Science.gov

Sample records for fuzzy rule-based probability

  1. Rule based fuzzy logic approach for classification of fibromyalgia syndrome.

    PubMed

    Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem

    2016-06-01

    Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were

  2. Fuzzy logic control synthesis without any rule base.

    PubMed

    Novakovic, B M

    1999-01-01

    A new analytic fuzzy logic control (FLC) system synthesis without any rule base is proposed. For this purpose the following objectives are preferred and reached: 1) an introduction of a new adaptive shape of fuzzy sets and a new adaptive distribution of input fuzzy sets, 2) a determination of an analytic activation function for activation of output fuzzy sets, instead of using of min-max operators, and 3) a definition of a new analytic function that determines the positions of centers of output fuzzy sets in each mapping process, instead of definition of the rule base. A real capability of the proposed FLC synthesis procedures is presented by synthesis of FLC of robot of RRTR-structure. PMID:18252321

  3. A hierarchical fuzzy rule-based approach to aphasia diagnosis.

    PubMed

    Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid

    2007-10-01

    Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy. PMID:17293167

  4. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  5. Classification of Contaminated Sites Using a Fuzzy Rule Based System

    SciTech Connect

    Lemos, F.L. de; Van Velzen, K.; Ross, T.

    2006-07-01

    This paper presents the general framework of a multi level model to manage contaminated sites that is being developed. A rule based system along with a scoring system for ranking sites for phase 1 ESA is being proposed (Level 1). Level 2, which consists of the recommendation of the consultant based on their phase 1 ESA is reasonably straightforward. Level 3 which consists of classifying sites which already had a phase 2 ESA conducted on them will involve a multi-objective decision making tool. Fuzzy set theory, which includes the concept of membership functions, was adjudged as the best way to deal with uncertain and non-random information. (authors)

  6. A new type of simplified fuzzy rule-based system

    NASA Astrophysics Data System (ADS)

    Angelov, Plamen; Yager, Ronald

    2012-02-01

    Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.

  7. Fuzzy rule base design using tabu search algorithm for nonlinear system modeling.

    PubMed

    Bagis, Aytekin

    2008-01-01

    This paper presents an approach to fuzzy rule base design using tabu search algorithm (TSA) for nonlinear system modeling. TSA is used to evolve the structure and the parameter of fuzzy rule base. The use of the TSA, in conjunction with a systematic neighbourhood structure for the determination of fuzzy rule base parameters, leads to a significant improvement in the performance of the model. To demonstrate the effectiveness of the presented method, several numerical examples given in the literature are examined. The results obtained by means of the identified fuzzy rule bases are compared with those belonging to other modeling approaches in the literature. The simulation results indicate that the method based on the use of a TSA performs an important and very effective modeling procedure in fuzzy rule base design in the modeling of the nonlinear or complex systems. PMID:17945233

  8. Applications of fuzzy sets to rule-based expert system development

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules indecision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  9. Applications of fuzzy sets to rule-based expert system development

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules in decision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  10. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  11. Research of Expended Production Rule Based on Fuzzy Conceptual Graphs*

    NASA Astrophysics Data System (ADS)

    Liu, Peiqi; Li, Longji; Zhang, Linye; Li, Zengzhi

    In the knowledge engineering, the fuzzy conceptual graphs and the production rule are two important knowledge representation methods. Because the confidence information can't be represented in the fuzzy conceptual graphs and the fuzzy knowledge can't be represented in the production rules, the ability of their knowledge representation is grievous insufficiency. In this paper, the extended production rule which is a new knowledge representation method has been presented. In the extended production rule, the antecedent and consequent of a rule are represented by fuzzy conceptual graphs, and the sustaining relation between antecedent and consequent is the confidence. The rule combines the fuzzy knowledge with the confidence effectually. It not only retains the semantic plentifulness of facts and proposition, but also makes the reasoning results more effectively. According to the extended production rule, the uncertain reasoning algorithm based on fuzzy conceptual graphs is designed. By the experiment test and analysis, the reasoning effects of the extended production rule are more in reason. The researching results are applied in the designed of uncertain inference engine in fuzzy expert system.

  12. A two-stage evolutionary process for designing TSK fuzzy rule-based systems.

    PubMed

    Cordon, O; Herrera, F

    1999-01-01

    Nowadays, fuzzy rule-based systems are successfully applied to many different real-world problems. Unfortunately, relatively few well-structured methodologies exist for designing and, in many cases, human experts are not able to express the knowledge needed to solve the problem in the form of fuzzy rules. Takagi-Sugeno-Kang (TSK) fuzzy rule-based systems were enunciated in order to solve this design problem because they are usually identified using numerical data. In this paper we present a two-stage evolutionary process for designing TSK fuzzy rule-based systems from examples combining a generation stage based on a (mu, lambda)-evolution strategy, in which the fuzzy rules with different consequents compete among themselves to form part of a preliminary knowledge base, and a refinement stage in which both the antecedent and consequent parts of the fuzzy rules in this previous knowledge base are adapted by a hybrid evolutionary process composed of a genetic algorithm and an evolution strategy to obtain the final Knowledge base whose rules cooperate in the best possible way. Some aspects make this process different from others proposed until now: the design problem is addressed in two different stages, the use of an angular coding of the consequent parameters that allows us to search across the whole space of possible solutions, and the use of the available knowledge about the system under identification to generate the initial populations of the Evolutionary Algorithms that causes the search process to obtain good solutions more quickly. The performance of the method proposed is shown by solving two different problems: the fuzzy modeling of some three-dimensional surfaces and the computing of the maintenance costs of electrical medium line in Spanish towns. Results obtained are compared with other kind of techniques, evolutionary learning processes to design TSK and Mamdani-type fuzzy rule-based systems in the first case, and classical regression and neural modeling

  13. Study on rule-based adaptive fuzzy excitation control technology

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wang, Hong-jun; Liu, Lu-yuan; Yue, You-jun

    2008-10-01

    Power system is a kind of typical non-linear system, it is hard to achieve excellent control performance with conventional PID controller under different operating conditions. Fuzzy parameter adaptive PID exciting controller is very efficient to overcome the influence of tiny disturbances, but the performance of the control system will be worsened when operating conditions of the system change greatly or larger disturbances occur. To solve this problem, this article presents a rule adaptive fuzzy control scheme for synchronous generator exciting system. In this scheme the control rule adaptation is implemented by regulating the value of parameter di under the given proportional divisors K1, K2 and K3 of fuzzy sets Ai and Bi. This rule adaptive mechanism is constituted by two groups of original rules about the self-generation and self-correction of the control rule. Using two groups of rules, the control rule activated by status 1 and 2 in figure 2 system can be regulated automatically and simultaneously at the time instant k. The results from both theoretical analysis and simulation show that the presented scheme is effective and feasible and possesses good performance.

  14. A fuzzy rule based metamodel for monthly catchment nitrate fate simulations

    NASA Astrophysics Data System (ADS)

    van der Heijden, S.; Haberlandt, U.

    2015-12-01

    The high complexity of nitrate dynamics and corresponding deterministic models make it very appealing to employ easy, fast, and parsimonious modelling alternatives for decision support. This study presents a fuzzy rule based metamodel consisting of eight fuzzy modules, which is able to simulate nitrate fluxes in large watersheds from their diffuse sources via surface runoff, interflow, and base flow to the catchment outlet. The fuzzy rules are trained on a database established with a calibrated SWAT model for an investigation area of 1000 km2. The metamodel performs well on this training area and on two out of three validation areas in different landscapes, with a Nash-Sutcliffe coefficient of around 0.5-0.7 for the monthly nitrate calculations. The fuzzy model proves to be fast, requires only few readily available input data, and the rule based model structure facilitates a common-sense interpretation of the model, which deems the presented approach suitable for the development of decision support tools.

  15. Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.

    PubMed

    Singh, Raj Mohan

    2008-04-01

    Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging. PMID:19295100

  16. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  17. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-09-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  18. A combined hydrological and fuzzy rule based model for catchment scale nitrate dynamics

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Bardossy, A.; Rode, M.

    2006-12-01

    The diffuse nitrate pollution in rivers is driven by a complex interaction of hydrological and bio-chemical processes. Due to limited process understanding and restricted data availability, physically based approaches for the simulation of these dynamics are still associated with large uncertainties. Therefore we developed a combined deterministic - data driven approach, which consists of a spatially distributed water balance model WaSiM-ETH for the simulation of the different hydrological flow components and a fuzzy rule based model (FRBM) for the simulation of nitrate concentration in the river. Hydrological flow components are considered as dominant driving variables for the dynamic behaviour of nitrate concentrations in surface water The TOPMODEL approach is used for water balance and simulation of runoff components in the WaSiM-ETH model. The model is calibrated using an automatic parameter estimation program PEST. The simulated subsurface and surface runoff components are taken as input variables for the fuzzy rule based nitrate transport model. In addition to these runoff components, mean air temperature is included as an input variable for the consideration of seasonal variability. The FRBM consists of Mamdani type "IF- THEN" fuzzy rule system with triangular membership function in both the input and the output. 13 rule systems are used for the representation of the dynamics of the nitrate concentration in the river. The fuzzy rules are derived from a combination of expert knowledge and the input - output data using the simulated annealing optimization algorithm. The study was undertaken using 6 years of daily hydrological and nutrient time series data from the Weida catchment, which is a 100 km2 subcatchment of the Weisse Elster in the Elbe river basin, Germany. The results of the study show that the combined deterministic - fuzzy rule based model can give a good simulation of catchment scale nitrate dynamics. The WaSiM-ETH model produced a very good match

  19. Fuzzy rule-based expert system for short-range seismic prediction

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.

    2002-04-01

    In Switzerland, the 57 km long Gotthard base tunnel is being built as part of the AlpTransit project with a maximum overburden of 2000 m. Because of the difficult geological situation, an exploratory tunnel was set up to explore the Piora-Mulde, a possibly unstable carbonate rock zone in south Central Switzerland. A geophysical forecast system called tunnel seismic prediction has been designed by Amberg Measuring Technique Ltd. to explore the geology during the tunnelling process. But several difficulties occurred in interpretation of the seismic data in terms of geological forecasts. This paper describes a simple approach to geological interpretation of seismic diffraction stack images by using fuzzy logic. A fuzzy rule-based expert system was developed to classify lithologic and tectonic rock units by interpreting those seismic images.

  20. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    PubMed

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode. PMID:11681754

  1. Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease

    PubMed Central

    Mohammadpour, Reza Ali; Abedi, Seyed Mohammad; Bagheri, Somayeh; Ghaemian, Ali

    2015-01-01

    The aim of this study was to determine the accuracy of fuzzy rule-based classification that could noninvasively predict CAD based on myocardial perfusion scan test and clinical-epidemiological variables. This was a cross-sectional study in which the characteristics, the results of myocardial perfusion scan (MPS), and coronary artery angiography of 115 patients, 62 (53.9%) males, in Mazandaran Heart Center in the north of Iran have been collected. We used membership functions for medical variables by reviewing the related literature. To improve the classification performance, we used Ishibuchi et al. and Nozaki et al. methods by adjusting the grade of certainty CFj of each rule. This system includes 144 rules and the antecedent part of all rules has more than one part. The coronary artery disease data used in this paper contained 115 samples. The data was classified into four classes, namely, classes 1 (normal), 2 (stenosis in one single vessel), 3 (stenosis in two vessels), and 4 (stenosis in three vessels) which had 39, 35, 17, and 24 subjects, respectively. The accuracy in the fuzzy classification based on if-then rule was 92.8 percent if classification result was considered based on rule selection by expert, while it was 91.9 when classification result was obtained according to the equation. To increase the classification rate, we deleted the extra rules to reduce the fuzzy rules after introducing the membership functions. PMID:26448783

  2. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  3. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  4. Remote sensing and GIS-based landslide risk assessment using a linguistic rule-based fuzzy approach

    NASA Astrophysics Data System (ADS)

    Kanungo, Debi Prasanna; Arora, Manoj Kumar; Sarkar, Shantanu; Gupta, Ravi Prakash

    2006-12-01

    It is well known that natural disasters such as earthquakes, landslides, floods, etc. cause enormous damage to lives and property. The assessment of risk as a potential for adverse consequences, loss, harm to human population due to the occurrence of natural disasters, particularly the landslides in Himalayan region therefore becomes imperative. Landslide risk assessment (LRA) techniques can be applied at different stages in the decision-making process, starting from developmental planning on a regional scale to a particular site evaluation at local scale. The LRA depends on the probability of landslide hazard and the vulnerability of risk elements. The landslide probability depends on both the preparatory (i.e., inherent ground characteristics) and triggering (i.e., earthquake and rainfall) factors. Vulnerability may be defined as the level of potential damage, or degree of loss, of risk elements subjected to landslide occurrences. The assessment of vulnerability is somewhat subjective and on a regional scale it is largely based on the importance of risk elements in human society. Hence, the appropriate vulnerability factor may be assessed systematically by expert judgment. In the present study, a linguistic rule based fuzzy approach is developed and implemented to prepare the landslide risk assessment (LRA) of Darjeeling Himalayas. The LRA has been considered as a function of landslide potential (LP) and resource damage potential (RDP), which have been characterized by the landslide susceptibility zonation (LSZ) map and the resource map (i.e., land use land cover map including the road network) of the area respectively. Fuzzy membership values representing LP and RDP have been assigned to different categories of LSZ and resource maps based on the criteria developed on a linguistic scale. Landslide risk assessment matrix (LRAM) has been generated as a function of the fuzzy membership values, which reflects the relative risk values for different combinations of

  5. A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme

    SciTech Connect

    Hilloowala, R.M.; Sharaf, A.M.

    1996-01-01

    The paper presents a rule-based fuzzy logic controller to control the output power of a pulse width modulated (PWM) inverter used in a stand alone wind energy conversion scheme (SAWECS). The self-excited induction generator used in SAWECS has the inherent problem of fluctuations in the magnitude and frequency of its terminal voltage with changes in wind velocity and load. To overcome this drawback the variable magnitude, variable frequency voltage at the generator terminals is rectified and the dc power is transferred to the load through a PWM inverter. The objective is to track and extract maximum power from the wind energy system (WES) and transfer this power to the local isolated load. This is achieved by using the fuzzy logic controller which regulates the modulation index of the PWM inverter based on the input signals: the power error e = (P{sub ref} {minus} P{sub o}) and its rate of change {dot e}. These input signals are fuzzified, that is defined by a set of linguistic labels characterized by their membership functions predefined for each class. Using a set of 49 rules which relate the fuzzified input signals (e, {dot e}) to the fuzzy controller output U, fuzzy set theory and associated fuzzy logic operations, the fuzzy controller`s output (in terms of linguistic labels) is defuzzified to obtain the actual analog (numerical) output signal which is then used to control the PWM inverter and ensure complete utilization of the available wind energy. The proposed rule-based fuzzy logic controller is simulated and the results are experimentally verified on a scaled down laboratory prototype of the SAWECS.

  6. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    SciTech Connect

    Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati

    2014-06-19

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  7. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    NASA Astrophysics Data System (ADS)

    Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati

    2014-06-01

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α-. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen's method is employed to find a compromise solution, supported by illustrative numerical example.

  8. The framework of weighted subset-hood Mamdani fuzzy rule based system rule extraction (MFRBS-WSBA) for forecasting electricity load demand

    NASA Astrophysics Data System (ADS)

    Mansor, Rosnalini; Kasim, Maznah Mat; Othman, Mahmod

    2016-08-01

    Fuzzy rules are very important elements that should be taken consideration seriously when applying any fuzzy system. This paper proposes the framework of Mamdani Fuzzy Rule-based System with Weighted Subset-hood Based Algorithm (MFRBS-WSBA) in the fuzzy rule extraction for electricity load demand forecasting. The framework consist of six main steps: (1) Data Collection and Selection; (2) Preprocessing Data; (3) Variables Selection; (4) Fuzzy Model; (5) Comparison with Other FIS and (6) Performance Evaluation. The objective of this paper is to show the fourth step in the framework which applied the new electricity load forecasting rule extraction by WSBA method. Electricity load demand in Malaysia data is used as numerical data in this framework. These preliminary results show that the WSBA method can be one of alternative methods to extract fuzzy rules for forecast electricity load demand

  9. Fuzzy rule-based approach to segment the menisci regions from MR images

    NASA Astrophysics Data System (ADS)

    Sasaki, Takashi; Hata, Yutaka; Ando, Yoshiro; Ishikawa, Makato; Ishikawa, Hitoshi

    1999-05-01

    Injuries of the menisci are one of the most common internal derangement of the knee. To examine them with noninvasive, we propose an automated segmentation method of the menisci region from MR image. The method is composed of two steps based on fuzzy logic. First, we segment the cartilage region by thresholding of the intensity. We then extract the candidate region of the menisci as the region between the cartilages. Second, we segment the menisci voxels from the candidate region based on fuzzy if-then rules obtained from knowledge of location and intensity. We applied our method to five MR data sets. Three of them are the normal knees and the others are with some injuries. Quantitative evaluation by a physician shows that this method can successfully segment the menisci for the all. The generated visualizations will help medical doctor to diagnose the menisci with noninvasive.

  10. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  11. Performance Analysis of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy Logic Controller Applied to Anesthesia

    PubMed Central

    Fan, Shou-Zen; Shieh, Jiann-Shing

    2014-01-01

    We compare type-1 and type-2 self-organizing fuzzy logic controller (SOFLC) using expert initialized and pretrained extracted rule-bases applied to automatic control of anaesthesia during surgery. We perform experimental simulations using a nonfixed patient model and signal noise to account for environmental and patient drug interaction uncertainties. The simulations evaluate the performance of the SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for muscle relaxation and blood pressure during a multistage surgical procedure. The performances of the SOFLCs are evaluated by measuring the steady state errors and control stabilities which indicate the accuracy and precision of control task. Two sets of comparisons based on using expert derived and extracted rule-bases are implemented as Wilcoxon signed-rank tests. Results indicate that type-2 SOFLCs outperform type-1 SOFLC while handling the various sources of uncertainties. SOFLCs using the extracted rules are also shown to outperform those using expert derived rules in terms of improved control stability. PMID:25587533

  12. Developing a fuzzy rule based cognitive map for total system safety assessment

    SciTech Connect

    Lemos, Francisco Luiz de; Sullivan, Terry

    2007-07-01

    Total System Performance Assessment, TSPA, for radioactive waste disposal is a multi and interdisciplinary task that is characterized by complex interactions between parameters and processes; lack of data; and ignorance regarding natural processes and conditions. The vagueness in the determination of ranges of values of parameters and identification of interacting processes pose further difficulties to the analysts with regard to the establishment of the relations between processes and parameters. More specifically the vagueness makes uncertainty propagation and sensitivity analysis challenging to analyze. To cope with these difficulties experts often use simplifications and linguistic terms to express their state of knowledge about a certain situation. For example, experts use terms such as 'low pH', 'very unlikely', etc to describe their perception about natural processes or conditions. In this work we propose the use of Fuzzy Cognitive Maps, FCM, for representation of interrelation between processes and parameters as well as to promote a better understanding of the system performance. Fuzzy cognitive maps are suited for the case where the causal relations are not clearly defined and, therefore, can not be represented by crisp values. In other words, instead of representing the quality of the interactions by crisp values, they are assigned degrees of truth. For example, we can assign values to the effect of one process on another such that (+) 1 corresponds to positive, (-) 1 to negative and 0 to neutral effects respectively. In this case the effect of a process A, on a process, B, can be depicted as function of the membership to the fuzzy set 'causal effect' of the cause process to the target one. One of the main advantages of this methodology would be that it allows one to aggregate the linguistic expressions as descriptions of processes. For example, a process can be known to have a 'very strong' positive effect on another one, or using fuzzy sets terminology

  13. Fuzzy rule-based expert system for assessment severity of asthma.

    PubMed

    Zolnoori, Maryam; Zarandi, Mohammad Hossein Fazel; Moin, Mostafa; Teimorian, Shahram

    2012-06-01

    Prescription medicine for asthma at primary stages is based on asthma severity level. Despite major progress in discovering various variables affecting asthma severity levels, disregarding some of these variables by physicians, variables' inherent uncertainty, and assigning patients to limited categories of decision making are the major causes of underestimating asthma severity, and as a result low quality of life in asthmatic patients. In this paper, we provide a solution of intelligence fuzzy system for this problem. Inputs of this system are organized in five modules of respiratory symptoms, bronchial obstruction, asthma instability, quality of life, and asthma severity. Output of this system is degree of asthma severity in score (0-10). Evaluating performance of this system by 28 asthmatic patients reinforces that the system's results not only correspond with evaluations of physicians, but represent the slight differences of asthmatic patients placed in specific category introduced by guidelines. PMID:21128097

  14. Fuzzy rule-based expert system for evaluating level of asthma control.

    PubMed

    Zolnoori, Maryam; Fazel Zarandi, Mohammad Hosain; Moin, Mostafa; Taherian, Mehran

    2012-10-01

    Asthma control is a final goal of asthma therapy process. Despite outstanding progress in discovering various variables affecting asthma control levels, disregarding some of them by physicians and variables' inherent uncertainty are the major causes of underestimating of asthma control levels and as a result asthma morbidity and mortality. In this paper, we provide an intelligent fuzzy system as a solution for this problem. Inputs of this system are composed of 14 variables organized in five modules of respiratory symptoms severity, bronchial obstruction, asthma instability, current treatment, and quality of life. Output of this system is degree of asthma control defined in the score (0-10). Evaluation of performance of this system by 42 asthmatic patients at asthma, allergy, immunology research center of Emam Khomeini hospital, Tehran, Iran reinforces that the system's results not only correspond with the evaluations of experienced asthma physicians, but represents slight differences in the levels of asthma control between asthmatic patients. PMID:21912973

  15. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  16. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system

    PubMed Central

    Marateb, Hamid Reza; Goudarzi, Sobhan

    2015-01-01

    Background: Coronary heart diseases/coronary artery diseases (CHDs/CAD), the most common form of cardiovascular disease (CVD), are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based noninvasive CAD diagnosis system with clinically interpretable rules. Materials and Methods: In this study, the Cleveland CAD dataset from the University of California UCI (Irvine) was used. The interval-scale variables were discretized, with cut points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC) whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS) methods, multiple logistic regression (MLR) and sequential FS, were used to reduce the required attributes. The performance of the NFC (without/with FS) was then assessed in a hold-out validation framework. Further cross-validation was performed on the best classifier. Results: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard) for 272 subjects (68% male) were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type I error (α) and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were “age and ST/heart rate slope categories,” “exercise-induced angina status,” fluoroscopy, and thallium-201 stress scintigraphy results. Conclusion: The proposed method showed “substantial agreement” with the gold standard. This algorithm is thus, a promising tool for screening CAD patients. PMID:26109965

  17. Knowledge-based systems as decision support tools in an ecosystem approach to fisheries: Comparing a fuzzy-logic and a rule-based approach

    NASA Astrophysics Data System (ADS)

    Jarre, Astrid; Paterson, Barbara; Moloney, Coleen L.; Miller, David C. M.; Field, John G.; Starfield, Anthony M.

    2008-10-01

    In an ecosystem approach to fisheries (EAF), management must draw on information of widely different types, and information addressing various scales. Knowledge-based systems assist in the decision-making process by summarising this information in a logical, transparent and reproducible way. Both rule-based Boolean and fuzzy-logic models have been used successfully as knowledge-based decision support tools. This study compares two such systems relevant to fisheries management in an EAF developed for the southern Benguela. The first is a rule-based system for the prediction of anchovy recruitment and the second is a fuzzy-logic tool to monitor implementation of an EAF in the sardine fishery. We construct a fuzzy-logic counterpart to the rule-based model, and a rule-based counterpart to the fuzzy-logic model, compare their results, and include feedback from potential users of these two decision support tools in our evaluation of the two approaches. With respect to the model objectives, no method clearly outperformed the other. The advantages of numerically processing continuous variables, and interpreting the final output, as in fuzzy-logic models, can be weighed up against the advantages of using a few, qualitative, easy-to-understand categories as in rule-based models. The natural language used in rule-based implementations is easily understood by, and communicated among, users of these systems. Users unfamiliar with fuzzy-set theory must “trust” the logic of the model. Graphical visualization of intermediate and end results is an important advantage of any system. Applying the two approaches in parallel improved our understanding of the model as well as of the underlying problems. Even for complex problems, small knowledge-based systems such as the ones explored here are worth developing and using. Their strengths lie in (i) synthesis of the problem in a logical and transparent framework, (ii) helping scientists to deliberate how to apply their science to

  18. Development of the on-line operator aid system OASYS using a rule-based expert system and fuzzy logic for nuclear power plants

    SciTech Connect

    Chang, S.H.; Kang, K.S.; Choi, S.S.; Kim, H.G.; Jeong, H.K.; Yi, C.U.

