. K.; Montgomery, R.

    2010-12-01

    The Professional Development Program (PDP) is at the heart of the education programs of the Institute for Scientist & Engineer Educators. The PDP was originally developed by the Center for Adaptive Optics, and since has been instrumental in developing and advancing a growing community of scientist- and engineer-educators. Participants come to the PDP early in their careers—most as graduate students—and they emerge as leaders who integrate research and education in their professional practice. The PDP engages participants in the innovative teaching and learning strategies of inquiry. Participants put new knowledge into action by designing inquiry activities and teaching their activities in undergraduate science and engineering laboratory settings. In addition to inquiry, members of the PDP community value and intentionally draw from diversity and equity studies and strategies, assessment strategies, education research, knowledge about effective education practices, and interdisciplinary dialogue. This paper describes the PDP, including goals, rationale, format, workshop sessions, outcomes from ten years, and future directions.

  1. Educational and Demographic Characteristics of Energy-Related Scientists and Engineers, 1976

    SciTech Connect

    Finn, M. G.; Bain, T.

    1980-04-01

    This analysis of the education, training, and age distribution of experienced scientists, engineers, energy-related scientists, and energy-related engineers uses the 1976 National Science Foundation National Sample data on 50,000 scientists and engineers who were in the labor force at the time of the 1970 Census. The energy-related scientists and engineers have characteristics quite similar to those of all scientists and engineers. However, energy-related scientists and engineers report slightly higher educational attainment as well as a higher incidence of supplemental training. Energy-related engineers generally are not much older than their counterparts who did not report energy-related work. Energy-related scientists, however, are older than their counterparts and can be expected to experience losses from death and retirement at a rate about 12 percent higher than the rate for all scientists over the next decade.

  2. The future of complexity engineering

    NASA Astrophysics Data System (ADS)

    Frei, Regina; Di Marzo Serugendo, Giovanna

    2012-06-01

    Complexity Engineering encompasses a set of approaches to engineering systems which are typically composed of various interacting entities often exhibiting self-* behaviours and emergence. The engineer or designer uses methods that benefit from the findings of complexity science and often considerably differ from the classical engineering approach of "divide and conquer". This article provides an overview on some very interdisciplinary and innovative research areas and projects in the field of Complexity Engineering, including synthetic biology, chemistry, artificial life, self-healing materials and others. It then classifies the presented work according to five types of nature-inspired technology, namely: (1) using technology to understand nature, (2) nature-inspiration for technology, (3) using technology on natural systems, (4) using biotechnology methods in software engineering, and (5) using technology to model nature. Finally, future trends in Complexity Engineering are indicated and related risks are discussed.

  3. Citation Analysis: A Case Study of Korean Scientists and Engineers in Electrical and Electronics Engineering.

    ERIC Educational Resources Information Center

    Rieh, Hae-young

    1993-01-01

    Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…

  4. Manpower assessment brief: Employment of energy related doctoral scientists and engineers increased between 1981 and 1985

    SciTech Connect

    Not Available

    1987-01-01

    In 1985, the nearly 45,000 energy-related doctoral scientists and engineers represented 11% of all employed doctoral scientists and engineers. Engineers comprised 40%, physical scientists, 21%, and earth scientists, almost 10% of those involved in energy-related activities - a significantly different distribution than occurs among all Ph.D. scientists and engineers. Between 1981 and 1985, by far the largest increase in energy-related Ph.D.'s occurred in employment in the life sciences - up over 120%. Employment in the social sciences and pyschology (primarily the latter) grew by 17% and in engineering by 7%.

  5. THE FUTURE OF SCIENTIFIC PUBLICATIONS: ONE SCIENTIST'S PERSPECTIVE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent explosion of information, especially in digital form, is revolutionizing many fields of scientific endeavor, including the assorted venues scientists use to disseminate their research results. Scientists should take a keen interest in this nascent paradigm shift ­ it is already having a p...

  6. Predicting the performance and innovativeness of scientists and engineers.

    PubMed

    Keller, Robert T

    2012-01-01

    A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed. PMID:21875172

  7. Outreach to Scientists and Engineers at the Hanford Technical Library

    SciTech Connect

    Buxton, Karen A.

    2008-06-17

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than the traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use of the library. Scientists and engineers who require longer sessions can arrange half-hour training appointments in the researcher’s own office or at the library. Since the program was implemented staff made 165 visits to 1249 laboratory staff including some repeat consultation requests. New acquisitions lists are sent to individuals and groups that would be interested in recent journal, database, and books purchases. These lists are topic specific and targeted to groups and individuals with an interest in the field. For example newly acquired engineering resources are targeted at engineering groups. The new acquisitions list for engineering began mid year in 2005. An analysis of circulation statistics for engineering books in fiscal year 2005, 2006, and 2007 show that circulation increased each year with 2007 circulation nearly double that of 2005. This took place when overall circulation rose in FY06 but fell slightly in FY07. Outreach strategies tailored and individualized can be effective. Offering multiple outreach options offers researchers different ways to interact with library staff and services.

  8. Students Engaged in Research - Young Engineers and Scientists (YES)

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.

    2009-09-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including geosciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  9. Young Engineers and Scientists (YES) -engaging students in research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Reiff, Patricia

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) during the past 18 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including space sciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students' preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  10. Education and training of future wetland scientists and managers

    USGS Publications Warehouse

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or updates related to new management discoveries, policies, and regulations. ?? 2008 The Society of Wetland Scientists.

  11. Inspiring future experimental scientists through questions related to colour

    NASA Astrophysics Data System (ADS)

    Fairchild, Mark D.; Melgosa, Manuel

    2014-07-01

    In general, it can be stated that unfortunately in most countries the number of students interested in traditional scientific disciplines (e.g. physics, chemistry, biology, mathematics, etc.) for his/her future professional careers has considerably decreased during the past years. It is likely that among the reasons of this trend we can find that many students feel that these disciplines are particularly difficult, complex, abstract, and even boring, while they consider applied sciences (e.g. engineering) as much more attractive options to them. Here we aim to attract people of very different ages to traditional scientific disciplines, and promote scientific knowledge, using a set of colour questions related to everyday experiences. From our answers to these questions we hope that people can understand and learn science in a rigorous, relaxed and amusing way, and hopefully they will be inspired to continue exploring on their own. Examples of such colour questions can be found at the free website http://whyiscolor.org from Mark D. Fairchild. For a wider dissemination, most contents of this website have been recently translated into Spanish language by the authors, and published in the book entitled "La tienda de las curiosidades sobre el color" (Editorial University of Granada, Spain, ISBN: 9788433853820). Colour is certainly multidisciplinary, and while it can be said that it is mainly a perception, optics is a key discipline to understand colour stimuli and phenomena. The classical first approach in colour science as the result of the interaction of light, objects, and the human visual system will be also reviewed.

  12. Tissue Engineering: Current Strategies and Future Directions

    PubMed Central

    Olson, Jennifer L.; Atala, Anthony

    2011-01-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future. PMID:22111050

  13. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  14. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  15. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  16. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  17. Semiconductors: Still a Wide Open Frontier for Scientists/Engineers

    NASA Astrophysics Data System (ADS)

    Seiler, David G.

    1997-10-01

    A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.

  18. Enhancing the Postdoctoral Experience for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Singer, M.

    2001-12-01

    The National Academies' Committee on Science, Engineering, and Public Policy has been concerned with many aspects of the education and training of scientists in the US. Its most recent effort was an intensive study of the experience of postdocs across all fields. The report concluded that postdocs have become essential in many research settings. It is largely they who carry out the day-to-day work of research and their efforts account for a great deal of the extraordinary productivity of US science. While there is substantial variation in the experiences of postdocs from field to field and among different types of laboratories, overall, the data indicated that employment conditions for postdocs, especially in universities, need to be signficantly improved if the US is to develop the human capital needed to sustain a healthy research enterprise and global leadership. The data collected will be summarized as will some of the more detailed conclusions and recommendations. An essential guiding principle was that the postdoctoral experience is first and foremost a period of apprenticeship for the purpose of gaining scientific, technical, and professional skills that advance the professional career. The Committee also concluded that improvement in the current situation will require efforts by postdocs, their advisers, the host institutions, the funding organizations, and professional societies. Besides reviewing the report, this presentation will summarize some of the actions that have been taken in response to the report since its publication more than a year ago.

  19. System Engineering Challenges of Future Space Missions

    NASA Technical Reports Server (NTRS)

    Hyde, Tristam Tupper

    2005-01-01

    A viewgraph presentation on the system engineering challenges that face NASA's future space missions is shown. The topics include: 1) Future Space Missions; 2) Trends; and 3) Developing System Engineers.

  20. Energy-related doctoral scientists and engineers in the United States, 1977

    SciTech Connect

    Not Available

    1980-04-01

    Information is compiled about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data are for the year 1977 and are part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Data on mathematics, physics, chemistry, environmental engineering, engineering, life sciences, psychology, and social sciences doctoral degree specialties are included.

  1. Nanomedical Engineering: shaping future nanomedicines

    PubMed Central

    Luo, Dandan; Carter, Kevin A; Lovell, Jonathan F

    2014-01-01

    Preclinical research in the field of nanomedicine continues to produce a steady stream of new nanoparticles with unique capabilities and complex properties. With improvements come promising treatments for diseases, with the ultimate goal of clinical translation and better patient outcomes compared to current standards of care. Here, we outline engineering considerations for nanomedicines, with respect to design criteria, targeting and stimuli-triggered drug release strategies. General properties, clinical relevance and current research advances of various nanomedicines are discussed in light of how these will realize their potential and shape the future of the field. PMID:25377691

  2. Inspiring the Next Generation of Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Tambara, Kevin

    2013-04-01

    Students are usually not excited about abstract concepts, and teachers struggle to inject "pizzazz" into many of their lessons. K-12 teachers need opportunities and the associated pedagogical training to bring meaningful and authentic learning to their students. The professional educator community needs to develop a learning environment which connects desired content knowledge with science and engineering practices that students need to be successful future technology leaders. Furthermore, this environment must foster student exploration and discovery by encouraging them to use their natural creativity with newly acquired technical skills to complete assigned projects. These practices are explicitly listed in the US "Next Generation Science Standards" document that is due for final publication in the very near future. Education in America must unleash students' desires to create and make with their hands, using their intellect, and growing academic knowledge. In this submission I will share various student projects that I have created and implemented for middle and high school. For each project, students were required to learn and implement engineering best practices while designing, building, and testing prototype models, according to pre-assigned teacher specifications. As in all real-world engineering projects, students were required to analyze test data, re-design their models accordingly, and iterate the design process several times to meet specifications. Another key component to successful projects is collaboration between student team members. All my students come to realize that nothing of major significance is ever accomplished alone, that is, without the support of a team. I will highlight several projects that illustrate key engineering practices as well as lessons learned, for both student and teacher. Projects presented will include: magnetically levitated vehicles (maglev) races, solar-powered and mousetrap-powered cars and boats, Popsicle stick catapults and bridges, egg drop "lunar landers", egg-passenger car crashes, cardboard boat races (with human passengers), and working roller coasters made with only paper and tape. Each project requires minimal, low-cost materials commonly found at home or in local stores. I will share the most common student misperceptions about inquiry and problem-solving I have observed while working alongside my students during these projects.

  3. SESTAT: A Tool for Studying Scientists and Engineers in the United States.

    ERIC Educational Resources Information Center

    Kannankutty, Nirmala; Wilkinson, R. Keith

    The Scientists and Engineers Statistical Data System (SESTAT) is a comprehensive and integrated system of information about scientists and engineers in the United States. It comprises data collected through three national sample surveys supported by the National Science Foundation (NSF): The National Survey of College Graduates, the National…

  4. The UCSC Institute for Scientist & Engineer Educators: Supporting Multi-Level STEM Workforce Development

    ERIC Educational Resources Information Center

    St. John, Mark; Castori, Pam

    2014-01-01

    The Institute for Scientist & Engineer Educators (ISEE) is a national effort to improve STEM education and workforce development by transforming how the next generation of scientists and engineers teach and mentor. Housed at the University of California, Santa Cruz, ISEE is the legacy of the educational side of the Center for Adaptive Optics…

  5. Immigrant Scientists and Engineers in the United States. A Study of Characteristics and Attitudes.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The immigration of approximately 57,000 scientists and engineers to the United States during the 1966-70 period prompted questions as to the benefit to the United States, the implications for countries of origin, and the reasons behind the movement. This report is a broad survey of immigrant scientists and engineers conducted by the National…

  6. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio, Texas). Acknowledgments: We are grateful for support from the NASA MMS Mission E/PO Grant, SwRI, Northside Independent School District, and local charitable foundations.

  7. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the global Earth System. These armchair explorers learn to unite datasets in a region to learn about places like and unlike where they live. In a world that's becoming smaller and smaller with the aid of technology, projects like MND prepare our students for their global future. A teacher located in an area of California strongly impacted by pollution and potential climate changes noted that this project makes available data that are very relevant to issues that will affect her students' lives. She points out that not all scientific information they currently see is in a form that is understandable to an educated citizen, and that the experience with MND will enable her students to have better than average skills not only for deciphering scientific maps and graphs; but also for creating maps and graphics that successfully convey information to others.

  8. From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Scientists and Engineers.

    ERIC Educational Resources Information Center

    Long, J. Scott, Ed.

    This study documents the changes that have occurred in the representation of women in science and engineering and the characteristics of women scientists and engineers. Data from two National Science Foundation databases, the Survey of Earned Doctorates for New Ph.D.s and the Survey of Doctoral Recipients for the science & engineering doctoral…

  9. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  10. Reshaping the Graduate Education of Scientists and Engineers.

    ERIC Educational Resources Information Center

    AWIS Magazine, 1996

    1996-01-01

    Summarizes a report from the joint committee of the National Academy of Sciences and the National Academy of Engineering, Institute of Medicine that recommends a new model of Ph.D. education based on changes in science, engineering, the economy, and society in general. Changes include more versatility, better career information and guidance, less…

  11. The McBride Honors Program in Public Affairs for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.

    2006-12-01

    The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.

  12. Impact of Entrepreneurship Teaching in Higher Education on the Employability of Scientists and Engineers

    ERIC Educational Resources Information Center

    O'Leary, Simon

    2012-01-01

    This paper explores the impact effective entrepreneurship teaching has on the employability of scientists and engineers. Business teaching, guest speakers and work placements are part of many science and engineering degrees and this research indicates that entrepreneurship and related issues are also being addressed in a variety of ways and having…

  13. Impact of Entrepreneurship Teaching in Higher Education on the Employability of Scientists and Engineers

    ERIC Educational Resources Information Center

    O'Leary, Simon

    2012-01-01

    This paper explores the impact effective entrepreneurship teaching has on the employability of scientists and engineers. Business teaching, guest speakers and work placements are part of many science and engineering degrees and this research indicates that entrepreneurship and related issues are also being addressed in a variety of ways and having…

  14. Successful Latina Scientists and Engineers: Their Lived Mentoring Experiences and Career Development

    ERIC Educational Resources Information Center

    San Miguel, Anitza M.; Kim, Mikyong Minsun

    2015-01-01

    Utilizing a phenomenological perspective and method, this study aimed to reveal the lived career mentoring experiences of Latinas in science and engineering and to understand how selected Latina scientists and engineers achieved high-level positions. Our in-depth interviews revealed that (a) it is important to have multiple mentors for Latinas'…

  15. Educational Program for Scientists and Engineers at the Wright Patterson Air Force Base.

    ERIC Educational Resources Information Center

    Weed, Herman R.; And Others

    The objective of the study was to develop an educational program to update Air Force scientists, engineers, senior technicians and managers of science and engineering (both military and civilian) working at Wright Patterson Air Force Base (WPAFB). Needs in continuing education were assessed from data obtained from: the Office of Professional and…

  16. Hierarchical Learning Ensembles: Team Building for Undergraduate Scientists and Engineers

    ERIC Educational Resources Information Center

    DiLisi, Gregory A.; Eppell, Steven J.; Upton, Jan

    2006-01-01

    We describe the design and implementation of our Hierarchical Learning Ensemble (HLE) model, a pedagogy that assembles interdisciplinary teams of graduate, undergraduate, and secondary-level students to solve science and engineering problems. Our goal is to sensitize undergraduates to working in heterogeneous groups and thus better prepare them…

  17. Academic Science/Engineering: Scientists and Engineers, January 1984. Surveys of Science Resources Series. Detailed Statistical Tables.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Data on the characteristics of scientists and engineers employed by higher education institutions and university-administered federally funded research and development institutions are presented. These data, derived from the National Science Foundation (NSF) 1984 Survey of Scientific and Engineering Personnel Employed at Universities and Colleges,…

  18. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  19. Future of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1997-01-01

    In the new millennium, software engineering standards are expected to continue to influence the process of producing software-intensive systems which are cost-effetive and of high quality. These sytems may range from ground and flight systems used for planetary exploration to educational support systems used in schools as well as consumer-oriented systems.

  20. Analysis of Office/Laboratory Staying Hour and Home Working Hour of Japanese Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Ejiri, A.

    The second questionnaire for scientists and engineers was carried out in 2007, and status of Japanese scientists and engineers were analyzed and reported. A part of the data was reanalyzed from the viewpoint of work life balance. In particular, office/laboratory staying hour and home working hour were analyzed and dependences on various factors were investigated. It was found that these hours depend on gender, marital status, number of child, employment status and age. In addition, the total hours tend to be kept constant regardless of various factors.

  1. Emeritus Scientists, Mathematicians and Engineers (ESME) program. Summary of activities for school year 1991--1992

    SciTech Connect

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children`s natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  2. Engineering the Future: Cell 6

    NASA Technical Reports Server (NTRS)

    Stahl, P. H.

    2010-01-01

    This slide presentation reviews the development of the James Webb Space Telescope (JWST), explaining the development using a systems engineering methodology. Included are slides showing the organizational chart, the JWST Science Goals, the size of the primary mirror, and full scale mockups of the JSWT. Also included is a review of the JWST Optical Telescope Requirements, a review of the preliminary design and analysis, the technology development required to create the JWST, with particular interest in the specific mirror technology that was required, and views of the mirror manufacturing process. Several slides review the process of verification and validation by testing and analysis, including a diagram of the Cryogenic Test Facility at Marshall, and views of the primary mirror while being tested in the cryogenic facility.

  3. Future Prospects of Low Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Azim, M. A.

    2014-01-01

    This study presents a review and analysis of the effects of compression ratio and inlet air preheating on engine performance in order to assess the future prospects of low compression ignition engines. Regulation of the inlet air preheating allows some control over the combustion process in compression ignition engines. Literature shows that low compression ratio and inlet air preheating are more beneficial to internal combustion engines than detrimental. Even the disadvantages due to low compression ratio are outweighed by the advantages due to inlet air preheating and vice versa.

  4. Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See

    ScienceCinema

    Lienhard, John [NPR, United States

    2010-09-01

    Public radio host Dr. John Lienhard gives a talk titled "Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See". Lienhard contends that spatial visualization is the subtlest of abilities. In his talk, he traces its evolution through the past five centuries and explains how remarkable aids to seeing may have been placing mental visualization under threat.

  5. International Mobility of Scientists and Engineers to the United States--Brain Drain or Brain Circulation?

    ERIC Educational Resources Information Center

    Johnson, Jean M.; Regets, Mark C.

    1998-01-01

    This Issue Brief reports on the international mobility of scientists and engineers to the United States and discusses student flows into the higher education system, the stay rates of foreign doctoral recipients, and their short and long term employment in United States industry, universities, and government. Information presented in the tables…

  6. Citizenship Ceremony for Dr. von Braun and German-Born Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    1955-01-01

    In a swearing-in ceremony held at Huntsville High School, one hundred and three German-born scientists and engineers, along with family members, took the oath of citizenship to become United States citizens. Among those taking the oath was Dr. Wernher von Braun, located in the second row, right side, third from the end.

  7. Coordination of NSF Projects in the Area of Continuing Education for Scientists and Engineers.

    ERIC Educational Resources Information Center

    Welling, Lawrence G.

    In October 1978, the National Science Foundation (NSF) initiated five studies of the continuing education of scientists and engineers employed in small, geographically dispersed industry. Following the award of these studies NSF requested Battelle, one of the award recipients, to assist in coordinating the five projects. This report briefly…

  8. Scientists and Engineers in the Federal Government. Personnel Bibliography Series Number 30.

    ERIC Educational Resources Information Center

    Witham, Frank

    Annotations and bibliographic information are provided for reports, journal articles and other documents referring to scientists and engineers received by the U. S. Civil Service Commission library between 1965 and 1969. The documents are classified and reported in the following sections: supply and demand for technical personnel; personnel…

  9. Innovation Development--An Action Learning Programme for Medical Scientists and Engineers

    ERIC Educational Resources Information Center

    Beniston, Lee; Ellwood, Paul; Gold, Jeff; Roberts, James; Thorpe, Richard

    2014-01-01

    There is increasing evidence that action learning is valuable in a higher education setting. This paper goes on to report a personal development programme, based on principles of critical action learning, where the aim is to equip early-career scientists and engineers working in a university setting with the knowledge, skills and confidence to…

  10. Scientists, Engineers, and Technicians in Manufacturing Industries, 1992. Detailed Statistical Tables.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    This report presents estimates of the total number of positions filled by scientists, engineers, and technicians employed in manufacturing industries in 1992. The estimates were developed from the Occupational Employment Statistics (OES) Survey, a Federal/State program under which national and state estimates are generated, of employment by…

  11. Modelling the Information Seeking Patterns of Engineers and Research Scientists in an Industrial Environment.

    ERIC Educational Resources Information Center

    Ellis, David; Haugan, Merete

    1997-01-01

    Engineers and research scientists at Statoil's Research Center in Trondheim, Norway were interviewed to determine information-seeking patterns. Eight characteristics were identified: surveying, chaining, monitoring, browsing, distinguishing, filtering, extracting, and ending. The results showed that although there were differences in the features…

  12. Innovation Development--An Action Learning Programme for Medical Scientists and Engineers

    ERIC Educational Resources Information Center

    Beniston, Lee; Ellwood, Paul; Gold, Jeff; Roberts, James; Thorpe, Richard

    2014-01-01

    There is increasing evidence that action learning is valuable in a higher education setting. This paper goes on to report a personal development programme, based on principles of critical action learning, where the aim is to equip early-career scientists and engineers working in a university setting with the knowledge, skills and confidence to…

  13. Midlife Career Transitions of Men Who Are Scientists and Engineers: A Narrative Study

    ERIC Educational Resources Information Center

    Liu, Yosen; Englar-Carlson, Matt; Minichiello, Victor

    2012-01-01

    This article summarizes the results of a qualitative study of career transition experiences of middle-aged male scientists and engineers in the current socioeconomic environment in the United States. The study addresses the effects of the transitions from psychosocial perspectives. The authors selected participants from research organizations,…

  14. Primary-School Children's Attitudes towards Science, Engineering and Technology and Their Images of Scientists and Engineers

    ERIC Educational Resources Information Center

    Silver, Anne; Rushton, Brian S.

    2008-01-01

    The attitudes of Year 5 primary-school children towards science, engineering and technology (SET) were examined prior to studying the effects of the Horsham Greenpower Goblin Challenge (HGGC), a hands-on SET project. The data collection centred on pupil, parent and teacher questionnaires using Likert scales and picture/word images of scientists…

  15. Inspiring the Next Generation of Naval Scientists and Engineers in Mississippi and Louisiana

    NASA Astrophysics Data System (ADS)

    Breland-Mensi, S.; Calantoni, J.

    2012-12-01

    In 2011, the American Institute of Physics ranked Mississippi 50th out of 50 states in preparing students for science, technology, engineering and math (STEM) careers. Louisiana placed 48th on the list. [1] The Naval Research Laboratory - Stennis Space Center detachment (NRL-SSC) is located on the Mississippi Gulf Coast, approximately 2 miles from the Louisiana state line. In response to a growing need for NRL-SSC to sustain recruitment and retention of the best and brightest scientists and engineers (S&Es), NRL-SSC became a National Defense Education Program (NDEP) site in August 2009. NDEP's mission is to support a new generation of S&Es who will apply their talents in U.S. Defense laboratories. As an NDEP site, NRL-SSC receives funding to promote STEM at K-12 institutions geographically local to NRL-SSC. NDEP funding allows present Department of Defense civilian S&Es to collaborate with teachers to enrich student learning in the classroom environment through various programs, events, training and activities. Since NRL-SSC's STEM program's inception, more than 30 S&Es have supported an array of STEM outreach activities in over 30 different local schools. An important part of the K-12 outreach from NRL-SSC is to provide professional development opportunities for local teachers. During the summer of 2012, in collaboration with STEM programs sponsored by the Office of Naval Research (ONR), we provided a series of professional development opportunities for 120 local science and mathematics teachers across K-12. The foundation of NRL-SSC STEM programs includes MATHCOUNTS, FIRST and SeaPerch—all nationally recognized, results-driven programs. We will discuss the breadth of participation in these programs and how these programs will support NRL-SSC future recruitment goals.

  16. Connecting Ocean Scientists with Future Educators - COSEE Florida's Research Experience for Pre-Service Teachers

    NASA Astrophysics Data System (ADS)

    Cook, S.; Cetrulo, B.; Capers, J.

    2012-12-01

    To bring real world ocean science into the classroom, COSEE Florida's Research Experience for Pre-Service Teachers (REPT) program provides an opportunity for future science teachers to work with marine scientists on research projects. In 2011 and 2012, eleven middle school education majors at Indian River State College in Fort Pierce, FL, participated in a seven week summer experience. Scientist teams at Harbor Branch Oceanographic Institute of Florida Atlantic University, the Smithsonian Marine Station, and the Ocean Research & Conservation Association each mentored two students for 20 hours of research per week with 5 hours of support from Indian River State College (IRSC) faculty. Mentors helped students develop a scientific poster describing their research and guided them in the production of a video vignette called a CSTAR (COSEE Student Teachers as Researchers). The CSTAR videos address a 'nature of science' Florida state standard, have been shown to a variety of audiences in and out of the classroom and are expected to be a more frequently used educational product than a single lesson plan. To showcase the REPT intern accomplishments, an 'end-of-program' symposium open to the COSEE and IRSC communities was held at IRSC. Evaluation data indicate that the first two iterations of the COSEE Florida REPT program have given future teachers an authentic and deeper understanding of scientific practices and have provided ocean scientists with a meaningful opportunity to contribute to ocean science education.

  17. High School Engineering: Pre-Engineering for Future Engineers.

    ERIC Educational Resources Information Center

    Sutter, Gary R.