    1995-11-01

    The On-line Operator Aid SYStem (OASYS) has been developed to support the operator`s decision making process and to ensure the safety of a nuclear power plant by providing operators with proper guidelines in a timely manner, according to the plant operation mode. The OASYS consists of four systems such as a signal validation and management system (SVMS), a plant monitoring system (PMS), an alarm filtering and diagnostic system (AFDS), and a dynamic emergency procedure tracking system (DEPTS). The SVMS and the PMS help operators to maintain a plant in a condition to withstand the adverse events during a normal operation condition. The AFDS covers the abnormal events until it exceeds the limit range of reactor trip signals, while after a reactor trip, the DEPTS aids operators with proper guidelines so as to shut down safely. The OASYS uses a rule-based expert system and fuzzy logic. The rule-based expert system is used to classify the predefined events and track the emergency operating procedures (EOPs) through data processing, and the fuzzy logic is used to generate the conceptual high-level alarms for the prognostic diagnosis and to evaluate the qualitative fuzzy criteria used in the EOPs. Evaluation results show that the OASYS is capable of diagnosing plant abnormal conditions and providing operators appropriate guidelines with fast response time and consistency. The proposed system is implemented on a SUN-4/75 workstation using C language and Quintus prolog language. Currently, the OASYS is installed in the real-time full scope simulator for validation.

  19. Simulation of operating rules and discretional decisions using a fuzzy rule-based system integrated into a water resources management model

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2013-04-01

    Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total

  20. Prediction of ground water quality index to assess suitability for drinking purposes using fuzzy rule-based approach

    NASA Astrophysics Data System (ADS)

    Gorai, A. K.; Hasni, S. A.; Iqbal, Jawed

    2014-11-01

    Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert's opinion and author's judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.

  1. Application of intelligent systems in asthma disease: designing a fuzzy rule-based system for evaluating level of asthma exacerbation.

    PubMed

    Zolnoori, Maryam; Zarandi, Mohammad Hossein Fazel; Moin, Mostafa

    2012-08-01

    This paper discusses the capacities of artificial intelligence in the process of asthma diagnosing and asthma treatment. Developed intelligent systems for asthma disease have been classified in five categories including diagnosing, evaluating, management, communicative facilities, and prediction. Considering inputs, results, and methodologies of the systems show that by focusing on meticulous analysis of quality of life as an input variable and developing patient-based systems, under-diagnosing and asthma morbidity and mortality would decrease significantly. Regard to the importance of accurate evaluation in accurate prescription and expeditious treatment, the methodology of developing a fuzzy expert system for evaluating level of asthma exacerbation is presented in this paper too. The performance of this system has been tested in Asthma, Allergy, and Immunology Center of Iran using 25 asthmatic patients. Comparison between system's results and physicians' evaluations using Kappa coefficient (K) reinforces the value of K = 1. In addition this system assigns a degree in gradation (0-10) to every patient representing the slight differences between patients assigned to a specific category. PMID:21399914

  2. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets

    PubMed Central

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  3. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets.

    PubMed

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  4. Linking probability theory and fuzzy sets : a study in uncertainty assessment

    SciTech Connect

    Booker, J. M.; Bement, T. R.; Sellers, K. F.; Singpurwalla, Nozer D.

    2002-01-01

    Uncertainties enter into a complex problem from many sources: variability, errors, and lack of knowledge. A fundamental question arises in how to characterize the various kinds of uncertainty and then combine within a problem such as the verification and validation of a computer model, reliability of a dynamic system, or a complex decision problem. Our aim is to explore how probability theory and fuzzy set theory can be made to work in concert, so that uncertainty of outcomes and imprecision can be treated in a unified and coherent manner. Both the theoretical and application of a linkage between the two theories will be presented. An example from a reliability application will illustrate how the linkage between the theories is accomplished through the use of Bayes Theorem and the probability of fuzzy sets.

  5. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  6. Testing the applicability of artificial intelligence techniques to the subject of erythemal ultraviolet solar radiation part one: the applicability of a fuzzy rule based approach.

    PubMed

    Riad, A M; Elminir, Hamdy K; Own, Hala S; Azzam, Yosry A

    2008-02-27

    This work presents the applicability of applying a fuzzy logic approach to the calculation of noontime erythemal UV irradiance for the plain areas of Egypt. When different combinations of data sets were examined from the test performance point of view, it was found that 91% of the whole series was estimated within a deviation of less than +/-10 mW/m(2), and 9% of these deviations lay within the range of +/-15 mW/m(2) to +/-25 mW/m(2). PMID:18249003

  7. The double-slit experiment with Physarum polycephalum and p-adic valued probabilities and fuzziness

    NASA Astrophysics Data System (ADS)

    Schumann, Andrew; Adamatzky, Andrew

    2015-04-01

    Physarum polycephalum is a single-cell slime mould visible by unaided eye. When foraging for sources of nutrients the slime mould optimizes its body shape, or a network of protoplasmic tubes. This optimization can be interpreted as computation. Many experimental laboratory prototypes of Physarum-based non-silicon computing devices have been implemented recently yet the scope of the slime mould as a fuzzy processor was never explored. We are filling this gap and show, by implementing the double-slit experiment, that self-inconsistencies in the slime mould's behaviour cannot approximate atomic individual acts of Physarum. This finding is analogous to our inability to approximate single photons. We further interpret the Physarum's behaviour in terms of individual-collective duality using p-adic valued probabilities and fuzziness. We also construct a system of p-adic many-valued logic to describe experimental responses of Physarum and we show how this logic can be used in ?-adic fuzzy logic controllers on the medium of Physarum.

  8. A Neuro-Fuzzy Inference System Combining Wavelet Denoising, Principal Component Analysis, and Sequential Probability Ratio Test for Sensor Monitoring

    SciTech Connect

    Na, Man Gyun; Oh, Seungrohk

    2002-11-15

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.

  9. Fuzzy propositions weighted by veracities or how to relate fuzzy logic and probability theory for segmentation of ultrasound images

    NASA Astrophysics Data System (ADS)

    Debon, Renaud; Solaiman, Basel; Cauvin, Jean-Michel; Robaszkiewicz, Michel; Roux, Christian

    2002-03-01

    In medical imaging, and more generally in medical information, researches go towards fusion systems. Nowadays, the steps of information source definition, the pertinent data extraction and the fusion need to be conducted as a whole. In this work, our interest is related to the esophagus wall segmentation from ultrasound images sequences. We aim to elaborate a general methodology of data mining that coherently links works on data selection and fusion architectures, in order to extract useful information from raw data and to integrate efficiently the physician a prior. In the presented method, based on fuzzy logic, some fuzzy propositions are defined using physicians a prior knowledge. The use of probabilistic distributions, estimated thanks to a learning base of pathologic and non-pathologic cases, enables the veracity of these propositions to be qualified. This promising idea enables information to be managed through the consideration of both information imprecision and uncertainty. In the same time, the obtained benefit, when a prior knowledge source is injected in a fusion based decision system, can be quantified. By considering that, the fuzzyfication stage is optimized relatively to a given criteria using a genetic algorithm. By this manner, fuzzy sets corresponding to the physicians ambiguous a prior are defined objectively. At this level, we successively compare performances obtained when fuzzy functions are defined empirically and when they are optimized. We conclude this paper with the first results on esophagus wall segmentation and outline some further works.

  10. Use of an influence diagram and fuzzy probability for evaluating accident management in a boiling water reactor

    SciTech Connect

    Yu, D.; Kastenberg, W.E.; Okrent, D. . Mechanical, Aerospace, and Nuclear Engineering Dept.)

    1994-06-01

    A new approach is presented for evaluating the uncertainties inherent in severe accident management strategies. At first, this analysis considers accident management as a decision problem (i.e., applying a strategy compared with do nothing) and uses an influence diagram. To evaluate imprecise node probabilities in the influence diagram, the analysis introduces the concept of a fuzzy probability. When fuzzy logic is applied, fuzzy probabilities are easily propagated to obtain results. In addition, the results obtained provide not only information similar to the classical approach, which uses point-estimate values, but also additional information regarding the impact of using imprecise input data. As an illustrative example, the proposed methodology is applied to the evaluation of the drywell flooding strategy for a long-term station blackout sequence at the Peach Bottom nuclear power plant. The results show that the drywell flooding strategy is beneficial for preventing reactor vessel breach. It is also effective for reducing the probability of containment failure for both liner melt-through and late overpressurization. Even though uncertainty exists in the results, flooding is preferred to do nothing when evaluated in terms of two risk measures: early and late fatalities.

  11. An EEG-Based Fuzzy Probability Model for Early Diagnosis of Alzheimer's Disease.

    PubMed

    Chiang, Hsiu-Sen; Pao, Shun-Chi

    2016-05-01

    Alzheimer's disease is a degenerative brain disease that results in cardinal memory deterioration and significant cognitive impairments. The early treatment of Alzheimer's disease can significantly reduce deterioration. Early diagnosis is difficult, and early symptoms are frequently overlooked. While much of the literature focuses on disease detection, the use of electroencephalography (EEG) in Alzheimer's diagnosis has received relatively little attention. This study combines the fuzzy and associative Petri net methodologies to develop a model for the effective and objective detection of Alzheimer's disease. Differences in EEG patterns between normal subjects and Alzheimer patients are used to establish prediction criteria for Alzheimer's disease, potentially providing physicians with a reference for early diagnosis, allowing for early action to delay the disease progression. PMID:27059738

  12. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  13. Bayesian inference with adaptive fuzzy priors and likelihoods.

    PubMed

    Osoba, Osonde; Mitaim, Sanya; Kosko, Bart

    2011-10-01

    Fuzzy rule-based systems can approximate prior and likelihood probabilities in Bayesian inference and thereby approximate posterior probabilities. This fuzzy approximation technique allows users to apply a much wider and more flexible range of prior and likelihood probability density functions than found in most Bayesian inference schemes. The technique does not restrict the user to the few known closed-form conjugacy relations between the prior and likelihood. It allows the user in many cases to describe the densities with words and just two rules can absorb any bounded closed-form probability density directly into the rulebase. Learning algorithms can tune the expert rules as well as grow them from sample data. The learning laws and fuzzy approximators have a tractable form because of the convex-sum structure of additive fuzzy systems. This convex-sum structure carries over to the fuzzy posterior approximator. We prove a uniform approximation theorem for Bayesian posteriors: An additive fuzzy posterior uniformly approximates the posterior probability density if the prior or likelihood densities are continuous and bounded and if separate additive fuzzy systems approximate the prior and likelihood densities. Simulations demonstrate this fuzzy approximation of priors and posteriors for the three most common conjugate priors (as when a beta prior combines with a binomial likelihood to give a beta posterior). Adaptive fuzzy systems can also approximate non-conjugate priors and likelihoods as well as approximate hyperpriors in hierarchical Bayesian inference. The number of fuzzy rules can grow exponentially in iterative Bayesian inference if the previous posterior approximator becomes the new prior approximator. PMID:21478078

  14. Rule-Based Runtime Verification

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition, manipulation and execution. Monitoring is done on a state-by-state basis, without storing the execution trace.

  15. Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia.

    PubMed

    Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L

    2013-02-01

    The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies. PMID:23266912

  16. Automated revision of CLIPS rule-bases

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.; Pazzani, Michael J.

    1994-01-01

    This paper describes CLIPS-R, a theory revision system for the revision of CLIPS rule-bases. CLIPS-R may be used for a variety of knowledge-base revision tasks, such as refining a prototype system, adapting an existing system to slightly different operating conditions, or improving an operational system that makes occasional errors. We present a description of how CLIPS-R revises rule-bases, and an evaluation of the system on three rule-bases.

  17. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  18. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  19. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  20. A Novel Rules Based Approach for Estimating Software Birthmark

    PubMed Central

    Binti Alias, Norma; Anwar, Sajid

    2015-01-01

    Software birthmark is a unique quality of software to detect software theft. Comparing birthmarks of software can tell us whether a program or software is a copy of another. Software theft and piracy are rapidly increasing problems of copying, stealing, and misusing the software without proper permission, as mentioned in the desired license agreement. The estimation of birthmark can play a key role in understanding the effectiveness of a birthmark. In this paper, a new technique is presented to evaluate and estimate software birthmark based on the two most sought-after properties of birthmarks, that is, credibility and resilience. For this purpose, the concept of soft computing such as probabilistic and fuzzy computing has been taken into account and fuzzy logic is used to estimate properties of birthmark. The proposed fuzzy rule based technique is validated through a case study and the results show that the technique is successful in assessing the specified properties of the birthmark, its resilience and credibility. This, in turn, shows how much effort will be required to detect the originality of the software based on its birthmark. PMID:25945363

  1. A novel rules based approach for estimating software birthmark.

    PubMed

    Nazir, Shah; Shahzad, Sara; Khan, Sher Afzal; Alias, Norma Binti; Anwar, Sajid

    2015-01-01

    Software birthmark is a unique quality of software to detect software theft. Comparing birthmarks of software can tell us whether a program or software is a copy of another. Software theft and piracy are rapidly increasing problems of copying, stealing, and misusing the software without proper permission, as mentioned in the desired license agreement. The estimation of birthmark can play a key role in understanding the effectiveness of a birthmark. In this paper, a new technique is presented to evaluate and estimate software birthmark based on the two most sought-after properties of birthmarks, that is, credibility and resilience. For this purpose, the concept of soft computing such as probabilistic and fuzzy computing has been taken into account and fuzzy logic is used to estimate properties of birthmark. The proposed fuzzy rule based technique is validated through a case study and the results show that the technique is successful in assessing the specified properties of the birthmark, its resilience and credibility. This, in turn, shows how much effort will be required to detect the originality of the software based on its birthmark. PMID:25945363

  2. On Probability Domains III

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2015-12-01

    Domains of generalized probability have been introduced in order to provide a general construction of random events, observables and states. It is based on the notion of a cogenerator and the properties of product. We continue our previous study and show how some other quantum structures fit our categorical approach. We discuss how various epireflections implicitly used in the classical probability theory are related to the transition to fuzzy probability theory and describe the latter probability theory as a genuine categorical extension of the former. We show that the IF-probability can be studied via the fuzzy probability theory. We outline a "tensor modification" of the fuzzy probability theory.

  3. Combined model- and rule-based controller synthesis with application to helicopter flight

    NASA Astrophysics Data System (ADS)

    Jiang, Tian-Yue

    This thesis deals with synthesis of combined (nonlinear) model-based and (fuzzy logic) rule-based controllers, along with their applications to helicopter flight control problem. The synthesis involves superimposing two control techniques in order to meet both stability and performance objectives. One is model-based control technique, which is based on inversion of an approximate model of the real system. The other is rule-based control technique that adaptively cancels the inversion errors caused by the approximate model inversion. There are two major aspects of the research effort in this thesis. The first is the development of the adaptive rule-based (fuzzy logic) controllers. The linguistic rule weights and defuzzification output weights in the controllers are adapted for ultimate boundedness of the tracking errors. Numerical results from a helicopter flight control problem indicate improvement and demonstrate effectiveness of the control technique. The second aspect of this research work is the extension of the synthesis to account for control limits. In this thesis, a control saturation related rule-bank in conjunction with the adaptive fuzzy logic controller is designed to trade-off system performance for closed-loop stability when the tendency towards control amplitude and/or rate saturation is detected. Simulation results from both a fixed-wing aircraft trajectory control problem and a helicopter flight control problem show the effectiveness of the synthesis method and the resulting controller in avoiding control saturations.

  4. Use of fuzzy logic in lignite inventory estimation

    SciTech Connect

    Tutmez, B.; Dag, A.

    2007-07-01

    Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.

  5. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  6. Evolving fuzzy rules in a learning classifier system

    NASA Technical Reports Server (NTRS)

    Valenzuela-Rendon, Manuel

    1993-01-01

    The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.

  7. Parallelism In Rule-Based Systems

    NASA Astrophysics Data System (ADS)

    Sabharwal, Arvind; Iyengar, S. Sitharama; de Saussure, G.; Weisbin, C. R.

    1988-03-01

    Rule-based systems, which have proven to be extremely useful for several Artificial Intelligence and Expert Systems applications, currently face severe limitations due to the slow speed of their execution. To achieve the desired speed-up, this paper addresses the problem of parallelization of production systems and explores the various architectural and algorithmic possibilities. The inherent sources of parallelism in the production system structure are analyzed and the trade-offs, limitations and feasibility of exploitation of these sources of parallelism are presented. Based on this analysis, we propose a dedicated, coarse-grained, n-ary tree multiprocessor architecture for the parallel implementation of rule-based systems and then present algorithms for partitioning of rules in this architecture.

  8. Rule-based analysis of pilot decisions

    NASA Technical Reports Server (NTRS)

    Lewis, C. M.

    1985-01-01

    The application of the rule identification technique to the analysis of human performance data is proposed. The relation between the language and identifiable consistencies is discussed. The advantages of production system models for the description of complex human behavior are studied. The use of a Monte Carlo significance testing procedure to assure the validity of the rule identification is examined. An example of the rule-based analysis of Palmer's (1983) data is presented.

  9. Fuzzy Q-Learning for Generalization of Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.

  10. An architecture for rule based system explanation

    NASA Technical Reports Server (NTRS)

    Fennel, T. R.; Johannes, James D.

    1990-01-01

    A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.

  11. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  12. Indirect Adaptive Fuzzy Power System Stabilizer

    NASA Astrophysics Data System (ADS)

    Saoudi, Kamel; Bouchama, Ziad; Harmas, Mohamed Naguib; Zehar, Khaled

    2008-06-01

    A power system stabilizer based on adaptive fuzzy technique is presented. The design of a fuzzy logic power system stabilizer (FLPSS) requires the collection of fuzzy IF-THEN rules which are used to initialize an adaptive fuzzy power system AFPSS. The rule-base can be then tuned on-line so that the stabilizer can adapt to the different operating conditions occurring in the power system. The adaptation laws are developed based on a Lyapunov synthesis approach. Assessing the validity of this technique simulation of a power system is conducted and results are discussed.

  13. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  14. On Equivalence of FIS and ELM for Interpretable Rule-Based Knowledge Representation.

    PubMed

    Wong, Shen Yuong; Yap, Keem Siah; Yap, Hwa Jen; Tan, Shing Chiang; Chang, Siow Wee

    2015-07-01

    This paper presents a fuzzy extreme learning machine (F-ELM) that embeds fuzzy membership functions and rules into the hidden layer of extreme learning machine (ELM). Similar to the concept of ELM that employed the random initialization technique, three parameters of F-ELM are randomly assigned. They are the standard deviation of the membership functions, matrix-C (rule-combination matrix), and matrix-D [don't care (DC) matrix]. Fuzzy if-then rules are formulated by the rule-combination Matrix of F-ELM, and a DC approach is adopted to minimize the number of input attributes in the rules. Furthermore, F-ELM utilizes the output weights of the ELM to form the target class and confidence factor for each of the rules. This is to indicate that the corresponding consequent parameters are determined analytically. The operations of F-ELM are equivalent to a fuzzy inference system. Several benchmark data sets and a real world fault detection and diagnosis problem have been used to empirically evaluate the efficacy of the proposed F-ELM in handling pattern classification tasks. The results show that the accuracy rates of F-ELM are comparable (if not superior) to ELM with distinctive ability of providing explicit knowledge in the form of interpretable rule base. PMID:25134093

  15. Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

    PubMed

    Chen, Shyi-Ming; Hsin, Wen-Chyuan

    2015-07-01

    In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. PMID:25204003

  16. Life insurance risk assessment using a fuzzy logic expert system

    NASA Technical Reports Server (NTRS)

    Carreno, Luis A.; Steel, Roy A.

    1992-01-01

    In this paper, we present a knowledge based system that combines fuzzy processing with rule-based processing to form an improved decision aid for evaluating risk for life insurance. This application illustrates the use of FuzzyCLIPS to build a knowledge based decision support system possessing fuzzy components to improve user interactions and KBS performance. The results employing FuzzyCLIPS are compared with the results obtained from the solution of the problem using traditional numerical equations. The design of the fuzzy solution consists of a CLIPS rule-based system for some factors combined with fuzzy logic rules for others. This paper describes the problem, proposes a solution, presents the results, and provides a sample output of the software product.

  17. A rule-based software test data generator

    NASA Technical Reports Server (NTRS)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  18. Comparison between the performance of two classes of fuzzy controllers

    NASA Technical Reports Server (NTRS)

    Janabi, T. H.; Sultan, L. H.

    1992-01-01

    This paper presents an application comparison between two classes of fuzzy controllers: the Clearness Transformation Fuzzy Controller (CTFC) and the CRI-based Fuzzy Controller. The comparison is performed by studying the application of the controllers to simulation examples of nonlinear systems. The CTFC is a new approach for the organization of fuzzy controllers based on a cognitive model of parameter driven control, the notion of fuzzy patterns to represent fuzzy knowledge and the Clearness Transformation Rule of Inference (CTRI) for approximate reasoning. The approach facilitates the implementation of the basic modules of the controller: the fuzzifier, defuzzifier, and the control protocol in a rule-based architecture. The CTRI scheme for approximate reasoning does not require the formation of fuzzy relation matrices yielding improved performance in comparison with the traditional organization of fuzzy controllers.

  19. A graphical, rule based robotic interface system

    NASA Technical Reports Server (NTRS)

    Mckee, James W.; Wolfsberger, John

    1988-01-01

    The ability of a human to take control of a robotic system is essential in any use of robots in space in order to handle unforeseen changes in the robot's work environment or scheduled tasks. But in cases in which the work environment is known, a human controlling a robot's every move by remote control is both time consuming and frustrating. A system is needed in which the user can give the robotic system commands to perform tasks but need not tell the system how. To be useful, this system should be able to plan and perform the tasks faster than a telerobotic system. The interface between the user and the robot system must be natural and meaningful to the user. A high level user interface program under development at the University of Alabama, Huntsville, is described. A graphical interface is proposed in which the user selects objects to be manipulated by selecting representations of the object on projections of a 3-D model of the work environment. The user may move in the work environment by changing the viewpoint of the projections. The interface uses a rule based program to transform user selection of items on a graphics display of the robot's work environment into commands for the robot. The program first determines if the desired task is possible given the abilities of the robot and any constraints on the object. If the task is possible, the program determines what movements the robot needs to make to perform the task. The movements are transformed into commands for the robot. The information defining the robot, the work environment, and how objects may be moved is stored in a set of data bases accessible to the program and displayable to the user.

  20. Individual Differences in Base Rate Neglect: A Fuzzy Processing Preference Index

    PubMed Central

    Wolfe, Christopher R.; Fisher, Christopher R.

    2013-01-01

    Little is known about individual differences in integrating numeric base-rates and qualitative text in making probability judgments. Fuzzy-Trace Theory predicts a preference for fuzzy processing. We conducted six studies to develop the FPPI, a reliable and valid instrument assessing individual differences in this fuzzy processing preference. It consists of 19 probability estimation items plus 4 "M-Scale" items that distinguish simple pattern matching from “base rate respect.” Cronbach's Alpha was consistently above 0.90. Validity is suggested by significant correlations between FPPI scores and three other measurers: "Rule Based" Process Dissociation Procedure scores; the number of conjunction fallacies in joint probability estimation; and logic index scores on syllogistic reasoning. Replicating norms collected in a university study with a web-based study produced negligible differences in FPPI scores, indicating robustness. The predicted relationships between individual differences in base rate respect and both conjunction fallacies and syllogistic reasoning were partially replicated in two web-based studies. PMID:23935255

  1. Response-time optimization of rule-based expert systems

    NASA Astrophysics Data System (ADS)

    Zupan, Blaz; Cheng, Albert M. K.

    1994-03-01

    Real-time rule-based decision systems are embedded AI systems and must make critical decisions within stringent timing constraints. In the case where the response time of the rule- based system is not acceptable, it has to be optimized to meet both timing and integrity constraints. This paper describes a novel approach to reduce the response time of rule-based expert systems. Our optimization method is twofold: the first phase constructs the reduced cycle-free finite state transition system corresponding to the input rule-based system, and the second phase further refines the constructed transition system using the simulated annealing approach. The method makes use of rule-base system decomposition, concurrency, and state- equivalency. The new and optimized system is synthesized from the derived transition system. Compared with the original system, the synthesized system has fewer number of rule firings to reach the fixed point, is inherently stable, and has no redundant rules.

  2. Identifying desertification risk areas using fuzzy membership and geospatial technique - A case study, Kota District, Rajasthan

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arunima; Sastry, K. L. N.; Dhinwa, P. S.; Rathore, V. S.; Nathawat, M. S.

    2013-08-01

    Desertification risk assessment is important in order to take proper measures for its prevention. Present research intends to identify the areas under risk of desertification along with their severity in terms of degradation in natural parameters. An integrated model with fuzzy membership analysis, fuzzy rule-based inference system and geospatial techniques was adopted, including five specific natural parameters namely slope, soil pH, soil depth, soil texture and NDVI. Individual parameters were classified according to their deviation from mean. Membership of each individual values to be in a certain class was derived using the normal probability density function of that class. Thus if a single class of a single parameter is with mean μ and standard deviation σ, the values falling beyond μ + 2 σ and μ - 2 σ are not representing that class, but a transitional zone between two subsequent classes. These are the most important areas in terms of degradation, as they have the lowest probability to be in a certain class, hence highest probability to be extended or narrowed down in next or previous class respectively. Eventually, these are the values which can be easily altered, under extrogenic influences, hence are identified as risk areas. The overall desertification risk is derived by incorporating the different risk severity of each parameter using fuzzy rule-based interference system in GIS environment. Multicriteria based geo-statistics are applied to locate the areas under different severity of desertification risk. The study revealed that in Kota, various anthropogenic pressures are accelerating land deterioration, coupled with natural erosive forces. Four major sources of desertification in Kota are, namely Gully and Ravine erosion, inappropriate mining practices, growing urbanization and random deforestation.

  3. Rule-based Cross-matching of Very Large Catalogs

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Mazzarella, J.; Ebert, R.; Fadda, D.; Lo, T.; Terek, S.; Schmitz, M.; NED Team

    2015-09-01

    The NASA Extragalactic Database (NED) has deployed a new rule-based cross-matching algorithm called Match Expert (MatchEx), capable of cross-matching very large catalogs (VLCs) with >10 million objects. MatchEx goes beyond traditional position-based cross-matching algorithms by using other available data together with expert logic to determine which candidate match is the best. Furthermore, the local background density of sources is used to determine and minimize the false-positive match rate and to estimate match completeness. The logical outcome and statistical probability of each match decision is stored in the database and may be used to tune the algorithm and adjust match parameter thresholds. For our first production run, we cross-matched the GALEX All Sky Survey Catalog (GASC), containing nearly 40 million NUV-detected sources, against a directory of 180 million objects in NED. Candidate matches were identified for each GASC source within a 7''.5 radius. These candidates were filtered on position-based matching probability and on other criteria including object type and object name. We estimate a match completeness of 97.6% and a match accuracy of 99.75%. Over the next year, we will be cross-matching over 2 billion catalog sources to NED, including the Spitzer Source List, the 2MASS point-source catalog, AllWISE, and SDSS DR 10. We expect to add new capabilities to filter candidate matches based on photometry, redshifts, and refined object classifications. We will also extend MatchEx to handle more heterogenous datasets federated from smaller catalogs through NED's literature pipeline.

  4. Rule-based fault-tolerant flight control

    NASA Technical Reports Server (NTRS)

    Handelman, Dave

    1988-01-01

    Fault tolerance has always been a desirable characteristic of aircraft. The ability to withstand unexpected changes in aircraft configuration has a direct impact on the ability to complete a mission effectively and safely. The possible synergistic effects of combining techniques of modern control theory, statistical hypothesis testing, and artificial intelligence in the attempt to provide failure accommodation for aircraft are investigated. This effort has resulted in the definition of a theory for rule based control and a system for development of such a rule based controller. Although presented here in response to the goal of aircraft fault tolerance, the rule based control technique is applicable to a wide range of complex control problems.

  5. A simple fuzzy logic real-time camera tracking system

    NASA Technical Reports Server (NTRS)

    Magee, Kevin N.; Cheatham, John B., Jr.

    1993-01-01

    A fuzzy logic control of camera pan and tilt has been implemented to provide real-time camera tracking of a moving object. The user clicks a mouse button to identify the object that is to be tracked. A rapid centroid estimation algorithm is used to estimate the location of the moving object, and based on simple fuzzy membership functions, fuzzy x and y values are input into a six-rule fuzzy logic rule base. The output of this system is de-fuzzified to provide pan and tilt velocities required to keep the image of the object approximately centered in the camera field of view.

  6. A probabilistic rule-based expert system.

    PubMed

    Todd, B S; Stamper, R; Macpherson, P

    1993-09-01

    This paper explores a medical expert system combining techniques of Bayesian network modelling with ideas of weighted inference rules. The weights of the individual rules can be estimated objectively from a training set of actual cases; and they can be used in a Monte Carlo stimulation to estimate objectively conditional probabilities of diagnosis given particular combinations of symptoms. The paper describes and evaluates a medical expert system built according to this design. The diagnostic accuracy of the program was found to be similar to that obtained through the usual application of Bayes theorem with the assumption of conditional independence of symptoms given disease, even though the Bayesian classifier has more than 70 times as many numerical parameters. The method may be promising in cases where small training sets do not permit accurate estimation of large numbers of parameters. PMID:8282430

  7. Bounded-time fault-tolerant rule-based systems

    NASA Technical Reports Server (NTRS)

    Browne, James C.; Emerson, Allen; Gouda, Mohamed; Miranker, Daniel; Mok, Aloysius; Rosier, Louis

    1990-01-01

    Two systems concepts are introduced: bounded response-time and self-stabilization in the context of rule-based programs. These concepts are essential for the design of rule-based programs which must be highly fault tolerant and perform in a real time environment. The mechanical analysis of programs for these two properties is discussed. The techniques are used to analyze a NASA application.

  8. Overcoming deficiencies of the rule-based medical expert system.

    PubMed

    Hughes, C A; Gose, E E; Roseman, D L

    1990-05-01

    One of the current deficiencies of the rule-based expert system is its static nature. As these systems are applied to medicine, this shortcoming becomes accentuated by: the rapid speed at which new knowledge is generated, the regional differences associated with the expression of many diseases, and the rate at which patient demographics and disease incidence change over time. This research presents a solution to the static nature of the rule-based expert system by proposing a hybrid system. This system consists of an expert system and a statistical analysis system linked to a patient database. The additional feature of a rule base manager which initiates automatic database analysis to refresh the statistical correlation of each rule ensures a dynamic, current, statistically accurate rule base. The philosophical differences between data and knowledge are also addressed as they apply to this type of hybrid system. The system is then used to generate four rule bases from different knowledge sources. These rule bases are then compared. PMID:2401135

  9. ASICs Approach for the Implementation of a Symmetric Triangular Fuzzy Coprocessor and Its Application to Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan

    1997-01-01

    This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.

  10. A composite self tuning strategy for fuzzy control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Shieh, C.-Y.; Nair, Satish S.

    1992-01-01

    The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.

  11. MEDUSA: a fuzzy expert system for medical diagnosis of acute abdominal pain.

    PubMed

    Fathi-Torbaghan, M; Meyer, D

    1994-12-01

    Even today, the diagnosis of acute abdominal pain represents a serious clinical problem. The medical knowledge in this field is characterized by uncertainty, imprecision and vagueness. This situation lends itself especially to be solved by the application of fuzzy logic. A fuzzy logic-based expert system for diagnostic decision support is presented (MEDUSA). The representation and application of uncertain and imprecise knowledge is realized by fuzzy sets and fuzzy relations. The hybrid concept of the system enables the integration of rule-based, heuristic and case-based reasoning on the basis of imprecise information. The central idea of the integration is to use case-based reasoning for the management of special cases, and rule-based reasoning for the representation of normal cases. The heuristic principle is ideally suited for making uncertain, hypothetical inferences on the basis of fuzzy data and fuzzy relations. PMID:7869951

  12. Fuzzy logic controllers: From development to deployment

    SciTech Connect

    Bonissone, P.P.; Chiang, K.H.

    1994-12-31

    We view fuzzy logic control technology as a high level language in which we can efficiently define and synthesize non-linear controllers for a given process. We contrast fuzzy Proportional Integral (PI) controllers with conventional PI and two dimensional sliding mode controllers. Then we compare the development of Fuzzy Logic Controllers (FLC) with that of Knowledge Based System (KBS) applications. We decompose the comparison into reasoning tasks (representation, inference, and control) and application tasks (acquisition, development, validation, compilation, and deployment). After reviewing the reasoning tasks, we focus on the compilation of fuzzy rule bases into fast access lookup tables. These tables can be used by a simplified run-time engine to determine the TLC`s crisp output for a given input.

  13. Single board system for fuzzy inference

    NASA Technical Reports Server (NTRS)

    Symon, James R.; Watanabe, Hiroyuki

    1991-01-01

    The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.

  14. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  15. Concurrent validity of a rule-based system.

    PubMed

    Hirsch, M; Chang, B L; Jensen, K

    1993-01-01

    The purpose of this project was to test the concurrent validity of the diagnoses recommended by a rule-based expert system. Concurrent validity was determined first by comparing the expert system's computerized diagnostic recommendations with that of a Clinical Nurse Specialist (CNS Assessor) who assessed the patient, and secondly by comparing the expert system's candidate diagnoses with those of a panel of 10 clinical nurse specialists (CNS Panel). The expert system rule base for generating diagnoses was programmed for some of the most common nursing diagnoses (Metzger & Hiltunen, 1987) including: alteration in comfort, acute pain; impaired physical mobility; sleep pattern disturbance; impairment of skin integrity and self-care deficit (bathing, feeding, toileting, and dressing). Activity intolerance and potential for infection were also programmed as diagnostic possibilities in the rule base. PMID:8069751

  16. Converting a rule-based expert system into a belief network.

    PubMed

    Korver, M; Lucas, P J

    1993-01-01

    The theory of belief networks offers a relatively new approach for dealing with uncertain information in knowledge-based (expert) systems. In contrast with the heuristic techniques for reasoning with uncertainty employed in many rule-based expert systems, the theory of belief networks is mathematically sound, based on techniques from probability theory. It therefore seems attractive to convert existing rule-based expert systems into belief networks. In this article we discuss the design of a belief network reformulation of the diagnostic rule-based expert system HEPAR. For the purpose of this experiment we have studied several typical pieces of medical knowledge represented in the HEPAR system. It turned out that, due to the differences in the type of knowledge represented and in the formalism used to represent uncertainty, much of the medical knowledge required for building the belief network concerned could not be extracted from HEPAR. As a consequence, significant additional knowledge acquisition was required. However, the objects and attributes defined in the HEPAR system, as well as the conditions in production rules mentioning these objects and attributes, were useful for guiding the selection of the statistical variables for building the belief network. The mapping of objects and attributes in HEPAR to statistical variables is discussed in detail. PMID:8289533

  17. Falcon: neural fuzzy control and decision systems using FKP and PFKP clustering algorithms.

    PubMed

    Tung, W L; Quek, C

    2004-02-01

    Neural fuzzy networks proposed in the literature can be broadly classified into two groups. The first group is essentially fuzzy systems with self-tuning capabilities and requires an initial rule base to be specified prior to training. The second group of neural fuzzy networks, on the other hand, is able to automatically formulate the fuzzy rules from the numerical training data. Examples are the Falcon-ART, and the POPFNN family of networks. A cluster analysis is first performed on the training data and the fuzzy rules are subsequently derived through the proper connections of these computed clusters. This correspondence proposes two new networks: Falcon-FKP and Falcon-PFKP. They are extensions of the Falcon-ART network, and aimed to overcome the shortcomings faced by the Falcon-ART network itself, i.e., poor classification ability when the classes of input data are very similar to each other, termination of training cycle depends heavily on a preset error parameter, the fuzzy rule base of the Falcon-ART network may not be consistent Nauck, there is no control over the number of fuzzy rules generated, and learning efficiency may deteriorate by using complementarily coded training data. These deficiencies are essentially inherent to the fuzzy ART, clustering technique employed by the Falcon-ART network. Hence, two clustering techniques--Fuzzy Kohonen Partitioning (FKP) and its pseudo variant PFKP, are synthesized with the basic Falcon structure to compute the fuzzy sets and to automatically derive the fuzzy rules from the training data. The resultant neural fuzzy networks are Falcon-FKP and Falcon-PFKP, respectively. These two proposed networks have a lean and efficient training algorithm and consistent fuzzy rule bases. Extensive simulations are conducted using the two networks and their performances are encouraging when benchmarked against other neural and neural fuzzy systems. PMID:15369109

  18. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Rowlands, Aled; Brown, Alan; Keyworth, Steve; Bunting, Peter

    AimTo evaluate the use of time-series of Landsat sensor data acquired over an annual cycle for mapping semi-natural habitats and agricultural land cover. LocationBerwyn Mountains, North Wales, United Kingdom. MethodsUsing eCognition Expert, segmentation of the Landsat sensor data was undertaken for actively managed agricultural land based on Integrated Administration and Control System (IACS) land parcel boundaries, whilst a per-pixel level segmentation was undertaken for all remaining areas. Numerical decision rules based on fuzzy logic that coupled knowledge of ecology and the information content of single and multi-date remotely sensed data and derived products (e.g., vegetation indices) were developed to discriminate vegetation types based primarily on inferred differences in phenology, structure, wetness and productivity. ResultsThe rule-based classification gave a good representation of the distribution of habitats and agricultural land. The more extensive, contiguous and homogeneous habitats could be mapped with accuracies exceeding 80%, although accuracies were lower for more complex environments (e.g., upland mosaics) or those with broad definition (e.g., semi-improved grasslands). Main conclusionsThe application of a rule-based classification to temporal imagery acquired over selected periods within an annual cycle provides a viable approach for mapping and monitoring of habitats and agricultural land in the United Kingdom that could be employed operationally.

  19. Annotation of SBML models through rule-based semantic integration

    PubMed Central

    2010-01-01

    Background The creation of accurate quantitative Systems Biology Markup Language (SBML) models is a time-intensive, manual process often complicated by the many data sources and formats required to annotate even a small and well-scoped model. Ideally, the retrieval and integration of biological knowledge for model annotation should be performed quickly, precisely, and with a minimum of manual effort. Results Here we present rule-based mediation, a method of semantic data integration applied to systems biology model annotation. The heterogeneous data sources are first syntactically converted into ontologies, which are then aligned to a small domain ontology by applying a rule base. We demonstrate proof-of-principle of this application of rule-based mediation using off-the-shelf semantic web technology through two use cases for SBML model annotation. Existing tools and technology provide a framework around which the system is built, reducing development time and increasing usability. Conclusions Integrating resources in this way accommodates multiple formats with different semantics, and provides richly-modelled biological knowledge suitable for annotation of SBML models. This initial work establishes the feasibility of rule-based mediation as part of an automated SBML model annotation system. Availability Detailed information on the project files as well as further information on and comparisons with similar projects is available from the project page at http://cisban-silico.cs.ncl.ac.uk/RBM/. PMID:20626923

  20. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  1. Rule-Based Category Learning in Down Syndrome

    ERIC Educational Resources Information Center

    Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.

    2014-01-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…

  2. Application of rule based methods to predicting storm surge

    NASA Astrophysics Data System (ADS)

    Royston, S. J.; Horsburgh, K. J.; Lawry, J.

    2012-04-01

    The accurate forecast of storm surge, the long wavelength sea level response to meteorological forcing, is imperative for flood warning purposes. There remain regions of the world where operational forecast systems have not been developed and in these locations it is worthwhile considering numerically simpler, data-driven techniques to provide operational services. In this paper, we investigate the applicability of a class of data driven methods referred to as rule based models to the problem of forecasting storm surge. The accuracy of the rule based model is found to be comparable to several alternative data-driven techniques, all of which result in marginally worse but acceptable forecasts compared with the UK's operational hydrodynamic forecast model, given the reduction in computational effort. Promisingly, the rule based model is considered to be skillful in forecasting total water levels above a given flood warning threshold, with a Brier Skill Score of 0.58 against a climatological forecast (the operational storm surge system has a Brier Skill Score of up to 0.75 for the same data set). The structure of the model can be interrogated as IF-THEN rules and we find that the model structure in this case is consistent with our understanding of the physical system. Furthermore, the rule based approach provides probabilistic forecasts of storm surge, which is much more informative to flood warning managers than alternative approaches. Therefore, the rule based model provides reasonably skillful forecasts in comparison with the operational forecast model, for a significant reduction in development and run time, and is therefore considered to be an appropriate data driven approach that could be employed to forecast storm surge in regions of the world where a fully fledged hydrodynamic forecast system does not exist, provided a good observational and meteorological forecast can be made.

  3. Fuzzy fractals, chaos, and noise

    SciTech Connect

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  4. Fuzzy resource optimization for safeguards

    SciTech Connect

    Zardecki, A.; Markin, J.T.

    1991-01-01

    Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab.

  5. Fuzzy Commitment

    NASA Astrophysics Data System (ADS)

    Juels, Ari

    The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.

  6. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  7. Using new aggregation operators in rule-based intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.

    1990-01-01

    A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.

  8. eFSM--a novel online neural-fuzzy semantic memory model.

    PubMed

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This

  9. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  10. An Embedded Rule-Based Diagnostic Expert System in Ada

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Liberman, Eugene M.

    1992-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  11. Index : A Rule Based Expert System For Computer Network Maintenance

    NASA Astrophysics Data System (ADS)

    Chaganty, Srinivas; Pitchai, Anandhi; Morgan, Thomas W.

    1988-03-01

    Communications is an expert intensive discipline. The application of expert systems for maintenance of large and complex networks, mainly as an aid in trouble shooting, can simplify the task of network management. The important steps involved in troubleshooting are fault detection, fault reporting, fault interpretation and fault isolation. At present, Network Maintenance Facilities are capable of detecting and reporting the faults to network personnel. Fault interpretation refers to the next step in the process, which involves coming up with reasons for the failure. Fault interpretation can be characterized in two ways. First, it involves such a diversity of facts that it is difficult to predict. Secondly, it embodies a wealth of knowledge in the form of network management personnel. The application of expert systems in these interpretive tasks is an important step towards automation of network maintenance. In this paper, INDEX (Intelligent Network Diagnosis Expediter), a rule based production system for computer network alarm interpretation is described. It acts as an intelligent filter for people analyzing network alarms. INDEX analyzes the alarms in the network and identifies proper maintenance action to be taken.The important feature of this production system is that it is data driven. Working memory is the principal data repository of production systems and its contents represent the current state of the problem. Control is based upon which productions match the constantly changing working memory elements. Implementation of the prototype is in OPS83. Major issues in rule based system development such as rule base organization, implementation and efficiency are discussed.

  12. Dopaminergic Genetic Polymorphisms Predict Rule-based Category Learning.

    PubMed

    Byrne, Kaileigh A; Davis, Tyler; Worthy, Darrell A

    2016-07-01

    Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 dopamine receptor gene polymorphisms affect striatal dopamine binding potential, and the Val158Met single-nucleotide polymorphism of the COMT gene moderates dopamine availability in the pFC. Our study assesses the role of these gene polymorphisms on performance in two rule-based category learning tasks. Participants completed unidimensional and conjunctive rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on both tasks. However, we found an interaction between COMT and task type where Met allele carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in both types of rule-based tasks, whereas prefrontal dopamine binding is important for learning more complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes influence selective attention processes whereas cortical genes mediate the ability to update complex rule representations. PMID:26918585

  13. Reliability Assessment and Robustness Study for Key Navigation Components using Belief Rule Based System

    NASA Astrophysics Data System (ADS)

    You, Yuan; Wang, Liuying; Chang, Leilei; Ling, Xiaodong; Sun, Nan

    2016-02-01

    The gyro device is the key navigation component for maritime tracking and control, and gyro shift is the key factor which influences the performance of the gyro device, which makes conducting the reliability analysis on the gyro device very important. For the gyro device reliability analysis, the residual life probability prediction plays an essential role although it requires a complex process adapted by existed studies. In this study the Belief Rule Base (BRB) system is applied to model the relationship between the time as the input and the residual life probability as the output. Two scenarios are designed to study the robustness of the proposed BRB prediction model. The comparative results show that the BRB prediction model performs better in Scenario II when new the referenced values are predictable.

  14. Fuzzy architecture assessment for critical infrastructure resilience

    SciTech Connect

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  15. Engineering application based on fuzzy approach

    NASA Astrophysics Data System (ADS)

    Pislaru, Marius; Avasilcai, Silvia; Trandabat, Alexandru

    2011-12-01

    The article focus on an application of chemical engineering. A fuzzy modeling methodology designed to determinate two relevant characteristics of a chemical compound (ferrocenylsiloxane polyamide) for self-assembling - surface tension and maximum UV absorbance measured as temperature and concentration functions. One of the most important parts of a fuzzy rule-based inference system for the polyamide solution characteristics determinations is that it allows to interpret the knowledge contained in the model and also to improve it with a-priori knowledge. The results obtained through proposed method are highly accurate and its can be optimized by utilizing the available information during the modeling process. The results showed that it is feasible in theory and reliable on calculation applying Mamdani fuzzy inference system to the estimation of optical and surface properties of a polyamide solution.

  16. Engineering application based on fuzzy approach

    NASA Astrophysics Data System (ADS)

    Pislaru, Marius; Avasilcai, Silvia; Trandabat, Alexandru

    2012-01-01

    The article focus on an application of chemical engineering. A fuzzy modeling methodology designed to determinate two relevant characteristics of a chemical compound (ferrocenylsiloxane polyamide) for self-assembling - surface tension and maximum UV absorbance measured as temperature and concentration functions. One of the most important parts of a fuzzy rule-based inference system for the polyamide solution characteristics determinations is that it allows to interpret the knowledge contained in the model and also to improve it with a-priori knowledge. The results obtained through proposed method are highly accurate and its can be optimized by utilizing the available information during the modeling process. The results showed that it is feasible in theory and reliable on calculation applying Mamdani fuzzy inference system to the estimation of optical and surface properties of a polyamide solution.

  17. Medical application of fuzzy logic: fuzzy patient state in arterial hypertension analysis

    NASA Astrophysics Data System (ADS)

    Blinowska, Aleksandra; Duckstein, Lucien

    1993-12-01

    A few existing applications of fuzzy logic in medicine are briefly described and some potential applications are reviewed. The problem of classification of patient states and medical decision making is discussed more in detail and illustrated by the example of a fuzzy rule based model developed to elicit, analyze and reproduce the opinions of multiple medical experts in the case of arterial hypertension. The goal was to reproduce the average coded answers using an adequate fuzzy procedure, here a fuzzy rule. State categories and the initial set of experimental parameters were defined according to medical practice. The fuzzy set membership functions were then assessed for each parameter in each category and a small subset of representative and pertinent parameters selected for each question. The data were split into two sets of 50 patient files each, the calibration set and the validation set. Two evaluation criteria were used: the sum of squared deviations and the sum of deviations. Fuzzy rules were then sought that reproduced the target, which was the average coded answer. Only one fuzzy rule `and' appeared to be necessary to describe the patient state in a continuous way and to approach the target as closely as the majority of experts.

  18. Hybrid Takagi-Sugeno Fuzzy FED PID Control of Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Hamed, Basil; El Khateb, Ahmad

    2008-06-01

    The new method of proportional-integral-derivative (PID) controller is proposed in this paper for a hybrid fuzzy PID controller for nonlinear system. The important feature of the proposed approach is that it combines the fuzzy gain scheduling method and a fuzzy fed PID controller to solve the nonlinear control problem. The resultant fuzzy rule base of the proposed controller contains one part. This single part of the rules uses the Takagi-Sugeno method for solving the nonlinear problem. The simulation results of a nonlinear system show that the performance of a fed PID Hybrid Takagi-Sugeno fuzzy controller is better than that of the conventional fuzzy PID controller or Hybrid Mamdani fuzzy FED PID controller.

  19. On Fuzzy Sets: Reply to Cerny.

    ERIC Educational Resources Information Center

    Robertson, Stephen E.

    1979-01-01

    Responds to Barbara A. Cerny's reaction to Robinson's article on the role of fuzzy set theory in information science, addressing Cerny's points about probability theory and statistical uncertainty. (FM)

  20. LinguisticBelief: a java application for linguistic evaluation using belief, fuzzy sets, and approximate reasoning.

    SciTech Connect

    Darby, John L.

    2007-03-01

    LinguisticBelief is a Java computer code that evaluates combinations of linguistic variables using an approximate reasoning rule base. Each variable is comprised of fuzzy sets, and a rule base describes the reasoning on combinations of variables fuzzy sets. Uncertainty is considered and propagated through the rule base using the belief/plausibility measure. The mathematics of fuzzy sets, approximate reasoning, and belief/ plausibility are complex. Without an automated tool, this complexity precludes their application to all but the simplest of problems. LinguisticBelief automates the use of these techniques, allowing complex problems to be evaluated easily. LinguisticBelief can be used free of charge on any Windows XP machine. This report documents the use and structure of the LinguisticBelief code, and the deployment package for installation client machines.

  1. Simulation of large-scale rule-based models

    SciTech Connect

    Hlavacek, William S; Monnie, Michael I; Colvin, Joshua; Faseder, James

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  2. Teaching medical diagnosis: a rule-based approach.

    PubMed

    Michalowski, W; Rubin, S; Aggarwal, H

    1993-01-01

    This paper discusses the design of a diagnostic process simulator which teaches medical students to think clinically. This was possible to achieve due to the application of a rule-based approach to represent diagnosis and treatments. Whilst using the simulator, as a result of the student's incorrect and correct decisions, the clinical situation changes accordingly. New diagnostic options result in the ability to choose further clinical and laboratory tests. The simulator is being implemented on Sun workstations and Macintosh computers using Prolog programming language. PMID:8139404

  3. Mapping Rule-Based And Stochastic Constraints To Connection Architectures: Implication For Hierarchical Image Processing

    NASA Astrophysics Data System (ADS)

    Miller, Michael I.; Roysam, Badrinath; Smith, Kurt R.