    1998-01-01

    Describes a course that bridges the gap between pure science and pure technology called Pre-Engineering. This course gives junior and senior students a chance to investigate the possibility of choosing engineering as a major in college as well as to experience hands-on activities, projects, laboratories, problem solving, and computer simulations…

  18. Scientists versus regulators: precaution, novelty & regulatory oversight as predictors of perceived risks of engineered nanomaterials.

    PubMed

    Beaudrie, Christian E H; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of 'nano experts' to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  19. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  20. George Washington University Visa Project-Streamlining Our Visa and Immigration Systems for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Teich, Albert H.

    2014-03-01

    Many scientists believe that current U.S. visa and immigration systems are out of sync with today's increasingly globalized science and technology. This talk will highlight specific proposals that would facilitate the recruitment of promising STEM students by U.S. universities and better enable international scientists and engineers to visit the United States for scientific conferences and research collaboration. Most of these proposals could be implemented without additional resources and without compromising U.S. security. The talk is based on the results of an 18 month study conducted at the George Washington University's Center for International Science & Technology Policy.

  1. Future prospects for tissue engineered lung transplantation

    PubMed Central

    Tsuchiya, Tomoshi; Sivarapatna, Amogh; Rocco, Kevin; Nanashima, Atsushi; Nagayasu, Takeshi; Niklason, Laura E

    2014-01-01

    The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future.   The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed. PMID:24488093

  2. Useless Arithmetic: Why Environmental Scientists Can't Predict the Future

    NASA Astrophysics Data System (ADS)

    Lakshmi, Venkat

    2007-05-01

    Orrin H. Pilkey and Linda Pilkey-Jarvis Columbia University Press; 2007; 230 pp.; ISBN 0-231-13212-3 $29.50 The book, Useless Arithmetic: Why Environmental Scientists Can't Predict the Future, presents a series of examples on the failure of mathematical modeling of environmental problems. The problems dealt with in this book are dominated by coastal process issues and beach erosion (three chapters) and one chapter each on nuclear storage at Yucca Mountain, surface mining, and invasive plant species.

  3. Future heavy duty trucking engine requirements

    NASA Technical Reports Server (NTRS)

    Strawhorn, L. W.; Suski, V. A.

    1985-01-01

    Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.

  4. Engineering a Cause and Cure to Climate Change; Working a culture change with our Future Engineers.

    NASA Astrophysics Data System (ADS)

    Hudier, E. J. J.

    2014-12-01

    Where scientist unravel the laws of nature giving the human race the means to remodel their environment, engineers are the tools that put together the very technologies that give humans this power. Early on, along our first steps through this industrialization era, development was the key word, nature could digest our waste products no matter what. We have managed to tamper with our atmosphere's gas composition and the climate is slowly remodelling our way of life. Engineers are now expected to be a key part of the solution. Engineering programs have evolved to include new dimensions such as ethics, communication and environment. We want future engineers to put these dimensions first while working on new machine designs, concepts and procedures. As undergraduate students with a deep science background we also want them to be a source of information for their co-workers and more. How well are we getting through? How good teachers our future engineers will be? This work take a look at the teaching/learning successes comparing engineering students with students attending an undergraduate program in biology. Methods emphasizing the acquisition of knowledge through lectures and reading assignments are tested along with activities aiming at unraveling the scientific fundamental behind environmental issues and putting forward original solutions to specific problematic. Concept knowledge scores, communications' quality and activities evaluations by students are discussed.

  5. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  6. Biomedical engineering continues to make the future.

    PubMed

    Fantini, Sergio; Bennis, Caoimhe; Kaplan, David

    2011-01-01

    Biomedical engineering (BME) continues to make the future, not just respond to the present, by anticipating the needs of interface engineering and clinical medicine. In many respects, BME is the educational mode of the future, fostering collaboration among disciplines at its core by building on basic concepts in engineering and biology. We strive to educate where the needs, opportunities, and jobs are and will be in the future. The bridge between engineering, biology, and medicine is a growing link, and there is no sign that this interface will slow. With an aging population, dynamic changes in health care, as well as global economies and related themes upon us, we are only at the very beginning of the impact that BME will have on medicine and the quality of life. Those of us in BME are excited to be setting this agenda and welcome your participation. In part, this is why we have designed our BME major to cover both the depth and breadth, always a challenge, but one that we are committed to. The depth of the design projects, research experience, coursework, study abroad options, and internships all convenes to establish a solid foundation for our students as they embark on their career paths. PMID:21791406

  7. Scientists versus Regulators: Precaution, Novelty & Regulatory Oversight as Predictors of Perceived Risks of Engineered Nanomaterials

    PubMed Central

    Beaudrie, Christian E. H.; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H.

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of ‘nano experts’ to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  8. An examination of undergraduate engineering students' stereotype of scientists and their career intentions

    NASA Astrophysics Data System (ADS)

    Stara, Michelle M.

    The US Government Accountability Office (GAO) (2013) has acknowledged that additional graduates are needed in engineering and related STEM fields. However, the GAO has also noted that it is difficult to determine if the additional graduates will align with employer demand at the time of entry into the workforce. This research study attempts to examine undergraduate engineering students' perceptions of scientists and if they were related to students' intentions to pursue science by examining the constructs of Stereotypes of Scientists (SOS) and Career Intentions in Science (CIS). While results of data analysis were not significant, patterns were seen that provided valuable information with regard to the variability of undergraduate engineering students and the complexity of what goes into stereotype formation and career choice. As a practitioner, there were pertinent applications that could be implemented from the results of this and related studies. From the perspective of practitioners, the findings may be used to target recruitment, retention, and specific teaching strategies to increase enrollment and graduate numbers in the lesser known engineering and STEM fields.

  9. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  10. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    SciTech Connect

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  11. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    SciTech Connect

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  12. Knowledge Engineering for Preservation and Future use of Institutional Knowledge

    NASA Technical Reports Server (NTRS)

    Moreman, Douglas; Dyer, John

    1996-01-01

    This Project has two main thrusts-preservation of special knowledge and its useful representation via computers. NASA is losing the expertise of its engineers and scientists who put together the great missions of the past. We no longer are landing men on the moon. Some of the equipment still used today (such as the RL-10 rocket) was designed decades ago by people who are now retiring. Furthermore, there has been a lack, in some areas of technology, of new projects that overlap with the old and that would have provided opportunities for monitoring by senior engineers of the young ones. We are studying this problem and trying out a couple of methods of soliciting and recording rare knowledge from experts. One method is that of Concept Maps which produces a graphical interface to knowledge even as it helps solicit that knowledge. We arranged for experienced help in this method from John Coffey of the Institute of Human and Machine Technology at the University of West Florida. A second method which we plan to try out in May, is a video-taped review of selected failed missions (e.g., the craft tumbled and blew up). Five senior engineers (most already retired from NASA) will, as a team, analyze available data, illustrating their thought processes as they try to solve the problem of why a space craft failed to complete its mission. The session will be captured in high quality audio and with at least two video cameras. The video can later be used to plan future concept mapping interviews and, in edited form, be a product in itself. Our computer representations of the amassed knowledge may eventually, via the methods of expert systems, be joined with other software being prepared as a suite of tools to aid future engineers designing rocket engines. In addition to representation by multimedia concept maps, we plan to consider linking vast bodies of text (and other media) by hypertexting methods.

  13. Work Activities of Employed Doctoral Scientists and Engineers in the U.S. Labor Force, July 1973. Reviews of Data on Science Resources, No. 24.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report presents tabular and graphical data on the characteristics of U.S. employed doctoral scientists and engineers, and includes data of the 1973 cohort; it augments data in a previous report, "Characteristics of Doctoral Scientists and Engineers in the United States, 1973," which reported on scientists and engineers who had received their…

  14. Mandibular Tissue Engineering: Past, Present, Future.

    PubMed

    Konopnicki, Sandra; Troulis, Maria J

    2015-12-01

    Almost 2 decades ago, the senior author's (M.T.J.) first article was with our mentor, Dr Leonard B. Kaban, a review article titled "Distraction Osteogenesis: Past, Present, Future." In 1998, many thought it would be impossible to have a remotely activated, small, curvilinear distractor that could be placed using endoscopic techniques. Currently, a U.S. patent for a curvilinear automated device and endoscopic techniques for minimally invasive access for jaw reconstruction exist. With minimally invasive access for jaw reconstruction, the burden to decrease donor site morbidity has increased. Distraction osteogenesis (DO) is an in vivo form of tissue engineering. The DO technique eliminates a donor site, is less invasive, requires a shorter operative time than usual procedures, and can be used for multiple reconstruction applications. Tissue engineering could further reduce morbidity and cost and increase treatment availability. The purpose of the present report was to review our experience with tissue engineering of bone: the past, present, and our vision for the future. The present report serves as a tribute to our mentor and acknowledges Dr Kaban for his incessant tutelage, guidance, wisdom, and boundless vision. PMID:26608143

  15. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well-recognized researchers tutored this conference, and gave assistance to young scientists by offering advice on publication, promotion, outreach processes, and data management. At the subsequent OSM, the young scientists had the opportunity to present their results to a larger community, and to build networks with their senior colleagues. In a friendly and classroom-like atmosphere, the research presented during the YSM was of a remarkably high quality, and merited publication in this special issue. The 23 short proceedings papers are first-authored by YSM attendees, and based on their presented work and the associated discussions. Consistent with the spirit of the YSM, the core of the guest editor team consisted of YSM early-career scientists, while members of the wider scientific community reviewed the papers. Studies presented in this issue cover a large range of topics. Paleoclimatic and paleoenvironmental research is always seeking new natural archives and improved proxies, and so some papers focus on reconstruction methodologies and the interpretation and calibration of proxies. Other papers present a variety of modeling approaches, such as climate system modeling, forward modeling, or ecosystem modeling. Still others focus on reconstructions from marine (foraminifera, diatoms, corals) or continental (tree rings, speleothems, ice cores) archives, or on understanding the dynamics of the Earth system and the feedbacks between its various components. The studies presented span timescales ranging from the past 200,000 years to the last few decades, and consider changes in natural phenomena such as the hydrological cycle and the El Niño-Southern Oscillation, as well as local- and regional-scale interaction of humans with the environment. The papers presented in this special issue therefore reflect current challenges in paleoscience research: understanding natural variability on both long and short time scales, and monitoring anthropogenic impacts which range from historic landscaping to more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and created a high degree of enthusiasm and stimulation among the participants (as is demonstrated by this special issue). The 2nd YSM is therefore firmly planned to take place in 2013, back-to-back with the 4th PAGES OSM. Crucial and gratefully acknowledged contributions to the success of the YSM were made by the numerous co-sponsors (see logos below), who provided the financial basis for the YSM and supported the attendance of many early-career researchers from various parts of the world. Furthermore, we cordially thank all reviewers for shaping this proceeding issue with their insightful and helpful reviews. Conference photograph

  16. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Cléroux, Caroline; Fehrenbacher, Jennifer; Phipps, Steven; Rupper, Summer; Williams, Branwen; Kiefer, Thorsten

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well-recognized researchers tutored this conference, and gave assistance to young scientists by offering advice on publication, promotion, outreach processes, and data management. At the subsequent OSM, the young scientists had the opportunity to present their results to a larger community, and to build networks with their senior colleagues. In a friendly and classroom-like atmosphere, the research presented during the YSM was of a remarkably high quality, and merited publication in this special issue. The 23 short proceedings papers are first-authored by YSM attendees, and based on their presented work and the associated discussions. Consistent with the spirit of the YSM, the core of the guest editor team consisted of YSM early-career scientists, while members of the wider scientific community reviewed the papers. Studies presented in this issue cover a large range of topics. Paleoclimatic and paleoenvironmental research is always seeking new natural archives and improved proxies, and so some papers focus on reconstruction methodologies and the interpretation and calibration of proxies. Other papers present a variety of modeling approaches, such as climate system modeling, forward modeling, or ecosystem modeling. Still others focus on reconstructions from marine (foraminifera, diatoms, corals) or continental (tree rings, speleothems, ice cores) archives, or on understanding the dynamics of the Earth system and the feedbacks between its various components. The studies presented span timescales ranging from the past 200,000 years to the last few decades, and consider changes in natural phenomena such as the hydrological cycle and the El Niño-Southern Oscillation, as well as local- and regional-scale interaction of humans with the environment. The papers presented in this special issue therefore reflect current challenges in paleoscience research: understanding natural variability on both long and short time scales, and monitoring anthropogenic impacts which range from historic landscaping to more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and created a high degree of enthusiasm and stimulation among the participants (as is demonstrated by this special issue). The 2nd YSM is therefore firmly planned to take place in 2013, back-to-back with the 4th PAGES OSM. Crucial and gratefully acknowledged contributions to the success of the YSM were made by the numerous co-sponsors (see logos below), who provided the financial basis for the YSM and supported the attendance of many early-career researchers from various parts of the world. Furthermore, we cordially thank all reviewers for shaping this proceeding issue with their insightful and helpful reviews. Conference photograph

  17. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    NASA Astrophysics Data System (ADS)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal science programs, urban girls, self-efficacy, cooperative learning, peer learning, female adolescents, and after-school urban education This dissertation study was funded by two grants, the 2013 spring dissertation grant from the University of Missouri St. Louis and a philanthropic grant from Dr. Courtney Crim.

  18. The Relationship between Doctoral Completion Time, Gender, and Future Salary Prospects for Physical Scientists

    NASA Astrophysics Data System (ADS)

    Potvin, Geoff; Tai, Robert H.

    2012-03-01

    Drawing from a national survey of Ph.D.-holding physical scientists, we present evidence that doctoral completion time is a strong predictor of future salary prospects: each additional year in graduate school corresponds to a substantially lower average salary. This is true even while controlling for typical measures of scientific merit (grant funding and publication rates) and several other structural and career factors expected to influence salaries. Extending this picture to include gender effects, we show that women earn significantly less than men overall and experience no effect of doctoral completion time on their salaries, while men see a significant gain in salary stemming from earlier completion times. Doctoral completion time is shown to be largely unconnected to measures of prior academic success, research independence, and scientific merit suggesting that doctoral completion time is, to a great extent, out of the control of individual graduate students. Nonetheless, it can be influential on an individual's future career prospects, as can gender-related effects.

  19. Designers' Perspectives on Effective Professional Development for Scientist- and Engineer-Educators

    NASA Astrophysics Data System (ADS)

    Seagroves, S.; Metevier, A. J.; Hunter, L.; Porter, J.; Brown, C.; Jonsson, P.; Kluger-Bell, B.; Raschke, L.

    2010-12-01

    While preparing a formal description of the CfAO's Professional Development Program (PDP), some of the PDP's designers and instructors described its core values and unique aspects, for internal reference. However, these ideas are worth sharing, as they represent the insiders' perspectives on what makes the PDP successful. No single attribute described is completely unique to the PDP, but taken together these values and aspects combine and inter-relate to strengthen and distinguish the program. These attributes include: (1) the PDP's main participants, who are practicing scientists and engineers rather than pre-service teachers; (2) the importance of community among these participants; (3) the interdisciplinarity of the participants and the interdisciplinary nature of science/engineering education itself; (4) respect for education research and best practices; (5) a focus on diversity and equity in science/engineering education; (6) the university-level science/engineering lab (as opposed to the lecture) as a venue for innovation; (7) a focus on inquiry as an exemplar of effective science/engineering education; (8) an emphasis on being intentional with one's choices as an educator; (9) a cycle of experience-reflection-innovation-reflection; and (10) the agility of the PDP program and staff to nimbly try new ideas and/or respond to participants' needs. The authors believe that the PDP's unique combination of these values and aspects leads to such successes as high return-participation and over-subscription rates, and contributes to the program's success overall.

  20. AAAS Mass Media Science and Engineering Fellowship Program: Building Communication Skills in Young Scientists

    NASA Astrophysics Data System (ADS)

    Pasco, S.

    2006-12-01

    The AAAS Mass Media Science &Engineering Fellowship program has succeeded in training scientists to become more effective communicators for more than 30 years. The program places advanced science, engineering and mathematics students at media sites to work as science reporters for ten weeks each summer. AAAS places between 15 to 20 students a year at newspapers, magazines and radio stations. Our goal is to create better science communicators who understand their role in fostering the public's understanding of science. Fellows leave the program with a greater awareness of how to communicate complex issues by making the connection as to why people should be interested in certain developments, and more specifically, how they will impact their communities. 2004 AGU Fellow Rei Ueyama put her lessons learned to good use during her Fellowship at the Sacramento Bee. "In a regional paper like The Bee, a (story) also had to have a local touch. I needed to show why people in Sacramento (or California) should bother to read the story. One example is the story I wrote about seeding the ocean with iron particles to fight global warming. Since ocean fertilization is a global issue, I had to clearly specify the reason why The Bee and not The New York Times was running the story. The local angle I chose was to point out that the core group of scientists involved in this study was from Monterey Bay, Calif." Many alumni tell us the program has been an integral force in shaping the course of their career. Similarly, sites often report that having a scientist on staff is an invaluable resource that allows them to cover additional science stories as well as report some technical stories in more depth. The American Geophysical Union has sponsored a Mass Media Fellow since 1997. Sponsorship allows affiliate program partners to establish connections with young professionals in their field. They are then also able to take advantage of the communication skills resident in their alumni base. The OS28 Communicating Broadly: Perspectives and Tools for Ocean, Earth and Atmospheric Scientists Session would provide an ideal platform for Fellowship management to share lessons learned about science communication and to offer insight as to the challenges scientists face when communicating with the general public or media.

  1. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on various E/PO topics, and an E/PO proposal writing workshop. SCWG members have also worked to incorporate information about E/PO, including what it is, points of contact, and opportunities for participation, into ongoing training sessions at GSFC, such as New Employee Orientation, Road to Mission Success, and Project Scientist Training. In addition, SCWG members have met with GSFC's upper management to voice barriers and concerns raised by scientists and engineers. We will expand on the barriers, efforts to address them, and the results of those efforts.

  2. Review: The future of cystatin engineering.

    PubMed

    van Wyk, Stefan G; Kunert, Karl J; Cullis, Christopher A; Pillay, Priyen; Makgopa, Matome E; Schlüter, Urte; Vorster, Barend J

    2016-05-01

    Plant cystatins are naturally occurring protease inhibitors that prevent proteolysis by papain-like cysteine proteases. Their protective action against environmental stresses has been relatively well characterised. Still, there is a need to greatly improve both potency and specificity based on the current rather poor performance of cystatins in biotechnological applications. Research in creating more potent and specific cystatins, including amino acid substitutions in either conserved cystatin motifs and/or at variable amino acid sites, is reviewed. Existing gaps for better understanding of cystatin-protease interactions are further explored. Current knowledge on multi-cystatins or hybrid protease inhibitors involving cystatins as an additional option for cystatin engineering is further outlined along with the nuances of how cystatins with rather unusual amino acid sequences might actually help in cystatin engineering. Finally, future opportunities for application of cystatins are highlighted which include applications in genetically modified transgenic plants for environmental stress protection and also as nutraceuticals, as part of more nutritious food. Further opportunities might also include the possible management of diseases and disorders, often associated with lifestyle changes, and the most immediate and promising application which is inclusion into plant-based recombinant protein production platforms. PMID:26993242

  3. Next generation of scientists and engineers: Who`s in the pipeline

    SciTech Connect

    Babco, E.L.

    1995-12-31

    Our ability to produce the next generation of scientists and engineers is dependent upon two important demographic changes: the trends in the number of births and the increasingly diverse racial and ethnic backgrounds of those already born. The number of births dropped 25% from 1956 to 1976. As a consequence, the number of high school graduates dropped from 3.1 million in 1977 to 2.4 million in 1992 and will not reach the 1977 high until after 2000. More than half of these graduates are women, and one of every four is a member of minority group. Women now make up more than half of all undergraduates and almost half of all graduate students, but are underrepresented in the natural science and engineering fields. Minority students are about half as likely to be enrolled in college as white students. About 32% of all precollege students and 20% of all college students are members of minority groups. Based on current graduate enrollment figures in natural science and engineering, there will be little increase in women`s share of doctorates in the next several years. The number of PhDs earned by American minorities continues to be very small. Not known is when our economy will require more professionals trained in science and engineering. But any serious attempt to increase the number of students eligible to choose college majors in science or engineering must take both sex and race/ethnicity into account. The nation cannot afford to waste the talent in two-thirds of our increasingly diverse population.

  4. The Journey of a Science Teacher: Preparing Female Students in the Training Future Scientists after School Program

    ERIC Educational Resources Information Center

    Robinson-Hill, Rona M.

    2013-01-01

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed…

  5. Role of military scientists and engineers in space (1980-2000)

    SciTech Connect

    Angelo, J.A. Jr

    1981-01-01

    The Space Transportation System provides military scientists and engineers exciting new capabilities to conduct a variety of pioneering experiments on orbit, taking unique advantage of the space environment itself or observing the planet firsthand from the vantage point of space. The reusable Shuttle/Spacelab configuration permits a more effective use of the human and material resources being committed to the space program in the next decade, and ensures the presence of man in space on a routine basis. However, full-scale exploitation of space for national defense will depend to a great extent on the skillful and successful utilization of the military payload specialists, who will fly and operate various Shuttle-based DoD experiments. This paper explores the doctrine, role, function, and training requirements for DoD payload specialists. The unique advantage of man-in-the-loop activities and the orbiting military scientist conducting experiments in situ is addressed in light of previous US manned space flight experience and the projected capabilities of the Shuttle. 4 figures.

  6. An Investigation of Factors Affecting How Engineers and Scientists Seek Information

    NASA Technical Reports Server (NTRS)

    Anderson, Claire J; Glassman, Myron; McAfee, R. Bruce; Pinelli, Thomas

    2001-01-01

    This study investigated how 872 US aerospace scientists and engineers select information carriers. When considering oral and written information carriers, the principle of least effort was supported with a strong preference for oral communication over written communication. In examining how the respondents select written carriers, the decision to use or not to use a written carrier was found to be primarily a function of the perceived importance of the carrier's information to a person's work. Task uncertainty and task complexity were found to be significant, but not the primary nor a totally consistent criteria. The perceived quality and accessibility of written carriers were not found significant. The findings reinforce the need for firms to hire knowledgeable employees, to provide them with comprehensive training programs, and to develop formal and informal communication networks.

  7. Key Future Engineering Capabilities for Human Capital Retention

    NASA Astrophysics Data System (ADS)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  8. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  9. Comparison: Direct thrust nuclear engine, nuclear electric engine, and a chemical engine for future space missions

    SciTech Connect

    Ramsthaler, J.H.; Sulmeisters, T.K.

    1988-01-01

    The need for an advanced direct thrust nuclear rocket propulsion engine has been identified in Project Forecast 2, Air Force Systems Command report which looks into future Air Force needs. The Air Force Astronautical Laboratory (AFAL) has been assigned responsibility for developing the nuclear engine, and they in turn have requested support from teams of contractors who have the full capability to assist in the development of the nuclear engine. The Idaho National Engineering Laboratory (INEL) has formed a team of experts with Martin Marietta for mission analysis. Science Applications International (SAIC) for flight safety analysis, Westinghouse for the nuclear subsystem, and Rocketdyne for the engine system. INEL is the overall program manager and manager for test facility design, construction and operation. The INEL team has produced plans for both the engine system and the ground test facility. AFAL has funded the INEL team to perform mission analyses to evaluate the cost, performance and operational advantages for a nuclear rocket engine in performing Air Force Space Missions. For those studies, the Advanced Nuclear Rocket Engine (ANRE), a scaled down NERVA derivative, was used as the baseline nuclear engine to compare against chemical engines and nuclear electric engines for performance of orbital transfer and maneuvering missions. 3 tabs.

  10. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  11. The landscape of Wageningen as an inspiring teaching environment for future environmental scientists

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Sonneveld, Marthijn

    2013-04-01

    Practical field work is an essential component in training future soil scientists. This is facilitated when a wide variety of geological materials geomorphological phenomena and soil patterns are within reach. One of the leading universities in soil science in the Netherlands, Wageningen University, was founded some hundred years ago in the small city of Wageningen because of the rich variety of soils and landscapes in its vicinity. Being located in the central part of the Netherlands, its region is famous because here Late-Pleistocene and Late-Holocene deposits meet. Wageningen is located on the slope of an ice pushed ridge which dates from the Saalien ice age, bordering a glacial tongue basin The ridge is mainly composed of pushed coarse grained fluvial deposits. In the Weichselien ice age cover sands have been deposited on the sides of this ridge. During the Holocene the ridge was eroded on the southern side, where the river Rhine has cut into the older deposits and deposited mainly fine grained fluvial deposits. Peat formation took place in the lower parts of the basin. In addition this region has been inhabited by people, who have worked, and fertilized the soil, creating a thickened A-horizon in some locations around Wageningen. This geological setting has created a palette of different sedimentary deposits which serve as mother material for a variety of soil types like podzols, brown forest soils, , fluvial clay to loamy soils, plaggen soils and peat soils. In our education we frequently use the soils in the surrounding as a teaching environment for our students. They are send out to use all their senses and look, feel, hear and sometimes even taste the soils. They use these impressions to describe the soils and understand why the soils are on that specific place in the landscape where we find it. We feel students benefit from this playground in our backyard, because, even though students work more and more in an individual and virtual environment where they sometimes can do courses on physical processes in earth science from behind their computer screen at home, field courses are a component of curricula that cannot be replaced. Student from a wide variety of backgrounds (ecology, planning, soil science, land management, hydrologist) meet this landscape every year. Field courses, being either excursions or fieldwork courses, are of vital importance to bring the real world to life in the heads of the students.

  12. Helping Students Build Their Future in Engineering

    ERIC Educational Resources Information Center

    English, Vincent

    2014-01-01

    EngineeringUK estimates that the UK will require 87,000 new engineers a year over the next ten years. However, with skills shortages threatening to derail the UK's engineering industry, it is clear that immediate action needs to be taken if this quota is to be met. In this article, Vincent English, managing director of Vernier Europe, offers his…

  13. Future Directions in Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Wei, James

    1988-01-01

    Reviews the status of chemical engineering and the chemical industry in the United States. Identifies problem areas for engineers and proposes new directions for chemical engineering courses. Discusses the significance of these new directions for bachelor's degree programs. Proposes that the function of a bachelor's degree should be general…

  14. Italy's contribution, from a medical standpoint, to the space safety of payload scientists, and perspectives for the future

    NASA Astrophysics Data System (ADS)

    Rotondo, G.; Ramacci, G. A.; Meineri, G.; Modugno, G. C.; Monesi, F.