    1988-10-01

    Essential to the solution of ill posed problems in vision and image processing is the need to use object constraints in the reconstruction. While Bayesian methods have shown the greatest promise, a fundamental difficulty has persisted in that many of the available constraints are in the form of deterministic rules rather than as probability distributions and are thus not readily incorporated as Bayesian priors. In this paper, we propose a general method for mapping a large class of rule-based constraints to their equivalent stochastic Gibbs' distribution representation. This mapping allows us to solve stochastic estimation problems over rule-generated constraint spaces within a Bayesian framework. As part of this approach we derive a method based on Langevin's stochastic differential equation and a regularization technique based on the classical autologistic transfer function that allows us to update every site simultaneously regardless of the neighbourhood structure. This allows us to implement a completely parallel method for generating the constraint sets corresponding to the regular grammar languages on massively parallel networks. We illustrate these ideas by formulating the image reconstruction problem based on a hierarchy of rule-based and stochastic constraints, and derive a fully parallelestimator structure. We also present results computed on the AMT DAP500 massively parallel digital computer, a mesh-connected 32x32 array of processing elements which are configured in a Single-Instruction, Multiple Data stream architecture.

  4. A fuzzy behaviorist approach to sensor-based robot control

    SciTech Connect

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  5. Rule-based semantic web services matching strategy

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Wang, Zhihua

    2011-12-01

    With the development of Web services technology, the number of service increases rapidly, and it becomes a challenge task that how to efficiently discovery the services that exactly match the user's requirements from the large scale of services library. Many semantic Web services discovery technologies proposed by the recent literatures only focus on the keyword-based or primary semantic based service's matching. This paper studies the rules and rule reasoning based service matching algorithm in the background of large scale services library. Firstly, the formal descriptions of semantic web services and service matching is presented. The services' matching are divided into four levels: Exact, Plugin, Subsume and Fail and their formal descriptions are also presented. Then, the service matching is regarded as rule-based reasoning issues. A set of match rules are firstly given and the related services set is retrieved from services ontology base through rule-based reasoning, and their matching levels are determined by distinguishing the relationships between service's I/O and user's request I/O. Finally, the experiment based on two services sets show that the proposed services matching strategy can easily implement the smart service discovery and obtains the high service discovery efficiency in comparison with the traditional global traversal strategy.

  6. Rule-based expert system for maritime anomaly detection

    NASA Astrophysics Data System (ADS)

    Roy, Jean

    2010-04-01

    Maritime domain operators/analysts have a mandate to be aware of all that is happening within their areas of responsibility. This mandate derives from the needs to defend sovereignty, protect infrastructures, counter terrorism, detect illegal activities, etc., and it has become more challenging in the past decade, as commercial shipping turned into a potential threat. In particular, a huge portion of the data and information made available to the operators/analysts is mundane, from maritime platforms going about normal, legitimate activities, and it is very challenging for them to detect and identify the non-mundane. To achieve such anomaly detection, they must establish numerous relevant situational facts from a variety of sensor data streams. Unfortunately, many of the facts of interest just cannot be observed; the operators/analysts thus use their knowledge of the maritime domain and their reasoning faculties to infer these facts. As they are often overwhelmed by the large amount of data and information, automated reasoning tools could be used to support them by inferring the necessary facts, ultimately providing indications and warning on a small number of anomalous events worthy of their attention. Along this line of thought, this paper describes a proof-of-concept prototype of a rule-based expert system implementing automated rule-based reasoning in support of maritime anomaly detection.

  7. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  8. Fuzzy Control of Robotic Arm

    NASA Astrophysics Data System (ADS)

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.

  9. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  10. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  11. Using constraints to model disjunctions in rule-based reasoning

    SciTech Connect

    Liu, Bing; Jaffar, Joxan

    1996-12-31

    Rule-based systems have long been widely used for building expert systems to perform practical knowledge intensive tasks. One important issue that has not been addressed satisfactorily is the disjunction, and this significantly limits their problem solving power. In this paper, we show that some important types of disjunction can be modeled with Constraint Satisfaction Problem (CSP) techniques, employing their simple representation schemes and efficient algorithms. A key idea is that disjunctions are represented as constraint variables, relations among disjunctions are represented as constraints, and rule chaining is integrated with constraint solving. In this integration, a constraint variable or a constraint is regarded as a special fact, and rules can be written with constraints, and information about constraints. Chaining of rules may trigger constraint propagation, and constraint propagation may cause firing of rules. A prototype system (called CFR) based on this idea has been implemented.

  12. Rule-based extrapolation: a continuing challenge for exemplar models.

    PubMed

    Denton, Stephen E; Kruschke, John K; Erickson, Michael A

    2008-08-01

    Erickson and Kruschke (1998, 2002) demonstrated that in rule-plus-exception categorization, people generalize category knowledge by extrapolating in a rule-like fashion, even when they are presented with a novel stimulus that is most similar to a known exception. Although exemplar models have been found to be deficient in explaining rule-based extrapolation, Rodrigues and Murre (2007) offered a variation of an exemplar model that was better able to account for such performance. Here, we present the results of a new rule-plus-exception experiment that yields rule-like extrapolation similar to that of previous experiments, and yet the data are not accounted for by Rodrigues and Murre's augmented exemplar model. Further, a hybrid rule-and-exemplar model is shown to better describe the data. Thus, we maintain that rule-plus-exception categorization continues to be a challenge for exemplar-only models. PMID:18792504

  13. A High-Level Language for Rule-Based Modelling

    PubMed Central

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D.

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  14. Grapheme-color synaesthesia benefits rule-based Category learning.

    PubMed

    Watson, Marcus R; Blair, Mark R; Kozik, Pavel; Akins, Kathleen A; Enns, James T

    2012-09-01

    Researchers have long suspected that grapheme-color synaesthesia is useful, but research on its utility has so far focused primarily on episodic memory and perceptual discrimination. Here we ask whether it can be harnessed during rule-based Category learning. Participants learned through trial and error to classify grapheme pairs that were organized into categories on the basis of their associated synaesthetic colors. The performance of synaesthetes was similar to non-synaesthetes viewing graphemes that were physically colored in the same way. Specifically, synaesthetes learned to categorize stimuli effectively, they were able to transfer this learning to novel stimuli, and they falsely recognized grapheme-pair foils, all like non-synaesthetes viewing colored graphemes. These findings demonstrate that synaesthesia can be exploited when learning the kind of material taught in many classroom settings. PMID:22763316

  15. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  16. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  17. Rule-based circuit optimization for CMOS VLSI

    SciTech Connect

    Lai, F.

    1987-01-01

    A closed-loop design system iJADE was developed in Franz LISP. iJADE is a hierarchical CMOS VLSI circuit optimizer. Using a switch-level timing simulator and a timing analyzer, the program pinpoints the critical paths. The path-delay reduction algorithms and a rule-based expert system are then applied to adjust transistor sizes such that the speed of the circuit can be improved while keeping constraints satisfied. iJADE is also capable of detecting and correcting the timing errors of synchronous circuits. The circuit is described in SPICE-like input format, and then partitioned into blocks. Delays are computed on a block-by-block basis hierarchically, using a simple model based on input rise time, block type, and output load.

  18. Approaches to the verification of rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Riley, Gary; Savely, Robert T.

    1987-01-01

    Expert systems are a highly useful spinoff of artificial intelligence research. One major stumbling block to extended use of expert systems is the lack of well-defined verification and validation (V and V) methodologies. Since expert systems are computer programs, the definitions of verification and validation from conventional software are applicable. The primary difficulty with expert systems is the use of development methodologies which do not support effective V and V. If proper techniques are used to document requirements, V and V of rule-based expert systems is possible, and may be easier than with conventional code. For NASA applications, the flight technique panels used in previous programs should provide an excellent way to verify the rules used in expert systems. There are, however, some inherent differences in expert systems that will affect V and V considerations.

  19. A high-level language for rule-based modelling.

    PubMed

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  20. Rule-Based Orientation Recognition Of A Moving Object

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1989-03-01

    This paper presents a detailed description and a comparative analysis of the algorithms used to determine the position and orientation of an object in real-time. The exemplary object, a freely moving gold-fish in an aquarium, provides "real-world" motion, with definable characteristics of motion (the fish never swims upside-down) and the complexities of a non-rigid body. For simplicity of implementation, and since a restricted and stationary viewing domain exists (fish-tank), we reduced the problem of obtaining 3D correspondence information to trivial alignment calculations by using two cameras orthogonally viewing the object. We applied symbolic processing techniques to recognize the 3-D orientation of a moving object of known identity in real-time. Assuming motion, each new frame (sensed by the two cameras) provides images of the object's profile which has most likely undergone translation, rotation, scaling and/or bending of the non-rigid object since the previous frame. We developed an expert system which uses heuristics of the object's motion behavior in the form of rules and information obtained via low-level image processing (like numerical inertial axis calculations) to dynamically estimate the object's orientation. An inference engine provides these estimates at frame rates of up to 10 per second (which is essentially real-time). The advantages of the rule-based approach to orientation recognition will be compared other pattern recognition techniques. Our results of an investigation of statistical pattern recognition, neural networks, and procedural techniques for orientation recognition will be included. We implemented the algorithms in a rapid-prototyping environment, the TI-Ezplorer, equipped with an Odyssey and custom imaging hardware. A brief overview of the workstation is included to clarify one motivation for our choice of algorithms. These algorithms exploit two facets of the prototype image processing and understanding workstation - both low

  1. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  2. Fuzzy jets

    DOE PAGESBeta

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  3. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  4. Adaptive control of redundant multilink robot using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Su, X.; Mitra, Sunanda

    1993-12-01

    A new approach to fuzzy distance and restriction measures is used to obtain the appropriate orientations of the links for avoiding obstacles in the robot trajectories. This approach eliminates the classical task of solving highly coupled, nonlinear equations describing the ill- posed inverse problems of multilink robot motion at a much less demanding computational time. Such clear advantage of fuzzy logic based adaptive controller are illustrated by simulation results of guidance of a multilink robot in target positioning and trajectories tracking. The simulation results involve a three-link robot arm with capability of moving from one position to any desired position and tracking a defined trajectories accurately. A modified fuzzy rule based distance measure allows the robot to follow trajectories within hitting the obstacles in the path. The simulation results indicate the advantage of fuzzy logic based adaptive controllers in multiple criteria decision-making tasks.

  5. Prediction of conductivity by adaptive neuro-fuzzy model.

    PubMed

    Akbarzadeh, S; Arof, A K; Ramesh, S; Khanmirzaei, M H; Nor, R M

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582

  6. Prediction of Conductivity by Adaptive Neuro-Fuzzy Model

    PubMed Central

    Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582

  7. Fuzzy-Kohonen-clustering neural network trained by genetic algorithm and fuzzy competition learning

    NASA Astrophysics Data System (ADS)

    Xie, Weixing; Li, Wenhua; Gao, Xinbo

    1995-08-01

    Kohonen networks are well known for clustering analysis. Classical Kohonen networks for hard c-means clustering (trained by winner-take-all learning) have some severe drawbacks. Fuzzy Kohonen networks (FKCNN) for fuzzy c-means clustering are trained by fuzzy competition learning, and can get better clustering results than the classical Kohonen networks. However, both winner-take-all and fuzzy competition learning algorithms are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for the global optimum. In this paper we combine genetic algorithms (GAs) with fuzzy competition learning to train the FKCNN. Our experimental results show that the proposed GA/FC learning algorithm has much higher probabilities of finding the global optimal solutions than either the winner-take-all or the fuzzy competition learning.

  8. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    NASA Astrophysics Data System (ADS)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.

  9. Automatic generation of fuzzy rules for the sensor-based navigation of a mobile robot

    SciTech Connect

    Pin, F.G.; Watanabe, Y.

    1994-10-01

    A system for automatic generation of fuzzy rules is proposed which is based on a new approach, called {open_quotes}Fuzzy Behaviorist,{close_quotes} and on its associated formalism for rule base development in behavior-based robot control systems. The automated generator of fuzzy rules automatically constructs the set of rules and the associated membership functions that implement reasoning schemes that have been expressed in qualitative terms. The system also checks for completeness of the rule base and independence and/or redundancy of the rules to ensure that the requirements of the formalism are satisfied. Examples of the automatic generation of fuzzy rules for cases involving suppression and/or inhibition of fuzzy behaviors are given and discussed. Experimental results obtained with the automated fuzzy rule generator applied to the domain of sensor-based navigation in a priori unknown environments using one of our autonomous test-bed robots are then presented and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using our proposed {open_quotes}Fuzzy Behaviorist{close_quotes} approach.

  10. Sensor-based navigation of a mobile robot using automatically constructed fuzzy rules

    SciTech Connect

    Watanabe, Y.; Pin, F.G.

    1993-10-01

    A system for automatic generation of fuzzy rules is proposed which is based on a new approach, called ``Fuzzy Behaviorist,`` and on its associated formalism for rule base development in behavior-based robot control systems. The automated generator of fuzzy rules automatically constructs the set of rules and the associated membership functions that implement reasoning schemes that have been expressed in qualitative terms. The system also checks for completeness of the rule base and independence and/or redundancy of the rules to ensure that the requirements of the formalism are satisfied. Examples of the automatic generation of fuzzy rules for cases involving suppression and/or inhibition of fuzzy behaviors are given and discussed. Experimental results obtained with the automated fuzzy rule generator applied to the domain of sensor-based navigation in a priori unknown environments using one of our autonomous test-bed robots are then presented and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using our proposed ``Fuzzy Behaviorist`` approach.

  11. A fuzzy-based approach for open-transistor fault diagnosis in voltage-source inverter induction motor drives

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghan; Luo, Hui; Zhao, Jin; Wu, Feng

    2015-02-01

    This paper develops a novel method for the detection and isolation of open-transistor faults in voltage-source inverters feeding induction motors. Based on analyzing the load currents trajectories after Concordia transformation, six diagnostic signals each of which indicates a certain switch are extracted and a fuzzy rule base is designed to perform fuzzy reasoning in order to detect and isolate 21 fault modes including single- and double-transistor faults. In addition, the fuzzy rules are rearranged and each of them is set to a reasonable value representing the fault modes. The simulation and experiment are carried out to demonstrate the effectiveness of the proposed fuzzy approach.

  12. Fuzzy logic and guidance algorithm design

    SciTech Connect

    Leng, G.

    1994-12-31

    This paper explores the use of fuzzy logic for the design of a terminal guidance algorithm for an air to surface missile against a stationary target. The design objectives are (1) a smooth transition, at lock-on, (2) large impact angles and (3) self-limiting acceleration commands. The method of reverse kinematics is used in the design of the membership functions and the rule base. Simulation results for a Mach 0.8 missile with a 6g acceleration limit are compared with a traditional proportional navigation scheme.

  13. Hybrid fuzzy regression with trapezoidal fuzzy data

    NASA Astrophysics Data System (ADS)

    Razzaghnia, T.; Danesh, S.; Maleki, A.

    2011-12-01

    In this regard, this research deals with a method for hybrid fuzzy least-squares regression. The extension of symmetric triangular fuzzy coefficients to asymmetric trapezoidal fuzzy coefficients is considered as an effective measure for removing unnecessary fuzziness of the linear fuzzy model. First, trapezoidal fuzzy variable is applied to derive a bivariate regression model. In the following, normal equations are formulated to solve the four parts of hybrid regression coefficients. Also the model is extended to multiple regression analysis. Eventually, method is compared with Y-H.O. chang's model.

  14. Rule-based deduplication of article records from bibliographic databases

    PubMed Central

    Jiang, Yu; Lin, Can; Meng, Weiyi; Yu, Clement; Cohen, Aaron M.; Smalheiser, Neil R.

    2014-01-01

    We recently designed and deployed a metasearch engine, Metta, that sends queries and retrieves search results from five leading biomedical databases: PubMed, EMBASE, CINAHL, PsycINFO and the Cochrane Central Register of Controlled Trials. Because many articles are indexed in more than one of these databases, it is desirable to deduplicate the retrieved article records. This is not a trivial problem because data fields contain a lot of missing and erroneous entries, and because certain types of information are recorded differently (and inconsistently) in the different databases. The present report describes our rule-based method for deduplicating article records across databases and includes an open-source script module that can be deployed freely. Metta was designed to satisfy the particular needs of people who are writing systematic reviews in evidence-based medicine. These users want the highest possible recall in retrieval, so it is important to err on the side of not deduplicating any records that refer to distinct articles, and it is important to perform deduplication online in real time. Our deduplication module is designed with these constraints in mind. Articles that share the same publication year are compared sequentially on parameters including PubMed ID number, digital object identifier, journal name, article title and author list, using text approximation techniques. In a review of Metta searches carried out by public users, we found that the deduplication module was more effective at identifying duplicates than EndNote without making any erroneous assignments. PMID:24434031

  15. A Rules-Based Simulation of Bacterial Turbulence

    NASA Astrophysics Data System (ADS)

    Mikel-Stites, Maxwell; Staples, Anne

    2015-11-01

    In sufficiently dense bacterial populations (>40% bacteria by volume), unusual collective swimming behaviors have been consistently observed, resembling von Karman vortex streets. The source of these collective swimming behavior has yet to be fully determined, and as of yet, no research has been conducted that would define whether or not this behavior is derived predominantly from the properties of the surrounding media, or if it is an emergent behavior as a result of the ``rules'' governing the behavior of individual bacteria. The goal of this research is to ascertain whether or not it is possible to design a simulation that can replicate the qualitative behavior of the densely packed bacterial populations using only behavioral rules to govern the actions of each bacteria, with the physical properties of the media being neglected. The results of the simulation will address whether or not it is possible for the system's overall behavior to be driven exclusively by these rule-based dynamics. In order to examine this, the behavioral simulation was written in MATLAB on a fixed grid, and updated sequentially with the bacterial behavior, including randomized tumbling, gathering and perceptual sub-functions. If the simulation is successful, it will serve as confirmation that it is possible to generate these qualitatively vortex-like behaviors without specific physical media (that the phenomena arises in emergent fashion from behavioral rules), or as evidence that the observed behavior requires some specific set of physical parameters.

  16. Rule-based deduplication of article records from bibliographic databases.

    PubMed

    Jiang, Yu; Lin, Can; Meng, Weiyi; Yu, Clement; Cohen, Aaron M; Smalheiser, Neil R

    2014-01-01

    We recently designed and deployed a metasearch engine, Metta, that sends queries and retrieves search results from five leading biomedical databases: PubMed, EMBASE, CINAHL, PsycINFO and the Cochrane Central Register of Controlled Trials. Because many articles are indexed in more than one of these databases, it is desirable to deduplicate the retrieved article records. This is not a trivial problem because data fields contain a lot of missing and erroneous entries, and because certain types of information are recorded differently (and inconsistently) in the different databases. The present report describes our rule-based method for deduplicating article records across databases and includes an open-source script module that can be deployed freely. Metta was designed to satisfy the particular needs of people who are writing systematic reviews in evidence-based medicine. These users want the highest possible recall in retrieval, so it is important to err on the side of not deduplicating any records that refer to distinct articles, and it is important to perform deduplication online in real time. Our deduplication module is designed with these constraints in mind. Articles that share the same publication year are compared sequentially on parameters including PubMed ID number, digital object identifier, journal name, article title and author list, using text approximation techniques. In a review of Metta searches carried out by public users, we found that the deduplication module was more effective at identifying duplicates than EndNote without making any erroneous assignments. PMID:24434031

  17. Rule-based automatic segmentation for 3-D coronary arteriography

    NASA Astrophysics Data System (ADS)

    Sarwal, Alok; Truitt, Paul; Ozguner, Fusun; Zhang, Qian; Parker, Dennis L.

    1992-03-01

    Coronary arteriography is a technique used for evaluating the state of coronary arteries and assessing the need for bypass surgery and angioplasty. The present clinical application of this technology is based on the use of a contrast medium for manual radiographic visualization. This method is inaccurate due to varying interpretation of the visual results. Coronary arteriography based quantitations are impractical in a clinical setting without the use of automatic techniques applied to the 3-D reconstruction of the arterial tree. Such a system will provide an easily reproducible method for following the temporal changes in coronary morphology. The labeling of the arteries and establishing of the correspondence between multiple views is necessary for all subsequent processing required for 3-D reconstruction. This work represents a rule based expert system utilized for automatic labeling and segmentation of the arterial branches across multiple views. X-ray data of two and three views of human subjects and a pig arterial cast have been used for this research.

  18. Using hierarchically structured problem-solving knowledge in a rule-based process planning system

    SciTech Connect

    Hummel, K.E.; Brooks, S.L.

    1987-06-01

    A rule-based expert system, XCUT, currently is being developed which will generate process plans for the production of machined parts, given a feature-based part description. Due to the vast and dynamic nature of process planning knowledge, a technique has been used in the development of XCUT that segments problem solving knowledge into multiple rule bases. These rule bases are structured in a hierarchical manner that is reflective of the problem decomposition procedure used to generate a plan. An inference engine, HERB (Hierarchical Expert Rule Bases), has been developed which supports the manipulation of multiple rule bases during the planning process. This paper illustrates the hierarchical nature of problem-solving knowledge in the XCUT system and describes the use of HERB for programming with hierarchically structured rule bases. 6 refs., 21 figs.

  19. Handling interaction in fuzzy production rule reasoning.

    PubMed

    Yeung, Daniel S; Wang, Xi-Zhao; Tsang, Eric C C

    2004-10-01

    When fuzzy production rules are used to approximate reasoning, interaction exists among rules that have the same consequent. Due to this interaction, the weighted average model frequently used in approximate reasoning does not work well in many real-world problems. In order to model and handle this interaction, this paper proposes to use a nonadditive nonnegative set function to replace the weights assigned to rules having the same consequent, and to draw the reasoning conclusion based on an integral with respect to the nonadditive nonnegative set function, rather than on the weighted average model. Handling interaction in fuzzy production rule reasoning in this way can lead to a good understanding of the rules base and an improvement of reasoning accuracy. This paper also investigates how to determine from data the nonadditive set function that cannot be specified by a domain expert. PMID:15503494

  20. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  1. Fuzzy-algebra uncertainty assessment

    SciTech Connect

    Cooper, J.A.; Cooper, D.K.

    1994-12-01

    A significant number of analytical problems (for example, abnormal-environment safety analysis) depend on data that are partly or mostly subjective. Since fuzzy algebra depends on subjective operands, we have been investigating its applicability to these forms of assessment, particularly for portraying uncertainty in the results of PRA (probabilistic risk analysis) and in risk-analysis-aided decision-making. Since analysis results can be a major contributor to a safety-measure decision process, risk management depends on relating uncertainty to only known (not assumed) information. The uncertainties due to abnormal environments are even more challenging than those in normal-environment safety assessments; and therefore require an even more judicious approach. Fuzzy algebra matches these requirements well. One of the most useful aspects of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy assessment and probabilistic assessment based on subtle factors inherent in the choice of probability distribution models. We have also shown the relation of fuzzy algebra assessment to ``bounds`` analysis, as well as a description of how analyses can migrate from bounds analysis to fuzzy-algebra analysis, and to probabilistic analysis as information about the process to be analyzed is obtained. Instructive examples are used to illustrate the points.

  2. Imprecise (fuzzy) information in geostatistics

    SciTech Connect

    Bardossy, A.; Bogardi, I.; Kelly, W.E.

    1988-05-01

    A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in a fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.

  3. Rule-based classification models of molecular autofluorescence.

    PubMed

    Su, Bo-Han; Tu, Yi-Shu; Lin, Olivia A; Harn, Yeu-Chern; Shen, Meng-Yu; Tseng, Yufeng J

    2015-02-23

    Fluorescence-based detection has been commonly used in high-throughput screening (HTS) assays. Autofluorescent compounds, which can emit light in the absence of artificial fluorescent markers, often interfere with the detection of fluorophores and result in false positive signals in these assays. This interference presents a major issue in fluorescence-based screening techniques. In an effort to reduce the time and cost that will be spent on prescreening of autofluorescent compounds, in silico autofluorescence prediction models were developed for selected fluorescence-based assays in this study. Five prediction models were developed based on the respective fluorophores used in these HTS assays, which absorb and emit light at specific wavelengths (excitation/emission): Alexa Fluor 350 (A350) (340 nm/450 nm), 7-amino-4-trifluoromethyl-coumarin (AFC) (405 nm/520 nm), Alexa Fluor 488 (A488) (480 nm/540 nm), Rhodamine (547 nm/598 nm), and Texas Red (547 nm/618 nm). The C5.0 rule-based classification algorithm and PubChem 2D chemical structure fingerprints were used to develop prediction models. To optimize the accuracies of these prediction models despite the highly imbalanced ratio of fluorescent versus nonfluorescent compounds presented in the collected data sets, oversampling and undersampling strategies were applied. The average final accuracy achieved for the training set was 97%, and that for the testing set was 92%. In addition, five external data sets were used to further validate the models. Ultimately, 14 representative structural features (or rules) were determined to efficiently predict autofluorescence in data sets containing both fluorescent and nonfluorescent compounds. Several cases were illustrated in this study to demonstrate the applicability of these rules. PMID:25625768

  4. Individual Differences in Base Rate Neglect: A Fuzzy Processing Preference Index

    ERIC Educational Resources Information Center

    Wolfe, Christopher R.; Fisher, Christopher R.

    2013-01-01

    Little is known about individual differences in integrating numeric base-rates and qualitative text in making probability judgments. Fuzzy-Trace Theory predicts a preference for fuzzy processing. We conducted six studies to develop the FPPI, a reliable and valid instrument assessing individual differences in this fuzzy processing preference. It…

  5. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  6. Fuzzy controllers and fuzzy expert systems: industrial applications of fuzzy technology

    NASA Astrophysics Data System (ADS)

    Bonissone, Piero P.

    1995-06-01

    We will provide a brief description of the field of approximate reasoning systems, with a particular emphasis on the development of fuzzy logic control (FLC). FLC technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. In a recently published paper we have illustrated some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, stream turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variable in a rolling mill stand. These applications will be illustrated in the oral presentation. In this paper, we will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit the tradeoff criteria used to manage multiple control strategies. Finally, we will describe some of our FLC technology research efforts in automatic rule base tuning and generation, leading to a suite of programs for reinforcement learning, supervised learning, genetic algorithms, steepest descent algorithms, and rule clustering.

  7. Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2009-01-01

    The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the exemplar…

  8. Rule-Based and Information-Integration Category Learning in Normal Aging

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.

    2010-01-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…

  9. Fuzzy associative memories

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1991-01-01

    Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.

  10. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    NASA Astrophysics Data System (ADS)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  11. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  12. Fuzzy lattice neurocomputing (FLN) models.

    PubMed

    Kaburlasos, V G; Petridis, V

    2000-12-01

    In this work it is shown how fuzzy lattice neurocomputing (FLN) emerges as a connectionist paradigm in the framework of fuzzy lattices (FL-framework) whose advantages include the capacity to deal rigorously with: disparate types of data such as numeric and linguistic data, intervals of values, 'missing' and 'don't care' data. A novel notation for the FL-framework is introduced here in order to simplify mathematical expressions without losing content. Two concrete FLN models are presented, namely 'sigma-FLN' for competitive clustering, and 'FLN with tightest fits (FLNtf)' for supervised clustering. Learning by the sigma-FLN, is rapid as it requires a single pass through the data, whereas learning by the FLNtf, is incremental, data order independent, polynomial theta(n3), and it guarantees maximization of the degree of inclusion of an input in a learned class as explained in the text. Convenient geometric interpretations are provided. The sigma-FLN is presented here as fuzzy-ART's extension in the FL-framework such that sigma-FLN widens fuzzy-ART's domain of application to (mathematical) lattices by augmenting the scope of both of fuzzy-ART's choice (Weber) and match functions, and by enhancing fuzzy-ART's complement coding technique. The FLNtf neural model is applied to four benchmark data sets of various sizes for pattern recognition and rule extraction. The benchmark data sets in question involve jointly numeric and nominal data with 'missing' and/or 'don't care' attribute values, whereas the lattices involved include the unit-hypercube, a probability space, and a Boolean algebra. The potential of the FL-framework in computing is also delineated. PMID:11156192

  13. A fuzzy approach for modelling radionuclide in lake system.

    PubMed

    Desai, H K; Christian, R A; Banerjee, J; Patra, A K

    2013-10-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. PMID:23639693

  14. Diagnosis of arthritis through fuzzy inference system.

    PubMed

    Singh, Sachidanand; Kumar, Atul; Panneerselvam, K; Vennila, J Jannet

    2012-06-01

    Expert or knowledge-based systems are the most common type of AIM (artificial intelligence in medicine) system in routine clinical use. They contain medical knowledge, usually about a very specifically defined task, and are able to reason with data from individual patients to come up with reasoned conclusion. Although there are many variations, the knowledge within an expert system is typically represented in the form of a set of rules. Arthritis is a chronic disease and about three fourth of the patients are suffering from osteoarthritis and rheumatoid arthritis which are undiagnosed and the delay of detection may cause the severity of the disease at higher risk. Thus, earlier detection of arthritis and treatment of its type of arthritis and related locomotry abnormalities is of vital importance. Thus the work was aimed to design a system for the diagnosis of Arthitis using fuzzy logic controller (FLC) which is, a successful application of Zadeh's fuzzy set theory. It is a potential tool for dealing with uncertainty and imprecision. Thus, the knowledge of a doctor can be modelled using an FLC. The performance of an FLC depends on its knowledge base which consists of a data base and a rule base. It is observed that the performance of an FLC mainly depends on its rule base, and optimizing the membership function distributions stored in the data base is a fine tuning process. PMID:20927572

  15. Fuzzy probabilistic design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Fu, Guangtao; Kapelan, Zoran

    2011-05-01

    The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.

  16. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  17. Knowledge typology for imprecise probabilities.

    SciTech Connect

    Wilson, G. D.; Zucker, L. J.

    2002-01-01

    When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.

  18. Qualitative information modeling: The role of fuzzy logic in project economic evaluations

    SciTech Connect

    Warnken, P.G.

    1995-12-31

    Conventional models rely on a precise mathematical formalism to express the quantitative essentials of the system being modeled. In contrast, decisionmakers in the real world employ cognitive skills to process information and arrive at decisions based on judgement and experience. Bridging the gap between the two analytic approaches -- that is, formulating intelligent models -- has met with very limited success using traditional computational methods. The difficulty stems from two problems. First, imprecision, which is the distinguishing feature of qualitative factors, is an information attribute that is not easily computable using the rules of traditional set theory and Boolean (bivalent) logic. Second, cognitive information processing is cumbersome using the numerical rule-based approaches common in today`s expert systems. Fuzzy models overcome these problems by employing new mathematical rules for expressing and processing knowledge. These rules are based on fuzzy logic. Fuzzy logic is the formal symbolic language used to represent linguistic terms and verbal rules for computational and modeling purposes. This language provides model builders with the means to incorporate subjective judgements, imprecise information, and human reasoning capabilities as part of a model`s framework. This paper outlines the concepts needed to understand fuzzy modeling systems. The key concepts discussed include fuzzy sets, fuzzy logical operators, linguistic variables, and verbal rules. A simple fuzzy economic rating model for project investments is presented to demonstrate the fuzzy modeling technique. Finally, the paper discusses the role of fuzzy logic in the economic modeling process.

  19. Fuzzy-logic-based active vibration control of beams using piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Singh, S. P.; Sachdeva, B. L.

    2003-10-01

    The present work presents a fuzzy logic based controller with a compact rule base, for active vibration control of beams. The controller was implemented experimentally on a test beam and the results were found satisfactory. The test system consists of a cantilevered beam with two piezoelectric patches mounted near its root in collocated fashion. This piezo-beam system was modelled using Finite Element Method. To derive the equations of motion, Hamilton's principle was used. Electro-mechanical interaction of the piezoelectric patch with the beam was modelled using linear constitutive equations for piezoceramics, which relate strain and electric displacement to stress and electric field. The fuzzy logic controller is based on modal velocity of the beam. The basis for generating the fuzzy logic rule base of this controller is obtained from negative velocity feedback control. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is the output from the inference engine. Linear decay of vibratory amplitude is observed in case of fuzzy logic controller as opposed to logarithmic decay in case of negative velocity feedback control Present controller has just three rules. This is an important achievement because bulky fuzzy logic controllers for active vibration control require fast processors for real time implementation (Kwak and Sciulli and Mayhan and Washington).

  20. Why Probability?

    ERIC Educational Resources Information Center

    Weatherly, Myra S.

    1984-01-01

    Instruction in mathematical probability to enhance higher levels of critical and creative thinking with gifted students is described. Among thinking skills developed by such an approach are analysis, synthesis, evaluation, fluency, and complexity. (CL)

  1. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  2. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  3. Significance testing of rules in rule-based models of human problem solving

    NASA Technical Reports Server (NTRS)

    Lewis, C. M.; Hammer, J. M.

    1986-01-01

    Rule-based models of human problem solving have typically not been tested for statistical significance. Three methods of testing rules - analysis of variance, randomization, and contingency tables - are presented. Advantages and disadvantages of the methods are also described.

  4. Fuzzy slope stability method

    SciTech Connect

    Kacewicz, M.

    1987-11-01

    An approach for the description of uncertainty in geology using fuzzy-set theory and an example of slope stability problem is presented. Soil parameters may be described by fuzzy sets. The fuzzy method of slope stability estimation is considered and verified in the case of one of Warsaw's (Poland) slopes.

  5. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  6. Indeterminacy, linguistic semantics and fuzzy logic

    SciTech Connect

    Novak, V.

    1996-12-31

    In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.

  7. Robust Fuzzy Controllers Using FPGAs

    NASA Technical Reports Server (NTRS)

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  8. Reduced-rule based expert system by the simplification of logic functions for the diagnosis of diabetes.

    PubMed

    Başçiftçi, Fatih; Hatay, Omer Faruk

    2011-06-01

    Diabetes is a chronic and complex endocrine disease with metabolic disorders caused by the imbalance between secreted and needed insulin levels. In the present study, all probabilities were examined considering ten (10) indications (2¹⁰=1024 different cases) of diabetes using medical expert system (MES), and accordingly, a truth table was established. This table was simplified by the simplification method of logic functions. 15 main rules were obtained using minimization method for Boolean Functions (BFs). These rules established rules base of ES. Subsequently, the parameters of 768 patients were compared with this ES. Accuracy rate of the estimations of MES, created as a result these comparisons, was determined as 97.13% in diabetes patients, 97% in non-diabetes patients, 96.5% in Type 1 patients, 98.26% in Type 2 patients and 97.44% in pregnant patients. PMID:21492832

  9. A Fuzzy Logic System for Seizure Onset Detection in Intracranial EEG

    PubMed Central

    Rabbi, Ahmed Fazle; Fazel-Rezai, Reza

    2012-01-01

    We present a multistage fuzzy rule-based algorithm for epileptic seizure onset detection. Amplitude, frequency, and entropy-based features were extracted from intracranial electroencephalogram (iEEG) recordings and considered as the inputs for a fuzzy system. These features extracted from multichannel iEEG signals were combined using fuzzy algorithms both in feature domain and in spatial domain. Fuzzy rules were derived based on experts' knowledge and reasoning. An adaptive fuzzy subsystem was used for combining characteristics features extracted from iEEG. For the spatial combination, three channels from epileptogenic zone and one from remote zone were considered into another fuzzy subsystem. Finally, a threshold procedure was applied to the fuzzy output derived from the final fuzzy subsystem. The method was evaluated on iEEG datasets selected from Freiburg Seizure Prediction EEG (FSPEEG) database. A total of 112.45 hours of intracranial EEG recordings was selected from 20 patients having 56 seizures was used for the system performance evaluation. The overall sensitivity of 95.8% with false detection rate of 0.26 per hour and average detection latency of 15.8 seconds was achieved. PMID:22577370

  10. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  11. Generating fuzzy rules for constructing interpretable classifier of diabetes disease.

    PubMed

    Settouti, Nesma; Chikh, M Amine; Saidi, Meryem

    2012-09-01

    Diabetes is a type of disease in which the body fails to regulate the amount of glucose necessary for the body. It does not allow the body to produce or properly use insulin. Diabetes has widespread fallout, with a large people affected by it in world. In this paper; we demonstrate that a fuzzy c-means-neuro-fuzzy rule-based classifier of diabetes disease with an acceptable interpretability is obtained. The accuracy of the classifier is measured by the number of correctly recognized diabetes record while its complexity is measured by the number of fuzzy rules extracted. Experimental results show that the proposed fuzzy classifier can achieve a good tradeoff between the accuracy and interpretability. Also the basic structure of the fuzzy rules which were automatically extracted from the UCI Machine learning database shows strong similarities to the rules applied by human experts. Results are compared to other approaches in the literature. The proposed approach gives more compact, interpretable and accurate classifier. PMID:22895813

  12. Applications of fuzzy logic

    SciTech Connect

    Zargham, M.R.

    1995-06-01

    Recently, fuzzy logic has been applied to many areas, such as process control, image understanding, robots, expert systems, and decision support systems. This paper will explain the basic concepts of fuzzy logic and its application in different fields. The steps to design a control system will be explained in detail. Fuzzy control is the first successful industrial application of fuzzy logic. A fuzzy controller is able to control systems which previously could only be controlled by skilled operators. In recent years Japan has achieved significant progress in this area and has applied it to variety of products such as cruise control for cars, video cameras, rice cookers, washing machines, etc.

  13. Recurrent fuzzy ranking methods

    NASA Astrophysics Data System (ADS)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  14. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed. PMID:20945519

  15. Fuzzy inference game approach to uncertainty in business decisions and market competitions.

    PubMed

    Oderanti, Festus Oluseyi

    2013-01-01

    The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments. PMID:24109562

  16. Comparative study of a learning fuzzy PID controller and a self-tuning controller.

    PubMed

    Kazemian, H B

    2001-01-01

    The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller. PMID:11515942

  17. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  18. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  19. Fuzzy Sets and Mathematical Education.

    ERIC Educational Resources Information Center

    Alsina, C.; Trillas, E.

    1991-01-01

    Presents the concept of "Fuzzy Sets" and gives some ideas for its potential interest in mathematics education. Defines what a Fuzzy Set is, describes why we need to teach fuzziness, gives some examples of fuzzy questions, and offers some examples of activities related to fuzzy sets. (MDH)

  20. A fuzzy neural network approach for power system evaluations

    NASA Astrophysics Data System (ADS)

    Moghaddas, Javad

    Every real-world dynamical system is nonlinear. Existing methods for solving a nonlinear problem entail linearizing the nonlinear problem and then using the different tools available for solving the linear system. These tools have been well understood for many decades. This research presents the application of Fuzzy Neural Network in reducing the large computational requirements associated with solving nonlinear systems. This approach utilizes fewer and faster steps for solving nonlinear problems. A practical use of this technique is power flow calculation where a large number of nonlinear equations are involved. The power flow problem is formulated as a nonlinear constrained optimization problem with the bus voltages, bus angles, real power injected into the buses, and reactive power injected into the buses as the problem variables. The equality and inequality constraints are appended to this objective function. Fuzzy rules based control is used to assist in choosing suitable penalty functions to form an augmented cost function. The linearized power flow equations at each iteration are translated to a scalar objective function of quadratic form. A neural network structure is given which implements the steepest descent method for minimizing the objective function. This research also presents the application of Fuzzy Clustering to power systems. The technique of Fuzzy Clustering reduces large system states into a few representative clusters, which are sufficient for reliability analysis. The method is then shown for optimal network decomposition based on Fuzzy Clustering. Fuzzy Clustering presents a powerful, globally oriented optimization method, which exploits the mechanism of natural response to reach optima or near optima. The results for an IEEE 14-Bus test system are given and the Fuzzy Clustering algorithm approach is found to produce significantly better solution.

  1. A Metrics Taxonomy and Reporting Strategy for Rule-Based Alerts

    PubMed Central

    Krall, Michael; Gerace, Alexander

    2015-01-01

    Context: Because institutions rely on rule-based alerts as an important component of their safety and quality strategies, they should determine whether the alerts achieve the expected benefit. Objective: To develop and to test a method of reporting outcome metrics for rule-based electronic health record alerts on a large scale. Methods: We empirically developed an action-oriented alerts taxonomy according to structure, actions, and implicit intended process outcomes using a set of 333 rule-based alerts at Kaiser Permanente Northwest. Next we developed a method for producing metrics reports for alert classes. Finally, we applied this method to alert taxa. Main Outcome Measures: Outcome measures were the successful development of a rule-based alerts taxonomy and the demonstration of its application in a reporting strategy. Results: We identified 9 major and 17 overall classes of alerts. We developed a specific metric approach for 5 of these classes, including the 3 most numerous ones in our institution, accounting for 224 (67%) of our alerts. Some alert classes do not readily lend themselves to this approach. Conclusions: We developed a taxonomy for rule-based alerts and demonstrated its application in developing outcome metrics reports on a large scale. This information allows tuning or retiring alerts and may inform the need to develop complementary or alternative approaches to address organizational imperatives. A method that assigns alerts to classes each amenable to a particular reporting strategy could reduce the difficulty of producing metrics reports. PMID:26057684

  2. Parameter Interval Estimation of System Reliability for Repairable Multistate Series-Parallel System with Fuzzy Data

    PubMed Central

    2014-01-01

    The purpose of this paper is to create an interval estimation of the fuzzy system reliability for the repairable multistate series–parallel system (RMSS). Two-sided fuzzy confidence interval for the fuzzy system reliability is constructed. The performance of fuzzy confidence interval is considered based on the coverage probability and the expected length. In order to obtain the fuzzy system reliability, the fuzzy sets theory is applied to the system reliability problem when dealing with uncertainties in the RMSS. The fuzzy number with a triangular membership function is used for constructing the fuzzy failure rate and the fuzzy repair rate in the fuzzy reliability for the RMSS. The result shows that the good interval estimator for the fuzzy confidence interval is the obtained coverage probabilities the expected confidence coefficient with the narrowest expected length. The model presented herein is an effective estimation method when the sample size is n ≥ 100. In addition, the optimal α-cut for the narrowest lower expected length and the narrowest upper expected length are considered. PMID:24987728

  3. VLSI modified architecture for reduced symmetric fuzzy Singleton set and its applications

    NASA Astrophysics Data System (ADS)

    Abdel-hafeez, Saleh M.; Starks, Scott A.

    1996-06-01

    A general-purpose fuzzy logic inference engine for real time control applications has been designed, the core of which is based on a modified reduced symmetric fuzzy singleton set (MRSFSS) structure combining the advantages of small fuzzy memory for a maximum storing capacity of 730 rule-base. The MRSFSS structure can provide up to three input variables, a maximum of nine membership functions for each input variable, and produces two output values. The innovation of FLC chip is the definition feature of the MRSFSS structure which alleviates the drawbacks of existing fuzzy inference engine and enables the entire FLC chip to be performed on a 1.2 micrometer CMOS VLSI single chip. Although the hardware of FLC engine is simplified, the structure itself can incorporate a wide class of applications since many systematic and heuristic approaches can be cast into the MRSFSS structure with an even more simplified approach and most equal performances. Moreover, a guide tour is provided through the aspects of generating the fuzzy IF-THEN rules, based on a proposed architecture for controlling a wide class of objects whose dynamics are approximated by first- order and second-order transfer functions.

  4. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance.

    PubMed

    Ye, Cang; Yung, N C; Wang, Danwei

    2003-01-01

    Fuzzy logic systems are promising for efficient obstacle avoidance. However, it is difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base constructed and tuned by a human expert. A reinforcement learning method is capable of learning the fuzzy rules automatically. However, it incurs a heavy learning phase and may result in an insufficiently learned rule base due to the curse of dimensionality. In this paper, we propose a neural fuzzy system with mixed coarse learning and fine learning phases. In the first phase, a supervised learning method is used to determine the membership functions for input and output variables simultaneously. After sufficient training, fine learning is applied which employs reinforcement learning algorithm to fine-tune the membership functions for output variables. For sufficient learning, a new learning method using a modification of Sutton and Barto's model is proposed to strengthen the exploration. Through this two-step tuning approach, the mobile robot is able to perform collision-free navigation. To deal with the difficulty of acquiring a large amount of training data with high consistency for supervised learning, we develop a virtual environment (VE) simulator, which is able to provide desktop virtual environment (DVE) and immersive virtual environment (IVE) visualization. Through operating a mobile robot in the virtual environment (DVE/IVE) by a skilled human operator, training data are readily obtained and used to train the neural fuzzy system. PMID:18238153

  5. Hybrid modeling of nitrate fate in large catchments using fuzzy-rules

    NASA Astrophysics Data System (ADS)

    van der Heijden, Sven; Haberlandt, Uwe

    2010-05-01

    Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without

  6. Searching arousals: A fuzzy logic approach.

    PubMed

    Chaparro-Vargas, Ramiro; Ahmed, Beena; Penzel, Thomas; Cvetkovic, Dean

    2015-08-01

    This paper presents a computational approach to detect spontaneous, chin tension and limb movement-related arousals by estimating neuronal and muscular activity. Features extraction is carried out by Time Varying Autoregressive Moving Average (TVARMA) models and recursive particle filtering. Classification is performed by a fuzzy inference system with rule-based decision scheme based upon the AASM scoring rules. Our approach yielded two metrics: arousal density and arousal index to comply with standardised clinical benchmarking. The obtained statistics achieved error deviation around ±1.5 to ±30. These results showed that our system can differentiate amongst 3 different types of arousals, subject to inter-subject variability and up-to-date scoring references. PMID:26736862

  7. Hybrid neural net and rule based system for boiler monitoring and diagnosis

    SciTech Connect

    Kraft, T.; Okagaki, K.; Ishii, R.; Surko, P. ); Brandon, A.; DeWeese, A.; Peterson, S.; Bjordal, R. )

    1991-01-01

    A fully recurrent neural net is coupled with a rule-based expert system in this operator adviser system. The neural net has been trained to recognize normal high-efficiency operating behavior of the power plant boiler, and the rule-based expert system diagnoses problems and suggests maintenance and/or operator actions when the boiler strays outside the envelope of normal operating conditions. The fully recurrent neural net provides an accurate model of a boiler even when the load demand is changing rapidly and the boiler operating conditions varying over a wide range. The hybrid system has been quicker and easier to generate than a strictly rule-based one, and has been designed to be more easily portable to other units This paper describes the ongoing development work for monitoring SDGE and E's South Bay Plant, Unit. 1.

  8. Rule-based and information-integration category learning in normal aging.

    PubMed

    Maddox, W Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M

    2010-08-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  9. Hybrid neural network and rule-based pattern recognition system capable of self-modification

    SciTech Connect

    Glover, C.W.; Silliman, M.; Walker, M.; Spelt, P.F. ); Rao, N.S.V. . Dept. of Computer Science)

    1990-01-01

    This paper describes a hybrid neural network and rule-based pattern recognition system architecture which is capable of self-modification or learning. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. The hybrid system employs a hierarchical architecture, and it can be interfaced with one or more sensors. Feature extraction routines operating on raw sensor data produce feature vectors which serve as inputs to neural network classifiers at the next level in the hierarchy. These low-level neural networks are trained to provide further discrimination of the sensor data. A set of feature vectors is formed from a concatenation of information from the feature extraction routines and the low-level neural network results. A rule-based classifier system uses this feature set to determine if certain expected environmental states, conditions, or objects are present in the sensors' current data stream. The rule-based system has been given an a priori set of models of the expected environmental states, conditions, or objects which it is expected to identify. The rule-based system forms many candidate directed graphs of various combinations of incoming features vectors, and it uses a suitably chosen metric to measure the similarity between candidate and model directed graphs. The rule-based system must decide if there is a match between one of the candidate graphs and a model graph. If a match is found, then the rule-based system invokes a routine to create and train a new high-level neural network from the appropriate feature vector data to recognize when this model state is present in future sensor data streams. 12 refs., 3 figs.

  10. A rule-based systems approach to spacecraft communications configuration optimization

    NASA Technical Reports Server (NTRS)

    Rash, James L.; Wong, Yen F.; Cieplak, James J.

    1988-01-01

    An experimental rule-based system for optimizing user spacecraft communications configurations was developed at NASA to support mission planning for spacecraft that obtain telecommunications services through NASA's Tracking and Data Relay Satellite System. Designated Expert for Communications Configuration Optimization (ECCO), and implemented in the OPS5 production system language, the system has shown the validity of a rule-based systems approach to this optimization problem. The development of ECCO and the incremental optimizatin method on which it is based are discussed. A test case using hypothetical mission data is included to demonstrate the optimization concept.

  11. A rule-based systems approach to spacecraft communications configuration optimization

    NASA Technical Reports Server (NTRS)

    Rash, James L.; Wong, Yen F.; Cieplak, James J.

    1988-01-01

    An experimental rule-based system for optimizing user spacecraft communications configurations was developed at NASA to support mission planning for spacecraft that obtain telecommunications services through NASA's Tracking and Data Relay Satellite System. Designated Expert for Communications Configuration Optimization (ECCO), and implemented in the OPS5 production system language, the system has shown the validity of a rule-based systems approach to this optimization problem. The development of ECCO and the incremental optimization method on which it is based are discussed. A test case using hypothetical mission data is included to demonstrate the optimization concept.

  12. A rule-based systems approach to spacecraft communications configuration optimization

    NASA Astrophysics Data System (ADS)

    Rash, James L.; Wong, Yen F.; Cieplak, James J.

    An experimental rule-based system for optimizing user spacecraft communications configurations was developed at NASA to support mission planning for spacecraft that obtain telecommunications services through NASA's Tracking and Data Relay Satellite System. Designated Expert for Communications Configuration Optimization (ECCO), and implemented in the OPS5 production system language, the system has shown the validity of a rule-based systems approach to this optimization problem. The development of ECCO and the incremental optimizatin method on which it is based are discussed. A test case using hypothetical mission data is included to demonstrate the optimization concept.