    In Italy, the selection of the Italian payload scientists has been performed according to the Spacelab Program of ESA. Twenty-four subjects underwent a screening performed by the Health Service of Italian Air Force. They were requested to pass an exercise test on treadmill and another ten-minute test on centrifuge, subject to the effect of + 3 G z. The authors briefly describe the results of the test. Noteworthy is the determination of Central Flicker Fusion Frequency. This parameter makes it possible to assess the endurance level of the subject, much earlier than other techniques (e.g. EKG). The importance of an accurate preliminary screening is emphasized as well as of successive training periods. Future studies will be undertaken to compare evoked cortical potentials with behaviour parameters of space safety, with a view to setting up a subtle tool of evaluation for both future candidates and payload scientists.

  15. 1989 National Compensation Survey of Research and Development Scientists and Engineers: Final report: Data effective date: January 15, 1989

    SciTech Connect

    Not Available

    1989-05-01

    This report presents the results of the third in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1989 Survey represents the largest nationwide database of its kind, covering 102 establishments which provided data on almost 36,000 degreed researchers in the ''hard'' sciences.

  16. Research and Development in Industry: 1979. Funds, 1979. Scientists and Engineers, January 1980. Surveys of Science Resources Series. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report analyzes data on research and development (R&D) performed by industry during 1979, examines historical trends for key R&D funding variables, and presents information on industry-employed R&D scientists and engineers. Areas addressed in the first section on R&D funds include: major R&D industries (aircraft/missiles, electrical…

  17. From Science to Business: Preparing Female Scientists and Engineers for Successful Transitions into Entrepreneurship--Summary of a Workshop

    ERIC Educational Resources Information Center

    Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria

    2012-01-01

    Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…

  18. From Science to Business: Preparing Female Scientists and Engineers for Successful Transitions into Entrepreneurship--Summary of a Workshop

    ERIC Educational Resources Information Center

    Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria

    2012-01-01

    Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…

  19. Employment Opportunities for Ph.D. Scientists and Engineers Shift From Academia to Industry. Science Resources Studies Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Recent trends concerning the employment opportunities for doctorate-holding scientists and engineers (S/E) are highlighted in this publication. Data from biennial surveys conducted since 1973 by the National Science Foundation and other Federal government agencies are analyzed to make conclusions regarding trends in labor-market conditions,…

  20. The Future of Engineering Science & Engineering Technology: Collision or Convergence?

    ERIC Educational Resources Information Center

    Kenyon, Richard A.

    1985-01-01

    Discusses differences and similarities of engineering (theoretical/abstract) and engineering technology (practical/application-oriented) programs which the author believes are artificially divided. The fields overlap and should be reunited, but this will need more effective interaction among all engineering professionals and revision of…

  1. Preparing a New Generation of Citizens and Scientists to Face Earth's Future

    ERIC Educational Resources Information Center

    Bralower, Timothy J.; Feiss, P. Geoffrey; Manduca, Cathryn A.

    2008-01-01

    As the research interests and the focus of traditional earth scientists are transformed, so too must education in earth system science at colleges and universities across the country change. The required change involves not only the methods used to teach this new science, but also the essential place of the earth sciences in the panoply of…

  2. 1990 National Compensation Survey of Research and Development Scientists and Engineers

    SciTech Connect

    Not Available

    1990-11-01

    This report presents the results of the fourth in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1990 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on almost 41,000 degreed researchers in the hard'' sciences. The fundamental nature of the survey has not changed: the focus is still on medium- and large-sized establishments which employ at least 100 degreed S Es in R D. The 1990 Survey contains data which cover about 18% of all establishments eligible to participate, encompassing approximately 18% of all eligible employees. As in the last three years, the survey sample constitutes a fairly good representation of the entire population of eligible establishments on the basis of business sector, geographic location, and size. Maturity-based analyses of salaries for some 34,000 nonsupervisory researchers are provided, as are job content-based analyses of more than 27,000 individual contributors and almost 5000 first level supervisors and division directors. Compensation policies and practices data are provided for 102 establishments, and benefits plans for 62 establishments are analyzed.

  3. Public Outreach at RAL: Engaging the Next Generation of Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Corbett, G.; Ryall, G.; Palmer, S.; Collier, I. P.; Adams, J.; Appleyard, R.

    2015-12-01

    The Rutherford Appleton Laboratory (RAL) is part of the UK's Science and Technology Facilities Council (STFC). As part of the Royal Charter that established the STFC, the organisation is required to generate public awareness and encourage public engagement and dialogue in relation to the science undertaken. The staff at RAL firmly support this activity as it is important to encourage the next generation of students to consider studying Science, Technology, Engineering, and Mathematics (STEM) subjects, providing the UK with a highly skilled work-force in the future. To this end, the STFC undertakes a variety of outreach activities. This paper will describe the outreach activities undertaken by RAL, particularly focussing on those of the Scientific Computing Department (SCD). These activities include: an Arduino based activity day for 12-14 year-olds to celebrate Ada Lovelace day; running a centre as part of the Young Rewired State - encouraging 11-18 year-olds to create web applications with open data; sponsoring a team in the Engineering Education Scheme - supporting a small team of 16-17 year-olds to solve a real world engineering problem; as well as the more traditional tours of facilities. These activities could serve as an example for other sites involved in scientific computing around the globe.

  4. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  5. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements: We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  6. Snecma Liquid Rocket Engine Concepts for Future ELV and RLV

    NASA Astrophysics Data System (ADS)

    Excoffon, Tony; de Spiegeleer, Guy

    2002-01-01

    Snecma is the prime contractor for the development of the storable and cryogenic liquid rocket engines of the Ariane launcher, including the Viking storable engine, HM7 cryogenic engine, Vulcain and Vulcain 2 cryogenic engines. The new cryogenic engine Vinci is under development and qualification is planned by 2006. This paper presents the results of a study which has been performed over the last 2 years to define the most suitable engines for the future versions of expendable launchers as well as future reusable vehicles. A family of new engines is introduced including LOX/LH2 engines and LOX/CH4 engines. Particularly, a cryogenic staged combustion fuel-rich engine has been designed and optimized in two versions. The first one is dedicated to an expendable launcher and could be developed first. It offers high performance and reliability at the minimum cost. The second version is a derivative which offers reusability and increased performance for future RLV application. The development and production of the expandable version will allow to achieve and demonstrate high reliability and to better evaluate the potential for reusability through the development test campaigns which usually requires as many as 20 tests with the same engines. Only some critical components would be changed to achieve reusability. This approach allows to minimize the development cost and to keep the production cost low for both versions by using a learning curve over a large number of engines.

  7. National Sample of Scientists and Engineers: Participation in National Programs and Changes in Educational Attainment, 1972-74. Science Resources Studies Highlights, August 5, 1975.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    In 1972 and 1974, the Bureau of the Census, with support of the National Science Foundation, conducted surveys of 50,000 scientists and engineers. The sample represented 1.4 million individuals who had been identified as scientists or engineers on the basis of a set of criteria which included occupation, personal identification, and major subject…

  8. Scholarship program to benefit future engineers

    SciTech Connect

    Not Available

    1993-02-01

    ASDSO this year launched a new scholarship program for undergraduate students interested in dam safety engineering as a career. Two scholarships of $2,500 each will be granted to one junior and one senior, beginning with the 1993 school year. Students taking a full college course load and majoring in civil or agricultural engineering, geology, or a related field, were elgible. ASDSO, which plans to name the recipients by May 1993, received about two dozen applications for the scholarships.

  9. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  10. AGU education and public outreach programs: Empowering future Earth and space scientists

    NASA Astrophysics Data System (ADS)

    Adamec, Bethany; Asher, Pranoti

    2011-10-01

    The staff and leadership of AGU are committed to fostering excellence in Earth and space science education. While AGU's Strategic Plan does not specifically highlight primary or secondary education among its objectives, outreach in this area plays a significant role in developing and nurturing the next generation of Earth and space scientists. Several educational goals along with specific strategies will help AGU meet its goal related to workforce or talent pool development. Particular emphasis is being placed on building partnerships and collaborations that will increase the effectiveness of AGU's outreach efforts related to education.

  11. Human Microbiome Engineering: The Future and Beyond

    PubMed Central

    2015-01-01

    Microbial flora of skin and mucosal surface are vital component of human biology. Current research indicates that this microbial constellation, rather than being inert commensals, has greater implications in health and disease. They play essential role in metabolism, immunity, inflammation, neuro-endocrine regulation and even moderate host response to cancer. Genetic engineering was a major breakthrough in medical research in 1970’s and it opened up newer dimensions in vaccinology, large-scale synthesis of bio-molecule and drug development. Engineering human microbiome is a novel concept. Recombinant DNA technology can be employed to modify the genome of critical components of resident microflora to achieve unprecedented goals. PMID:26500908

  12. Human Microbiome Engineering: The Future and Beyond.

    PubMed

    Kali, Arunava

    2015-09-01

    Microbial flora of skin and mucosal surface are vital component of human biology. Current research indicates that this microbial constellation, rather than being inert commensals, has greater implications in health and disease. They play essential role in metabolism, immunity, inflammation, neuro-endocrine regulation and even moderate host response to cancer. Genetic engineering was a major breakthrough in medical research in 1970's and it opened up newer dimensions in vaccinology, large-scale synthesis of bio-molecule and drug development. Engineering human microbiome is a novel concept. Recombinant DNA technology can be employed to modify the genome of critical components of resident microflora to achieve unprecedented goals. PMID:26500908

  13. Educating future nursing scientists: Recommendations for integrating omics content in PhD programs.

    PubMed

    Conley, Yvette P; Heitkemper, Margaret; McCarthy, Donna; Anderson, Cindy M; Corwin, Elizabeth J; Daack-Hirsch, Sandra; Dorsey, Susan G; Gregory, Katherine E; Groer, Maureen W; Henly, Susan J; Landers, Timothy; Lyon, Debra E; Taylor, Jacquelyn Y; Voss, Joachim

    2015-01-01

    Preparing the next generation of nursing scientists to conduct high-impact, competitive, sustainable, innovative, and interdisciplinary programs of research requires that the curricula for PhD programs keep pace with emerging areas of knowledge and health care/biomedical science. A field of inquiry that holds great potential to influence our understanding of the underlying biology and mechanisms of health and disease is omics. For the purpose of this article, omics refers to genomics, transcriptomics, proteomics, epigenomics, exposomics, microbiomics, and metabolomics. Traditionally, most PhD programs in schools of nursing do not incorporate this content into their core curricula. As part of the Council for the Advancement of Nursing Science's Idea Festival for Nursing Science Education, a work group charged with addressing omics preparation for the next generation of nursing scientists was convened. The purpose of this article is to describe key findings and recommendations from the work group that unanimously and enthusiastically support the incorporation of omics content into the curricula of PhD programs in nursing. The work group also calls to action faculty in schools of nursing to develop strategies to enable students needing immersion in omics science and methods to execute their research goals. PMID:26123776

  14. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  15. Addressing the Misconceptions of Middle School Students About Becoming a Scientist or Engineer

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Sorge, C.; Hagerty, J. J.

    2000-01-01

    Assessment of our educational outreach program shows that students and their parents are excited about space science, but stereotypes about science and scientists drastically effect student attitudes about science and pursuing a technical career.

  16. 1987 national compensation survey of research and development scientists and engineers: Final report, data effective date: January 15, 1987

    SciTech Connect

    Not Available

    1988-02-01

    This report presents the results of the first in a series of new surveys of compensation and benefits for research and development (R and D) scientists and engineers (S and Es). The 1987 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on over 40,000 degreed researchers in the ''hard'' sciences. The new survey incorporates a number of major enhancements designed to improve the quality and utility of the results.

  17. Future Perspectives in Bladder Tissue Engineering

    PubMed Central

    Gill, Bradley C; Damaser, Margot S; Chermansky, Christopher J

    2015-01-01

    Substantial clinical need persists for improved autologous tissues to augment or replace the urinary bladder and research has begun to address this using tissue engineering techniques. The implantation of both tissue scaffolds which allow for native bladder tissue ingrowth and autologous bladder grafts created from in vitro cellularization of such scaffolds have been tested clinically; however, successful outcomes in both scenarios have been challenged by insufficient vascularity resulting from large graft sizes, which subsequently limits tissue ingrowth and leads to central graft ischemia. Consequently, recent research has focused on developing better methods to produce scaffolds with increased tissue ingrowth and vascularity. This review provides an update on bladder tissue engineering and outlines the challenges that remain to clinical implementation. PMID:26709356

  18. Current and future opportunities in aeronautical engineering

    NASA Technical Reports Server (NTRS)

    Brizendine, J. C.

    1975-01-01

    Current demand for aeronautical engineers is approximately balanced with supply, with some shortfall in certain specialties. In the near term (5 years), demand will exceed supply of new graduates. A number of factors have brought on the state of imbalance: (1) the cyclic nature of the demand of our defense requirements; (2) drastic changes in DOD aircraft procurement; (3) the emergence of the space age; (4) evolution of social attitudes toward technology with resultant decline in enrollments; and (5) the universities themselves through their influences in the direction of careers selected by engineers. These factors have been counteracted somewhat by increased DOD emphasis on aircraft development programs but more importantly by the favorable growth in civil aircraft requirements.

  19. The Black Engineer: Is There Hope for the Future?

    ERIC Educational Resources Information Center

    Berardi, Linda; Harris, Tracy

    1992-01-01

    Explores the past and future level of participation for African Americans in the engineering profession. Looks specifically at trends in higher education, levels of academic preparedness, and the effects of social and environmental conditions on engineering participation levels. Concludes by presenting overview of University of Pittsburgh's…

  20. UCS-PROMOVE: The Engineer of the Future

    ERIC Educational Resources Information Center

    Villas-Boas, V.

    2010-01-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called "The engineer of the future", with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a…

  1. Future Mathematical Needs of Engineers in the United States.

    ERIC Educational Resources Information Center

    Wells, William R.; Hahn, Jerome E.

    1985-01-01

    Discusses current and future mathematics requirements of engineers in the United States. Points out that changes in requirements have been accelerated by the computer's role in solving engineering problems as well as the advance of high technology needs in industry and research. (JN)

  2. UCS-PROMOVE: The Engineer of the Future

    ERIC Educational Resources Information Center

    Villas-Boas, V.

    2010-01-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called "The engineer of the future", with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a…

  3. Engineering the Future: The Social Necessity of Communicative Engineers

    ERIC Educational Resources Information Center

    Ravesteijn, Wim; De Graaff, Erik; Kroesen, Otto

    2006-01-01

    It is a long and winding road from invention to innovation. Starting from this observation, this paper presents a historical perspective on the capabilities engineers should possess to do their work. The importance of the "communicative competence" involved in creating a social base for innovation is underpinned. We will present a theoretical…

  4. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-01-01

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components; utility options for setting sea-level rise and climate change scenarios; and ease or difficulty of storing, displaying, or interpreting model output. Coastal land managers, engineers, and scientists can benefit from this synthesis of tools and models that have been developed for projecting causes and consequences of sea-level change on the landscape and seascape.

  5. Engineering photorespiration: current state and future possibilities.

    PubMed

    Peterhansel, C; Krause, K; Braun, H-P; Espie, G S; Fernie, A R; Hanson, D T; Keech, O; Maurino, V G; Mielewczik, M; Sage, R F

    2013-07-01

    Reduction of flux through photorespiration has been viewed as a major way to improve crop carbon fixation and yield since the energy-consuming reactions associated with this pathway were discovered. This view has been supported by the biomasses increases observed in model species that expressed artificial bypass reactions to photorespiration. Here, we present an overview about the major current attempts to reduce photorespiratory losses in crop species and provide suggestions for future research priorities. PMID:23121076

  6. Future engineering needs of mirror fusion reactors

    SciTech Connect

    Thomassen, K.I.

    1982-07-30

    Fusion research has matured during the last decade and significant insight into the future program needs has emerged. While some will properly note that the crystal ball is cloudy, it is equally important to note that the shape and outline of our course is discernable. In this short summary paper, I will draw upon the National Mirror Program Plan for mirror projects and on available design studies of these projects to put the specific needs of the mirror program in perspective.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  8. Engineering the Future: Embedding Engineering Permanently across the School-University Interface

    ERIC Educational Resources Information Center

    MacBride, G.; Hayward, E. L.; Hayward, G.; Spencer, E.; Ekevall, E.; Magill, J.; Bryce, A. C.; Stimpson, B.

    2010-01-01

    This paper describes the design, implementation, and evaluation of an educational program. Engineering the Future (EtF) sought to promote a permanent, informed awareness within the school community of high-level engineering by embedding key aspects of engineering within the education curriculum. The Scottish education system is used for a case…

  9. Engineering the Future: Embedding Engineering Permanently across the School-University Interface

    ERIC Educational Resources Information Center

    MacBride, G.; Hayward, E. L.; Hayward, G.; Spencer, E.; Ekevall, E.; Magill, J.; Bryce, A. C.; Stimpson, B.

    2010-01-01

    This paper describes the design, implementation, and evaluation of an educational program. Engineering the Future (EtF) sought to promote a permanent, informed awareness within the school community of high-level engineering by embedding key aspects of engineering within the education curriculum. The Scottish education system is used for a case…

  10. Space Shuttle Main Engine (SSME) Options for the Future Shuttle

    NASA Technical Reports Server (NTRS)

    Jue, Fred; Kuck, Fritz; McCool, Alex (Technical Monitor)

    2002-01-01

    The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.

  11. Astrobiobound! Search for Life in the Solar System: Scientists and Engineers Bringing their Challenges to K-12 Students

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.

    2014-12-01

    The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.

  12. Key Barriers for Academic Institutions Seeking To Retain Female Scientists and Engineers: Family-Unfriendly Policies, Low Numbers, Stereotypes, and Harassment.

    ERIC Educational Resources Information Center

    Rosser, Sue V.; Lane, Eliesh O'Neil

    2002-01-01

    Evaluates survey responses from almost (n=400) Professional Opportunities for Women in Research and Education (POWRE) awardees from fiscal years 1997-2000 to elucidate problems and opportunities identified by female scientists and engineers. (Contains 25 references.) (Author/YDS)

  13. Critical Interfaces for Engineers and Scientists, 4 Appraisals. Proceedings of the Annual Joint Meeting of the Engineering Manpower Commission of Engineers Joint Council and the Scientific Manpower Commission, New York, May 18, 1967.

    ERIC Educational Resources Information Center

    Alden, John D.

    Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…

  14. Inspiring future scientists in middle-schools through synergy between classroom learning and water cycle research

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Kellagher, E.; Berkelhammer, M. B.; Raudzens Bailey, A.; Kaushik, A.

    2012-12-01

    Water is at the core of many issues in environmental change from local to global scales, and learning about the water cycle offers students an opportunity to explore core scientific concepts and their local environment. In climate research, there are significant uncertainties in the role water plays in the climate system. Water also acts as a central theme that provides opportunities for experiential science education at all levels. The "Water Spotters" program underway at University of Colorado exploits the synergy between needs for enrichment of middle-school science education and the needs for water sample collection to provide primary data for climate research. The program takes advantage of the prominent agricultural landscape of the region in eastern Colorado, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. In coordination with the St. Vrain Valley School District MESA (Math Engineering Science Achievement) program, middle-school students collect rain water samples that are analyzed and used as a core component of the research goals. In concert, new lessons have been developed in coordination with science teachers that emphasize both core scientific standards and application learning about the water cycle. We present the new curriculum modules developed for the program and that are distributed to middle-school teachers. The modules include original lessons and lessons with expanded original material to teach about water and water isotopes. Curriculum packages that include media resources are increasingly important to teachers. The Water Spotters program uses video to teach collection protocols and give background on the project. Weather station data from schools are disseminated online alongside the rainwater collection protocols. We highlight the value of citizen science in obtaining needed research quality data while also meeting national needs to improve science education.

  15. Starting Early: Increasing Elementary (K-8) Student Science Achievement with Retired Scientists and Engineers

    ERIC Educational Resources Information Center

    Wilson, Judith; Krakowsky, Arthur M.; Herget, Charles J.

    2010-01-01

    Teaching Opportunities for Partners in Science (TOPS) is an outreach program using volunteers (the "partners") for: 1) assisting teachers in grades K-8 with preparation and delivery of science and engineering (S&E) lessons in the classroom; 2) providing content knowledge to teachers when needed to teach quality science and engineering lessons; 3)…

  16. A Perspective on the Future of High Efficiency Engines

    SciTech Connect

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  17. Conventional engine technology. Volume 3: Comparisons and future potential

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.

    1981-01-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  18. Asian and Pacific Islander women scientists and engineers: A narrative exploration of model minority, gender, and racial stereotypes

    NASA Astrophysics Data System (ADS)

    Chinn, Pauline W. U.

    2002-04-01

    This qualitative study uses narrative methodology to understand what becoming a scientist or engineer entails for women stereotyped as model minorities. Interviews with four Chinese and Japanese women focused on the social contexts in which science is encountered in classrooms, families, and community. Interpretation was guided by theories that individuals construct personal narratives mediated by cultural symbolic systems to make meaning of experiences. Narratives revealed that Confucian cultural scripts shaped gender expectations even in families several generations in America. Regardless of parents' level of education, country of birth, and number of children, educational expectations, and resources were lower for daughters. Parents expected daughters to be compliant, feminine, and educated enough to be marriageable. Findings suggest K-12 gender equity science practices encouraged development of the women's interests and abilities but did not affect parental beliefs. The author's 1999 study of Hawaiians/Pacific Islander and Filipina female engineers is included in implications for teacher education programs sensitive to gender, culture, ethnicity, and language.

  19. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  20. A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  1. Study of the scientific reasoning methods: Identifying the salient reasoning characteristics exhibited by engineers and scientists in an R&D environment

    NASA Astrophysics Data System (ADS)

    Kuhn, William F.

    At the core of what it means to be a scientist or engineer is the ability to think rationally using scientific reasoning methods. Yet, typically if asked, scientist and engineers are hard press for a reply what that means. Some may argue that the meaning of scientific reasoning methods is a topic for the philosophers and psychologist, but this study believes and will prove that the answers lie with the scientists and engineers, for who really know the workings of the scientific reasoning thought process than they. This study will provide evidence to the aims: (a) determine the fundamental characteristics of cognitive reasoning methods exhibited by engineer/scientists working in R&D projects, (b) sample the engineer/scientist community to determine their views as to the importance, frequency, and ranking of each of characteristics towards benefiting their R&D projects, (c) make concluding remarks regarding any identified competency gaps in the exhibited or expected cognitive reasoning methods of engineer/scientists working on R&D projects. To drive these aims are the following three research questions. The first, what are the salient characteristics of cognitive reasoning methods exhibited by engineer/scientists in an R&D environment? The second, what do engineer/scientists consider to be the frequency and importance of the salient cognitive reasoning methods characteristics? And the third, to what extent, if at all, do patent holders and technical fellows differ with regard to their perceptions of the importance and frequency of the salient cognitive reasoning characteristics of engineer/scientists? The methodology and empirical approach utilized and described: (a) literature search, (b) Delphi technique composed of seven highly distinguish engineer/scientists, (c) survey instrument directed to distinguish Technical Fellowship, (d) data collection analysis. The results provide by Delphi Team answered the first research question. The collaborative effort validated presented characteristic and most importantly presents ten additional novel or new reasoning characteristics. These characteristics were then presented and evaluated by the Technical Fellows. Their findings answered the second and third research question. With interesting results including the data indicating "imagination" as highest in importance and frequency, and comparison analysis of the patent holders showing those having five or more patents significantly valued "intuition (independent).

  2. Second-Guessing Scientists and Engineers: Post Hoc Criticism and the Reform of Practice in Green Chemistry and Engineering.

    PubMed

    Lynch, William T

    2015-10-01

    The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems. PMID:25218835

  3. The future of clinical engineering: the challenge of change.

    PubMed

    Grimes, Stephen L

    2003-01-01

    Clinical engineering is at a strategic inflection point. Technical, economic, regulatory, and cultural dynamics are at work shaping the future of healthcare delivery. As the nature of healthcare delivery is transformed by these forces, the types and mix of technology management and support services needed by the industry are changing significantly. Clinical engineering has a relatively short opportunity to adopt a service model that will meet these changing needs. Delay or failure to adopt an effective service model as we pass through the inflection point will result in a diminished role for clinical engineering in healthcare technology management as other technical professionals move in to fill the need. The question is: will clinical engineering rise to the challenge? PMID:12733465

  4. Suborbital Platforms as a Tool for a Symbiotic Relationship Between Scientists, Engineers, and Students

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    Sounding rockets started in-situ space experimentation over 60 years ago with scientific experiments replacing warheads on captured V- 2 German rockets. Prior to this, and still today, suborbital platforms such as airplanes and high-altitude balloons have provided advantageous remote sensing observations advancing many areas of Earth and Space science. There is still a place for first-rate science in both stand-alone missions as well as providing complimentary measurements to the larger orbital missions. Along with the aforementioned science, the cost effectiveness and development times provided by sub-orbital platforms allows for perfect hands-on and first rate educational opportunities for undergraduate and graduate students. This talk will give examples and discuss the mutually beneficial opportunities that scientists and students obtain in development of suborbital missions. Also discussed will be how the next generation of space vehicles should help eliminate the number one obstacle to these programs - launch opportunities.

  5. Curiosity + Kindergarten = Future Scientists

    ERIC Educational Resources Information Center

    Flannagan, Jenny Sue; Rockenbaugh, Liesl

    2010-01-01

    Carefully crafted experiences in the early childhood classroom can create learning opportunities for children that allow one curiosity to lead to another. Learning how to find out answers to fascinating questions is what science is all about. In fact, it can be as simple as learning how an ordinary egg can be changed. For the past year, the…

  6. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  7. External Labor Markets and the Distribution of Black Scientists and Engineers in Academia.