  13. GetBonNie for building, analyzing and sharing rule-based models

    SciTech Connect

    Hu, Bin

    2008-01-01

    GetBonNie is a suite of web-based services for building, analyzing, and sharing rule-based models specified according to the conventions of the BioNetGen language (BNGL). Services include (1) an applet for drawing, editing, and viewing graphs of BNGL; (2) a network-generation engine for translating a set of rules into a chemical reaction network; (3) simulation engines that implement generate-first, on-the-fly, and network-free methods for simulating rule-based models; and (4) a database for sharing models, parameter values, annotations, simulation tasks and results.

  14. Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization

    PubMed Central

    Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil

    2016-01-01

    Motivation: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. Results: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. Availability and implementation: The annotation ontology for rule-based models can be found at http

  15. Traditional versus rule-based programming techniques: Application to the control of optional flight information

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Abbott, Kathy H.

    1987-01-01

    To the software design community, the concern over the costs associated with a program's execution time and implementation is great. It is always desirable, and sometimes imperative, that the proper programming technique is chosen which minimizes all costs for a given application or type of application. A study is described that compared cost-related factors associated with traditional programming techniques to rule-based programming techniques for a specific application. The results of this study favored the traditional approach regarding execution efficiency, but favored the rule-based approach regarding programmer productivity (implementation ease). Although this study examined a specific application, the results should be widely applicable.

  16. Rule based artificial intelligence expert system for determination of upper extremity impairment rating.

    PubMed

    Lim, I; Walkup, R K; Vannier, M W

    1993-04-01

    Quantitative evaluation of upper extremity impairment, a percentage rating most often determined using a rule based procedure, has been implemented on a personal computer using an artificial intelligence, rule-based expert system (AI system). In this study, the rules given in Chapter 3 of the AMA Guides to the Evaluation of Permanent Impairment (Third Edition) were used to develop such an AI system for the Apple Macintosh. The program applies the rules from the Guides in a consistent and systematic fashion. It is faster and less error-prone than the manual method, and the results have a higher degree of precision, since intermediate values are not truncated. PMID:8334872

  17. Fuzzy mathematical techniques with applications

    SciTech Connect

    Kandel, A.

    1986-01-01

    This text presents the basic concepts of fuzzy set theory within a context of real-world applications. The book is self-contained and can be used as a starting point for people interested in this fast growing field as well as by researchers looking for new application techniques. The section on applications includes: Manipulation of knowledge in expert systems; relational database structures; pattern clustering; analysis of transient behavior in digital systems; modeling of uncertainty and search trees. Contents: Fuzzy sets; Possibility theory and fuzzy quantification; Fuzzy functions; Fuzzy events and fuzzy statistics; Fuzzy relations; Fuzzy logics; Some applications; Bibliography.

  18. Fuzzy stochastic elements method. Spectral approach

    NASA Astrophysics Data System (ADS)

    Sniady, Pawel; Mazur-Sniady, Krystyna; Sieniawska, Roza; Zukowski, Stanislaw

    2013-05-01

    We study a complex dynamic problem, which concerns a structure with uncertain parameters subjected to a stochastic excitation. Formulation of such a problem introduces fuzzy random variables for parameters of the structure and fuzzy stochastic processes for the load process. The uncertainty has two sources, namely the randomness of structural parameters such as geometry characteristics, material and damping properties, load process and imprecision of the theoretical model and incomplete information or uncertain data. All of these have a great influence on the response of the structure. By analyzing such problems we describe the random variability using the probability theory and the imprecision by use of fuzzy sets. Due to the fact that it is difficult to find an analytic expression for the inversion of the stochastic operator in the stochastic differential equation, a number of approximate methods have been proposed in the literature which can be connected to the finite element method. To evaluate the effects of excitation in the frequency domain we use the spectral density function. The spectral analysis is widely used in stochastic dynamics field of linear systems for stationary random excitation. The concept of the evolutionary spectral density is used in the case of non-stationary random excitation. We solve the considered problem using fuzzy stochastic finite element method. The solution is based on the idea of a fuzzy random frequency response vector for stationary input excitation and a transient fuzzy random frequency response vector for the fuzzy non-stationary one. We use the fuzzy random frequency response vector and the transient fuzzy random frequency response vector in the context of spectral analysis in order to determine the influence of structural uncertainty on the fuzzy random response of the structure. We study a linear system with random parameters subjected to two particular cases of stochastic excitation in a frequency domain. The first one

  19. Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit

    2010-10-01

    The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.

  20. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  1. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  2. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  3. Fuzzy Logic Classification of Imaging Laser Desorption Fourier Transform Mass Spectrometry Data

    SciTech Connect

    Timothy R. McJunkin; Jill R. Scott

    2008-06-01

    The fuzzy logic method is applied to classification of mass spectra obtained with an imaging internal source Fourier transform mass spectrometer (I2LD-FTMS). Traditionally, an operator uses the relative abundance of ions with specific mass-to-charge (m/z) ratios to categorize spectra. An operator does this by comparing the spectrum of m/z versus abundance of an unknown sample against a library of spectra from known samples. Automated positioning and acquisition allow the I2LD-FTMS to acquire data from very large grids, which would require classification of up to 3600 spectra per hour to keep pace with the acquisition. The tedious job of classifying numerous spectra generated in an I2LD-FTMS imaging application can be replaced by a fuzzy rule base if the cues an operator uses can be encapsulated. Appropriate methods for assigning fuzzy membership values for inputs (e.g., mass spectrum abundances) and choice of fuzzy inference operators to translate linguistic antecedent into confidence values for the consequence (or in this case the classification) is followed by using the maximum confidence and a necessary minimum threshold for making a crisp decision. This paper also describes a method for gathering statistics on ions, which are not currently used in the rule base, but which may be candidates for making the rule base more accurate and complete or to form new rule bases based on data obtained from known samples. A spatial method for classifying spectra with low membership values, based on neighboring sample classifications, is also presented.

  4. Rule-based approach to operating system selection: RMS vs. UNIX

    SciTech Connect

    Phifer, M.S.; Sadlowe, A.R.; Emrich, M.L.; Gadagkar, H.P.

    1988-10-01

    A rule-based system is under development for choosing computer operating systems. Following a brief historical account, this paper compares and contrasts the essential features of two operating systems highlighting particular applications. ATandT's UNIX System and Datapoint Corporations's Resource Management System (RMS) are used as illustrative examples. 11 refs., 3 figs.

  5. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  6. Prefrontal Contributions to Rule-Based and Information-Integration Category Learning

    ERIC Educational Resources Information Center

    Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke

    2009-01-01

    Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J. V. (2007). "Modeling visual…

  7. Effectiveness of Visual Imagery versus Rule-Based Strategies in Teaching Spelling to Learning Disabled Students.

    ERIC Educational Resources Information Center

    Darch, Craig; Simpson, Robert G.

    1990-01-01

    Among 28 upper elementary learning-disabled students in a summer remedial program, those that were taught spelling with explicit rule-based strategies out-performed students presented with a visual imagery mnemonic on unit tests, a posttest, and a standardized spelling test. Contains 20 references. (SV)

  8. Effects of Multimedia on Cognitive Load, Self-Efficacy, and Multiple Rule-Based Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Robert; McAlack, Matthew; Wilmes, Barbara; Kohler-Evans, Patty; Williamson, Jacquee

    2009-01-01

    This study investigates effects of multimedia on cognitive load, self-efficacy and learners' ability to solve multiple rule-based problems. Two hundred twenty-two college students were randomly assigned to interactive and non-interactive multimedia groups. Based on Engelkamp's multimodal theory, the present study investigates the role of…

  9. Techniques and implementation of the embedded rule-based expert system using Ada

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Jones, Robert E.

    1991-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with its portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assured a growing role in providing human-like reasoning capability and expertise for computer systems. The integration of expert system technology with Ada programming language, specifically a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell is discussed. The NASA Lewis Research Center was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-base power expert system, in ART-Ada. Three components, the rule-based expert system, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  10. Haunted by a doppelgänger: irrelevant facial similarity affects rule-based judgments.

    PubMed

    von Helversen, Bettina; Herzog, Stefan M; Rieskamp, Jörg

    2014-01-01

    Judging other people is a common and important task. Every day professionals make decisions that affect the lives of other people when they diagnose medical conditions, grant parole, or hire new employees. To prevent discrimination, professional standards require that decision makers render accurate and unbiased judgments solely based on relevant information. Facial similarity to previously encountered persons can be a potential source of bias. Psychological research suggests that people only rely on similarity-based judgment strategies if the provided information does not allow them to make accurate rule-based judgments. Our study shows, however, that facial similarity to previously encountered persons influences judgment even in situations in which relevant information is available for making accurate rule-based judgments and where similarity is irrelevant for the task and relying on similarity is detrimental. In two experiments in an employment context we show that applicants who looked similar to high-performing former employees were judged as more suitable than applicants who looked similar to low-performing former employees. This similarity effect was found despite the fact that the participants used the relevant résumé information about the applicants by following a rule-based judgment strategy. These findings suggest that similarity-based and rule-based processes simultaneously underlie human judgment. PMID:23895921

  11. A rule-based expert system for chemical prioritization using effects-based chemical categories

    EPA Science Inventory

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically-transparent and m...

  12. Presentation of clinical guidelines via a rule-based expert charting system.

    PubMed

    Schriger, D L; Baraff, L J; Hassanvand, M; Cretin, S

    1995-01-01

    This paper discusses the theoretical basis and cumulative experience with EDECS, the Emergency Department Expert Charting System. This rule-based expert-system introduces clinical guidelines into the flow of patient care while creating the medical record and patient aftercare instructions. PMID:8591354

  13. Rule-Based Category Learning in Children: The Role of Age and Executive Functioning

    PubMed Central

    Rabi, Rahel; Minda, John Paul

    2014-01-01

    Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658

  14. Fuzzy sets applications for cancer risk assessment.

    PubMed

    Molchanov, P A; Dudatiev, A V; Podobna, Y Y; Molchanova, O P

    2002-09-01

    The method of cancer risk assessment on the basis of the Fuzzy Set Theory is presented. The method is based on a multifactor risk assessment of cancer diseases. The individual risk of cancer disease is evaluated as the probability of disease multiplied by the value of an individual dose. An acupuncture method of cancer risk assessments was developed. The method is based on the analysis of changes of an electromagnetic field (biofield) of a person. The method allows to determine both cancer probability and probable location of the process. PMID:12298344

  15. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  16. Imprecise probabilities in engineering analyses

    NASA Astrophysics Data System (ADS)

    Beer, Michael; Ferson, Scott; Kreinovich, Vladik

    2013-05-01

    Probabilistic uncertainty and imprecision in structural parameters and in environmental conditions and loads are challenging phenomena in engineering analyses. They require appropriate mathematical modeling and quantification to obtain realistic results when predicting the behavior and reliability of engineering structures and systems. But the modeling and quantification is complicated by the characteristics of the available information, which involves, for example, sparse data, poor measurements and subjective information. This raises the question whether the available information is sufficient for probabilistic modeling or rather suggests a set-theoretical approach. The framework of imprecise probabilities provides a mathematical basis to deal with these problems which involve both probabilistic and non-probabilistic information. A common feature of the various concepts of imprecise probabilities is the consideration of an entire set of probabilistic models in one analysis. The theoretical differences between the concepts mainly concern the mathematical description of the set of probabilistic models and the connection to the probabilistic models involved. This paper provides an overview on developments which involve imprecise probabilities for the solution of engineering problems. Evidence theory, probability bounds analysis with p-boxes, and fuzzy probabilities are discussed with emphasis on their key features and on their relationships to one another. This paper was especially prepared for this special issue and reflects, in various ways, the thinking and presentation preferences of the authors, who are also the guest editors for this special issue.

  17. Automated cloud classification with a fuzzy logic expert system

    NASA Technical Reports Server (NTRS)

    Tovinkere, Vasanth; Baum, Bryan A.

    1993-01-01

    An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.

  18. A self-organizing fuzzy control approach to arc sensor for weld joint tracking in gas metal arc welding of butt joints

    SciTech Connect

    Na, S.J. ); Kim, J.W.

    1993-02-01

    For the artificial intelligence (AI) approach to automatic control, the fuzzy rule-based control schemes have been successfully applied to the control of complex processes. The arc welding process is one of the processes due to the fact that it possesses complex and nonlinear characteristics such as a moving distributed heat source, a current path and metal transfer. One possible solution to the design of an effective controller suitable for such a process is to use the fuzzy control scheme. The fuzzy rule-based control can easily realize the heuristic rules obtained from human experiences that cannot be expressed in mathematical form. In this study, an arc sensor, which utilizes the electrical signal obtained from the welding arc itself, was developed for CO[sub 2] gas metal arc welding of butt joints using the fuzzy set theory. A simple fuzzy controller without any adaptation was implemented for the weld joint tracking. A set of fixed rules, which was designed based upon the experiments, and a self-organizing fuzzy controller, which could improve the control rules automatically, were examined. Through a series of experiments, the performance and learning action of the proposed self-organizing fuzzy controller were assessed.

  19. Clustering by Fuzzy Neural Gas and Evaluation of Fuzzy Clusters

    PubMed Central

    Geweniger, Tina; Fischer, Lydia; Kaden, Marika; Lange, Mandy; Villmann, Thomas

    2013-01-01

    We consider some modifications of the neural gas algorithm. First, fuzzy assignments as known from fuzzy c-means and neighborhood cooperativeness as known from self-organizing maps and neural gas are combined to obtain a basic Fuzzy Neural Gas. Further, a kernel variant and a simulated annealing approach are derived. Finally, we introduce a fuzzy extension of the ConnIndex to obtain an evaluation measure for clusterings based on fuzzy vector quantization. PMID:24396342

  20. Simplify fuzzy control implementation

    SciTech Connect

    Stoll, K.E.; Ralston, P.A.S.; Ramaganesan, S. )

    1993-07-01

    A controller that uses fuzzy rules provides better response than a conventional linear controller in some applications. The rules are best implemented as a breakpoint function. A level control example illustrates the technique and advantages over proportional-integral (PI) control. In numerous papers on fuzzy controller development, emphasis has been primarily on formal inferencing, membership functions, and steps in building a fuzzy relation, as described by Zadeh. The rationale used in formulating the required set of rules is usually neglected, and the interpretation of the final controller as an input-output algorithm is overlooked. Also, the details of fuzzy mathematics are unfamiliar to many engineers and the implementation appears cumbersome to most. Process description and control instrumentation. This article compares a fuzzy controller designed by specifying a breakpoint function with a traditional PI controller for a level control system on a laboratory scale. In this discussion, only setpoint changes are considered.

  1. Driving a car using reflexive fuzzy behaviors

    SciTech Connect

    Pin, F.G.; Watanabe, Y.

    1992-10-01

    Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips have been developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 {mu}sec, and therefore, making control of ``reflex-type`` of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-prioii unknown environments are discussed. We describe how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data. In the first mode, the car navigates autonomously, while in the second mode, the system acts as a driver`s aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor charmers to perceive the environment. Simulation results as well as indoor and outdoor experiments are discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver`s aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes.

  2. Driving a car using reflexive fuzzy behaviors

    SciTech Connect

    Pin, F.G.; Watanabe, Y.

    1992-01-01

    Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips have been developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 [mu]sec, and therefore, making control of reflex-type'' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-prioii unknown environments are discussed. We describe how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data. In the first mode, the car navigates autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor charmers to perceive the environment. Simulation results as well as indoor and outdoor experiments are discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes.

  3. Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models.

    PubMed

    Pal, Nikhil R; Saha, Seemanti

    2008-12-01

    One of the main attractions of a fuzzy rule-based system is its interpretability which is hindered severely with an increase in the dimensionality of the data. For high-dimensional data, the identification of fuzzy rules also possesses a big challenge. Feature selection methods often ignore the subtle nonlinear interaction that the features and the learning system can have. To address this problem of structure identification, we propose an integrated method that can find the bad features simultaneously when finding the rules from data for Takagi-Sugeno-type fuzzy systems. It is an integrated learning mechanism that can take into account the nonlinear interactions that may be present between features and between features and fuzzy rule-based systems. Hence, it can pick up a small set of useful features and generate useful rules for the problem at hand. Such an approach is computationally very attractive because it is not iterative in nature like the forward or backward selection approaches. The effectiveness of the proposed approach is demonstrated on four function-approximation-type well-studied problems. PMID:19022732

  4. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  5. Teaching Spelling to Students with Learning Disabilities: A Comparison of Rule-Based Strategies versus Traditional Instruction

    ERIC Educational Resources Information Center

    Darch, Craig; Eaves, Ronald C.; Crowe, D. Alan; Simmons, Kate; Conniff, Alexandra

    2006-01-01

    This study compared two instructional methods for teaching spelling to elementary students with learning disabilities (LD). Forty-two elementary students with LD were randomly assigned to one of two instructional groups to teach spelling words: (a) a rule-based strategy group that focused on teaching students spelling rules (based on the "Spelling…

  6. On theoretical pricing of options with fuzzy estimators

    NASA Astrophysics Data System (ADS)

    Chrysafis, Konstantinos A.; Papadopoulos, Basil K.

    2009-01-01

    In this paper we present an application of a new method of constructing fuzzy estimators for the parameters of a given probability distribution function, using statistical data. This application belongs to the financial field and especially to the section of financial engineering. In financial markets there are great fluctuations, thus the element of vagueness and uncertainty is frequent. This application concerns Theoretical Pricing of Options and in particular the Black and Scholes Options Pricing formula. We make use of fuzzy estimators for the volatility of stock returns and we consider the stock price as a symmetric triangular fuzzy number. Furthermore we apply the Black and Scholes formula by using adaptive fuzzy numbers introduced by Thiagarajah et al. [K. Thiagarajah, S.S. Appadoo, A. Thavaneswaran, Option valuation model with adaptive fuzzy numbers, Computers and Mathematics with Applications 53 (2007) 831-841] for the stock price and the volatility and we replace the fuzzy volatility and the fuzzy stock price by possibilistic mean value. We refer to both cases of call and put option prices according to the Black & Scholes model and also analyze the results to Greek parameters. Finally, a numerical example is presented for both methods and a comparison is realized based on the results.

  7. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  8. Rule-based system for the fast identification of species of Indian Anopheline mosquitoes.

    PubMed

    Murty, U S; Jamil, K; Krishna, D; Reddy, P J

    1996-12-01

    In a developing country like India, classification and identification of the species of Anopheline mosquitoes in control operations of mosquito-borne diseases is of paramount importance. The WHO monograph, which describes the taxonomic data in the form of a pictorial key is generally difficult to understand by a non-taxonomist. Utilizing the principles of ID3 algorithm, a novel rule-based system, for the fast identification of unknown species of Indian Anopheline mosquitoes, is developed. The rule-based system is user-friendly, menu-driven and even a novice can make use of it in the identification of the unknown species with little practice. The above software is available on floppy disk and can be obtained with a minimum cost. This program can be ported on 5 1/4" or 3 1/2" floppy disk. PMID:9021267

  9. Two-stage rule-based precision positioning control of a piezoelectrically actuated table

    NASA Astrophysics Data System (ADS)

    Kuo, W. M.; Tarng, Y. S.; Nian, C. Y.; Nurhadi, H.

    2010-05-01

    This article proposes a two-stage rule-based precision positioning control method for the linear piezoelectrically actuated table (LPAT). During coarse-tuning stage, the LPAT is actuated by coarse voltages towards the target of 20 µm at a higher velocity; and during fine-tuning stage, it is driven by fine voltage steadily and accurately to reach the target position. The rule-based method is employed to establish the control rules for the voltages and displacements of the two stages using statistical methods. The experimental results demonstrate that the proposed control method can reach steady state quickly, and the steady-state error can be reduced to less than or equal to 0.02 µm for small travel (±0.1 µm) and large travel (±20 mm).

  10. Spatial Queries Entity Recognition and Disambiguation Using Rule-Based Approach

    NASA Astrophysics Data System (ADS)

    Hamzei, E.; Hakimpour, F.; Forati, A.

    2015-12-01

    In the digital world, search engines have been proposed as one of challenging research areas. One of the main issues in search engines studies is query processing, which its aim is to understand user's needs. If unsuitable spatial query processing approach is employed, the results will be associated with high degree of ambiguity. To evade such degree of ambiguity, in this paper we present a new algorithm which depends on rule-based systems to process queries. Our algorithm is implemented in the three basic steps including: deductively iterative splitting the query; finding candidates for the location names, the location types and spatial relationships; and finally checking the relationships logically and conceptually using a rule based system. As we finally present in the paper using our proposed method have two major advantages: the search engines can provide the capability of spatial analysis based on the specific process and secondly because of its disambiguation technique, user reaches the more desirable result.

  11. Creating an ontology driven rules base for an expert system for medical diagnosis.

    PubMed

    Bertaud Gounot, Valérie; Donfack, Valéry; Lasbleiz, Jérémy; Bourde, Annabel; Duvauferrier, Régis

    2011-01-01

    Expert systems of the 1980s have failed on the difficulties of maintaining large rule bases. The current work proposes a method to achieve and maintain rule bases grounded on ontologies (like NCIT). The process described here for an expert system on plasma cell disorder encompasses extraction of a sub-ontology and automatic and comprehensive generation of production rules. The creation of rules is not based directly on classes, but on individuals (instances). Instances can be considered as prototypes of diseases formally defined by "destrictions" in the ontology. Thus, it is possible to use this process to make diagnoses of diseases. The perspectives of this work are considered: the process described with an ontology formalized in OWL1 can be extended by using an ontology in OWL2 and allow reasoning about numerical data in addition to symbolic data. PMID:21893840

  12. Development and Deployment of a Rule-Based Expert System for Autonomous Satellite Monitoring

    NASA Astrophysics Data System (ADS)

    Wong, L.; Kronberg, F.; Hopkins, A.; Machi, F.; Eastham, P.

    In compliance with NASA administrator Daniel Goldin's call for faster, cheaper, better NASA projects, the Center for EUV Astrophysics (CEA) in cooperation with NASA Ames Research Center has developed and deployed a partially autonomous satellite-telemetry monitoring system to monitor the health of the Extreme Ultraviolet Explorer (EUVE) payload. Originally, telemetry was monitored on a 24 hour basis by human operators. Using RTworks, a software package from Talarian Corporation, our development team has developed a rule-based, expert system capable of detecting critical EUVE payload anomalies and notifying an anomaly coordinator. This paper discusses the process of capturing and codifying the knowledge of EUVE operations into rules and how our rule-based system is applied in EUVE autonomous operations.

  13. IMM/Serve: a rule-based program for childhood immunization.

    PubMed Central

    Miller, P. L.; Frawley, S. J.; Sayward, F. G.; Yasnoff, W. A.; Duncan, L.; Fleming, D. W.

    1996-01-01

    A rule-based program, IMM/Serve, is being developed to help guide childhood immunization for initial use, within Oregon. The program is designed primarily for automated use with an online immunization registry, but can also be used interactively by a single user. The paper describes IMM/Serve and discusses 1) the sources of complexity in immunization logic, 2) the potential advantages of a rule-based approach for representing that logic, and 3) the potential advantage of such a program evolving to become the standard of care. Related projects include 1) a computer-based tool to help verify the completeness of the logic, 2) a tool that allows a central part of the logic to be generated automatically, and 3) an approach that allows visualization of the logic graphically. PMID:8947653

  14. Fuzzy control of a hand rehabilitation robot to optimize the exercise speed in passive working mode.

    PubMed

    Baniasad, Mina Arab; Akbar, Mohammad; Alasty, Aria; Farahmand, Farzam

    2011-01-01

    The robotic rehabilitation devices can undertake the difficult physical therapy tasks and provide improved treatment procedures for post stroke patients. During passive working mode, the speed of the exercise needs to be controlled continuously by the robot to avoid excessive injurious torques. We designed a fuzzy controller for a hand rehabilitation robot to adjust the exercise speed by considering the wrist angle and joint resistive torque, measured continuously, and the patient's general condition, determined by the therapist. With a set of rules based on an expert therapist experience, the fuzzy system could adapt effectively to the neuromuscular conditions of the patient's paretic hand. Preliminary clinical tests revealed that the fuzzy controller produced a smooth motion with no sudden change of the speed that could cause pain and activate the muscle reflexive mechanism. This improves the recovery procedure and promotes the robot's performance for wide clinical usage. PMID:21335755

  15. A New Rule-Based System for the Construction and Structural Characterization of Artificial Proteins

    NASA Astrophysics Data System (ADS)

    Štambuk, Nikola; Konjevoda, Paško; Gotovac, Nikola

    In this paper, we present a new rule-based system for an artificial protein design incorporating ternary amino acid polarity (polar, nonpolar, and neutral). It may be used to design de novo α and β protein fold structures and mixed class proteins. The targeted molecules are artificial proteins with important industrial and biomedical applications, related to the development of diagnostic-therapeutic peptide pharmaceuticals, antibody mimetics, peptide vaccines, new nanobiomaterials and engineered protein scaffolds.