    ERIC Educational Resources Information Center

    Kulis, Stephen; Shaw, Heather; Chong, Yinong

    2000-01-01

    Analyzes data from the 1989 Survey of Doctorate Recipients to evaluate racial segmentation of the academic labor market along geographic and disciplinary lines. Finds that black faculty in the sciences and engineering are found disproportionately in southern, historically black institutions; areas with sizable black populations; and, independent…

  8. THE CURRENT EMPLOYMENT MARKET FOR ENGINEERS, SCIENTISTS, AND TECHNICIANS, DECEMBER 1966.

    ERIC Educational Resources Information Center

    AUSMUS, NORMA F.; AND OTHERS

    FIELD REPORTS ON JUNE 1966 CONDITIONS IN 30 MAJOR LABOR AREAS FOR ENGINEERING, SCIENTIFIC, AND TECHNICAL OCCUPATIONS, PROVIDED BY AFFILIATES OF THE BUREAU OF EMPLOYMENT SECURITY, WERE THE BASIS FOR THIS SEMIANNUAL REPORT. THE NUMBER OF APPLICANTS HAD DECLINED 48 PERCENT TO A NEW 8-YEAR LOW, WHILE OPENINGS HAD RISEN TO 9,600, 58 PERCENT OVER THE…

  9. Overview of USPAS and its role in educating the next generation of accelerator scientists and engineers

    NASA Astrophysics Data System (ADS)

    Barletta, William

    2008-04-01

    Accelerators are essential engines of discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of particle beams and other non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear engineering departments have atrophied at many major universities. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, computational and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  10. The Journals of German University and Engineering School Scientists Before and After National Reunification.

    ERIC Educational Resources Information Center

    Stankus, Tony

    1996-01-01

    Discusses scientific journals in East and West Germany before and after reunification. Topics include scientific research in university and engineering schools, industrial research labs, and industrial firms; publication patterns; market share of journal articles; competition with American journals; and German versus English language. (LRW)

  11. THE CURRENT EMPLOYMENT MARKET FOR ENGINEERS, SCIENTISTS, AND TECHNICIANS, OCTOBER 1965.

    ERIC Educational Resources Information Center

    AUSMUS, NORMA F.; SAILE, ALVIN W.

    DATA ON JOB OPENINGS FOR SELECTED ENGINEERING, SCIENTIFIC, AND TECHNICAL OCCUPATIONS, PROVIDED BY THE BUREAU OF EMPLOYMENT SECURITY AFFILIATES FROM FIELD REPORTS ON JUNE 1965 CONDITIONS IN 30 MAJOR LABOR AREAS, ARE PRESENTED IN THIS SEMIANNUAL REPORT. NATIONWIDE DEMAND IN THESE JOB CATEGORIES INCREASED AND BACKLOGS OF APPLICANTS DECREASED BECAUSE…

  12. Changing Employment Patterns of Scientists, Engineers, and Technicians in Manufacturing Industries: 1977-80. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report presents an analysis of science, engineering, and technician (SET) employment within manufacturing industries based on data from the 1977 and 1980 Occupational Employment Statistics survey. The purposes of the report are to: (1) summarize employment data for detailed SET occupations in manufacturing to describe demand patterns; (2)…

  13. The Barrett Foundation: Undergraduate Research Program for Environmental Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Paul, M.; Farmer, C.; Larson, P.; Matt, J.; Sentoff, K.; Vazquez-Spickers, I.; Pearce, A. R.

    2007-12-01

    A new program sponsored by The Barrett Foundation in the University of Vermont College of Engineering and Mathematical Sciences (UVM) supports undergraduate students in Environmental Engineering, Earth and Environmental Sciences to pursue independent summer research projects. The Barrett Foundation, a non-profit organization started by a UVM Engineering alum, provided a grant to support undergraduate research. Students must work with at least two different faculty advisors to develop project ideas, then independently prepare a research proposal and submit it to a faculty panel for review. The program was structured as a scholarship to foster a competitive application process. In the last three years, fourteen students have participated in the program. The 2007 Barrett Scholars projects include: - Using bacteria to change the chemistry of subsurface media to encourage calcite precipitation for soil stability and pollutant sequestration - Assessing structural weaknesses in a historic post and beam barn using accelerometers and wireless data collection equipment - Using image processing filters to 1) evaluate leaf wetness, a leading indicator of disease in crops and 2) assess the movement of contaminants through building materials. - Investigating the impact of increased water temperature on cold-water fish species in two Vermont streams. - Studying the impacts of light duty vehicle tailpipe emissions on air quality This program supports applied and interdisciplinary environmental research and introduces students to real- world engineering problems. In addition, faculty from different research focuses are presented the opportunity to establish new collaborations around campus through the interdisciplinary projects. To date, there is a successful publication record from the projects involving the Barrett scholars, including students as authors. One of the objectives of this program was to provide prestigious, competitive awards to outstanding undergraduate engineers who wish to pursue a specific research project under the mentorship of faculty members who are leading scholars in their fields. We not only wanted to create a valuable experience for the undergraduate engineers, but also felt that creating a competitive and prestigious award would create excitement and convince other undergraduate engineers to pursue research experiences.

  14. The history and future of aircraft turbine engine bearing steels

    SciTech Connect

    Pearson, P.K.

    1998-12-31

    The history of aircraft turbine engine bearings is one of great improvements in reliability and performance. Progress in steel has followed two parallel paths. One is in steel composition from low alloys to high speed, fracture tough, and corrosion resistant compositions. The other is in steel quality, from electric furnace to vacuum and remelting methods, and forging and inspection techniques to prevent stress raising flaws. In many ways the developments for turbine engines have led the way for the bearing industry. In this paper the history and future will be reviewed with emphasis on the important lessons learned that can be applied wherever rolling contact bearings are used.

  15. Genetically Engineered Plants and Foods: A Scientist's Analysis of the Issues (Part I).

    PubMed

    Lemaux, Peggy G

    2008-01-01

    Through the use of the new tools of genetic engineering, genes can be introduced into the same plant or animal species or into plants or animals that are not sexually compatible-the latter is a distinction with classical breeding. This technology has led to the commercial production of genetically engineered (GE) crops on approximately 250 million acres worldwide. These crops generally are herbicide and pest tolerant, but other GE crops in the pipeline focus on other traits. For some farmers and consumers, planting and eating foods from these crops are acceptable; for others they raise issues related to safety of the foods and the environment. In Part I of this review some general and food issues raised regarding GE crops and foods will be addressed. Responses to these issues, where possible, cite peer-reviewed scientific literature. In Part II to appear in 2009, issues related to environmental and socioeconomic aspects of GE crops and foods will be covered. PMID:18284373

  16. Designing and Evaluating a Climate Change Course for Upper-Division Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Samson, P. J.

    2002-12-01

    AOSS 300, GLOBAL ENVIRONMENTAL IMPACT OF TECHNOLOGICAL CHANGE, was created to provide a mechanism for scientific exploration of the unexpected global environmental side effects of technological innovation with emphasis on issues of the atmosphere and oceans. The course is specifically designed to contribute to the desired Accreditation Board for Engineering and Technology (ABET) outcomes that engineering and science graduates possess "the broad education necessary to understand the impact of solutions in a global and societal context." To facilitate this new course a new suite of coupled Flash/PHP/MySQL tools have been created that allow personalization of the students' learning space and interaction with faculty. Using these tools students are challenged to actively participate in the construction of knowledge through development of on-line portfolios that influence course content. This paper reports on lessons learned in the first semester that will guide further course development.

  17. Primary-School Children's Attitudes towards Science, Engineering and Technology and Their Images of Scientists and Engineers

    ERIC Educational Resources Information Center

    Silver, Anne; Rushton, Brian S.

    2008-01-01

    The attitudes of Year 5 primary-school children towards science, engineering and technology (SET) were examined prior to studying the effects of the Horsham Greenpower Goblin Challenge (HGGC), a hands-on SET project. The data collection centred on pupil, parent and teacher questionnaires using Likert scales and picture/word images of scientists…

  18. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    SciTech Connect

    Lagos, L.

    2013-07-01

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  4. From the wizard to the doubter: prototypes of scientists and engineers in fiction and non-fiction media aimed at Dutch children and teenagers.

    PubMed

    Van Gorp, Baldwin; Rommes, Els; Emons, Pascale

    2014-08-01

    The aim of this paper is to gain insight into the prototypical scientists as they appear in fiction and non-fiction media consumed by children and teenagers in The Netherlands. A qualitative-interpretive content analysis is used to identify seven prototypes and the associated characteristics in a systematic way. The results show that the element of risk is given more attention in fiction than in non-fiction. Also, eccentric scientists appear more often in fiction. In non-fiction, the dimension useful/useless is more important. Furthermore, fictional scientists are loners, although in practice scientists more often work in a team. In both fiction and non-fiction, the final product of the scientific process gets more attention than the process itself. The prototype of the doubter is introduced as an alternative to the dominant representations because it represents scientists and engineers in a more nuanced way. PMID:23825274

  5. USGS Scientist Gavin Hayes

    USGS Multimedia Gallery

    Dr. Gavin Hayes,  a USGS geophysicist, was awarded the 2012 Presidential Early Career Award for Scientists and Engineers (PECASE). This award is the highest recognition granted by the United States government to scientists and engineers in the early stages of their research careers. Haye...

  6. USGS Scientist Burke Minsley

    USGS Multimedia Gallery

    Dr. Burke Minsley,  a USGS geophysicist, was awarded the 2012 Presidential Early Career Award for Scientists and Engineers (PECASE). This award is the highest recognition granted by the United States government to scientists and engineers in the early stages of their research careers. Minsl...

  7. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  8. Environmental engineering education for developing countries: framework for the future.

    PubMed

    Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L

    2004-01-01

    This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework. PMID:15193088

  9. The fraying web of life and our future engineers

    NASA Astrophysics Data System (ADS)

    Splitt, Frank G.

    2004-07-01

    Evidence abounds that we are reaching the carrying capacity of the earth -- engaging in deficit spending. The amount of crops, animals, and other biomatter we extract from the earth each year exceeds wth the earth can replace by an estimated 20%. Additionally, signs of climate change are precursors of things to come. Global industrialization and the new technologies of the 20th century have helped to stretch the capacities of our finite natural system to precarious levels. Taken together, this evidence reflects a fraying web of life. Sustainable development and natural capitalism work to reverse these trends, however, we are often still wedded to the notion that environmental conservation and economic development are the 'players' in a zero-sum game. Engineering and its technological derivatives can also help remedy the problem. The well being of future generations will depend to a large extent on how we educate our future engineers. These engineers will be a new breed -- developing and using sustainable technology, benign manufacturing processes and an expanded array of environmental assessment tools that will simultaneously support and maintain healthy economies and a healthy environment. The importance of environment and sustainable development cosiderations, the need for their widespread inclusion in engineering education, the impediments to change, and the important role played by ABET will be presented.

  10. Genetically engineered plants and foods: a scientist's analysis of the issues (part II).

    PubMed

    Lemaux, Peggy G

    2009-01-01

    Genetic engineering provides a means to introduce genes into plants via mechanisms that are different in some respects from classical breeding. A number of commercialized, genetically engineered (GE) varieties, most notably canola, cotton, maize and soybean, were created using this technology, and at present the traits introduced are herbicide and/or pest tolerance. In 2007 these GE crops were planted in developed and developing countries on more than 280 million acres (113 million hectares) worldwide, representing nearly 10% of rainfed cropland. Although the United States leads the world in acres planted with GE crops, the majority of this planting is on large acreage farms. In developing countries, adopters are mostly small and resource-poor farmers. For farmers and many consumers worldwide, planting and eating GE crops and products made from them are acceptable and even welcomed; for others GE crops raise food and environmental safety questions, as well as economic and social issues. In Part I of this review, some general and food issues related to GE crops and foods were discussed. In Part II, issues related to certain environmental and socioeconomic aspects of GE crops and foods are addressed, with responses linked to the scientific literature. PMID:19400729

  11. Play as the Learning Medium for Future Scientists, Mathematicians, and Engineers

    ERIC Educational Resources Information Center

    Bergen, Doris

    2009-01-01

    In recent years, playful methods of learning have almost disappeared from school classrooms, and active, creative, extended playtimes during recess, at home, and in neighborhoods have also greatly diminished. This disappearance of play is especially unfortunate because it is happening at the very time that professionals in many scientific,…

  12. The Future Scientists and Engineers Conferences: Using Community Resources to Enhance the Science Fair

    ERIC Educational Resources Information Center

    Sinsel, Jennifer

    2008-01-01

    Conference attendees arrive at the registration desk at 9:00 a.m. sharp, eager to start their day. While standing in line, they talk excitedly about the sessions they've chosen to see, the original investigation they'll be presenting, off-site field trips for which they've registered, and the businesses scheduled to have booths in the Exhibitor's…

  13. The graduate education of scientists and engineers: Myths, facts, and recommendations

    SciTech Connect

    Griffiths, P.A.

    1995-12-31

    The graduate schools of the United States have served as a model for the world. However, changes in science and in the needs of employers are placing new stresses on the system. Critics emphasize the excess of graduate students to job opportunities. Statistical data is provided on employment of graduate students and the major areas of employment at present. The author describes how we got to the current situation and what should be done to improve the future for students of science and technology.

  14. Pathways to space: A mission to foster the next generation of scientists and engineers

    NASA Astrophysics Data System (ADS)

    Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer

    2014-06-01

    The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and science communications research, the challenges of developing such a multi-faceted education project in collaboration with several partners and the results that have already been achieved within the study.

  15. The diesel engine for cars -- Is there a future?

    SciTech Connect

    Pischinger, F.F.

    1998-07-01

    The diesel engine is known as the most fuel efficient combustion engine. Its acceptance for use in passenger cars, however, varies geographically. Today, the diesel car plays an important role in Europe; in France, for instance, it is achieving a remarkable market share of about 42%, while in the US its market penetration can be neglected. Many questions are expressed concerning the future of diesel powered cars. The question affecting market acceptance is as follows: can the significantly better fuel efficiency of a diesel car outweigh perceived detrimental characteristics? Such unfavorable properties are thought to be low specific power, objectionable noise, higher exhaust emissions (including smoke), and higher vehicle price. These features are closely influenced by the state of passenger car diesel engine technology. This technology state and its potential must be evaluated with respect to current and future demands, for instance, tighter exhaust emission regulations. In addition, the commercial value and consumer acceptance of high fuel economy must be evaluated. It is clear that the ultimate result of weighing the pros and cons will depend not only on technological factors, but also on political factors such as fuel taxation. Regarding the state of technology, the diesel car is very promising. First, by employing a direct injection combustion system, the fuel efficiency can be improved by about 15% over current swirl chamber engines. Furthermore, the specific power (hp/ltr) can be increased by efficient supercharging to achieve values of today`s gasoline engines. By tuning the combustion system, low noise engine design features and incorporation of careful noise reduction measures on the vehicle, the noise behavior of a spark ignited vehicle can be reached. Exhaust emissions can currently be reduced to a level to satisfy today`s European and US Tier 1 emission limits. However, significant development effort remains. More stringent emission levels (California US, Tier 2 ULEV, and Stage 3 in Europe) require further advancements in diesel combustion. The strong development potential of 4-valve engines and new unique injection systems is evident. In addition, there are promising developments with lean NO{sub x} catalysts and regenerative particulate filters. These technologies offer the potential to meet the very stringent future emission standards.

  16. Real cases study through computer applications for futures Agricultural Engineers

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Durán, J. M.; Tarquis, A. M.

    2010-05-01

    One of the huge concerns on the higher engineer education is the lag of real cases study that the future professionals need in the work and corporation market. This concern was reflected in Bologna higher education system including recommendations in this respect. The knowhow as why this or other methodology is one of the keys to resolve this problem. In the last courses given in Department of Crop Production, at the Agronomy Engineer School of Madrid (Escuela Técnica Superior de Ingenieros Agrónomos, UPM) we have developed more than one hundred applications in Microsoft Excel®. Our aim was to show different real scenarios which the future Agronomic Engineers can be found in their professional life and with items related to crop production field. In order to achieve our target, each application in Excel presents a file text in which is explained the theoretical concepts and the objectives, as well as some resources used from Excel syntax. In this way, the student can understand and use of such application, even they can modify and customize it for a real case presented in their context and/or master project. This electronic monograph gives an answer to the need to manage data in several real scenarios showed in lectures, calculus resolution, information analysis and manage worksheets in a professional and student level.

  17. Modeling of gasification processes. Final report: distinguished scientist/engineer pgoram. [Single particle

    SciTech Connect

    Amundson, N.R.

    1981-09-30

    The major effort was involved with modelling of single particle char burning and gasification, although some work on fluidized bed combustion was also carried out. It was discovered early that the treatment in the literature of single particles and how they burned or gasified was, in general, superficial and certainly not systematic, so that attempts to model complex reactor geometries are frustrated by not knowing how to handle the individual particles. The view of what mathematical modelling is supposed to accomplish is a strong function of the viewer. There are three main ideas about modelling. First, anc certainly the most common view, is that a valid model should aid in design. Second, models are devised to explain some previously observed or pathological behavior in a process: thermal run aways, difficult start-ups of plants, or completely different behavior than what had been anticipated from a less rational approach. These modelling efforts are always after the fact and are related to the third kind. This kind of modelling is related to learning models, i.e., those models from which one hopes to learn as much in a qualitative way about the process as possible. Theese models should predict the gross qualitative structure and when tuned with the right parameters be quantitatively correct. This is not the kind of modelling most engineers are attuned to but should be carried out early in the conceptual stages of a process since it should elucidate what the important parameters of a process might be depending upon the sophistication of the model builder. In this report we stress learning models mostly on single particle char burning and gasification. We consider models from the simple to the complex and try to compare the results from the spectrum of model assumptions.

  18. Key Barriers for Academic Institutions Seeking to Retain Female Scientists and Engineers: Family-Unfriendly Policies. Low Numbers, Stereotypes, and Harassment

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Lane, Eliesh O'neil

    At the end of a special meeting held at the Massachusetts Institute of Technology in January 2001, a statement released on behalf of the most prestigious U. S. research universities suggested that institutional harriers have prevented viomen from having a level playing field in science and engineering. In 2001, the National Science Foundation initiated a new awards program, ADVANCE, focusing on institutional rather than individual solutions to empower women to participate fully in science and technology. In this study, the authors evaluate survey responses from almost 400 Professional Opportunities for Women in Research and Education awardees from fiscal years 1997 to 2000 to elucidate problems and opportunities identified by female scientists and engineers. Besides other issues, the respondents identified balancing a career and a family as the most significant challenge facing female scientists and engineers today. Institutions must seek to remove or at least lower these and other harriers to attract and retain female scientists and engineers. Grouping the survey responses into four categories forms the basis for four corresponding policy areas, which could be addressed at the institutional level to mitigate the difficulties and challenges currently experienced by female scientists and engineers.

  19. The NGWA Experience with Education and Core Competencies for Groundwater Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    McCray, K. B.

    2014-12-01

    Since 1988, the National Ground Water Association has formally supported recognition, through certification or some other means, of the unique qualifications necessary to perform hydrogeologic investigations. NGWA has believed reliance on professional engineers or individuals certified in an allied field without a determination as to their knowledge of groundwater science is not a justified position. Observation today suggests a need remains for greater hydrogeologic awareness among those that may create infrastructure intrusions into the groundwater environment, such as those designing and installing large-scale installations of geothermal heating and cooling systems. NGWA has responded with development of hydrogeologic guidelines for such projects. Also in partial response to the above named circumstances, the Association has begun development of an ANSI/NGWA standard defining the skills and competencies of groundwater personnel - from the trades to the science, and has explored the potential value of creating a career pathways guidance document for groundwater science professionals. Historically, NGWA scientific members have resisted the idea of accreditation of academic geosciences programs, including those for hydrogeology, although such discussions continue to be raised from time to time by groups such as the Geological Society of America and the American Geosciences Institute. The resistance seems to have been born out of recognition of the multi-disciplinary reality of groundwater science. NGWA funded research found that more than half of the respondents to a study of the business development practices for consulting groundwater professionals had been involved with groundwater issues for more than 20 years, and less than one percent had worked in the field for fewer than two years, raising the question of whether too few young people are being attracted to hydrogeology. Some speculate the seemingly minor emphasis on Earth science education in the U.S. K-12 system may lead to (1) employers of ground water hydrologists finding, on average, fewer applicants; (2) applicants with less depth of training in ground water hydrology; (3) need for additional on-the-job training among entry level personnel; and (4) greater salaries of all hydrology professionals.

  20. A Review of Engine Seal Performance and Requirements for Current and Future Army Engine Platforms

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2008-01-01

    Sand ingestion continues to impact combat ground and air vehicles in military operations in the Middle East. The T-700 engine used in Apache and Blackhawk helicopters has been subjected to increased overhauls due to sand and dust ingestion during desert operations. Engine component wear includes compressor and turbine blades/vanes resulting in decreased engine power and efficiency. Engine labyrinth seals have also been subjected to sand and dust erosion resulting in tooth tip wear, increased clearances, and loss in efficiency. For the current investigation, a brief overview is given of the history of the T-700 engine development with respect to sand and dust ingestion requirements. The operational condition of labyrinth seals taken out of service from 4 different locations of the T-700 engine during engine overhauls are examined. Collaborative efforts between the Army and NASA to improve turbine engine seal leakage and life capability are currently focused on noncontacting, low leakage, compliant designs. These new concepts should be evaluated for their tolerance to sand laden air. Future R&D efforts to improve seal erosion resistance and operation in desert environments are recommended

  1. Software architecture and engineering for patient records: current and future.

    PubMed

    Weng, Chunhua; Levine, Betty A; Mun, Seong K

    2009-05-01

    During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment. PMID:19562959

  2. Future market for ceramics in vehicle engines and their impacts

    SciTech Connect

    Vyas, A.; Hanson, D.; Stodolsky, F. |

    1995-02-01

    Ceramic engine components have potential to improve vehicle fuel economy. Some recent tests have also shown their environmental benefits, particularly in reducing particulate emissions in heavy-duty diesel engines. The authors used the data from a survey of the US vehicle engine and component manufacturers relating to ceramic engine components to develop a set of market penetration models. The survey identified promising ceramic components and provided data on the timing of achieving introductory shares in light and heavy-duty markets. Some ceramic components will penetrate the market when the pilot-scale costs are reduced to one-fifth of their current values, and many more will enter the market when the costs are reduced to one-tenth of the current values. An ongoing ceramics research program sponsored by the US Department of Energy has the goal of achieving such price reductions. The size and value of the future ceramic components market and the impacts of this market in terms of fuel savings, reduction in carbon dioxide emissions, and potential reduction in other criteria pollutants are presented. The future ceramic components market will be 9 million components worth $29 million within 5 years of introduction and will expand to 692 million components worth $3,484 million within 20 years. The projected annual energy savings are 3.8 trillion Btu by 5 years, increasing to 526 trillion Btu during the twentieth year. These energy savings will reduce carbon dioxide emissions by 41 million tons during the twentieth year. Ceramic components will help reduce particulate emissions by 100 million tons in 2030 and save the nation`s urban areas $152 million. The paper presents the analytical approach and discusses other economic impacts.

  3. Introducing engine innovations: an examination of future markets for Brayton and Stirling automotive engines

    SciTech Connect

    Santini, D.J.

    1984-08-01

    This paper takes a general and particular view of the process of engine innovation. The history of engine innovation in automobiles and railroads is briefly reviewed and related to the potential path of automotive engine innovation that may occur toward the turn of the century. It is shown that automotive engine innovation in the past has been costly, especially to lower income consumers, and that potential future adoption of Stirling and Brayton (gas turbine) engines is unlikely to be any different. The danger of negative economic side effects during the innovation process for the automobile industry and nation are noted. It is suggested that careful corporate and national preparation for automotive innovation is necessary. To that end, advanced (year 2000) engine and vehicle characteristics from the Technology Assessment of Productive Conservation in Urban Transport are used to estimate that the Stirling and Brayton engines are likely to have very specific and different markets. Driving cycle behavior of the engines in an urban and suburban setting is examined to show that the Stirling's most likely market will be as a specialized urban vehicle, while the Brayton's best market will be as a specialized suburban and inter-city vehicle. It is argued that neither engine has the properties necessary to become a universal replacement for all purpose vehicles using advanced Otto-cycle and diesel engines, but that proper use of these vehicles could ultimately help efficiently mitigate national problems of urban air pollution (the Stirling) and/or excessive fuel consumption. Finally, it is pointed out that recent EPA methods of evaluating vehicle fuel efficiency could incorrectly lead to a negative economic evaluation of advanced Stirling and Brayton engines, tending to unjustifiably retard their introduction into the market.

  4. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    Japanese (n=94) and U.S. (n=340) aerospace scientists/engineers described time spent communicating information, collaborative writing, importance of technical communication courses, and the use of libraries, computer networks, and technical reports. Japanese respondents had greater language fluency; U.S. respondents spent more time with…

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  6. The Relationship between Seven Variables and the Use of U.S. Government Technical Reports by U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Describes a project sponsored by the National Aeronautics and Space Administration (NASA) and the Department of Defense that investigated the relationship between the use of U.S. government technical reports by aerospace engineers and scientists and seven independent sociometric variables. The conceptual framework is explained, and relevant…

  7. Manufacturing Industries with High Concentrations of Scientists and Engineers Lead in 1965-77 Employment Growth. Science Resources Studies Highlights, April 20, 1979.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Presented are the results of a survey of over 100,000 manufacturing establishments, conducted for the National Science Foundation by the Bureau of Labor Statistics, covering average annual employment for calendar year 1977. Industries whose relative concentration of scientists and engineers was high in 1977, such as petroleum refining, chemicals,…

  8. The Relationship between Seven Variables and the Use of U.S. Government Technical Reports by U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Describes a project sponsored by the National Aeronautics and Space Administration (NASA) and the Department of Defense that investigated the relationship between the use of U.S. government technical reports by aerospace engineers and scientists and seven independent sociometric variables. The conceptual framework is explained, and relevant…

  9. Mechatronics: the future of mechanical engineering; past, present, and a vision for the future

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, M. K.

    2001-08-01

    Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.

  10. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    NASA Astrophysics Data System (ADS)

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is organised together with civil engineering students from the University of Rijeka. The aims of this field visit are: to learn about traditional water supply from an underground storage of rain water called cisterna; and to find out from inhabitants about their current water usage habits and expectations, and how these might change when they get water from the main water supply system. This joint activity has been beneficial for both groups of students. The engineering students become aware of the importance of the social aspects in designing the water supply system, while the geography students learn about the engineering challenges entailed. Both groups learn that water consumption increases with the provision of water through pipeline systems and that this needs to be taken into account in the design of water supply and management of water resources. Importantly, they learn the benefits of traditional sustainable water supply methods, which could be implemented as primary or additional sources of water supply in other areas.In summary, both groups of students develop their professional knowledge and skills as well as generic and transferable skills, which are very important for those who will continue to a career in the design and management of water systems.