  16. Feature Extraction Of Retinal Images Interfaced With A Rule-Based Expert System

    NASA Astrophysics Data System (ADS)

    Ishag, Na seem; Connell, Kevin; Bolton, John

    1988-12-01

    Feature vectors are automatically extracted from a library of digital retinal images after considerable image processing. Main features extracted are location of optic disc, cup-to-disc ratio using Hough transform techniques and histogram and binary enhancement algorithms, and blood vessel locations. These feature vectors are used to form a relational data base of the images. Relational operations are then used to extract pertinent information from the data base to form replies to queries from the rule-based expert system.

  17. A Metrics Taxonomy and Reporting Strategy for Rule-Based Alerts.

    PubMed

    Krall, Michael; Gerace, Alexander

    2015-01-01

    An action-oriented alerts taxonomy according to structure, actions, and implicit intended process outcomes using a set of 333 rule-based alerts at Kaiser Permanente Northwest (KPNW) was developed. The authors identified 9 major and 17 overall classes of alerts and developed a specific metric approach for 5 of these classes, including the 3 most numerous ones in KPNW, accounting for 224 (67%) of the alerts. PMID:26057684

  18. An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.

    PubMed

    Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin

    2015-07-01

    We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance. PMID:25163074

  19. Spatial rule-based modeling: a method and its application to the human mitotic kinetochore.

    PubMed

    Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter

    2013-01-01

    A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796

  20. Associations between rule-based parenting practices and child screen viewing: A cross-sectional study

    PubMed Central

    Kesten, Joanna M.; Sebire, Simon J.; Turner, Katrina M.; Stewart-Brown, Sarah; Bentley, Georgina; Jago, Russell

    2015-01-01

    Background Child screen viewing (SV) is positively associated with poor health indicators. Interventions addressing rule-based parenting practices may offer an effective means of limiting SV. This study examined associations between rule-based parenting practices (limit and collaborative rule setting) and SV in 6–8-year old children. Methods An online survey of 735 mothers in 2011 assessed: time that children spent engaged in SV activities; and the use of limit and collaborative rule setting. Logistic regression was used to examine the extent to which limit and collaborative rule setting were associated with SV behaviours. Results ‘Always’ setting limits was associated with more TV viewing, computer, smartphone and game-console use and a positive association was found between ‘always’ setting limits for game-console use and multi-SV (in girls). Associations were stronger in mothers of girls compared to mothers of boys. ‘Sometimes’ setting limits was associated with more TV viewing. There was no association between ‘sometimes’ setting limits and computer, game-console or smartphone use. There was a negative association between collaborative rule setting and game-console use in boys. Conclusions Limit setting is associated with greater SV. Collaborative rule setting may be effective for managing boys' game-console use. More research is needed to understand rule-based parenting practices. PMID:26844054

  1. An Evaluation and Implementation of Rule-Based Home Energy Management System Using the Rete Algorithm

    PubMed Central

    Fujita, Naotaka; Yoshihisa, Tomoki; Tsukamoto, Masahiko

    2014-01-01

    In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume “IF-THEN” rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps. PMID:25136672

  2. An evaluation and implementation of rule-based Home Energy Management System using the Rete algorithm.

    PubMed

    Kawakami, Tomoya; Fujita, Naotaka; Yoshihisa, Tomoki; Tsukamoto, Masahiko

    2014-01-01

    In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume "IF-THEN" rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps. PMID:25136672

  3. A rule-based approach for identifying obesity and its comorbidities in medical discharge summaries.

    PubMed

    Mishra, Ninad K; Cummo, David M; Arnzen, James J; Bonander, Jason

    2009-01-01

    OBJECTIVE Evaluate the effectiveness of a simple rule-based approach in classifying medical discharge summaries according to indicators for obesity and 15 associated co-morbidities as part of the 2008 i2b2 Obesity Challenge. METHODS The authors applied a rule-based approach that looked for occurrences of morbidity-related keywords and identified the types of assertions in which those keywords occurred. The documents were then classified using a simple scoring algorithm based on a mapping of the assertion types to possible judgment categories. MEASUREMENTS RESULTS for the challenge were evaluated based on macro F-measure. We report micro and macro F-measure results for all morbidities combined and for each morbidity separately. Results Our rule-based approach achieved micro and macro F-measures of 0.97 and 0.77, respectively, ranking fifth out of the entries submitted by 28 teams participating in the classification task based on textual judgments and substantially outperforming the average for the challenge. CONCLUSIONS As shown by its ranking in the challenge results, this approach performed relatively well under conditions in which limited training data existed for some judgment categories. Further, the approach held up well in relation to more complex approaches applied to this classification task. The approach could be enhanced by the addition of expert rules to model more complex medical reasoning. PMID:19390102

  4. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  5. Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore

    PubMed Central

    Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter

    2013-01-01

    A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796

  6. Fuzzy blood pressure measurement

    NASA Astrophysics Data System (ADS)

    Cuce, Antonino; Di Guardo, Mario; Sicurella, Gaetano

    1998-10-01

    In this paper, an intelligent system for blood pressure measurement is posed together with a possible implementation using an eight bit fuzzy processor. The system can automatically determine the ideal cuff inflation level eliminating the discomfort and misreading caused by incorrect cuff inflation. Using statistics distribution of the systolic and diastolic blood pressure, in the inflation phase, a fuzzy rule system determine the pressure levels at which checking the presence of heart beat in order to exceed the systolic pressure with the minimum gap. The heart beats, characterized through pressure variations, are recognized by a fuzzy classifier.

  7. Complex intuitionistic fuzzy sets

    NASA Astrophysics Data System (ADS)

    Alkouri, Abdulazeez (Moh'd. Jumah) S.; Salleh, Abdul Razak

    2012-09-01

    This paper presents a new concept of complex intuitionistic fuzzy set (CIFS) which is generalized from the innovative concept of a complex fuzzy set (CFS) by adding the non-membership term to the definition of CFS. The novelty of CIFS lies in its ability for membership and non-membership functions to achieve more range of values. The ranges of values are extended to the unit circle in complex plane for both membership and non-membership functions instead of [0, 1] as in the conventional intuitionistic fuzzy functions. We define basic operations namely complement, union, and intersection on CIFSs. Properties of these operations are derived.

  8. A Hybrid Approach Using Case-Based Reasoning and Rule-Based Reasoning to Support Cancer Diagnosis: A Pilot Study.

    PubMed

    Saraiva, Renata M; Bezerra, João; Perkusich, Mirko; Almeida, Hyggo; Siebra, Clauirton

    2015-01-01

    Recently there has been an increasing interest in applying information technology to support the diagnosis of diseases such as cancer. In this paper, we present a hybrid approach using case-based reasoning (CBR) and rule-based reasoning (RBR) to support cancer diagnosis. We used symptoms, signs, and personal information from patients as inputs to our model. To form specialized diagnoses, we used rules to define the input factors' importance according to the patient's characteristics. The model's output presents the probability of the patient having a type of cancer. To carry out this research, we had the approval of the ethics committee at Napoleão Laureano Hospital, in João Pessoa, Brazil. To define our model's cases, we collected real patient data at Napoleão Laureano Hospital. To define our model's rules and weights, we researched specialized literature and interviewed health professional. To validate our model, we used K-fold cross validation with the data collected at Napoleão Laureano Hospital. The results showed that our approach is an effective CBR system to diagnose cancer. PMID:26262174

  9. Fuzzy-probabilistic multi agent system for breast cancer risk assessment and insurance premium assignment.

    PubMed

    Tatari, Farzaneh; Akbarzadeh-T, Mohammad-R; Sabahi, Ahmad

    2012-12-01

    In this paper, we present an agent-based system for distributed risk assessment of breast cancer development employing fuzzy and probabilistic computing. The proposed fuzzy multi agent system consists of multiple fuzzy agents that benefit from fuzzy set theory to demonstrate their soft information (linguistic information). Fuzzy risk assessment is quantified by two linguistic variables of high and low. Through fuzzy computations, the multi agent system computes the fuzzy probabilities of breast cancer development based on various risk factors. By such ranking of high risk and low risk fuzzy probabilities, the multi agent system (MAS) decides whether the risk of breast cancer development is high or low. This information is then fed into an insurance premium adjuster in order to provide preventive decision making as well as to make appropriate adjustment of insurance premium and risk. This final step of insurance analysis also provides a numeric measure to demonstrate the utility of the approach. Furthermore, actual data are gathered from two hospitals in Mashhad during 1 year. The results are then compared with a fuzzy distributed approach. PMID:22692028

  10. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings

  11. Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    PubMed Central

    Stover, Lori J.; Nair, Niketh S.; Faeder, James R.

    2014-01-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory

  12. Fuzziness in abacus logic

    NASA Astrophysics Data System (ADS)

    Malhas, Othman Qasim

    1993-10-01

    The concept of “abacus logic” has recently been developed by the author (Malhas, n.d.). In this paper the relation of abacus logic to the concept of fuzziness is explored. It is shown that if a certain “regularity” condition is met, concepts from fuzzy set theory arise naturally within abacus logics. In particular it is shown that every abacus logic then has a “pre-Zadeh orthocomplementation”. It is also shown that it is then possible to associate a fuzzy set with every proposition of abacus logic and that the collection of all such sets satisfies natural conditions expected in systems of fuzzy logic. Finally, the relevance to quantum mechanics is discussed.

  13. Fuzzy Risk Analyzer

    Energy Science and Technology Software Center (ESTSC)

    1994-03-04

    FRA is a general purpose code for risk analysis using fuzzy, not numeric, attributes. It allows the user to evaluate the risk associated with a composite system on the basis of the risk estimates of the individual components.

  14. Fuzzy control system for a remote focusing microscope

    NASA Technical Reports Server (NTRS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  15. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets.

    PubMed

    Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan

    2013-06-01

    The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently. PMID:23757441

  16. Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems

    PubMed Central

    Chylek, Lily A.; Harris, Leonard A.; Tung, Chang-Shung; Faeder, James R.; Lopez, Carlos F.

    2013-01-01

    Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and post-translational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). PMID:24123887

  17. On structuring the rules of a fuzzy controller

    NASA Technical Reports Server (NTRS)

    Zhou, Jun; Raju, G. V. S.

    1993-01-01

    Since the pioneering work of Zadeh and Mamdani and Assilian, fuzzy logic control has emerged as one of the most active and fruitful research areas. The applications of fuzzy logic control can be found in many fields such as control of stream generators, automatic train operation systems, elevator control, nuclear reactor control, automobile transmission control, etc. In this paper, two new structures of hierarchical fuzzy rule-based controller are proposed to reduce the number of rules in a complete rule set of a controller. In one approach, the overall system is split into sub-systems which are treated independently in parallel. A coordinator is then used to take into account the interactions. This is done via an iterating information exchange between the lower level and the coordinator level. From the point of view of information used, this structure is very similar to central structure in that the coordinator can have at least in principle, all the information that the local controllers have.

  18. URC Fuzzy Modeling and Simulation of Gene Regulation

    SciTech Connect

    Sokhansanj, B A; Fitch, J P

    2001-05-01

    Recent technological advances in high-throughput data collection give biologists the ability to study increasingly complex systems. A new methodology is needed to develop and test biological models based on experimental observations and predict the effect of perturbations of the network (e.g. genetic engineering, pharmaceuticals, gene therapy). Diverse modeling approaches have been proposed, in two general categories: modeling a biological pathway as (a) a logical circuit or (b) a chemical reaction network. Boolean logic models can not represent necessary biological details. Chemical kinetics simulations require large numbers of parameters that are very difficult to accurately measure. Based on the way biologists have traditionally thought about systems, we propose that fuzzy logic is a natural language for modeling biology. The Union Rule Configuration (URC) avoids combinatorial explosion in the fuzzy rule base, allowing complex system models. We demonstrate the fuzzy modeling method on the commonly studied lac operon of E. coli. Our goal is to develop a modeling and simulation approach that can be understood and applied by biologists without the need for experts in other fields or ''black-box'' software.

  19. STAX: a turbo prolog rule-based system for soil taxonomy

    NASA Astrophysics Data System (ADS)

    Fisher, Peter F.; Balachandran, Chandra S.

    This paper and the accompanying listing document a rule-based system which allocates soils according to the scheme of the USDA's Soil Taxonomy. This program goes to only the first, or order, level of the hierarchical system, but further work is extending it to lower levels in the classification system. The program is written in Borland International's Turbo Prolog, version 1.1, and operates on any IBM PC or compatible. The program mimics the eliminative classification process of Soil Taxonomy which is implemented as a semantic network, giving a depth-first search through soils and properties.

  20. A conceptual model to empower software requirements conflict detection and resolution with rule-based reasoning

    NASA Astrophysics Data System (ADS)

    Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed

    2016-08-01

    It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.

  1. Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons

    PubMed Central

    Navawongse, Rapeechai; Eichenbaum, Howard

    2013-01-01

    Hippocampal neurons encode events within the context in which they occurred, a fundamental feature of episodic memory. Here we explored the sources of event and context information represented by hippocampal neurons during the retrieval of object associations in rats. Temporary inactivation of the medial prefrontal cortex differentially reduced the selectivity of rule-based object associations represented by hippocampal neuronal firing patterns but did not affect spatial firing patterns. By contrast, inactivation of the medial entorhinal cortex resulted in a pervasive reorganization of hippocampal mappings of spatial context and events. These results suggest distinct and cooperative prefrontal and medial temporal mechanisms in memory representation. PMID:23325238

  2. Approach to verifying completeness and consistency in a rule-based expert system

    SciTech Connect

    Suwa, M.; Scott, A.C.; Shortliffe, E.H.

    1982-08-01

    We describe a program for verifying that a set of rules in an expert system comprehensively spans the knowledge of a specialized domain. The program has been devised and tested within the context of the ONCOCIN System, a rule-based consultant for clinical oncology. The stylized format of ONCOCIN's rules has allowed the automatic detection of a number of common errors as the knowledge base has been developed. This capability suggests a general mechanism for correcting many problems with knowledge base completeness and consistency before they can cause performance errors.

  3. A Rule-Based Expert System as an Integrated Resource in an Outpatient Clinic Information System

    PubMed Central

    Wilton, Richard

    1990-01-01

    A rule-based expert system can be integrated in a useful way into a microcomputer-based clinical information system by using symmetric data-communication methods and intuitive user-interface design. To users of the computer system, the expert system appears as one of several distributed information resources, among which are database management systems and a gateway to a mainframe computing system. Transparent access to the expert system is based on the use of both commercial and public-domain data-communication standards.

  4. Rule-based induction method for haplotype comparison and identification of candidate disease loci

    PubMed Central

    2012-01-01

    There is a need for methods that are able to identify rare variants that cause low or moderate penetrance disease susceptibility. To answer this need, we introduce a rule-based haplotype comparison method, Haplous, which identifies haplotypes within multiple samples from phased genotype data and compares them within and between sample groups. We demonstrate that Haplous is able to accurately identify haplotypes that are identical by descent, exclude common haplotypes in the studied population and select rare haplotypes from the data. Our analysis of three families with multiple individuals affected by lymphoma identified several interesting haplotypes shared by distantly related patients. PMID:22429919

  5. Description of a rule-based system for the i2b2 challenge in natural language processing for clinical data.

    PubMed

    Childs, Lois C; Enelow, Robert; Simonsen, Lone; Heintzelman, Norris H; Kowalski, Kimberly M; Taylor, Robert J

    2009-01-01

    The Obesity Challenge, sponsored by Informatics for Integrating Biology and the Bedside (i2b2), a National Center for Biomedical Computing, asked participants to build software systems that could "read" a patient's clinical discharge summary and replicate the judgments of physicians in evaluating presence or absence of obesity and 15 comorbidities. The authors describe their methodology and discuss the results of applying Lockheed Martin's rule-based natural language processing (NLP) capability, ClinREAD. We tailored ClinREAD with medical domain expertise to create assigned default judgments based on the most probable results as defined in the ground truth. It then used rules to collect evidence similar to the evidence that the human judges likely relied upon, and applied a logic module to weigh the strength of all evidence collected to arrive at final judgments. The Challenge results suggest that rule-based systems guided by human medical expertise are capable of solving complex problems in machine processing of medical text. PMID:19390103

  6. Description of a Rule-based System for the i2b2 Challenge in Natural Language Processing for Clinical Data

    PubMed Central

    Childs, Lois C.; Enelow, Robert; Simonsen, Lone; Heintzelman, Norris H.; Kowalski, Kimberly M.; Taylor, Robert J.

    2009-01-01

    The Obesity Challenge, sponsored by Informatics for Integrating Biology and the Bedside (i2b2), a National Center for Biomedical Computing, asked participants to build software systems that could “read” a patient's clinical discharge summary and replicate the judgments of physicians in evaluating presence or absence of obesity and 15 comorbidities. The authors describe their methodology and discuss the results of applying Lockheed Martin's rule-based natural language processing (NLP) capability, ClinREAD. We tailored ClinREAD with medical domain expertise to create assigned default judgments based on the most probable results as defined in the ground truth. It then used rules to collect evidence similar to the evidence that the human judges likely relied upon, and applied a logic module to weigh the strength of all evidence collected to arrive at final judgments. The Challenge results suggest that rule-based systems guided by human medical expertise are capable of solving complex problems in machine processing of medical text. PMID:19390103

  7. Fuzzy control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  8. Component Models for Fuzzy Data

    ERIC Educational Resources Information Center

    Coppi, Renato; Giordani, Paolo; D'Urso, Pierpaolo

    2006-01-01

    The fuzzy perspective in statistical analysis is first illustrated with reference to the "Informational Paradigm" allowing us to deal with different types of uncertainties related to the various informational ingredients (data, model, assumptions). The fuzzy empirical data are then introduced, referring to "J" LR fuzzy variables as observed on "I"…

  9. Predicting the relatiave vulnerability of near-coastal species to climate change using a rule-based ecoinformatics approach

    EPA Science Inventory

    Background/Questions/Methods Near-coastal species are threatened by multiple climate change drivers, including temperature increases, ocean acidification, and sea level rise. To identify vulnerable habitats, geographic regions, and species, we developed a sequential, rule-based...

  10. An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers.

    PubMed

    Tao, C W; Taur, Jinshiuh; Chuang, Chen-Chia; Chang, Chia-Wen; Chang, Yeong-Hwa

    2011-06-01

    In this paper, the interval type-2 fuzzy controllers (FC(IT2)s) are approximated using the fuzzy ratio switching type-1 FCs to avoid the complex type-reduction process required for the interval type-2 FCs. The fuzzy ratio switching type-1 FCs (FC(FRST1)s) are designed to be a fuzzy combination of the possible-leftmost and possible-rightmost type-1 FCs. The fuzzy ratio switching type-1 fuzzy control technique is applied with the sliding control technique to realize the hybrid fuzzy ratio switching type-1 fuzzy sliding controllers (HFSC(FRST1)s) for the double-pendulum-and-cart system. The simulation results and comparisons with other approaches are provided to demonstrate the effectiveness of the proposed HFSC(FRST1)s. PMID:21189244

  11. A model-based simulator for testing rule-based decision support systems for mechanical ventilation of ARDS patients.

    PubMed Central

    Sailors, R. M.; East, T. D.

    1994-01-01

    A model-based simulator was developed for testing rule-based decision support systems that manages ventilator therapy of patients with the Adult Respiratory Distress Syndrome (ARDS). The simulator is based on a multi-compartment model of the human body and mathematical models of the gas exchange abnormalities associated with ARDS. Initial testing of this system indicates that model-based simulators are a viable tool for testing rule-based expert systems used in health-care. PMID:7949849

  12. Modal control of a plate using a fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Singh, S. P.; Sachdeva, B. L.

    2007-08-01

    This paper presents fuzzy logic based independent modal space control (IMSC) and fuzzy logic based modified independent modal space control (MIMSC) of vibration. The rule base of the controller consists of nine rules, which have been derived based upon simple human reasoning. Input to the controller consists of the first two modal displacements and velocities of the structure and the output of the controller is the modal force to be applied by the actuator. Fuzzy logic is used in such a way that the actuator is never called to apply effort which is beyond safe limits and also the operator is saved from calculating control gains. The proposed fuzzy controller is experimentally tested for active vibration control of a cantilevered plate. A piezoelectric patch is used as a sensor to sense vibrations of the plate and another piezoelectric patch is used as an actuator to control vibrations of the plate. For analytical formulation, a finite element method based upon Hamilton's principle is used to model the plate. For experimentation, the first two modes of the plate are observed using a Kalman observer. Real-time experiments are performed to control the first mode, the second mode and both modes simultaneously. Experiments are also performed to control the first mode by IMSC, the second mode by IMSC and both modes simultaneously by MIMSC. It is found that for the same decibel reduction in the first mode, the voltage applied by the fuzzy logic based controller is less than that applied by IMSC. While controlling the second mode by IMSC, a considerable amount of spillover is observed in the first mode and region just after the second mode, whereas while controlling the second mode by fuzzy logic, spillover effects are much smaller. While controlling two modes simultaneously, with a single sensor/actuator pair, appreciable resonance control is observed both with fuzzy logic based MIMSC as well as with direct MIMSC, but there is a considerable amount of spillover in the off

  13. Solving fuzzy polynomial equation and the dual fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-06-01

    Fuzzy polynomials with trapezoidal and triangular fuzzy numbers have attracted interest among some researchers. Many studies have been done by researchers to obtain real roots of fuzzy polynomials. As a result, there are many numerical methods involved in obtaining the real roots of fuzzy polynomials. In this study, we will present the solution to the fuzzy polynomial equation and dual fuzzy polynomial equation using the ranking method of fuzzy numbers and subsequently transforming fuzzy polynomials to crisp polynomials. This transformation is performed using the ranking method based on three parameters, namely Value, Ambiguity and Fuzziness. Finally, we illustrate our approach with two numerical examples for fuzzy polynomial equation and dual fuzzy polynomial equation.

  14. Towards rule-based metabolic databases: a requirement analysis based on KEGG.

    PubMed

    Richter, Stephan; Fetzer, Ingo; Thullner, Martin; Centler, Florian; Dittrich, Peter

    2015-01-01

    Knowledge of metabolic processes is collected in easily accessable online databases which are increasing rapidly in content and detail. Using these databases for the automatic construction of metabolic network models requires high accuracy and consistency. In this bipartite study we evaluate current accuracy and consistency problems using the KEGG database as a prominent example and propose design principles for dealing with such problems. In the first half, we present our computational approach for classifying inconsistencies and provide an overview of the classes of inconsistencies we identified. We detected inconsistencies both for database entries referring to substances and entries referring to reactions. In the second part, we present strategies to deal with the detected problem classes. We especially propose a rule-based database approach which allows for the inclusion of parameterised molecular species and parameterised reactions. Detailed case-studies and a comparison of explicit networks from KEGG with their anticipated rule-based representation underline the applicability and scalability of this approach. PMID:26547981

  15. Automated detection of pain from facial expressions: a rule-based approach using AAM

    NASA Astrophysics Data System (ADS)

    Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.

    2012-02-01

    In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.

  16. A Rule Based Approach to ISS Interior Volume Control and Layout

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, Jim; Fitts, David; Dory, Jonathan

    2001-01-01

    Traditional human factors design involves the development of human factors requirements based on a desire to accommodate a certain percentage of the intended user population. As the product is developed human factors evaluation involves comparison between the resulting design and the specifications. Sometimes performance metrics are involved that allow leniency in the design requirements given that the human performance result is satisfactory. Clearly such approaches may work but they give rise to uncertainty and negotiation. An alternative approach is to adopt human factors design rules that articulate a range of each design continuum over which there are varying outcome expectations and interactions with other variables, including time. These rules are based on a consensus of human factors specialists, designers, managers and customers. The International Space Station faces exactly this challenge in interior volume control, which is based on anthropometric, performance and subjective preference criteria. This paper describes the traditional approach and then proposes a rule-based alternative. The proposed rules involve spatial, temporal and importance dimensions. If successful this rule-based concept could be applied to many traditional human factors design variables and could lead to a more effective and efficient contribution of human factors input to the design process.

  17. Integration of object-oriented knowledge representation with the CLIPS rule based system

    NASA Technical Reports Server (NTRS)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  18. Net-Help: An On-Line Rule Based Help System For The Network

    NASA Astrophysics Data System (ADS)

    Pitchai, Anandhi; Chaganty, Srinivas; Morgan, Thomas W.

    1988-03-01

    The application of expert systems to network management is a promising area. Much work is in progress in the area of network diagnoses and maintenance. Here we explore the possibility of employing expert systems in a new way, namely in providing on-line help to users in a network environment. Since the knowledge base can be quite large and incrementally expanded, expert system techniques are ideal. This paper describes a research effort to design and develop a prototype for such a rule based expert system. As an initial step Net-Help version 1 has been developed for users on a UNIX host and networked with other hosts using ethernet. The paper discusses the features and the usefulness of the system. It also deals with the implementation of the rule based Net-Help system on an AT&T 3B2 computer using 0PS83 production system language. A sample session and the related tree structure is included to illustrate the user interface and logical structure. Net-Help will serve as an on-line consultant which is interactive on both the user end and the network end. Network information is acquired as and when it is needed by Net-Help interactions. This is mainly done for validation checks performed before suggesting commands such as file transfer. Similar tools can also be used for tutoring purposes. Net-Help can be easily expanded to provide help in non-Unix environments or when computers are networked using a different protocol.