  11. Prevascularization in tissue engineering: Current concepts and future directions.

    PubMed

    Laschke, Matthias W; Menger, Michael D

    2016-01-01

    The survival of engineered tissue constructs during the initial phase after their implantation depends on the rapid development of an adequate vascularization. This, in turn, is a major prerequisite for the constructs' long-term function. 'Prevascularization' has emerged as a promising concept in tissue engineering, aiming at the generation of a preformed microvasculature in tissue constructs prior to their implantation. This should shorten the time period during which the constructs are avascular and suffer hypoxic conditions. Herein, we provide an overview of current strategies for the generation of preformed microvascular networks within tissue constructs. In vitro approaches use cell seeding, spheroid formation or cell sheet technologies. In situ approaches use the body as a natural bioreactor to induce vascularization by angiogenic ingrowth or flap and arteriovenous (AV)-loop techniques. In future, these strategies may be supplemented by the transplantation of adipose tissue-derived microvascular fragments or the in vitro generation of highly organized microvascular networks by means of sophisticated microscale technologies and microfluidic systems. The further advancement of these prevascularization concepts and their adaptation to individual therapeutic interventions will markedly contribute to a broad implementation of tissue engineering applications into clinical practice. PMID:26674312

  12. Preparing the Future Workforce: Science, Technology, Engineering and Math (STEM) Policy in K-12 Education

    ERIC Educational Resources Information Center

    Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob

    2009-01-01

    Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in enabling…

  13. A life scientist, an engineer and a social scientist walk into a lab: challenges of dual-use engagement and education in synthetic biology.

    PubMed

    Edwards, Brett; Kelle, Alexander

    2012-01-01

    The discussion of dual-use education is often predicated on a discrete population of practicing life scientists exhibiting certain deficiencies in awareness or expertise. This has lead to the claim that there is a greater requirement for awareness raising and education amongst this population. However, there is yet to be an inquiry into the impact of the 'convergent' nature of emerging techno-sciences upon the prospects of dual-use education. The field of synthetic biology, although often portrayed as homogeneous, is in fact composed of various sub-fields and communities. Its practitioners have diverse academic backgrounds. The research institutions that have fostered its development in the UK often have their own sets of norms and practices in engagement with ethical, legal and social issues associated with scientific knowledge and technologies. The area is also complicated by the emergence of synthetic biologists outside traditional research environments, the so called 'do-it-yourself' or 'garage biologists'. This paper untangles some of the complexities in the current state of synthetic biology and addresses the prospects for dual-use education for practitioners. It provides a short overview of the field and discusses identified dual-use issues. There follows a discussion of UK networks in synthetic biology, including their engagement with ethical, legal, social and dual-use issues and limited educational efforts in relation to these. It concludes by outlining options for developing a more systematic dual-use education strategy for synthetic biology. PMID:22606757

  14. USGS Scientist Anna Chalfoun

    USGS Multimedia Gallery

    Dr. Anna D. Chalfoun, a USGS scientist and assistant leader at the Wyoming Cooperative Fish and Wildlife Research Unit, was awarded the 2012 Presidential Early Career Award for Scientists and Engineers (PECASE). This award is the highest recognition granted by the United States government to scien...

  15. Future Jet Technologies. Part B. F-35 Future Risks v. JS-Education of Pilots & Engineers

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2011-09-01

    Design of “Next-Generation” airframes based on supermarket-jet-engine-components is nowadays passé. A novel integration methodology [Gal-Or, “Editorial-Review, Part A”, 2011, Gal-Or, “Vectored Propulsion, Supermaneuverability and Robot Aircraft”, Springer Verlag, Gal-Or, Int'l. J. of Thermal and Fluid Sciences 7: 1-6, 1998, “Introduction”, 2011] is nowadays in. For advanced fighter aircraft it begins with JS-based powerplant, which takes up to three times longer to mature vis-à-vis the airframe, unless “committee's design” enforces a dormant catastrophe. Jet Steering (JS) or Thrust Vectoring Flight Control, is a classified, integrated engine-airframe technology aimed at maximizing post-stall-maneuverability, flight safety, efficiency and flight envelopes of manned and unmanned air vehicles, especially in the “impossible-to-fly”, post-stall flight domains where the 100+ years old, stall-spin-limited, Conventional Flight Control fails. Worldwide success in adopting the post-stall, JS-revolution, opens a new era in aviation, with unprecedented design variables identified here for a critical review of F-35 future risks v. future fleets of jet-steered, pilotless vehicles, like the X-47B/C. From the educational point of view, it is also instructive to comprehend the causes of long, intensive opposition to adopt post-stall, JS ideas. A review of such debates may also curb a future opposition to adopt more advanced, JS-based technologies, tests, strategies, tactics and missions within the evolving air, marine and land applications of JS. Most important, re-education of pilots and engineers requires adding post-stall, JS-based studies to curriculum & R&D.

  16. John Mather public policy internship: Perspectives on science policy as an intern at Scientists and Engineers for America (SEA) and Congressman Bill Foster's office

    NASA Astrophysics Data System (ADS)

    Tuna, Alexander

    2011-04-01

    In the summer of 2010, I participated in the John Mather public policy internship through AIP and SPS. I spent six weeks as an intern at Scientists and Engineers for America (SEA), a nonprofit, nonpartisan organization that encourages technically-trained citizens to become more engaged in US politics and the policy-making process, and six weeks as an intern for Congressman Bill Foster (D-Il 14) in the House of Representatives. These internships offered two distinct perspectives on how American science policy is crafted and showed me many ways in which scientists can be engaged in the political process.

  17. Engineering brain-computer interfaces: past, present and future.

    PubMed

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community. PMID:24819489

  18. Corneal tissue engineering: recent advances and future perspectives.

    PubMed

    Ghezzi, Chiara E; Rnjak-Kovacina, Jelena; Kaplan, David L

    2015-06-01

    To address the growing need for corneal transplants two main approaches are being pursued: allogenic and synthetic materials. Allogenic tissue from human donors is currently the preferred choice; however, there is a worldwide shortage in donated corneal tissue. In addition, tissue rejection often limits the long-term success of this approach. Alternatively, synthetic homologs to donor corneal grafts are primarily considered temporary replacements until suitable donor tissue becomes available, as they result in a high incidence of graft failure. Tissue engineered cornea analogs would provide effective cornea tissue substitutes and alternatives to address the need to reduce animal testing of commercial products. Recent progress toward these needs is reviewed here, along with future perspectives. PMID:25434371

  19. Finding a new continent versus mapping all the rivers: Recognition, ownership, and the scientific epistemological development of practicing scientists and engineers

    NASA Astrophysics Data System (ADS)

    Verdan, Andrea Marie

    Maintaining our nation's standing as a leader of innovative and premier science and engineering research requires that those on the trajectory of these careers receive both rigorous and exceptional training. In addition to educating students in the content knowledge of these disciplines, it is also necessary to train them in the professional skills associated with being competent and conscientious scientists and engineers. In the attempts to understand the best strategies to teach these skills, research during the past few decades has shown a steadily increasing interest in improving the scientific literacy of students in science and engineering disciplines. Researchers agree that fostering this literacy---particularly with respect to understanding the nature of science, i.e., scientific epistemology---is an important component in developing students' abilities to become successful practitioners of science and engineering. This research was motivated by the need to further elucidate the formative experiences that contribute to science and engineering faculty members' personal epistemologies of science. To examine the development of these epistemologies, a phenomenographical study was designed to elucidate academic scientists' and engineers' understandings of contributions, collaborations, and credit assignment. The results and inductive, grounded-theory analysis of interviews with faculty members in the College of Engineering and Science at a large, southeastern institution revealed a model of scientific epistemological development and its possible ties to professional identity development. This model can help inform changes in mentorship and training practices to better prepare students to manage the challenges posed by being scientists and engineers in the 21st-century.

  20. Ethical debates in genetic engineering: U.S. scientists' attitudes on patenting, germ-line research, food labeling, and agri-biotech issues.

    PubMed

    Rabino, I

    1998-09-01

    A 1995 survey of 1,257 scientists working in the field of recombinant DNA research indicates wide areas of agreement as well as some noteworthy divisions when it comes to such thorny questions as patenting, germ-line research, food labeling, and biodiversity. In general, the scientists surveyed approve of patenting living organisms that result from rDNA research, but vary significantly on what should be patentable. They advocate human germ-line therapy, yet have reservations about using it for any but serious diseases. They oppose mandatory labeling of biologically engineered food products, but understand that the public has a right to know and advocate openness. Finally, they favor development of threats to biodiversity and maintain that publicly funded researchers should be legally obligated to consider the potential environmental effects of their research. Some clear differences arise between scientists working in industry and those in academia and between men and women. PMID:12408147

  1. Medical Scientists

    MedlinePLUS

    ... scientists typically have a Ph.D., usually in biology or a related life science. Some medical scientists ... specialize in this field seek to understand the biology of aging and investigate ways to improve the ...

  2. Spotlight on Scientists Videos

    Cancer.gov

    NCI scientists, from postdoctoral fellows to principal investigators, discuss various topics including their personal backgrounds, how they came to be in the field of cancer research, their current projects, and a look to the future of medical oncology.

  3. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Two pilot studies were conducted that investigated the technical communications practices of U.S. and European aerospace engineers and scientists. Both studies had the same five objectives: (1) solicit opinions regarding the importance of technical communications; (2) determine the use and production of technical communications; (3) seek views about the appropriate content of an undergraduate course in technical communications; (4) determine use of libraries, information centers, and online database; (5) determine use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected aerospace engineers and scientists, with a slightly modified version sent to European colleagues. Their responses to selected questions are presented in this paper.

  4. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  5. The Stirling Engine: A Wave of the Future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video describes the Stirling engine, an external combustion engine which creates heat energy to power the motor, and can use many types of fuel. It can be used for both stationary and propulsion purposes and has advantages of better fuel economy and cleaner exhaust than internal combustion engines. The engine is shown being road tested at Langley Air Force Base.

  6. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  7. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  8. Developmental Potential among Creative Scientists

    ERIC Educational Resources Information Center

    Culross, Rita R.

    2008-01-01

    The world of creative scientists is dramatically different in the 21st century than it was during previous centuries. Whether biologists, chemists, physicists, engineers, mathematicians, or computer scientists, the livelihood of research scientists is dependent on their abilities of creative expression. The view of a solitary researcher who…

  9. Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    A year ago, when many national science budgets were coming under intense scrutiny—particularly in the United States—many scientists began exhorting their colleagues to be more vocal in the public debate. Such outreach was touted as a matter of survival for scientists.Neal Lane, however, asserts that scientists must have a higher goal than self-preservation. In several recent speeches, the director of the National Science Foundation has prodded scientists to assume a “new, additional role that scientists must play in society.” Lane has declared a need for “civic scientists,” researchers who are not just aware of but responsive to the needs of the society around them.

  10. Diversity and Equity in the Lab: Preparing Scientists and Engineers for Inclusive Teaching in Courses and Research Environments

    NASA Astrophysics Data System (ADS)

    Hunter, L.; Seagroves, S.; Metevier, A. J.; Kluger-Bell, B.; Raschke, L.; Jonsson, P.; Porter, J.; Brown, C.; Roybal, G.; Shaw, J.

    2010-12-01

    Despite high attrition rates in college-level science, technology, engineering, and math (STEM) courses, with even higher rates for women and underrepresented minorities, not enough attention has been given to higher education STEM classroom practices that may limit the retention of students from diverse backgrounds. The Professional Development Program (PDP) has developed a range of professional development activities aimed at helping participants learn about diversity and equity issues, integrate inclusive teaching strategies into their own instructional units, and reflect on their own teaching practices. In the PDP, all participants develop and teach a STEM laboratory activity that enables their students to practice scientific inquiry processes as they gain an understanding of scientific concepts. In addition, they are asked to consider diversity and equity issues in their activity design and teaching. The PDP supports participants in this challenging endeavor by engaging them in activities that are aligned with a PDP-defined Diversity & Equity Focus Area that includes five emphases: 1) Multiple ways to learn, communicate and succeed; 2) Learners' goals, interests, motivation, and values; 3) Beliefs and perceptions about ability to achieve; 4) Inclusive collaboration and equitable participation; 5) Social identification within STEM culture. We describe the PDP Diversity & Equity focus, the five emphases, and the supporting activities that have been designed and implemented within the PDP, as well as future directions for our diversity and equity efforts.

  11. J-2X, The Engine of the Future

    NASA Technical Reports Server (NTRS)

    Smith, Gail

    2009-01-01

    My project was two-fold, with both parts involving the J-2X Upper Stage engine (which will be used on both the Ares I and V). Mainly, I am responsible for using a program called Iris to create visual represen tations of the rocket engine's telemetry data. Also, my project includes the application of my newly acquired Pro Engineer skills in develo ping a 3D model of the engine's nozzle.

  12. The Future of Engineering: A Study of the Gender Bias

    ERIC Educational Resources Information Center

    Anderson, Lisa; Gilbride, Kimberley

    2007-01-01

    Women are under-represented in the engineering field. Although more than 50% of Canadian university students are female, they represent less than 25% of students enrolled nationally in engineering programs. This study found that female high school students are as aware of engineering as a discipline as their male counterparts but are significantly…

  13. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1983-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each time of required advanced technology into the engine design.

  14. Drawing Scientists.

    ERIC Educational Resources Information Center

    Matthews, Brian

    1996-01-01

    Investigates whether students' perceptions of scientists as being white, male, and dressed in laboratory coats is changing. Results from picture drawings made by 132 secondary school students indicate that the image pupils have of scientists is changing to show less gender bias and to be more realistic. (GR)

  15. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    ERIC Educational Resources Information Center

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  16. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    ERIC Educational Resources Information Center

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  17. Future Modeling Needs in Pulse Detonation Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    Meade, Brian; Talley, Doug; Mueller, Donn; Tew, Dave; Guidos, Mike; Seymour, Dave

    2001-01-01

    This paper presents a performance model rocket engine design that takes advantage of pulse detonation to generate thrust. The contents include: 1) Introduction to the Pulse Detonation Rocket Engine (PDRE); 2) PDRE modeling issues and options; 3) Discussion of the PDRE Performance Workshop held at Marshall Space Flight Center; and 4) Identify needs involving an open performance model for Pulse Detonation Rocket Engines. This paper is in viewgraph form.

  18. Current and future engine applications of Gr/PI composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Schmid, T. E.

    1985-01-01

    The application of organic matrix composites to gas turbine engine components has been the subject of numerous government and company funded programs since the 1960's. The possibility of significant weight reductions, performance improvements and lower component costs have made the organic matrix composites extremely attractive to aircraft engine designers. Very little of this potential was incorporated into production engines over the years even though a significant number of components were designed, fabricated and tested. Some of the reasons behind the slow rate of incorporation include the following: (1) criticality; (2) engine operating temperature; (3) small component size; (4) small production volume; (5) high production cost; and (6) interfacing with metal parts.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  20. Inspire Future Engineers with the Concrete Canoe Competition!

    ERIC Educational Resources Information Center

    Cramer, Steven; Kurten, Jaime

    2005-01-01

    While classroom instruction can and should still be used to teach students the fundamentals of engineering, the key to their ultimate success is learning to use that knowledge in a real-world setting. Out-of-class activities, like the American Society of Civil Engineers' (ASCE) National Concrete Canoe Competition, not only give students a hands-on…

  1. Engineering Education: The Key to a Sustainable Future

    ERIC Educational Resources Information Center

    Thomas, Jason

    2012-01-01

    It is obvious that engineering played a significant role in the development of the world. Many contributions engineers have given are visible in the world and in people's daily lives. Unfortunately, humans often learn through trial and error, and much of the world has been developed in ways that did not contribute to the well-being of the planet…

  2. Engineering Education: The Key to a Sustainable Future

    ERIC Educational Resources Information Center

    Thomas, Jason

    2012-01-01

    It is obvious that engineering played a significant role in the development of the world. Many contributions engineers have given are visible in the world and in people's daily lives. Unfortunately, humans often learn through trial and error, and much of the world has been developed in ways that did not contribute to the well-being of the planet…

  3. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  4. The Future for Industrial Engineers: Education and Research Opportunities

    ERIC Educational Resources Information Center

    Mummolo, Giovanni

    2007-01-01

    EU graduation and the recruitment of industrial engineers (IEs) have been investigated. An increasing demand is observed for graduates in almost all industrial engineering (IE) subjects. The labour market in the EU is evolving towards the service sector even if manufacturing still represents a significant share of both IE employment and gross…

  5. Engineering Education in the United States: Past, Present, and Future.

    ERIC Educational Resources Information Center

    Prados, John W.

    Over the past half-century, engineering education in the United States has undergone a profound transformation, from a strong focus on engineering practice and design before World War II to the current emphasis on scientific fundamentals and mathematical analysis. This change was driven by the Cold War and the accompanying major federal investment…

  6. The Future for Industrial Engineers: Education and Research Opportunities

    ERIC Educational Resources Information Center

    Mummolo, Giovanni

    2007-01-01

    EU graduation and the recruitment of industrial engineers (IEs) have been investigated. An increasing demand is observed for graduates in almost all industrial engineering (IE) subjects. The labour market in the EU is evolving towards the service sector even if manufacturing still represents a significant share of both IE employment and gross…

  7. Editorial: Looking to the Future of Hydrologic Engineering

    EPA Science Inventory

    Being one of the more recent journals of the American Society of Civil Engineers, the Journal of Hydrologic Engineering (JHE) has made significant strides under the forward-thinking leadership of previous editors (M. Levent Kavvas 1996-2004, and V. P. Singh, 2004-2012) si...

  8. JIAFS - A Pattern for Graduate Engineering Education of the Future?

    ERIC Educational Resources Information Center

    Whitesides, J. L.; Yuan, S. W.

    A graduate program in engineering at the Joint Institute for Acoustics and Flight Sciences (JIAFS) is described. JIAFS is a cooperative undertaking between the NASA-Langley Research Center and the School of Engineering and Applied Science at The George Washington University. This program adopts a more practical approach than traditional graduate…

  9. Winterover scientists in Antarctic Astrophysics

    NASA Astrophysics Data System (ADS)

    Tothill, N. F. H.; Martin, C. L.

    2013-01-01

    Astronomy in Antarctica is largely carried out in winter, and so winterover scientists are required to run the instruments. A winterover appointment is a unique opportunity for a scientist, but brings challenges for both the scientist and the larger instrument team. We give a brief review of how winterovers work and their experiences. Although recent projects have required less support from winterover scientists, we believe that they will be a feature of Antarctic astronomy and astrophysics into the future.

  10. Organizational stress and individual strain: A social-psychological study of risk factors in coronary heart disease among administrators, engineers, and scientists

    NASA Technical Reports Server (NTRS)

    Caplan, R. D.

    1971-01-01

    It is hypothesized that organizational stresses, such as high quantitative work load, responsibility for persons, poor relations with role senders, and contact with alien organizational territories, may be associated with high levels of psychological and physiological strain which are risk factors in coronary heart disease. It is further hypothesized that persons with coronary-prone Type A personality characteristics are most likely to exhibit strain under conditions of organizational stress. Measures of these stresses, personality traits, and strains were obtained from 205 male NASA administrators, engineers, and scientists. Type A personality measures included sense of time urgency, persistence, involved striving, leadership, and preference for competitive and environmentally overburdening situations.

  11. Life cycle cost assessment of future low heat rejection engines

    NASA Technical Reports Server (NTRS)

    Petersen, D. R.

    1986-01-01

    The Adiabatic Diesel Engine Component Development (ADECD) represents a project which has the objective to accelerate the development of highway truck engines with advanced technology aimed at reduced fuel consumption. The project comprises three steps, including the synthesis of a number of engine candidate designs, the coupling of each with a number of systems for utilizing exhaust gas energy, and the evaluation of each combination in terms of desirability. Particular attention is given to the employed evaluation method and the development of this method. The objective of Life Cycle Cost (LCC) evaluation in the ADECD program was to select the best from among 42 different low heat rejection engine (LHRE)/exhaust energy recovery system configurations. The LCC model is discussed along with a maintenance cost model, the evaluation strategy, the selection of parameter ranges, and a full factorial analysis.

  12. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  13. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Astrophysics Data System (ADS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-09-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed 1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  14. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  16. The gate studies: Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.

  17. Industrial safety engineering--challenges of the future.

    PubMed

    Dwyer, T

    1992-06-01

    Safety management is now entering an era quite different to that which marked its foundation. The multiple challenges facing safety engineering are focused upon. In the United States, France, Britain, and Brazil, safety engineering has experienced fast growth over the past two decades. An increased questioning of the traditional assumptions of the profession in both traditional and postindustrial work has accompanied this growth. New directions of reflection and research are being pursued. Recent research in sociology, where worker perceptions of tasks and their dangers are incorporated into the analysis of accident production, brings promising but still incipient new perspectives to accident research and theory. Simultaneously, novel challenges for safety engineering are posed by the emergence of postindustrial technologies. Some of these threaten large civilian populations, and the knowledge is not currently available to guarantee accident prevention. In this way the responsibilities of safety engineering, both ethical and with regards the provision of information to the public, are brought under the spotlight. The face of safety engineering is being changed. PMID:1605811

  18. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  20. The Status and Future of Aerospace Engineering Education in Turkey.

    ERIC Educational Resources Information Center

    Hale, Francis J.

    There is no aerospace industry in Turkey, and the level of operational activity is low even though the potential for the exploitation of aviation is high. The government of Turkey hopes to establish an aircraft factory in conjunction with a foreign contractor and is aware of the need for aerospace engineering education. This paper describes the…

  1. Sea floor engineering geomorphology: recent achievements and future directions

    NASA Astrophysics Data System (ADS)

    Prior, David B.; Hooper, James R.

    1999-12-01

    New mapping technology is providing perspectives of the sea floor "as if there were no ocean", revealing that ocean floors exhibit a wide variety of relief, sediment properties, and active geologic processes such as erosion, faulting, fluid expulsion, and landslides. The development of coastal and offshore resources, such as oil and gas and minerals, involves sea floor engineering in remote, complex, and sometimes hazardous environments. Optimum engineering design and construction practice require detailed surveys of sea floor geomorphology, geologic conditions on the sea bed and to various depths beneath it, combined with geotechnical properties of the sediments and oceanographic information. Integrated site survey models attempt to predict conditions and process frequencies and magnitudes relevant to the engineering design lifetimes of sea floor installations, such as cables, pipelines, production platforms, as well as supporting coastal infrastructure such as jetties, wharves, bridges and harbors. Recent use of deep water areas for oil and gas production, pipelines, and cable routes are also showing that the "world's greatest slopes", beyond the continental shelves contain exciting, exotic, and enigmatic geomorphological features and processes. Safe and cost-effective engineering use of these regions depends upon exciting new technical and conceptual advances for understanding sea floor geomorphology — a task which has barely begun.

  2. Introducing Future Engineers to Sustainable Ecology Problems: A Case Study

    ERIC Educational Resources Information Center

    Filipkowski, A.

    2011-01-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and…

  3. A Vision of the Chemical Engineering Curriculum of the Future

    ERIC Educational Resources Information Center

    Armstrong, Robert C.

    2006-01-01

    A dramatic shift in chemical engineering undergraduate education is envisioned, based on discipline-wide workshop discussions that have taken place over the last two years. Faculty from more than 53 universities and industry representatives from 19 companies participated. Through this process broad consensus has been developed regarding basic…

  4. Automation and Engineering Psychology: A Look to the Future.

    ERIC Educational Resources Information Center

    Parsons, H. McIlvaine

    Various aspects of automation are explained to differentiate it from technology and mechanization and to show the difference between using equipment to help humans and using equipment to replace humans. Five reasons are given for engineering psychology to focus its attention on automation. Automation issues in a number of areas are discussed,…

  5. A Vision of the Chemical Engineering Curriculum of the Future

    ERIC Educational Resources Information Center

    Armstrong, Robert C.

    2006-01-01

    A dramatic shift in chemical engineering undergraduate education is envisioned, based on discipline-wide workshop discussions that have taken place over the last two years. Faculty from more than 53 universities and industry representatives from 19 companies participated. Through this process broad consensus has been developed regarding basic…

  6. Introducing Future Engineers to Sustainable Ecology Problems: A Case Study

    ERIC Educational Resources Information Center

    Filipkowski, A.

    2011-01-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and…

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  8. Access and Success for African American Engineers and Computer Scientists: A Case Study of Two Predominantly White Public Research Universities

    ERIC Educational Resources Information Center

    Newman, Christopher Bufford

    2011-01-01

    Over the past decade, three rationales have emerged for emphasizing the reinforcement of the United States' science, technology, engineering, and mathematics (STEM) pipeline. The first rationale pertains to U.S. global competitiveness, the second revolves around the benefits of a diverse workforce, and the third argument points to social justice…

  9. 76 FR 72004 - Request for Comments on the Intent To Conduct an Evaluation of the Scientists and Engineers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION... Data System (SESTAT) AGENCY: National Science Foundation. ACTION: Notice of availability. SUMMARY: This notice announces the intent of the National Center for Science and Engineering Statistics (NCSES) at...

  10. Characteristics of Doctoral Scientists and Engineers in the United States: 2006. Detailed Statistical Tables. NSF 09-317

    ERIC Educational Resources Information Center

    Foley, Daniel J.

    2009-01-01

    This report presents data from the 2006 Survey of Doctorate Recipients (SDR). The SDR is a panel survey that collects longitudinal data, biennially, on demographic and general employment characteristics of individuals who have received a doctorate in a science, engineering, or health field from a U.S. academic institution. Sampled individuals are…

  11. Access and Success for African American Engineers and Computer Scientists: A Case Study of Two Predominantly White Public Research Universities

    ERIC Educational Resources Information Center

    Newman, Christopher Bufford

    2011-01-01

    Over the past decade, three rationales have emerged for emphasizing the reinforcement of the United States' science, technology, engineering, and mathematics (STEM) pipeline. The first rationale pertains to U.S. global competitiveness, the second revolves around the benefits of a diverse workforce, and the third argument points to social justice…

  12. Growth in Employment of Science and Engineering Doctorates Continues, Led by Computer Scientists. Science Resources Studies Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Doctorate holders who received their degrees in science or other fields between 1930 and 1972 and who held jobs in the sciences and engineering (S/E) were surveyed. Findings include the following: employment of doctorates in S/E activities continued to grow between 1979 and 1981 at the same rate since 1975, about 5 percent per year, reaching a…

  13. Diversity in Engineering Teaching--Views from Future Engineering Faculty. Research Brief

    ERIC Educational Resources Information Center

    Sattler, Brook; Yellin, Jessica; Huang, Yi-Min; Turns, Jennifer

    2007-01-01

    Even though diversity issues have not always been addressed in engineering education, addressing diversity has emerged as an important issue in the engineering education community as the student population in colleges and universities has become increasingly more diverse. Despite these changes in student populations, attrition from engineering…

  14. Charting the pipeline: Identifying the critical elements in the development of successful African American scientists, engineers, and mathematicians

    NASA Astrophysics Data System (ADS)

    Williams, Brian Anthony

    Many educational researchers are concerned with the apparent poor performance of different racial and ethnic groups in the fields of science, engineering, and mathematics in the United States. Despite improvements in the performance of African Americans, Hispanic Americans, and Native Americans in these areas over the past decade, these groups are still less likely to enroll in advanced math and science courses or score at or above the proficient level in mathematics. Furthermore, these groups continue to be underrepresented in the nation's technical and scientific workforce. The purpose of this study was to identify the critical elements related to the success of African Americans in science, engineering, and mathematics. Specifically, this study was designed to answer the following questions as they pertained to African American graduate students: What factors were perceived to have contributed to the students' initial interest in science, engineering, or mathematics? What factors were perceived to have contributed to the students' decisions to continue their studies in their specific areas of interest? What factors, associated with the K--12 schooling experience, were perceived to have contributed to the students' success in science, engineering, or mathematics? The data for the study were acquired from interviews with 32 African American students (16 males and 16 females) who were engaged in graduate work in science, engineering, or mathematics. Four major themes emerged from the analysis of the interview data. The first was that all students were involved in experiences that allowed a significant level of participation in science, engineering, and mathematics. Second, all of the students experienced some form of positive personal intervention by another person. Third, all students possessed perceptions of these fields that involved some sort of positive outcome. Finally, all of the of the students believed they possessed intrinsic qualities that qualified and prepared them for their involvement with science, engineering, and mathematics. These four themes exhibited themselves in different ways during the course of the students' lives. As a result, the discussion of the results of the study was divided among the three developmental periods: the interest-building phase, the knowledge-acquisition phase, and the careerbuilding phase. The study's findings provide valuable information to schools, educators, policy makers, and researchers on how to prepare effectively all children for a science and technology driven society, and for some, induction into tomorrow's scientific community.

  15. Biomimetics: forecasting the future of science, engineering, and medicine.

    PubMed

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  16. Biomimetics: forecasting the future of science, engineering, and medicine

    PubMed Central

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  17. Engineering Education and Practice in the United States: Foundations of Our Techno-Economic Future.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The National Research Council's Committee on the Education and Utilization of the Engineer conducted a study aimed at achieving a comprehensive understanding of engineering in the United States and an assessment of its capacity to meet present and future needs. This document reports on the findings of the committee's work over a 2-year period. The…

  18. A Strategic Approach for Supporting the Future of Civil Engineering Education in Europe

    ERIC Educational Resources Information Center

    Angelides, Demos C.; Loukogeorgaki, Eva

    2005-01-01

    A new strategic vision of the extensively debated European higher education is proposed with focus on civil engineering. Civil engineering education for the future is considered with relevance to potential world-wide trends and anticipated societal requirements and, therefore, required employee qualifications of the construction-related providers…

  19. A Strategic Approach for Supporting the Future of Civil Engineering Education in Europe

    ERIC Educational Resources Information Center

    Angelides, Demos C.; Loukogeorgaki, Eva

    2005-01-01

    A new strategic vision of the extensively debated European higher education is proposed with focus on civil engineering. Civil engineering education for the future is considered with relevance to potential world-wide trends and anticipated societal requirements and, therefore, required employee qualifications of the construction-related providers…

  20. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  1. USGS Scientist

    USGS Multimedia Gallery

    Janice Albers presents study results at the 6th International Symposium on Sturgeon in Wuhan, China in 2009. USGS scientists and their collaborators in the Comprehensive Sturgeon Research Project provided six presentations at the symposium on topics ranging from reproductive readiness, migration, sp...

  2. Ranking scientists

    NASA Astrophysics Data System (ADS)

    Dorogovtsev, S. N.; Mendes, J. F. F.

    2015-11-01

    Currently the ranking of scientists is based on the $h$-index, which is widely perceived as an imprecise and simplistic though still useful metric. We find that the $h$-index actually favours modestly performing researchers and propose a simple criterion for proper ranking.

  3. Playing Scientist

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2012-01-01

    Engaging students in the study of genetics is essential to building a deep understanding of heredity, a core idea in the life sciences (NRC 2012). By integrating into the curriculum the stories of famous scientists who studied genetics (e.g., Mendel, Franklin, Watson, and Crick), teachers remind their students that science is a human endeavor.…

  4. Playing Scientist

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2012-01-01

    Engaging students in the study of genetics is essential to building a deep understanding of heredity, a core idea in the life sciences (NRC 2012). By integrating into the curriculum the stories of famous scientists who studied genetics (e.g., Mendel, Franklin, Watson, and Crick), teachers remind their students that science is a human endeavor.…

  5. Citizen Scientists

    ERIC Educational Resources Information Center

    Bennett, Katherine

    2010-01-01

    The Harvard Forest Schoolyard Ecology Program provides teachers and students with the opportunity and materials to participate in regionally focused ecological studies under the guidance of a mentor scientist working on a similar study. The Harvard Forest is part of a national network of ecological research sites known as the Long Term Ecological…

  6. Citizen Scientists

    ERIC Educational Resources Information Center

    Bennett, Katherine

    2010-01-01

    The Harvard Forest Schoolyard Ecology Program provides teachers and students with the opportunity and materials to participate in regionally focused ecological studies under the guidance of a mentor scientist working on a similar study. The Harvard Forest is part of a national network of ecological research sites known as the Long Term Ecological…

  7. Genetically engineered viral vaccines--prospects for the future.

    PubMed

    Pettersson, R F

    1982-12-01

    Genetic engineering (recombinant DNA technology)--the revolution in molecular biology--has enabled us to isolate any genes from any source in a pure form, and to move them from one cell to another. It has become possible to program bacterial or yeast cells with foreign genes and force the new host to produce commercially valuable proteins (e.g. hormones, enzymes, diagnostic reagents). It is now also possible to produce viral and bacterial antigens in various types of cells. We hope that this will soon enable us to manufacture vaccines cheaply. The production of a foot-and-mouth-disease virus vaccine--the first promising example of a genetically engineered effective vaccine--has recently been reported. Expression of hepatitis B surface antigen, influenza virus haemagglutinin and polio-virus proteins from the cloned genes have also been reported, and many more viral genes have been cloned although not yet expressed in bacteria. Despite the extremely rapid development, there are a number of problems, both technical and immunological, which have to be extensively studied and eventually solved, before we can hope to obtain effective and safe genetically engineered viral vaccines for clinical use. PMID:6763495

  8. Investing in the Best and Brightest: Increased Fellowship Support for American Scientists and Engineers. Discussion Paper 2006-09

    ERIC Educational Resources Information Center

    Freeman, Richard B.

    2006-01-01

    There is widespread concern that the United States faces a problem in maintaining its position as the scientific and technological leader in the world and that loss of leadership threatens future economic well-being and national security. Business, science, and education groups have issued reports that highlight the value to the country of…

  9. Investing in the Best and Brightest: Increased Fellowship Support for American Scientists and Engineers. Discussion Paper 2006-09

    ERIC Educational Resources Information Center

    Freeman, Richard B.

    2006-01-01

    There is widespread concern that the United States faces a problem in maintaining its position as the scientific and technological leader in the world and that loss of leadership threatens future economic well-being and national security. Business, science, and education groups have issued reports that highlight the value to the country of…

  10. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically. PMID:22788100

  11. National science policy and scientific manpower: Funding effects on job mobility of scientists and engineers in the United States, 1958--1972

    SciTech Connect

    Lyman, K.L.

    1993-01-01

    Science policy in the United States between 1958 and 1972 was intended to influence the research and development (R D) labor force indirectly, through government funding. An event history analysis of professional R D jobs in five scientific disciplines shows that, while federal funding influences the job mobility of scientists and engineers, other social and economic factors are also significant in explaining mobility patterns. Federal funding significantly decreases the rates of job mobility in all disciplines during the period, stabilizing the employment structure. Indicators of reward-resource arguments-salary, age, and education-significantly affect job mobility. Consistent with human capital and job matching arguments, salary and age significantly reduce mobility. Education is significant only in life science, physical science, and engineering, where higher education leads to increased mobility. Indicators of limited opportunity arguments-socioeconomic background, sex, and ethnicity-show mixed empirical results. Labour markets also significantly affect mobility. In engineering and physical science, a neo-institutional model, which accounts for the degree of government oversight, fits the data best. Social science and life science are best fit by performance sectors, which highlight the importance of universities as employers for these disciplines. Mathematical science is best fit by a model of industrial sectors, consistent with differential expansion of the economy that disproportionately affected this discipline. Federal funding has acted to institutionalize R D in the economy and stabilize employment; it has not insulated workers from general socioeconomic factors such as human capital, discrimination and labour markets.

  12. Recruiting Future Engineers Through Effective Guest Speaking In Elementary School Classrooms

    SciTech Connect

    Kevin Young

    2007-11-01

    In this paper, the author describes how engineers can increase the number of future engineers by volunteering as guest speakers in the elementary school classroom. The paper is divided into three main subjects. First, the importance of engineers speaking directly with young students is discussed. Next, several best practice techniques for speaking with young students are described. Finally, information on getting started as a guest speaker is presented, and a list of resources available to guest speakers is provided. The guest engineer speaking to an elementary school audience (ages 6-11) performs a critical role in encouraging young students to pursue a career in engineering. Often, he or she is the first engineer these students meet in person, providing a crucial first impression of the engineering career field and a positive visual image of what an engineer really looks like. A dynamic speaker presenting a well-delivered talk creates a lasting, positive impression on students, influencing their future decisions to pursue careers in engineering. By reaching these students early in life, the guest speaker will help dispel the many prevailing stereotypes about engineers which discourage so many students, especially young women, from considering this career. The guest speaker can ensure young students gain a positive first impression of engineers and the engineering career field by following some best practice techniques in preparing for and delivering their presentation. The author, an electrical engineer, developed these best practice techniques over the past 10 years while presenting over 350 talks on engineering subjects to elementary school students as a volunteer speaker with the U.S. Department of Energy, Idaho National Laboratory’s Speakers Bureau. Every engineer can make a meaningful contribution toward reversing the predicted shortfall of future engineers by volunteering to speak with young students at the elementary school level. Elementary school teachers typically have a limited education in engineering and are eager to have career engineers speak with their students. As an engineer, there are many opportunities to get involved with guest speaking at the elementary school level. If you have a young child, start by meeting with her or his teacher and volunteering to give a presentation on engineering to the class. Many organizations have formal speakers bureaus. If your organization does not have one, consider starting one. There are several excellent resources on the Internet, such as the IEEE Center for Pre-University Engineering Education’s TryEngineering.org Web site. This site is designed for young students, teachers and parents, giving information on engineering careers and engineering activities the guest speaker can use to prepare a dynamic and informative presentation. Young students who have experienced a positive interaction with an engineer are more likely to pursue a career in engineering. Effective guest speaking by engineers in elementary school classrooms today will increase the likelihood these young students will become the desperately needed engineers of our future.

  13. Engineering Lessons Learned and Technical Standards Integration: Capturing Key Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mellen, Daniele P.; Garcia, Danny; Vaughan, William W.

    2003-01-01

    Capturing engineering lessons learned derived from past experiences and new technologies, then integrating them with technical standards, provides a viable process for enhancing engineering capabilities. The development of future space missions will require ready access, not only to the latest technical standards, but also to lessons learned derived from past experiences and new technologies. The integration of this information such that it is readily accessible by engineering and programmatic personnel is a key aspect of enabling technology. This paper addresses the development of a new and innovative Lessons Learned/Best Practices/Applications Notes--Standards Integration System, including experiences with its initial implementation as a pilot effort within the NASA Technical Standards Program. Included are metrics on the Program, feedbacks from users, future plans, and key issues that are being addressed to expand the System's utility. The objective is the enhancement of engineering capabilities on all aspects of systems development applicable to the success of future space missions.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  15. Report on 1986 national survey of compensation paid scientists and engineers engaged in research and development activities

    SciTech Connect

    Not Available

    1987-01-01

    In November of 1966, the United States Department of Energy awarded a contract to the Columbus Division of Battelle to design a survey of compensation paid to scientific and engineering personnel engaged in research and development in the United States. This survey utilized the maturity or ''age-wage'' approach, under which salary data would be related to years since receipt or degree of chronological age. This document reports the results of the eighteenth annual survey, with a salary effective data of February 1, 1986.

  16. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E. (Editor); Sato, Yuko (Editor); Barclay, Rebecca O. (Editor); Kennedy, John M. (Editor)

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: (1) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; (2) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; (3) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  17. Present and Future in Quality Assurance of Engineering Education in Japan

    NASA Astrophysics Data System (ADS)

    Aoki, Kyosuke; Nozawa, Tsunenori

    The quality of engineering education in our country should be assured by the self-assessment of the institution that conducts education. Recent evaluation and/or accreditation are intended to assist and promote such achievement. The certified evaluation and accreditation for colleges of technology and the audit by the Japan Accreditation Board for Engineering Education (JABEE) have been carried out on the engineering education. In this article we will discuss the ways of accreditation of both systems and try to consider future for the quality assurance of the engineering education in Japan.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  19. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.

    2008-01-01

    This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.

  20. Tissue engineering of urinary bladder – current state of art and future perspectives

    PubMed Central

    Kowalczyk, Tomasz; Drewa, Tomasz

    2013-01-01

    Introduction Tissue engineering and biomaterials science currently offer the technology needed to replace the urinary tract wall. This review addresses current achievements and barriers for the regeneration of the urinary blad- der based on tissue engineering methods. Materials and methods Medline was search for urinary bladder tissue engineering regenerative medicine and stem cells. Results Numerous studies to develop a substitute for the native urinary bladder wall us- ing the tissue engineering approach are ongoing. Stem cells combined with biomaterials open new treatment methods, including even de novo urinary bladder construction. However, there are still many issues before advances in tissue engineering can be introduced for clinical application. Conclusions Before tissue engineering techniques could be recognize as effective and safe for patients, more research stud- ies performed on large animal models and with long follow–up are needed to carry on in the future. PMID:24579029

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  2. Sustainable Scientists

    SciTech Connect

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.

  3. Sustainable water management under future uncertainty with eco-engineering decision scaling

    USGS Publications Warehouse

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  4. Sustainable water management under future uncertainty with eco-engineering decision scaling

    NASA Astrophysics Data System (ADS)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  5. Fewer scientists immigrating

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A recent decline in the number of scientists and engineers immigrating to the United States could indicate that a surge throughout the 1980s and early 1990s may have been temporary.The number of people with science and engineering degrees admitted to the United States on permanent visas with work certificates dropped 26% between 1993 and 1994—from 23,534 to 17,403—according to a new National Science Foundation (NSF) data brief that analyzes information from the Immigration and Naturalization Service. A lack of demand for employment-based admissions caused the decline, according to the INS.

  6. The Academy for Future Science Faculty: randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists

    PubMed Central

    2014-01-01

    Background Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such. PMID:25084625

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  8. New opportunities for future small civil turbine engines - Overviewing the GATE studies

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    This paper presents an overview of four independent studies that explore the opportunities for future General Aviation Turbine Engines (GATE) in the 150-1000 SHP class. Detroit Diesel Allison, Garrett/AiResearch, Teledyne CAE, and Williams Research participated along with several airframers. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. All four companies predicted sizable performance gains (e.g., 20% SFC decrease), and three predicted large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class. Key technology areas were recommended for NASA support in order to realize these improvements.

  9. Development of Alternative Continuing Educational Systems for Preventing the Technological Obsolescence of Air Force Scientists and Engineers. Volume 2. Survey of Continuing Educational Programs Within Selected Industries and Universities.

    ERIC Educational Resources Information Center

    Lisez, Louis; Slebodnick, Edward B.

    Survey data obtained from industries and universities are summarized and analyzed from the standpoint of the Air Force's requirement for updating its military scientists and engineers.It is concluded that the wide range of innovative methods of continuing education (CE), in use or in development within selected industries and universities, can be…

  10. A STUDY OF THE RE-EMPLOYMENT AND UNEMPLOYMENT EXPERIENCES OF SCIENTISTS AND ENGINEERS LAID OFF FROM 62 AEROSPACE AND ELECTRONICS FIRMS IN THE SAN FRANCISCO BAY AREA DURING 1963-65. FINAL REPORT.

    ERIC Educational Resources Information Center

    LOOMBA, R.P.

    THE PURPOSE OF THIS STUDY WAS (1) TO ANALYZE SELECTED ASPECTS OF UNEMPLOYMENT AND REEMPLOYMENT EXPERIENCES OF 1,184 ENGINEERS AND SCIENTISTS WHO WERE PERMANENTLY LAID OFF BY 62 DEFENSE-ORIENTED AEROSPACE AND ELECTRONICS COMPANIES DURING AN 18-MONTH PERIOD ENDING MARCH 31, 1965, AND (2) TO DESCRIBE THE MAGNITUDE OF THE SAN FRANCISCO BAY AREA'S…

  11. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    NASA Astrophysics Data System (ADS)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  12. CIVIL ENGINEERS AT THE CROSSROADS - HOW CONSULTING ENGINEERS CAN DRAW ON THE PAST TO FURTHER OUR EXPERTISE FOR THE FUTURE

    NASA Astrophysics Data System (ADS)

    Hirotani, Akihiko

    This paper first discusses the role of civil engineers in the development of Japan's infrastructure during the period of post-war reconstruction and subsequent high economic growth. The paper highlights the importance of practical skills in a world where the role of civil engineers is expected to become increasingly diverse, and emphasizes the importance of seizing opportunities to further develop international competitiveness. In the post-war era, civil engineers raised their expertise and acquired advanced technologies from overseas and made further improvements through the course of applying those technologies. By adopting many state-of-the-art technologies civil engineers helped develop the infrastructure that now serves as Japan's social and economic backbone. Current trends such as the shrinking and aging population and globalization are destined to have large-scale impacts on Japan's social systems. In the context of such dynamics, this paper discusses civil engineers' perception of our current position in history, and how we will raise the standards of our profession for the future.

  13. On the Training of Radio and Communications Engineers in the Decades of the Immediate Future.

    ERIC Educational Resources Information Center

    Klyatskin, I.G.

    A list of 11 statements relating to the change in training programs for radio and communications engineers is presented in this article, in preparation for future developments in the field. Semiconductors, decimeter and centimeter radio frequency ranges, and a statistical approach to communications systems are analyzed as the three important…

  14. SET for the Future: Working towards Inclusive Science, Engineering and Technology Curricula in Higher Education.

    ERIC Educational Resources Information Center

    Cronin, Catherine; Foster, Maureen; Lister, Elizabeth

    1999-01-01

    "SET (Science, Engineering, and Technology) for the Future," a research/action project at Scotland's Heriot-Watt University, surveyed SET students' education experience, compared information with previous research, and used results to modify two SET modules to increase the participation of women students and improve their experiences. Discusses…

  15. Future Critical Issues and Problems Facing Technology and Engineering Education in the Commonwealth of Virginia

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Moye, Johnny J.

    2012-01-01

    The purpose of this research was to determine the future critical issues and problems facing the K-12 technology and engineering education profession in the Commonwealth of Virginia. This study was based on the Wicklein nationwide studies (1993a, 2005). Even though this study did not exactly replicate the Wicklein studies--since it was limited to…

  16. An engineering dilemma: sustainability in the eyes of future technology professionals.

    PubMed

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study. PMID:23197313

  17. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    SciTech Connect

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  20. [Communique on the present status and future of anthropology taken from the meeting of department heads and principle scientists from the Society of Anthropology (GfA)].

    PubMed

    Rühli, F; Schiefenhivel, W

    2009-09-01

    The primary goal discussed is to strengthen the scientifically important research discipline of anthropology in the coming years by reinforcing its position in the German university system as a trans-disciplinary field and to edify its image within the public eye. Like many other branches of science, anthropology has witnessed a number of profound changes in the university sphere in recent years. In addition to increased reliance on monetary funding, the fundamental structure of research and teaching in the university sector, the product of centuries-old development, is experiencing a transition phase and progressively operating ever more under the influence of"excellence monitoring" as well as the "Bologna" process. Financial cuts have led to the termination of once fix job positions at all levels, whereby the loss of mid-level positions requisite for a healthy and functional junior academic environment, such as post-doc jobs, is particularly unsettling. The still tangible burden of recent historical events and small number of prominent representatives in the field are problematic, however, the primary concern today involves the seemingly imminent closure of established anthropological centres and discontinuation of department chair positions. Fortunately, this ominous trend does not apply to all leading university departments, many of which are engaged in innovative and novel concepts, and has resulted in their general acceptance and the fortification of anthropology programs. Furthermore, it is becoming increasingly difficult to secure adequate funding for projects from money givers such as the DFG, mainly because of the relatively small size of the field. Specialization within the field at the university level obviously poses a serious problem for such a small holistic discipline (with regards to problem statements and methodology). The definition of anthropology as an entity is complicated by external influences such as newly developing research interests that are arising parallel to the disappearance of specific scientific areas. Yet some of these influences are proving advantageous and offer the potential for future avenues of work. The field's high visibility has led to substantial student registration potentially yielding a large base of young scientists. Within the framework of Bologna, both interdisciplinary cooperation and the methodological diversity offered by the field will allow for an attractive curriculum. The recent introduction of tuition fees has also resulted in new money for anthropology programs. PMID:20405704

  1. Training the next generation of Space and Earth Science Engineers and Scientists through student design and development of an Earth Observation Nanosatellite, AlbertaSat-1

    NASA Astrophysics Data System (ADS)

    Lange, B. A.; Bottoms, J.

    2011-12-01

    This presentation addresses the design and developmental process of a Nanosatellite by an interdisciplinary team of undergraduate and graduate students at the University of Alberta. The Satellite, AlbertaSat-1, is the University of Alberta's entry in the Canadian Satellite Design Challenge (CDSC); an initiative to entice Canadian students to contribute to space and earth observation technologies and research. The province of Alberta, while home to a few companies, is very limited in its space industry capacity. The University of Alberta reflects this fact, where one of the major unifying foci of the University is oil, the provinces greatest resource. For students at the U of A, this lack of focus on astronautical, aerospace and space/earth observational research limits their education in these industries/disciplines. A fully student operated project such as AlbertaSat-1 provides this integral experience to almost every discipline. The AlbertaSat-1 team is comprised of students from engineering, physics, chemistry, earth and atmospheric science, business, and computer science. While diverse in discipline, the team is also diverse in experience, spanning all levels from 1st year undergraduate to experienced PhD. Many skill sets are required and the diverse group sees that this is covered and all opinions voiced. Through immersion in the project, students learn quickly and efficiently. The necessity for a flawless product ensures that only the highest quality of work is presented. Students participating must research and understand their own subsystem as well as all others. This overall system view provides the best educational tool, as students are able to see the real impacts of their work on other subsystems. As the project is completely student organized, the participants gain not only technical engineering, space and earth observational education, but experience in operations and financial management. The direct exposure to all aspects of the space and earth science industry through a student satellite development program is one of the best methods of developing the next generation of space and earth science engineers and scientists.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  3. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Jones, Carl P.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) delivers space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides U.S. capability for both crew and cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010, as outlined in the 2006 NASA Strategic Plan. I In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle/Orion Crew Exploration Vehicle and the Ares V Cargo Launch Vehicle/Altair Lunar Lander. The goals for this new system include increased safety and reliability, coupled with lower operations costs that promote sustainable space exploration over a multi-decade schedule. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity against predictions made by modern modeling and simulation analysis. It also will give information about the work in progress for the Ares I-X developmental test flight planned in 2009 to provide key data before the Ares I Critical Design Review. Activities such as these will help prove and refine mission concepts of operation, while supporting the spectrum of design and development tasks being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments. Ultimately, the work performed will lead to the fielding of a robust space transportation solution that will carry international explorers and essential payloads for sustainable scientific discovery beyond planet Earth.

  4. Future higher performance O2/H2 engine combustion cycle alternatives. [design for rocket boosters and spacecraft

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.

    1976-01-01

    The status of current and projected advanced O2/H2 rocket engine configurations for high-efficiency engine designs is examined. Particular attention is given to engine cycle configurations, operating pressures, and performance characteristics which can be foreseen for the engine configurations past the 1980 era for single-stage-to-orbit boosters and advanced space engines. The discussion covers potential O2/H2 performance gains achievable, engine cycle improvements, and projected O2/H2 engine component efficiency, weight, and other improvements foreseen through future development.

  5. Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Gawrylowicz, H. T.

    1986-01-01

    NASA is conducting a program which will establish a technology base for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure oxygen-hydrogen rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components.

  6. Helmet-mounted display human factor engineering design issues: past, present, and future

    NASA Astrophysics Data System (ADS)

    Licina, Joseph R.; Rash, Clarence E.; Mora, John C.; Ledford, Melissa H.

    1999-07-01

    An often overlooked area of helmet-mounted display (HMD) design is that of good human factors engineering. Systems which pass bench testing with flying colors can often find less enthusiastic acceptance during fielding when good human factors engineering principles are not adhered to throughout the design process. This paper addresses lessons learned on the fielding of the AH-64 Apache Integrated Helmet and Display Sight System (IHADSS) and the Aviator's Night Vision Imaging System (ANVIS). These lessons are used to develop guidance for future HMDs in such diverse areas as: user adjustments, anthropometry, fit and comfort, manpower and personnel requirements, and equipment compatibility.

  7. Long-term land use future scenarios for the Idaho National Engineering Laboratory

    SciTech Connect

    1995-08-01

    In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use.

  8. SED Alumni---breeding ground for scientists

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2006-04-01

    In 1943 the US Army established the Special Engineering Detachment (SED), in which mostly drafted young soldiers possessing some scientific credentials (though usually quite minimal) were reassigned from other duties to the Manhattan Project to assist in various research and development aspects of nuclear weapons. The Los Alamos contingent, never more than a few hundred GIs, worked with more senior scientists and engineers, often assuming positions of real responsibility. An unintended consequence of this circumstance was the fact that being in the SEDs turned out to be a fortuitous breeding ground for future physicists, chemists, and engineers. SEDs benefited from their close contacts with established scientists, working with them side by side, attended lectures by luminaries, and gained invaluable experience that would help them establish academic and industrial careers later in life. I will discuss some of these individuals (I list only those of whom I am personally aware). These include Henry ``Heinz'' Barschall*, Richard Bellman*-RAND Corporation, Murray Peshkin-ANL, Peter Lax-Courant Institute, NYU, William Spindel*-NRC,NAS, Bernard Waldman- Notre Dame, Richard Davisson*-U of Washington, Arnold Kramish- RAND, UNESCO, Josef Hofmann- Acoustic Research Corp, Val Fitch- Princeton U. *deceased

  9. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  10. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  11. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.

    PubMed

    Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee

    2015-05-10

    Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. PMID:25553825

  12. United States National Sewage Sludge Repository at Arizona State University – A New Resource and Research Tool for Environmental Scientists, Engineers, and Epidemiologists

    PubMed Central

    Venkatesan, Arjun K.; Done, Hansa Y.; Halden, Rolf U.

    2014-01-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic-carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a ‘sink’ for recalcitrant, hydrophobic and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the U.S. Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize new future opportunities and invite collaborative use the NSSR by the research community. The H2O at ASU represents a resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants; (ii) provide spatial and temporal trends of contaminants; (iii) inform and evaluate the effectiveness of environmental policy-making and regulations; and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society. PMID:24824503

  13. What Scientists Say: Scientists' Views of Models

    ERIC Educational Resources Information Center

    Schwartz, Renee S.; Lederman, Norman G.

    2005-01-01

    This paper focuses on scientists' views of scientific models and their use in authentic practice. Participants were 24 scientists, averaging 25 years research experience, representing four discipline areas. Views of scientific models were assessed through an open-ended questionnaire ("VNOS-Sci") and interviews. The scientists described models…

  14. Finding Meaningful Roles for Scientists in science Education Reform

    NASA Astrophysics Data System (ADS)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  17. Intestinal Tissue Engineering: Current Concepts and Future Vision of Regenerative Medicine in the Gut

    PubMed Central

    Bitar, Khalil N.; Raghavan, Shreya

    2011-01-01

    Background and Purpose Functional tissue engineering of the gastrointestinal (GI) tract is a complex process aiming to aid the regeneration of structural layers of smooth muscle, intrinsic enteric neuronal plexuses, specialized mucosa and epithelial cells as well as interstitial cells. The final tissue engineered construct is intended to mimic the native GI tract anatomically and physiologically. Physiological functionality of tissue engineered constructs is of utmost importance while considering clinical translation. The construct comprises of cellular components as well as biomaterial scaffolding components. Together, these determine the immune-response a tissue engineered construct would elicit from a host upon implantation. Over the last decade, significant advances have been made to mitigate adverse host reactions. These include a quest for identifying autologous cell sources like embryonic and adult stem cells, bone marrow-derived cells, neural crest-derived cells and muscle-derived stem cells. Scaffolding biomaterials have been fabricated with increasing biocompatibility and biodegradability. Manufacturing processes have advanced to allow for precise spatial architecture of scaffolds in order to mimic in vivo milieu closely and achieve neovascularization. This review will focus on the current concepts and the future vision of functional tissue engineering of the diverse neuromuscular structures of the GI tract from the esophagus to the internal anal sphincter. PMID:22188325

  18. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    PubMed

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. PMID:24319010

  19. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  20. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni administered in 2013 provides information on the program's impact on trainees' career choices and leadership roles as they pursue their employment in planetary science and related fields. Results will be presented during the session, along with highlights of topics and missions covered since the program's inception.

  1. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being †

    PubMed Central

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795

  2. 2014 Future Earth Young Scientists Conference on integrated science and knowledge co-production for ecosystems and human well-being.

    PubMed

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-11-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25-31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a "good" anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with "sustainable development goals". PMID:25390795

  3. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    NASA Astrophysics Data System (ADS)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.

  4. The software engineering journey: From a naieve past into a responsible future

    SciTech Connect

    Chapa, S.K.

    1997-08-01

    All engineering fields experience growth, from early trial & error approaches, to disciplined approaches based on fundamental understanding. The field of software engineering is making the long and arduous journey, accomplished by evolution of thinking in many dimensions. This paper takes the reader along a trio of simultaneous evolutionary paths. First, the reader experiences evolution from a zero-risk mindset to a managed-risk mindset. Along this path, the reader observes three generations of security risk management and their implications for software system assurance. Next is a growth path from separate surety disciplines to an integrated systems surety approach. On the way, the reader visits safety, security, and dependability disciplines and peers into a future vision which coalesces them. The third and final evolutionary path explored here transitions the software engineering field from best practices to fundamental understanding. Along this road, the reader observes a framework for developing a {open_quotes}science behind the engineering{close_quotes}, and methodologies for software surety analysis.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  6. Computational Intelligence and Its Impact on Future High-Performance Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1996-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Intelligence held at the Virginia Consortium of Engineering and Science Universities, Hampton, Virginia, June 27-28, 1995. The presentations addressed activities in the areas of fuzzy logic, neural networks, and evolutionary computations. Workshop attendees represented NASA, the National Science Foundation, the Department of Energy, National Institute of Standards and Technology (NIST), the Jet Propulsion Laboratory, industry, and academia. The workshop objectives were to assess the state of technology in the Computational intelligence area and to provide guidelines for future research.

  7. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris; Pinkus, Oscar

    2000-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  8. Professional Ethics for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  10. Women Scientists in Training

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Women scientists in training at Marshall Space Flight Center, (top to bottom) Carolyn Griner, Ann Whitaker, and Dr. Mary Johnston, are shown simulating weightlessness while undergoing training in the Neutral Buoyancy Simulator. These women were part of a special program dedicated to gaining a better understanding of problems involved in performing experiments in space. The three were engaged in designing and developing experiments for space, such as materials processing for Spacelabs. Dr. Johnston specialized in metallurgical Engineering, Dr. Whitaker in lubrication and surface physics, and Dr. Griner in material science. Dr. Griner went on to become Acting Center Director at Marshall Space Flight Center from January to September 1998. She was the first woman to serve

  11. CSBF Engineering Overview

    NASA Astrophysics Data System (ADS)

    Orr, Dwayne

    CSBF Engineering Overview Dwayne Orr (Presenting Author) Columbia Scientific Balloon Facility, Palestine, Texas (USA) Dwayne.Orr@csbf.nasa.gov The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist’s access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future.

  12. ROLES OF PROFESSIONAL SCIENTISTS AND RESEARCH ORGANIZATIONS IN THE EDUCATION OF STUDENTS WITH DISABILITIES PREPARING TO ENTER THE SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS WORKFORCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists at the Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL have developed considerable experience in organizing and carrying out science education outreach activities for minority and disabled students. The author was invited to participate in a symposium on the ...

  13. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    ERIC Educational Resources Information Center

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  14. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    ERIC Educational Resources Information Center

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  15. Problems of forecasting the future of advanced engines and engine characteristics of the hydrogen injection with LH{sub 2} tank and pump

    SciTech Connect

    Furuhama, S.

    1997-01-01

    When the history of the vehicle engine during the last half century is reviewed, a number of research and development efforts have resulted in various useful improvements. From the author`s personal point of view, the electronic-controlled fuel injection device is the most distinguished accomplishment for the vehicle engine. In the first part of this article, scientific explanation will be made to explain why some of the initially promising engines were not able to replace conventional reciprocating engine. Various discussions and forecasts have been published with respect to future vehicle engines with alternative fuels, such as an electric-powered engine and a hydrogen engine. It seems extremely important that each of the technologies be appropriately evaluated from the scientific viewpoint. It should be emphasized that the primary conditions required for the automobile engine are light weight and high power output. It will be discussed in the second part of the article that the only alternative fuel engine that satisfies these conditions with the present technology level is a hydrogen injection engine with a LH{sub 2} tank and a LH{sub 2} pump. The summary of the author`s research work on this type of hydrogen engine will also be presented.

  16. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, Donald; Mathias, Donovan; Reuther, James; Garn, Michelle

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  17. Introduction to current and future protein therapeutics: A protein engineering perspective

    SciTech Connect

    Carter, Paul J.

    2011-05-15

    Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies.

  18. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.

    PubMed

    Fischer, Simon; Handrick, René; Otte, Kerstin

    2015-12-01

    Chinese hamster ovary (CHO) cells represent the most frequently applied host cell system for industrial manufacturing of recombinant protein therapeutics. CHO cells are capable of producing high quality biologics exhibiting human-like post-translational modifications in gram quantities. However, production processes for biopharmaceuticals using mammalian cells still suffer from cellular limitations such as limited growth, low productivity and stress resistance as well as higher expenses compared to bacterial or yeast based expression systems. Besides bioprocess, media and vector optimizations, advances in host cell engineering technologies comprising introduction, knock-out or post-transcriptional silencing of engineering genes have paved the way for remarkable achievements in CHO cell line development. Furthermore, thorough analysis of cellular pathways and mechanisms important for bioprocessing steadily unravels novel target molecules which might be addressed by functional genomic tools in order to establish superior production cell factories. This review provides a comprehensive summary of the most fundamental achievements in CHO cell engineering over the past three decades. Finally, the authors discuss the potential of novel and innovative methodologies that might contribute to further enhancement of existing CHO based production platforms for biopharmaceutical manufacturing in the future. PMID:26523782

  19. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy.

    PubMed

    Cunningham, Colin; Russell, Adrian

    2012-08-28

    Since the dawn of civilization, the human race has pushed technology to the limit to study the heavens in ever-increasing detail. As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements. To do this, they have pushed the art and science of precision engineering to extremes. Some of the critical steps are described in the evolution of precision engineering from the first telescopes to the modern generation telescopes and ultra-sensitive instruments that need a combination of precision manufacturing, metrology and accurate positioning systems. In the future, precision-engineered technologies such as those emerging from the photonics industries may enable future progress in enhancing the capabilities of instruments, while potentially reducing the size and cost. In the modern era, there has been a revolution in astronomy leading to ever-increasing light-gathering capability. Today, the European Southern Observatory (ESO) is at the forefront of this revolution, building observatories on the ground that are set to transform our view of the universe. At an elevation of 5000 m in the Atacama Desert of northern Chile, the Atacama Large Millimetre/submillimetre Array (ALMA) is nearing completion. The ALMA is the most powerful radio observatory ever and is being built by a global partnership from Europe, North America and East Asia. In the optical/infrared part of the spectrum, the latest project for ESO is even more ambitious: the European Extremely Large Telescope, a giant 40 m class telescope that will also be located in Chile and which will give the most detailed view of the universe so far. PMID:22802494

  20. USGS scientists Measure Floodwaters at Morganza Spillway

    USGS Multimedia Gallery

    USGS scientist Garron Ross is interviewed by CCTV reporters about USGS streamflow information. USGS streamflow information is used by the U.S. Army Corps of Engineers to help them make informed flood management decisions....

  1. LOX-Hydrocarbon Rocket Engines and Thrust Chamber Technologies for Future Launch Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Haeseler, Dietrich; Mäding, Chris

    2002-01-01

    Recent investigations into the use of hydrocarbon fuels for launcher propulsion and in-orbit propulsion show the potential to satisfy the market's performance and cost requirements. The main expected advantages compared to current cryogenic and storable propellants are reduced handling effort and reduced safety precautions. Large liquid boosters or first stages for expendable and reusable vehicles are seen today as major application areas. Engine and stage concepts have been compared assuming various possible propellant combinations with hydrocarbon fuels. The expected characteristics like performance, dry mass, and development status are compared. Both expendable as well as reusable vehicle stages were considered. Investigations aiming at identifying the optimum hydrocarbon propellant in view of thrust chamber performance and engine system have been performed. System studies were performed to conclude on propellant selection, the propulsion system configuration, and the most economic engine cycle for the considered applications. The chamber cooling was assessed for envisaged chamber operational conditions in view of cooling limitations by propellant dissociation and coking. Since 1993 injector and combustion chamber technologies for the applications of different hydrocarbon propellant combinations are investigated by Astrium Space Infrastructure. The operation with hydrocarbon propellants was already demonstrated with an existing Aestus engine in cooperation with Boeing Propulsion and Power. Test have been performed with a subscale combustion chamber with the selected propellants LOX-methane and LOX-kerosene to confirm operation feasibility, cooling, and performance in a cooperation of Astrium with Chemieautomatics Design Bureau in Russia. Several injection concepts have been studied to allow a comparison and down-selection for future application. A continuation of this program is currently under preparation.

  2. Scientists and Science Education: Working at the Interface

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for this discussion.

  3. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  4. Cranial Neural Crest Cell Contribution to Craniofacial Formation, Pathology, and Future Directions in Tissue Engineering

    PubMed Central

    Snider, Taylor Nicholas; Mishina, Yuji

    2015-01-01

    This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons. PMID:25227212

  5. Design of an Advanced Expander Test Bed. [for future space engines

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is the key element for development of technology for future space engines. The AETB will be used to validate the high pressure expander cycle concept, investigate system interactions and conduct investigations of advanced mission focused components and new health monitoring techniques. The AETB will use oxygen/hydrogen propellants and a split expander cycle with nominal operation at a combustion chamber pressure of 1200 psia, a mixture ratio of 6.0, and an equivalent vacuum thrust of 20,000 lbf. It will function over a wide range of conditions including throttling to 5 percent thrust, operation at a mixture ratio of 12.0, and operation in tank head idle and pumped idle modes.

  6. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  7. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  8. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.

    2003-08-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  9. Scientists in the Classroom Activities at LLNL

    NASA Astrophysics Data System (ADS)

    Correll, Donald; Albala, Joanna; Farnsworth, Richard; Meyer, William

    2013-10-01

    LLNL fusion and plasma education activities are broadening into the ``Scientists in the Classroom'' collaboration between LLNL's Science Education Program (http://education.llnl.gov) and California's San Joaquin County Office of Education (SJCOE). Initial activities involved Grades 6-12 teachers attending the SCJOE 2013 summer workshop addressing the physical sciences content within the Next Generation Science Standards (NGSS) as described at http://www.nextgenscience.org/. The NGSS Science and Engineering Practices in Physics workshop (June 22-26, 2013) that took place at the University of the Pacific included participation by the first author using video conferencing facilities recently added to the Edward Teller Education Center adjacent to LLNL. ETEC (http://etec.llnl.gov/) is a partnership between LLNL and the UC Davis School of Education to provide professional development for STEM teachers. Current and future activities using fusion science and plasma physics to enhance science education associated with ``Scientists in the Classroom'' and NGSS will be presented. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-639990.

  10. Corneal stem cells and tissue engineering: Current advances and future perspectives

    PubMed Central

    de Araujo, Aline Lütz; Gomes, José Álvaro Pereira

    2015-01-01

    Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed. PMID:26131311

  11. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP. turbomachinery; and low-boiloff propellant management; and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be $hown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  12. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    SciTech Connect

    Ballard, Richard O.

    2008-01-21

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  13. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Astrophysics Data System (ADS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  14. Scientists: Engage the Public!

    PubMed

    Shugart, Erika C; Racaniello, Vincent R

    2015-01-01

    Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or "Sagan effect" associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist's career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  16. New opportunities for future small civil turbine engines: Overviewing the GATE studies

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    An overview of four independent studies forecasts the potential impact of advanced technology turbine engines in the post 1988 market, identifies important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude are predicted to challenge the reciprocating engine in the 300-500 SHP class.

  17. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    PubMed

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions. PMID:25890747

  18. Finding a New Continent versus Mapping All the Rivers: Recognition, Ownership, and the Scientific Epistemological Development of Practicing Scientists and Engineers

    ERIC Educational Resources Information Center

    Verdan, Andrea Marie

    2012-01-01

    Maintaining our nation's standing as a leader of innovative and premier science and engineering research requires that those on the trajectory of these careers receive both rigorous and exceptional training. In addition to educating students in the content knowledge of these disciplines, it is also necessary to train them in the professional…

  19. Development of Alternative Continuing Educational Systems for Preventing the Technological Obsolescence of Air Force Scientists and Engineers. Volume 1. Basic Study.

    ERIC Educational Resources Information Center

    Slebodnick, Edward B.; And Others

    Volume 1 of the study reports a work effort to define and give guidelines for the acquisition of cost-effective alternative continuing education (CE) systems to prevent the technological obsolescence of Air Force military scientific and engineering officer personnel. A detailed background survey of the problem was conducted using questionnaires,…

  20. Finding a New Continent versus Mapping All the Rivers: Recognition, Ownership, and the Scientific Epistemological Development of Practicing Scientists and Engineers

    ERIC Educational Resources Information Center

    Verdan, Andrea Marie

    2012-01-01

    Maintaining our nation's standing as a leader of innovative and premier science and engineering research requires that those on the trajectory of these careers receive both rigorous and exceptional training. In addition to educating students in the content knowledge of these disciplines, it is also necessary to train them in the professional…

  1. Scientists: Engage the Public!

    PubMed Central

    Shugart, Erika C.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or “Sagan effect” associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist’s career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633

  2. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Astrophysics Data System (ADS)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  3. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.; Tomsia, Antoni P.

    2011-01-01

    The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models. PMID:21912447

  4. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    PubMed Central

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells. PMID:26246809

  5. In Genes We Trust: Germline Engineering, Eugenics, and the Future of the Human Genome.

    PubMed

    Powell, Russell

    2015-12-01

    Liberal proponents of genetic engineering maintain that developing human germline modification technologies is morally desirable because it will result in a net improvement in human health and well-being. Skeptics of germline modification, in contrast, fear evolutionary harms that could flow from intervening in the human germline, and worry that such programs, even if well intentioned, could lead to a recapitulation of the scientifically and morally discredited projects of the old eugenics. Some bioconservatives have appealed as well to the value of retaining our "given" human biological nature as a reason for restraining the development and use of human genetic modification technologies even where they would tend to increase well-being. In this article, I argue that germline intervention will be necessary merely to sustain the levels of genetic health that we presently enjoy for future generations-a goal that should appeal to bioliberals and bioconservatives alike. This is due to the population-genetic consequences of relaxed selection pressures in human populations caused by the increasing efficacy and availability of conventional medicine. This heterodox conclusion, which I present as a problem of intergenerational justice, has been overlooked in medicine and bioethics due to certain misconceptions about human evolution, which I attempt to rectify, as well as the sordid history of Darwinian approaches to medicine and social policy, which I distinguish from the present argument. PMID:26475170

  6. The Tissue-Engineered Vascular Graft—Past, Present, and Future

    PubMed Central

    Pashneh-Tala, Samand; MacNeil, Sheila

    2016-01-01

    Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented. PMID:26447530

  7. Reliability issues and future challenges in geotechnical engineering for offshore structures

    SciTech Connect

    Lacasse, S.; Nadim, F.

    1994-12-31

    The paper describes the role of reliability analysis in the geotechnical design of offshore structures, and attempts to put in perspective the interrelationship and dependence of the geotechnical aspects to related fields of offshore engineering. Predictions of foundation behaviour and soil-structure interaction cannot be made with certainty due to the spatial variation of soil properties, limited site exploration, limited calculation models, uncertainties in soil parameters and uncertainties in loads. It is increasingly important to adopt rational and {open_quotes}documentable{close_quotes} design approaches that inform about and account for the uncertainties in the analysis parameters. Reliability analysis enables one to map and evaluate the uncertainties. With the reliability tools available today, it is possible to establish, without too much difficulty, a probabilistic model for an existing deterministic solution. Probabilistic analyses are a useful addition to, and not a replacement of, deterministic analyses. That one finds it difficult to quantify the uncertainties is not a reason to omit defining them or establishing their significance on the quantities predicted. Future challenges and expected trends within offshore geotechnics are also highlighted.

  8. Present Challenges, Critical Needs, and Future Technological Directions for NASA's GN and C Engineering Discipline

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.

  9. The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; McGowan, Anna-Maria Rivas

    2012-01-01

    Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the

  10. [The significance of the external ear for spatial hearing in man from the point of view of the engineer-scientist].

    PubMed

    Hudde, H; Pösselt, C

    1988-06-01

    In this paper the function of the external ear is investigated from the point of view of an acoustic engineer. After some basic considerations the "external ear transfer functions" which determine the spatial hearing are discussed. These functions may be split into two parts, one depending on the direction of sound, the other independent of it. A physical interpretation is possible. Finally the two most important applications are represented: the head-related stereophony ("dummy head") and the "binaural mixing console". PMID:3410756

  11. Social scientist's viewpoint on conflict management

    USGS Publications Warehouse

    Ertel, Madge O.

    1990-01-01

    Social scientists can bring to the conflict-management process objective, reliable information needed to resolve increasingly complex issues. Engineers need basic training in the principles of the social sciences and in strategies for public involvement. All scientists need to be sure that that the information they provide is unbiased by their own value judgments and that fair standards and open procedures govern its use.

  12. Just like Real Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat

    2009-01-01

    How do you inspire students to keep records like scientists? Share the primary research of real scientists and explicitly teach students how to keep records--that's how! Therefore, a group of third-grade students and their teacher studied the work of famous primatologist Jane Goodall and her modern-day counterpart Ian Gilby. After learning about…

  13. Just like Real Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat

    2009-01-01

    How do you inspire students to keep records like scientists? Share the primary research of real scientists and explicitly teach students how to keep records--that's how! Therefore, a group of third-grade students and their teacher studied the work of famous primatologist Jane Goodall and her modern-day counterpart Ian Gilby. After learning about…

  14. Misquoted Scientists Respond.

    ERIC Educational Resources Information Center

    Cole, John R.

    1981-01-01

    This paper points out that creationists have developed a skill unique to their trade, namely, that of misquotation and quotation out of context from the works of leading evolutionists. This tactic not only frustrates scientists but it misleads school board members, legislators, and the public. A representative sampling of scientists' responses to…

  15. Misquoted Scientists Respond.

    ERIC Educational Resources Information Center

    Cole, John R.

    1981-01-01

    This paper points out that creationists have developed a skill unique to their trade, namely, that of misquotation and quotation out of context from the works of leading evolutionists. This tactic not only frustrates scientists but it misleads school board members, legislators, and the public. A representative sampling of scientists' responses to…

  16. Stories of Scientists.

    ERIC Educational Resources Information Center

    Mascazine, John R.

    2001-01-01

    Presents three biographical sketches of scientists including John Wesley Powell (first to explore the geology of the Grand Canyon), Joseph von Fraunhofer (his work in optics led to the science of spectroscopy), and Gregor Mendel (of Mendelian genetics fame). Other scientists are mentioned along with sources for additional biographical information.…

  17. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  18. Focus on the Future: A National Action Plan for Career-Long Education for Engineers.

    ERIC Educational Resources Information Center

    National Academy of Engineering, Washington, DC.

    This report had its origins in a request by the Council of the National Academy of Engineering to its Education Advisory Board (EAB) to consider selected aspects of the fundamental structure of engineering education. There was professional agreement that probably the least effective and appreciated aspect of engineering education was that which…

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  20. Young Scientists Discuss Recent Advances, Future Challenges.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1989-01-01

    Discusses a National Academy of Science forum at which a group of outstanding young researchers in astronomy, molecular and developmental biology, physics, chemistry, mathematics, atmospheric science, and materials science met for three days of formal presentations and informal conversations. Provides a short synopsis of major speakers. (MVL)

  1. Mentoring Among Scientists: Implications of Interpersonal Relationships within a Formal Mentoring Program

    SciTech Connect

    Bryan D. Maughan

    2006-11-01

    Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protégé relationship significantly influences a protégé’s learning experience which carries repercussions into their career intentions. The mentor-protégé relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry.

  2. Mentoring among scientists: Implications of interpersonal relationships within a formal mentoring program

    SciTech Connect

    Maughan, B. D.

    2006-07-01

    Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protege relationship significantly influences a protege's learning experience which carries repercussions into their career intentions. The mentor-protege relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry. (authors)

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 64: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: 1.) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; 2.) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; 3.) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  4. Methods & Strategies: Sculpt-a-Scientist

    ERIC Educational Resources Information Center

    Jackson, Julie; Rich, Ann

    2014-01-01

    Elementary science experiences help develop students' views of science and scientific interests. As a result, teachers have been charged with the task of inspiring, cultivating, recruiting, and training the scientists needed to create tomorrow's innovations and solve future problems (Business Roundtable 2005). Who will these future…

  5. Engineering for Operation of a Future Belgian Deep Geological Repository for ILW and HLW - 12379

    SciTech Connect

    Haverkamp, B.; Biurrun, E.; Nieder-Westermann, G.H.; Van Humbeeck, H.

    2012-07-01

    In Belgium, an advanced conceptual design is being elaborated for deep geologic disposal of high level waste (HLW) and for low and intermediate level waste (LILW) not amenable for surface disposal. The concept is based on a shielded steel and concrete container for disposal of HLW, i.e., the Super-container. LILW will be disposed of in separately designed concrete caissons. The reference host rock is the Boom Clay, a poorly indurated clay formation in northeastern Belgium. Investigations into the potential host rock are conducted at the HADES underground research laboratory in Mol, Belgium. In 2009 the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) initiated a four year research project aimed at confirming the fundamental feasibility of building and operating a repository. The goal of the program is to demonstrate at a detailed conceptual level that the proposed geologic disposal system can be safely constructed, operated, and progressively closed. Part of the broader research efforts being conducted includes evaluations optimization of the waste transportation shaft, subsurface transportation system, ventilation system, and evaluation of backfilling and sealing concepts for the repository design. The potential for implementation of a waste retrieval strategy encompassing the first 100 years after emplacement is also considered. In the framework of a four year research program aimed at confirming the fundamental feasibility of building and operating a repository in poorly indurated clay design studies have been underway to optimize the waste transportation shaft, subsurface transportation system, and ventilation system. Additionally backfilling and sealing concepts proposed for the potential repository have been reviewed in conjunction with impacts related to the potential future inclusion of a retrievability requirement in governing regulations. The main engineering challenges in the Belgian repository concept are size limitations on the underground facilities imposed by the mechanical behavior of the candidate host rock type (i.e., poorly indurated clay) and the resulting ground support requirements. Underground excavations in the Boom Clay require a significant level of ground support to ensure the openings remain stable. A concrete lining system has been developed to address this engineering requirement. As a result strict size limits are imposed on both the diameter of the tunnels and the dimensions of the shaft stations resulting in unique design challenges requiring maximal optimization of the available space. Ongoing studies indicate that a significant (20%) reduction in shaft diameter can be achieved by diagonally orienting the hoist guide rails with respect to the cage, optimizing the counter weight dimensions, and reconfiguring the auxiliary hoisting system as a single rope system. Reliable subsurface transportation of waste packages can be achieved through a hybrid rail/wheel system powered by a battery operated electric locomotive. Key components of the system, including the battery-powered locomotive and a turntable used for transitioning waste shipments from the access gallery into disposal galleries without the need for constructing turnouts, have been successfully demonstrated at the Gorleben exploratory facility and the Konrad repository in Germany, respectively. By optimizing the available space in the disposal galleries and limiting the introduction of hazardous gases by using electric powered systems combined with the relatively small number of workers envisioned in the Belgian repository concept adequate ventilation can be achieved to ensure safe operational conditions. The proposed sealing and backfill systems in the Belgian repository concept should provide adequate safeguards as currently planned. Should a future retrievability requirement be imposed on the design it appears likely that a partial backfilling strategy could be employed. The key component in ensuring retrievability in the design would be the selection of a backfill that combines the safety functions required in the current design concept with a material strength amenable to removal by hydro-jet excavation techniques. (authors)

  6. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned veterans in the field, is a unique experience for many of the teachers. Here we present lessons learned throughout the lifetime of the program, including successes and improvements made, and present our vision for the future of HOW.

  7. Scientists Like Me: Faces of Discovery

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  8. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering

  9. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  10. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.

  11. High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Wójcik, Magdalena; Telzerow, Aline; Quax, Wim J.; Boersma, Ykelien L.

    2015-01-01

    Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms. PMID:26492240

  12. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  13. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  14. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  15. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    PubMed Central

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  16. Scientists and Human Rights

    NASA Astrophysics Data System (ADS)

    Makdisi, Yousef

    2012-02-01

    The American Physical Society has a long history of involvement in defense of human rights. The Committee on International Freedom of Scientists was formed in the mid seventies as a subcommittee within the Panel On Public Affairs ``to deal with matters of an international nature that endangers the abilities of scientists to function as scientists'' and by 1980 it was established as an independent committee. In this presentation I will describe some aspects of the early history and the impetus that led to such an advocacy, the methods employed then and how they evolved to the present CIFS responsibility ``for monitoring concerns regarding human rights for scientists throughout the world''. I will also describe the current approach and some sample cases the committee has pursued recently, the interaction with other human rights organizations, and touch upon some venues through which the community can engage to help in this noble cause.

  17. Scientists Track Polar Bears

    USGS Multimedia Gallery

    Scientists track Polar bears with by attaching GPS equipped collars to a sample population.  These collars transmit data that help develop maps like this one that shows a swim of nearly 220 miles long....

  18. Knock control of gasoline engines-A comparison of solutions and tendencies, with special reference to future European emission legislation

    SciTech Connect

    Decker, H.; Gruber, H.U.

    1985-01-01

    The different demands with respect to electronic knock control in the USA, Japan and Europe are compared. Available systems to suit the special European requirements of turbo-charged and naturally aspirated engines are presented in detail. The influence of the new European emission standards currently under discussion and their effect on the requirements of such systems are considered. Alternative approaches for future systems are discussed.

  19. A Response to Advancing Technologies. Repositioning Engineering Education to Serve America's Future.

    ERIC Educational Resources Information Center

    Glower, Donald D., Ed.; Saline, Lindon E., Ed.

    This publication is a summary of 20 papers which examine the status and impact of computers and related technologies on engineering, design practices and production in the private sector, and on engineering curricula and teaching methodology; and their role in assuring social and economic vitality. Chapter 1 discusses how technology impacts the…

  20. The Education of Future Aeronautical Engineers: Conceiving, Designing, Implementing and Operating

    ERIC Educational Resources Information Center

    Crawley, Edward F.; Brodeur, Doris R.; Soderholm, Diane H.

    2008-01-01

    This paper will outline answers to the two central questions regarding improving engineering education: (1) What is the full set of knowledge, skills, and attitudes that engineering students should possess as they leave the university, and at what level of proficiency?; and (2) How can we do better at ensuring that students learn these skills? The…

  1. A Response to Advancing Technologies. Repositioning Engineering Education to Serve America's Future.

    ERIC Educational Resources Information Center

    Glower, Donald D., Ed.; Saline, Lindon E., Ed.

    This publication is a summary of 20 papers which examine the status and impact of computers and related technologies on engineering, design practices and production in the private sector, and on engineering curricula and teaching methodology; and their role in assuring social and economic vitality. Chapter 1 discusses how technology impacts the…

  2. Making It All Work: The Engineering Graduate of the Future, a UK Perspective

    ERIC Educational Resources Information Center

    Spinks, Nigel; Silburn, Nicholas L. J.; Birchall, David W.

    2007-01-01

    High skills are today seen as being of vital importance to economies, industries, companies and individuals. The engineering industry is no exception and the graduate engineer has a key position in this regard. In the research reported in this paper, the authors use in-depth interviews with industry experts to investigate the provision of…

  3. 100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  4. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges

    PubMed Central

    Kumar, Vivek A.; Brewster, Luke P.; Caves, Jeffrey M.; Chaikof, Elliot L.

    2012-01-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research. PMID:23181145

  5. Bioinspired Engineering of Exploration Systems (BEES) - its Impact on Future Missions

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Hine, Butler; Zornetzer, Steve

    2004-01-01

    This paper describes an overview of our "Bioinspired Engineering of Exploration Systems for Mars" ( "BEES for Mars") project. The BEES approach distills selected biologically inspired strategies utilizing motion cues/optic flow, bioinspired pattern recognition, biological visual and neural control systems, bioinspired sensing and communication techniques, and birds of prey inspired search and track algorithmic systems. Unique capabilities so enabled, provide potential solutions to future autonomous robotic space and planetary mission applications. With the first series of tests performed in September 2003, August 2004 and September 2004, we have demonstrated the BEES technologies at the El Mirage Dry Lakebed site in the Mojave Desert using Delta Wing experimental prototypes. We call these test flyers the "BEES flyer", since we are developing them as dedicated test platform for the newly developed bioinspired sensors, processors and algorithmic strategies. The Delta Wing offers a robust airframe that can sustain high G launches and offers ease of compact stowability and packaging along with scaling to small size and low ReynOld's number performance for a potential Mars deployment. Our approach to developing light weight, low power autonomous flight systems using concepts distilled from biology promises to enable new applications, of dual use to NASA and DoD needs. Small in size (0.5 -5 Kg) BEES Flyers are demonstrating capabilities for autonomous flight and sensor operability in Mars analog conditions. The BEES project team spans JPL, NASA Ames, Australian National University (ANU), Brigham Young University(BYU), DC Berkeiey, Analogic Computers Inc. and other institutions. The highlights from our recent flight demonstrations exhibiting new Mission enabling capabilities are described. Further, this paper describes two classes of potential new missions for Mars exploration: (1) the long range exploration missions, and (2) observation missions, for real time imaging of critical ephemeral phenomena, that can be enabled by use of BEES flyers. For example, such flyers can serve as a powerful black-box for critical descent and landing data and enablers for improved science missions complementing and supplementing the existing assets like landers and rovers by providing valuable exploration and quick extended low-altitude aerial coverage of the sites of interest by imaging them and distributing instruments to them. Imaging done by orbiters allows broad surface coverage at limited spatial resolution. Low altitude air-borne exploration of Mars offers a means for imaging large areas, perhaps up to several hundred kilometers, quickly and efficiently, providing a close-up birds-eye view of the planetary terrain and close-up approach to constrained difficult areas like canyons and craters. A novel approach to low-mass yet highly capable flyers is enabled by small aircraft equipped using sensors and processors and algorithms developed using BEES technology. This project is focused towards showing the direct impact of blending the best of artificial intelligence attributes and bioinspiration to create a leap beyond existing capability for our future Missions.

  6. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  7. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  8. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future - Duration: 6 minutes, 9 seconds.

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  9. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    PubMed

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. PMID:24709279

  10. The present situation and future development of Chinese aviation reliability and maintainability engineering

    NASA Astrophysics Data System (ADS)

    Yang, Weimin; Tu, Qingci; Jiao, Jingtang

    1992-01-01

    This paper summarizes the historical process of Chinese aviation reliability and maintainability (R&M) engineering which underwent the embryonic stage and strode into the initial development stage during '7-5' period. It analyzes the characteristics of replacing the old design idea with a new one, the achievements made and the existing problems. On the basis of summarizing '7-5' experiences, according to the development needs of Chinese aviation industries and using the experiences of foreign countries for reference, this paper puts forward the requirements for establishing the Chinese reliability engineering discipline, describes the R&M engineering development framework in the '8-5' period, and draws up the key R&M engineering items application matrix of newly developing or modifying aircrafts (products).

  11. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  12. USGS scientists Measure Floodwaters at Morganza Spillway

    USGS Multimedia Gallery

    USGS scientists Todd Baumann and Errol Meche install a temporary streamgage to measure water levels above and below the the Morganza Spillway. USGS streamflow information is used by the U.S. Army Corps of Engineers to help them make informed flood management decisions. One floodgate on the Morganza ...

  13. USGS scientists Measure Floodwaters at Morganza Spillway

    USGS Multimedia Gallery

    USGS scientist Errol Meche installs a temporary streamgage to measure water levels above and below the the Morganza Spillway. USGS streamflow information is used by the U.S. Army Corps of Engineers to help them make informed flood management decisions. One floodgate on the Morganza Spillway was open...

  14. Biographies of Women Scientists for Young Readers.

    ERIC Educational Resources Information Center

    Bettis, Catherine; Smith, Walter S.

    The participation of women in the physical sciences and engineering woefully lags behind that of men. One significant vehicle by which students learn to identify with various adult roles is through the literature they read. This annotated bibliography lists and describes biographies on women scientists primarily focusing on publications after…

  15. U.S. Ethnic Scientists and Entrepreneurs

    ERIC Educational Resources Information Center

    Kerr, William R.

    2007-01-01

    Immigrants are exceptionally important for U.S. technology development, accounting for almost half of the country's Ph.D. workforce in science and engineering. Most notably, the contribution of Chinese and Indian scientists and entrepreneurs in U.S. high-technology sectors increased dramatically in the 1990s. These ethnic scientific communities…

  16. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments. Ultimately, fielding a robust space transportation solution that will carry international explorers and essential payloads will pave the way for a new century of scientific discovery beyond planet Earth.

  17. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  18. Potential Applications of the Ceramic Thrust Chamber Technology for Future Transpiration Cooled Rocket Engines

    NASA Astrophysics Data System (ADS)

    Herbertz, Armin; Ortelt, Markus; Müller, Ilja; Hald, Hermann

    The long-term development of ceramic rocket engine thrust chambers at the German Aerospace Center(DLR) currently leads to designs of self-sustaining, transpiration-cooled, fiber-reinforced ceramic rocket engine chamber structures.This paper discusses characteristic issues and potential benefits introduced by this technology. Achievable benefits are the reduction of weight and manufacturing cost, as well as an increased reliability and higher lifetime due to thermal cycle stability.Experiments with porous Ceramic Matrix Composite(CMC) materials for rocket engine chamber walls have been conducted at the DLR since the end of the 1990s.This paper discusses the current status of DLR's ceramic thrust chamber technology and potential applications for high thrust engines.The manufacturing process and the design concept are explained.The impact of variations of engine parameters(chamber pressure and diam-eter)on the required coolant mass flow are discussed.Due to favorable scaling effects a high thrust application utilizes all benefits of the discussed technology, while avoiding the most significant performance drawbacks.

  19. The future in Agricultural Engineering: news degrees in the Universidad Politécnica de Madrid (UPM)

    NASA Astrophysics Data System (ADS)

    Cartagena, M. Carmen; Tarquis, A. M.; Vázquez, J.; Serrano, A.; Arce, A.

    2010-05-01

    The Bologna process is to improve the quality of education, mobility, diversity and the competitiveness and involves three fundamental changes: transform of the structure of titles, changing in methods of teaching and implementation of the systems of quality assurance. Engineer Agronomist at the Universidad Politécnica de Madrid (UPM) has been offered as a degree of five years with a total of 400 credits and seven optional orientations: Crop Production, Plant and Breeding Protection, Environment, Agricultural Economics, Animal Production, Rural Engineering and Food Technology. Actually, the Bologna plan creates three new degrees: Engineering and Science Agronomic, Food Engineering and Agro-Environmental Engineering, with 240 ECTS each one of them and with specific professional characteristics. The changes that involve the introduction of these new degrees is perhaps the largest occurred never at the Spanish university system, not only by the drastic transformation in the structure of titles, but also by the new changes that lie ahead in teaching methods. Among others we will comment the following ones: -A year decreased duration of studies and therefore incorporation into the market. - Elimination of the seven current guidelines to create three specific qualifications of degree. -Decrease of optional subjects and increase in credits for the basic subjects. - Inclusion of business practices. - Increase in the number of credits of final project. - Changes in methodologies and a higher involvement of teachers and students in the education.

  20. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Man's Responsibility to His Future

    ERIC Educational Resources Information Center

    Hoagland, Hudson

    1972-01-01

    Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)

  1. Implications of multiplane-multispeed balancing for future turbine engine design and cost

    NASA Technical Reports Server (NTRS)

    Badgley, R. H.

    1974-01-01

    This paper describes several alternative approaches, provided by multiplane-multispeed balancing, to traditional gas turbine engine manufacture and assembly procedures. These alternatives, which range from addition of trim-balancing at the end of the traditional assembly process to modular design of the rotating system for assembly and balancing external to the engine, require attention by the engine designer as an integral part of the design process. Since multiplane-multispeed balancing may be incorporated at one or more of several points during manufacture-assembly, its deliberate use is expected to provide significant cost and performance (reduced vibration) benefits. Moreover, its availability provides the designer with a firm base from which he may advance, with reasonable assurance of success, into the flexible rotor dynamic regime.

  2. STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES

    SciTech Connect

    Dunn, M

    2003-08-24

    Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of VOCs [2], and that lubricating oil is a major contributor. Fitting an oxidation catalyst to the natural gas engine leads to a reduction in nanoparticles emissions in comparison to engines without aftertreatment [2,3,4]. In 2001, the Cummins Westport Plus technology was introduced with the C Gas Plus engine, a popular choice for transit bus applications. This incorporates drive by wire, fully integrated, closed loop electronic controls and a standard oxidation catalyst for all applications. The B Gas Plus and the B Propane Plus engines, with application in shuttle and school buses were launched in 2002 and 2003. The gas-specific oxidation catalyst operates in concert with an optimized ring-pack and liner combination to reduce total particulate mass below 0.01g/bhphr, combat ultrafine particles and control VOC emissions.

  3. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  4. Viewgraph description of Penn State's Propulsion Engineering Research Center: Activity highlights and future plans

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    Viewgraphs are presented that describe the progress and status of Penn State's Propulsion Engineering Research Center. The Center was established in Jul. 1988 by a grant from NASA's University Space Engineering Research Centers Program. After two and one-half years of operation, some 16 faculty are participating, and the Center is supporting 39 graduate students plus 18 undergraduates. In reviewing the Center's status, long-term plans and goals are reviewed and then the present status of the Center and the highlights and accomplishments of the past year are summarized. An overview of plans for the upcoming year are presented.

  5. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1985-01-01

    Describes experiments using fluidyne engines. These engines (which have liquid pistons), started by external heat sources, are used primarily for pumping water. Examples of various engines built from U-shaped tubes or from coiled tubes in fruit jars are provided. (DH)

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  8. Early Primary Invasion Scientists

    ERIC Educational Resources Information Center

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  9. Developing Scientists' "Soft" Skills

    NASA Astrophysics Data System (ADS)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  10. Talk Like a Scientist

    ERIC Educational Resources Information Center

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  11. Bringing Scientists to Life

    ERIC Educational Resources Information Center

    Casey, Peter

    2010-01-01

    In this article, the author describes how he brings scientists to life when he visits schools. Having retired from teaching Drama and Theatre Studies in Liverpool for more than thirty years, the author set up his one-man Theatre-in-Education company, Blindseer Productions, and now takes his portrayals of Darwin, Galileo and Einstein to schools…

  12. Teaming Up with Scientists.

    ERIC Educational Resources Information Center

    Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia

    2001-01-01

    Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…

  13. Reading as Scientists

    ERIC Educational Resources Information Center

    Shanahan, Marie-Claire

    2010-01-01

    Using an adapted version of a recently published scientific article, a group of sixth graders worked together identifying conclusions, deciding on appropriate evidence, suggesting improvements for the study, and recommending further investigations for scientists. This experience provided opportunities for these students to use reading to decide on…

  14. Scientists in the Classroom

    NASA Astrophysics Data System (ADS)

    Lundin, J.

    2009-12-01

    High school science is often the first time students are presented with the scientific method as a tool to assist discovery. I aim to help students ‘think like a scientist’, through my role as a graduate student NSF GK-12 fellow in the Ocean and Coastal Interdisciplinary Science (OACIS) program, where I am paired with a high school science teacher and their classes for the year. To help students gain a familiarity and understanding of how scientists approach research, I will (1) utilize technology, including youtube, powerpoint, and research modeling applications; (2) bring in experts from the University to demonstrate the diversity of the science community; (3) connect with the classroom research from meetings, journals and reports. The goal is to broaden the scope of how research science is conducted, but also to allow individual students to be involved in projects, from developing a hypothesis to presenting their data. A survey at the beginning of the academic year and a survey before the AGU Fall meeting will be compared to assess the influence of having a research scientist present. Results will include how students view of science and scientists has changed, feedback on how successfully technology has improved students’ comprehension, and ideas for making science approachable for diverse high school learners.

  15. Women Scientists. American Profiles.

    ERIC Educational Resources Information Center

    Veglahn, Nancy, J.

    This book contains the life stories of 11 American female scientists who had outstanding achievements in their branch of science. The lives of the 11 women included in this book cover a combined time period of more than 120 years. This book argues against the belief that mathematics and science are not for girls and gives examples of very…

  16. Becoming a Spider Scientist

    ERIC Educational Resources Information Center

    Patrick, Patricia; Getz, Angela

    2008-01-01

    In this integrated unit, third grade students become spider scientists as they observe spiders in their classroom to debunk some common misconceptions about these intimidating creatures. "Charlotte's Web" is used to capture students' interest. In addition to addressing philosophical topics such as growing-up, death, and friendship; E.B. White's…

  17. Nurturing the Child Scientist

    ERIC Educational Resources Information Center

    Rodgers, Lisa; Basca, Belinda

    2011-01-01

    The natural world fascinates young children. Treasured leaves, shells, stones, and twigs always find their way into the kindergarten classroom. A kindergarten study of collections channels and deepens children's innate impulse to explore and collect. It also lays the foundation for understanding how scientists approach the study of objects in…

  18. USGS Scientist Tonie Rocke

    USGS Multimedia Gallery

    USGS scientist Tonie Rocke is working to immunize populations of free-ranging prairie dogs against plague with an oral sylvatic plague vaccine (SPV). Here, she stands beside a prairie dog hole at the Pitchfork Ranch in Wyoming, holding a sample of the brightly colored, peanut butter flavor...

  19. USGS Scientist Tonie Rocke

    USGS Multimedia Gallery

    USGS scientist Tonie Rocke is working to immunize populations of free-ranging prairie dogs against plague with an oral sylvatic plague vaccine (SPV). If successful, the SPV could help protect endangered black-footed ferret populations in the western U.S. because the ferrets rely on pr...

  20. Spotlight on Scientists

    Cancer.gov

    These articles put a face to some of the thousands of individuals who contribute to NCI’s intramural and extramural cancer research efforts. The profiles highlight the work of scientists and clinicians and describe the circumstances and motivation behind their work.

  1. Scientists Answer the Creationists

    ERIC Educational Resources Information Center

    Science News, 1977

    1977-01-01

    Discusses a 650-word statement signed by 179 prominent scientists, educators, and religious leaders affirming evolution as a principle of science. The statement, issued by the American Humanist Association, is being sent to major school districts in the U.S. (MLH)

  2. Working Like Real Scientists

    ERIC Educational Resources Information Center

    Lunn, Stephen

    2006-01-01

    "Real" science is about formulating and trying to solve practical and conceptual problems on the basis of shared beliefs about the world. Scientists build theories and test hypotheses by observation and experiment. They try their best to eliminate personal bias, and are "extremely canny in their acceptance of the claims of others" (Ziman, 2000).…

  3. Doctoral Scientists in Oceanography.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  4. Working Like Real Scientists

    ERIC Educational Resources Information Center

    Lunn, Stephen

    2006-01-01

    "Real" science is about formulating and trying to solve practical and conceptual problems on the basis of shared beliefs about the world. Scientists build theories and test hypotheses by observation and experiment. They try their best to eliminate personal bias, and are "extremely canny in their acceptance of the claims of others" (Ziman, 2000).…

  5. Teaming Up with Scientists.

    ERIC Educational Resources Information Center

    Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia

    2001-01-01

    Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…

  6. On Being a Scientist.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on the Conduct of Science.

    This booklet was written for students and describes some of the basic features of a life in contemporary research and some of the personal and professional issues that researchers will encounter in their work. This booklet divides the decisions that scientists make into two overlapping categories. Much of the first half of the booklet looks at…

  7. Early Primary Invasion Scientists

    ERIC Educational Resources Information Center

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  8. Bringing Scientists to Life

    ERIC Educational Resources Information Center

    Casey, Peter

    2010-01-01

    In this article, the author describes how he brings scientists to life when he visits schools. Having retired from teaching Drama and Theatre Studies in Liverpool for more than thirty years, the author set up his one-man Theatre-in-Education company, Blindseer Productions, and now takes his portrayals of Darwin, Galileo and Einstein to schools…

  9. Scientist Releases Common Loon

    USGS Multimedia Gallery

    As part of a cooperative project, scientists with the USGS and the Wisconsin Department of Natural Resources tagged common loons in north central Wisconsin to study the distribution and migration movements, as well as foraging patterns and depth profiles of common loons equipped with archiv...

  10. Prepare and Inspire: K-12 Science, Technology, Engineering, and Math (STEM) Education for America's Future

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2010

    2010-01-01

    The success of the United States in the 21st century will depend on the ideas and skills of its population. These have always been the nation's most important assets. As the world becomes increasingly technological, the value of these national assets will be determined by the effectiveness of science, technology, engineering, and mathematics…

  11. Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future

    PubMed Central

    Kurobe, Hirotsugu; Maxfield, Mark W.; Breuer, Christopher K.

    2012-01-01

    In surgical repair for heart or vascular disease, it is often necessary to implant conduits or correct tissue defects. The most commonly used graft materials to date are (a) artificial grafts; (b) autologous tissues, such as pericardium and saphenous vein; (c) allografts; and (d) xenografts. However, none of these four options offer growth potential, and all are associated with varying levels of thrombogenicity and susceptibility to infection. The lack of growth potential of these four options is particularly important in pediatric cardiac surgery, where patients will often outgrow their vascular grafts and require additional operations. Thus, developing a material with sufficient durability and growth potential that will function as the child grows older will eliminate the need for reoperation and significantly reduce morbidity and mortality of some types of congenital heart defects. Vascular tissue engineering is a relatively new field that has undergone enormous growth over the last decade. The goal of vascular tissue engineering is to produce neovessels and neo-organ tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. Once the seeded autologous cells have deposited an extracellular matrix and the original scaffold is biodegraded, the tissue resembles and behaves as native tissue. When tissue-engineered vascular grafts are eventually put to use in the clinical arena, the quality of life in patients after surgery will be drastically improved. PMID:23197861

  12. Can We Expect to Recruit Future Engineers among Students Who Have Never Repaired a Toy?

    ERIC Educational Resources Information Center

    Virtic, Mateja Ploj; Šorgo, Andrej

    2016-01-01

    Education has traditionally focused primarily on content and cognitive goals. While content knowledge is important, to enter to the labour market today, graduates must also develop manual skills and technical literacy. The paper deals with engineering and technology education in Slovenia. It portrays the problem of the decline in interest in…

  13. K-12 Science, Technology, Engineering, and Math (STEM) Education for America's Future

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    The success of the United States in the 21st century will depend on the ideas and skills of its population. These have always been the nation's most important assets. As the world becomes increasingly technological, the value of these national assets will be determined by the effectiveness of science, technology, engineering, and mathematics…

  14. A Joint Learning Activity in Process Control and Distance Collaboration between Future Engineers and Technicians

    ERIC Educational Resources Information Center

    Deschênes, Jean-Sebastien; Barka, Noureddine; Michaud, Mario; Paradis, Denis; Brousseau, Jean

    2013-01-01

    A joint learning activity in process control is presented, in the context of a distance collaboration between engineering and technical-level students, in a similar fashion as current practices in the industry involving distance coordination and troubleshooting. The necessary infrastructure and the setup used are first detailed, followed by a…

  15. Education: AIChE Probes Impact of Computer on Future Engineering Education.

    ERIC Educational Resources Information Center

    Krieger, James

    1983-01-01

    Evaluates influence of computer assisted instruction on engineering education, considering use of computers to remove burden of doing calculations and to provide interactive self-study programs of a tutorial/remedial nature. Cites universities requiring personal computer purchase, pointing out possibility for individualized design assignments.…

  16. Developing the next generation of nurse scientists.

    PubMed

    Burkhart, Patricia V; Hall, Lynne A

    2015-01-01

    This article describes an undergraduate nursing research internship program in which students are engaged in research with a faculty mentor. Since 2002, more than 130 undergraduate nursing students have participated. Interns coauthored publications, presented papers and posters at conferences, and received awards. This highly successful program provides a model that can be easily replicated to foster the development of future nurse scientists. PMID:25581434

  17. Physician as Scientist: Preparation, Performance, and Prospects

    ERIC Educational Resources Information Center

    Castle, William B.

    1976-01-01

    Greatly modifying the present medical curriculum for the future physician-scientist is not recommended. The value of his having a PhD is questioned and the importance of his working in a hospital-based clinical department is stressed. The author contends that emphasizing the interrelationship between basic and applied research will increase public…

  18. Methods & Strategies: Sculpt-a-Scientist

    ERIC Educational Resources Information Center

    Jackson, Julie; Rich, Ann

    2014-01-01

    Elementary science experiences help develop students' views of science and scientific interests. As a result, teachers have been charged with the task of inspiring, cultivating, recruiting, and training the scientists needed to create tomorrow's innovations and solve future problems (Business Roundtable 2005). Who will these future…

  19. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective

    PubMed Central

    Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.

    2009-01-01

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202

  20. Women Scientists and Engineers in Burma.

    ERIC Educational Resources Information Center

    Thein, Mya Mya

    1980-01-01

    Describes the role of women in Burmese society and the quality of women within the scientific community. Data are given on the numbers of students in Burmese professional schools and the distribution of sexes among the teaching staff of the science departments of the Arts and Sciences University in Rangoon. (Author/SA)