  19. A multilayer perceptron solution to the match phase problem in rule-based artificial intelligence systems

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.

    1992-01-01

    In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.

  20. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  1. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

    PubMed Central

    Tang, Yongchuan; Zhou, Deyun

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  2. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  3. Fuzzy diagnostic system for oleo-pneumatic drive mechanism of high-voltage circuit breakers.

    PubMed

    Nicolau, Viorel

    2013-01-01

    Many oil-based high-voltage circuit breakers are still in use in national power networks of developing countries, like those in Eastern Europe. Changing these breakers with new more reliable ones is not an easy task, due to their implementing costs. The acting device, called oleo-pneumatic mechanism (MOP), presents the highest fault rate from all components of circuit breaker. Therefore, online predictive diagnosis and early detection of the MOP fault tendencies are very important for their good functioning state. In this paper, fuzzy logic approach is used for the diagnosis of MOP-type drive mechanisms. Expert rules are generated to estimate the MOP functioning state, and a fuzzy system is proposed for predictive diagnosis. The fuzzy inputs give information about the number of starts and time of functioning per hour, in terms of short-term components, and their mean values. Several fuzzy systems were generated, using different sets of membership functions and rule bases, and their output performances are studied. Simulation results are presented based on an input data set, which contains hourly records of operating points for a time horizon of five years. The fuzzy systems work well, making an early detection of the MOP fault tendencies. PMID:24319349

  4. Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control.

    PubMed

    Mahfouf, M; Abbod, M F; Linkens, D A

    2003-01-01

    Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control architecture is proposed whereby the on-line generated fuzzy rules relating to the self-organizing fuzzy logic controller (SOFLC) are obtained via integration with the popular generalized predictive control (GPC) algorithm using a Takagi-Sugeno-Kang (TSK)-based controlled autoregressive integrated moving average (CARIMA) model structure. In this approach, GPC replaces the performance index (PI) table which, as an incremental model, is traditionally used to discover, amend, and delete the rules. Because the GPC sequence is computed using predicted future outputs, the new hybrid approach rewards the time-delay very well. The new generic approach, named generalized predictive self-organizing fuzzy logic control (GPSOFLC), is simulated on a well-known nonlinear chemical process, the distillation column, and is shown to produce an effective fuzzy rule-base in both qualitative (minimum number of generated rules) and quantitative (good rules) terms. PMID:18238192

  5. Crop parameters estimation by fuzzy inference system using X-band scatterometer data

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Prasad, R.; Singh, V. P.; Jha, S. K.; Shukla, K. K.

    2013-03-01

    Learning fuzzy rule based systems with microwave remote sensing can lead to very useful applications in solving several problems in the field of agriculture. Fuzzy logic provides a simple way to arrive at a definite conclusion based upon imprecise, ambiguous, vague, noisy or missing input information. In the present paper, a subtractive based fuzzy inference system is introduced to estimate the potato crop parameters like biomass, leaf area index, plant height and soil moisture. Scattering coefficient for HH- and VV-polarizations were used as an input in the Fuzzy network. The plant height, biomass, and leaf area index of potato crop and soil moisture measured at its various growth stages were used as the target variables during the training and validation of the network. The estimated values of crop/soil parameters by this methodology are much closer to the experimental values. The present work confirms the estimation abilities of fuzzy subtractive clustering in potato crop parameters estimation. This technique may be useful for the other crops cultivated over regional or continental level.

  6. Reconfigurable fuzzy cell

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor)

    1993-01-01

    This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.

  7. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  8. AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui

    2012-12-01

    In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.

  9. Novel Architecture for supporting medical decision making of different data types based on Fuzzy Cognitive Map Framework.

    PubMed

    Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter

    2007-01-01

    Medical problems involve different types of variables and data, which have to be processed, analyzed and synthesized in order to reach a decision and/or conclude to a diagnosis. Usually, information and data set are both symbolic and numeric but most of the well-known data analysis methods deal with only one kind of data. Even when fuzzy approaches are considered, which are not depended on the scales of variables, usually only numeric data is considered. The medical decision support methods usually are accessed in only one type of available data. Thus, sophisticated methods have been proposed such as integrated hybrid learning approaches to process symbolic and numeric data for the decision support tasks. Fuzzy Cognitive Maps (FCM) is an efficient modelling method, which is based on human knowledge and experience and it can handle with uncertainty and it is constructed by extracted knowledge in the form of fuzzy rules. The FCM model can be enhanced if a fuzzy rule base (IF-THEN rules) is available. This rule base could be derived by a number of machine learning and knowledge extraction methods. Here it is introduced a hybrid attempt to handle situations with different types of available medical and/or clinical data and with difficulty to handle them for decision support tasks using soft computing techniques. PMID:18002176

  10. A fuzzy hill-climbing algorithm for the development of a compact associative classifier

    NASA Astrophysics Data System (ADS)

    Mitra, Soumyaroop; Lam, Sarah S.

    2012-02-01

    Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.

  11. Optimized parameter extraction using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Picos, Rodrigo; Calvo, Oscar; Iñiguez, Benjamín; García-Moreno, Eugeni; García, Rodolfo; Estrada, Magali

    2007-05-01

    Precise extraction of transistor model parameters is of much importance for modeling and at the same time a difficult and time consuming task. Methods for parameter extraction can rely on purely mathematical basis, calling for intensive use of computational resources, or in human expertise to interpret results. In this work, we propose a method for parameter extraction based on fuzzy logic that includes a precise knowledge about the function of each parameter in the model to create a set of simple fitting rules that are easy to describe in human language. To simplify the computational effort, the parameter fitting rules work using only data at specific points (e.g. the distance between the calculated curve and the measured one at VDS corresponding to 50% of the maximum current). If necessary, a more accurate implementation can be used without altering the basic underlying philosophy of the method. In this work, the method is applied to extract model parameters required by Level 3 bulk MOS model and by a compact model for TFTs used in the Unified Model and Extraction Method (UMEM), which is based on an integral function. Results obtained show that the method is quite insensitive to the initial conditions and that it is also quite fast. Extension of this method for more complex models requires only the creation of the corresponding rule base, using the appropriate measurements. The method is especially useful for production testing or design.

  12. Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.

    PubMed

    Yeh, Chi-Yuan; Jeng, Wen-Hau Roger; Lee, Shie-Jue

    2011-12-01

    We propose a novel approach for building a type-2 neural-fuzzy system from a given set of input-output training data. A self-constructing fuzzy clustering method is used to partition the training dataset into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then a type-2 fuzzy Takagi-Sugeno-Kang IF-THEN rule is derived from each cluster to form a fuzzy rule base. A fuzzy neural network is constructed accordingly and the associated parameters are refined by a hybrid learning algorithm which incorporates particle swarm optimization and a least squares estimation. For a new input, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set, which is then defuzzified by applying a refined type reduction algorithm. Experimental results are presented to demonstrate the effectiveness of our proposed approach. PMID:22010148

  13. Modeling for (physical) biologists: an introduction to the rule-based approach

    PubMed Central

    Chylek, Lily A; Harris, Leonard A; Faeder, James R; Hlavacek, William S

    2015-01-01

    Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions. PMID:26178138

  14. Rule-based modelling and simulation of biochemical systems with molecular finite automata.

    PubMed

    Yang, J; Meng, X; Hlavacek, W S

    2010-11-01

    The authors propose a theoretical formalism, molecular finite automata (MFA), to describe individual proteins as rule-based computing machines. The MFA formalism provides a framework for modelling individual protein behaviours and systems-level dynamics via construction of programmable and executable machines. Models specified within this formalism explicitly represent the context-sensitive dynamics of individual proteins driven by external inputs and represent protein-protein interactions as synchronised machine reconfigurations. Both deterministic and stochastic simulations can be applied to quantitatively compute the dynamics of MFA models. They apply the MFA formalism to model and simulate a simple example of a signal-transduction system that involves an MAP kinase cascade and a scaffold protein. PMID:21073243

  15. An Unsupervised Rule-Based Method to Populate Ontologies from Text

    NASA Astrophysics Data System (ADS)

    Motta, Eduardo; Siqueira, Sean; Andreatta, Alexandre

    An increasing amount of information is available on the web and usually is expressed as text. Semantic information is implicit in these texts, since they are mainly intended for human consumption and interpretation. Because unstructured information is not easily handled automatically, an information extraction process has to be used to identify concepts and establish relations among them. Ontologies are an appropriate way to represent structured knowledge bases, enabling sharing, reuse and inference. In this paper, an information extraction process is used for populating a domain ontology. It targets Brazilian Portuguese texts from a biographical dictionary of music, which requires specific tools due to some language unique aspects. An unsupervised rule-based method is proposed. Through this process, latent concepts and relations expressed in natural language can be extracted and represented as an ontology, allowing new uses and visualizations of the content, such as semantically browsing and inferring new knowledge.

  16. Modeling for (physical) biologists: an introduction to the rule-based approach

    NASA Astrophysics Data System (ADS)

    Chylek, Lily A.; Harris, Leonard A.; Faeder, James R.; Hlavacek, William S.

    2015-07-01

    Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.

  17. Modeling for (physical) biologists: an introduction to the rule-based approach.

    PubMed

    Chylek, Lily A; Harris, Leonard A; Faeder, James R; Hlavacek, William S

    2015-07-01

    Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions. PMID:26178138

  18. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks

    PubMed Central

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-01-01

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709

  19. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks.

    PubMed

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-01-01

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709

  20. A Rule-Based Modeling for the Description of Flexible and Self-healing Business Processes

    NASA Astrophysics Data System (ADS)

    Boukhebouze, Mohamed; Amghar, Youssef; Benharkat, Aïcha-Nabila; Maamar, Zakaria

    In this paper we discuss the importance of ensuring that business processes are label robust and agile at the same time robust and agile. To this end, we consider reviewing the way business processes are managed. For instance we consider offering a flexible way to model processes so that changes in regulations are handled through some self-healing mechanisms. These changes may raise exceptions at run-time if not properly reflected on these processes. To this end we propose a new rule based model that adopts the ECA rules and is built upon formal tools. The business logic of a process can be summarized with a set of rules that implement an organization’s policies. Each business rule is formalized using our ECAPE formalism (Event-Condition-Action-Post condition- post Event). This formalism allows translating a process into a graph of rules that is analyzed in terms of reliably and flexibility.

  1. ChemTok: A New Rule Based Tokenizer for Chemical Named Entity Recognition.

    PubMed

    Akkasi, Abbas; Varoğlu, Ekrem; Dimililer, Nazife

    2016-01-01

    Named Entity Recognition (NER) from text constitutes the first step in many text mining applications. The most important preliminary step for NER systems using machine learning approaches is tokenization where raw text is segmented into tokens. This study proposes an enhanced rule based tokenizer, ChemTok, which utilizes rules extracted mainly from the train data set. The main novelty of ChemTok is the use of the extracted rules in order to merge the tokens split in the previous steps, thus producing longer and more discriminative tokens. ChemTok is compared to the tokenization methods utilized by ChemSpot and tmChem. Support Vector Machines and Conditional Random Fields are employed as the learning algorithms. The experimental results show that the classifiers trained on the output of ChemTok outperforms all classifiers trained on the output of the other two tokenizers in terms of classification performance, and the number of incorrectly segmented entities. PMID:26942193

  2. A rule-based screening environmental risk assessment tool derived from EUSES.

    PubMed

    Verdonck, Frederik A M; Boeije, Geert; Vandenberghe, Veronique; Comber, Mike; de Wolf, Watze; Feijtel, Tom; Holt, Martin; Koch, Volker; Lecloux, André; Siebel-Sauer, Angela; Vanrolleghem, Peter A

    2005-03-01

    Within the context and scope of the forthcoming European Union chemical regulations (REACH), there is a need to be able to prioritise the chemicals for evaluation. Therefore, a simple, pragmatic and adequately conservative approach for the identification of substances of very low or no immediate concern at an early stage is presented. The fundamental principles and basic concepts are derived from the EU Technical Guidance Document and EUSES, and are translated into an easy-to-use rule-based system. For this development, the effect on risk characterisation ratios (RCRs) of the key environmental parameters in EUSES was quantified (taking into account several standardised chemical release scenarios). Using statistical analysis, ranges were identified for each key parameter, within which the end result of the assessment was not significantly affected. This information was then translated into a lookup table from which environmental risk characterisation ratios can be directly read as a function of a few parameters. PMID:15667838

  3. ChemTok: A New Rule Based Tokenizer for Chemical Named Entity Recognition

    PubMed Central

    Akkasi, Abbas; Varoğlu, Ekrem; Dimililer, Nazife

    2016-01-01

    Named Entity Recognition (NER) from text constitutes the first step in many text mining applications. The most important preliminary step for NER systems using machine learning approaches is tokenization where raw text is segmented into tokens. This study proposes an enhanced rule based tokenizer, ChemTok, which utilizes rules extracted mainly from the train data set. The main novelty of ChemTok is the use of the extracted rules in order to merge the tokens split in the previous steps, thus producing longer and more discriminative tokens. ChemTok is compared to the tokenization methods utilized by ChemSpot and tmChem. Support Vector Machines and Conditional Random Fields are employed as the learning algorithms. The experimental results show that the classifiers trained on the output of ChemTok outperforms all classifiers trained on the output of the other two tokenizers in terms of classification performance, and the number of incorrectly segmented entities. PMID:26942193

  4. Connecting the dots: rule-based decision support systems in the modern EMR era.

    PubMed

    Herasevich, Vitaly; Kor, Daryl J; Subramanian, Arun; Pickering, Brian W

    2013-08-01

    The intensive care unit (ICU) environment is rich in both medical device and electronic medical record (EMR) data. The ICU patient population is particularly vulnerable to medical error or delayed medical intervention both of which are associated with excess morbidity, mortality and cost. The development and deployment of smart alarms, computerized decision support systems (DSS) and "sniffers" within ICU clinical information systems has the potential to improve the safety and outcomes of critically ill hospitalized patients. However, the current generations of alerts, run largely through bedside monitors, are far from ideal and rarely support the clinician in the early recognition of complex physiologic syndromes or deviations from expected care pathways. False alerts and alert fatigue remain prevalent. In the coming era of widespread EMR implementation novel medical informatics methods may be adaptable to the development of next generation, rule-based DSS. PMID:23456293

  5. A rule-based decision support application for laboratory investigations management.

    PubMed Central

    Boon-Falleur, L.; Sokal, E.; Peters, M.; Ketelslegers, J. M.

    1995-01-01

    The appropriate management of clinical laboratory requests in specialised clinical units often requires the adherence to pre-defined protocols. We evaluated the impact of a rule-based expert system for clinical laboratory investigations management in a pediatric liver transplantation unit of our hospital. After one year, we observed an overall reduction in laboratory resources consumption for transplanted patients (-27%) and a decrease in the percentage of "STAT" requested tests (-44%). The percentage of tests ordered in agreement with the protocols for those patients increased from 33% before the introduction of the expert system to 45% when the system was used. The system was perceived by the clinicians as increasing the overall benefits in use of clinical resources, improving the laboratory data management, and saving time for the execution of laboratory ancillary tasks. PMID:8563292

  6. XCUT: A rule-based expert system for the automated process planning of machined parts

    SciTech Connect

    Brooks, S.L.; Hummel, K.E.; Wolf, M.L.

    1987-06-01

    Automated process planning is becoming a popular research and development topic in engineering and applied artificial intelligence. It is generally defined as the automatic planning of the manufacturing procedures for producing a part from a CAD based product definition. An automated process planning system, XCUT, is currently being developed using rule-based expert system techniques. XCUT will generate process plans for the production of machined piece-parts, given a geometric description of a part's features. The system currently is focused on operation planning for prismatic parts on multi-axis CNC milling machines. To date, moderately complex 2-1/2D prismatic parts have successfully been planned for with approximately 300 rules in the knowledge base. This paper will describe the XCUT system, system architecture, knowledge representation, plan development sequence, and issues in applying expert system technology to automated process planning. 16 refs.

  7. Knowledge acquisition and knowledge representation in a rule-based expert system.

    PubMed

    Chang, B L; Hirsch, M

    1991-01-01

    It is important to understand and describe how nurses make diagnostic decisions. This article describes the process by which knowledge is acquired and represented in a rule-based expert system for nursing diagnosis. Knowledge acquisition was obtained by tapping the expertise of clinical nurse specialists who were able to articulate the elements present in their diagnostic decisions. Knowledge representation was achieved using a commercially-available software package. VP Expert (Berkeley, CA). The clinical nurse specialists contributed many of the heuristics in the determination of self-care deficit as a nursing diagnosis. Three models of rules for the determination of self-care deficit, bathing are provided. These models represent a method for discriminating between levels of patient dependence. A description of rules that define specific causes, such as immobility are also included. They will be tested in the clinical setting. PMID:1933658

  8. A rule-based expert system for generating control displays at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Coulter, Karen J.

    1994-12-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  9. A rule-based steam distribution system for petrochemical plant operation

    SciTech Connect

    Yi, H.S.; Yeo, Y.K.; Kim, J.K.; Kim, M.K.; Kang, S.S.

    1998-03-01

    A rule-based expert system for the optimal operation of plantwide steam distribution systems is proposed to minimize the net cost of providing energy to the plant. The system is based on the steady-state modeling and simulation of steam generation processes and steam distribution networks. Modeling of steam generation processes and steam distribution networks was performed based on actual plant operation data. Heuristic operational knowledge obtained from experienced plant engineers is incorporated in the form of IF-THEN rules. The proposed system could provide operational information when there were changes in the grade and amount of steam demand.The letdown amount from the very high pressure steam (VS) header and the amount of VS produced at the boiler showed good agreement with those of actual operational data. The prediction of an increase of boiler load caused by self-consumed steam made it possible to prevent an unexpected sudden increase of electricity demand.

  10. MYCIN and NEOMYCIN: two approaches to generating explanations in rule-based expert systems.

    PubMed

    Sotos, J G

    1990-10-01

    The prototypical rule-based expert system is MYCIN, a computer program developed in the 1970's to diagnose and recommend therapy for serious infections. MYCIN is able to explain its reasoning at any point in a consultation by listing the rules it has under consideration at that moment. However, when MYCIN's rules were used as the subject matter for a computerized infectious disease tutoring system, it became apparent that these rules contained implicit knowledge about how to perform diagnostic tasks and that this knowledge was inaccessible to the explanation system and, therefore, to students. This paper briefly describes NEOMYCIN, an expert system that makes this implicit knowledge explicit, and shows the effect that this reconfiguration of knowledge has on generating explanations. PMID:2241738

  11. The diagnosis of microcytic anemia by a rule-based expert system using VP-Expert.

    PubMed

    O'Connor, M L; McKinney, T

    1989-09-01

    We describe our experience in creating a rule-based expert system for the interpretation of microcytic anemia using the expert system development tool, VP-Expert, running on an IBM personal computer. VP-Expert processes data (complete blood cell count results, age, and sex) according to a set of user-written logic rules (our program) to reach conclusions as to the following causes of microcytic anemia: alpha- and beta-thalassemia trait, iron deficiency, and anemia of chronic disease. Our expert system was tested using previously interpreted complete blood cell count data. In most instances, there was good agreement between the expert system and its pathologist-author, but many discrepancies were found in the interpretation of anemia of chronic disease. We conclude that VP-Expert has a useful level of power and flexibility, yet is simple enough that individuals with modest programming experience can create their own expert systems. Limitations of such expert systems are discussed. PMID:2774865

  12. A rule-based expert system for generating control displays at the Advanced Photon Source

    SciTech Connect

    Coulter, K.J.

    1993-11-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  13. A token-flow paradigm for verification of rule-based expert systems.

    PubMed

    Wu, C H; Lee, S J

    2000-01-01

    This paper presents a novel approach to the verification of rule-based systems (RBSs). A graph structure, called the rule-dependency graph (RDG), is introduced to describe the dependency relationship among the rules of an RBS, in which each type of improper knowledge forms a specific topological structure. Knowledge verification is then performed by searching for such topological structures through a token-flow paradigm. An algorithm is provided, which automatically generates a minimally sufficient set of literals as test tokens in the detection procedure. The proposed scheme can be applied to rules of non-Horn clause form in both propositional and first-order logic, and restrictions imposed by other graph-based approaches can be avoided. Furthermore, explicit and potential anomalies of RBSs can be correctly found, and efficient run-time validation is made possible. PMID:18252394

  14. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  15. Semantic classification of diseases in discharge summaries using a context-aware rule-based classifier.

    PubMed

    Solt, Illés; Tikk, Domonkos; Gál, Viktor; Kardkovács, Zsolt T

    2009-01-01

    OBJECTIVE Automated and disease-specific classification of textual clinical discharge summaries is of great importance in human life science, as it helps physicians to make medical studies by providing statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries, semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a patient, or is unmentioned in the document. The authors present a classification technique that successfully solves the semantic classification task. DESIGN The authors introduce a context-aware rule-based semantic classification technique for use on clinical discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a sequence of binary classifiers is applied to assign the appropriate semantic labels. Measurement For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its evaluation measures: F(1)-macro and F(1)-micro for measurements. RESULTS On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed very well, and achieved a F(1)-macro = 0.80 for the textual and F(1)-macro = 0.67 for the intuitive tasks, and obtained second place at the textual and first place at the intuitive subtasks of the challenge. CONCLUSIONS The authors show in the paper that a simple rule-based classifier can tackle the semantic classification task more successfully than machine learning techniques, if the training data are limited and some semantic labels are very sparse. PMID:19390101

  16. A rule-based seizure prediction method for focal neocortical epilepsy

    PubMed Central

    Aarabi, Ardalan; He, Bin

    2012-01-01

    Objective In the present study, we have developed a novel patient-specific rule-based seizure prediction system for focal neocortical epilepsy. Methods Five univariate measures including correlation dimension, correlation entropy, noise level, Lempel-Ziv complexity, and largest Lyapunov exponent as well as one bivariate measure, nonlinear interdependence, were extracted from non-overlapping 10-second segments of intracranial electroencephalogram (iEEG) data recorded using electrodes implanted deep in the brain and/or placed on the cortical surface. The spatio-temporal information was then integrated by using rules established based on patient-specific changes observed in the period prior to a seizure sample for each patient. The system was tested on 316 h of iEEG data containing 49 seizures recorded in eleven patients with medically intractable focal neocortical epilepsy. Results For seizure occurrence periods of 30 and 50 min our method showed an average sensitivity of 79.9% and 90.2% with an average false prediction rate of 0.17 and 0.11/h, respectively. In terms of sensitivity and false prediction rate, the system showed superiority to random and periodical predictors. Conclusions The nonlinear analysis of iEEG in the period prior to seizures revealed patient-specific spatio-temporal changes that were significantly different from those observed within baselines in the majority of the seizures analyzed in this study. Significance The present results suggest that the patient specific rule-based approach may become a potentially useful approach for predicting seizures prior to onset. PMID:22361267

  17. Neural substrates of similarity and rule-based strategies in judgment

    PubMed Central

    von Helversen, Bettina; Karlsson, Linnea; Rasch, Björn; Rieskamp, Jörg

    2014-01-01

    Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI), we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved. PMID:25360099

  18. Fast Fuzzy Arithmetic Operations

    NASA Technical Reports Server (NTRS)

    Hampton, Michael; Kosheleva, Olga

    1997-01-01

    In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).

  19. Fuzziness at the horizon

    NASA Astrophysics Data System (ADS)

    Batic, Davide; Nicolini, Piero

    2010-08-01

    We study the stability of the noncommutative Schwarzschild black hole interior by analysing the propagation of a massless scalar field between the two horizons. We show that the spacetime fuzziness triggered by the field higher momenta can cure the classical exponential blue-shift divergence, suppressing the emergence of infinite energy density in a region nearby the Cauchy horizon.

  20. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  1. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  2. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  3. Interval-valued fuzzy hypergraph and fuzzy partition.

    PubMed

    Chen, S M

    1997-01-01

    This paper extends the work of H. Lee-Kwang and L.M. Lee (1995) to present the concept of the interval-valued fuzzy hypergraph. In the interval-valued fuzzy hypergraph, the concepts of the dual interval-valued fuzzy hypergraph, the crisp-valued alpha-cut hypergraph, and the interval-valued [alpha(1),alpha(2 )]-cut at beta level hypergraph are developed, where alphain [0, 1], 0fuzzy partition of a system. PMID:18255914

  4. Quantitative analysis of properties and spatial relations of fuzzy image regions

    NASA Technical Reports Server (NTRS)

    Krishnapuram, Raghu; Keller, James M.; Ma, Yibing

    1992-01-01

    Properties of objects and spatial relations between objects play an important role in rule-based approaches for high-level vision. The partial presence or absence of such properties and relationships can supply both positive and negative evidence for region labeling hypotheses. Similarly, fuzzy labeling of a region can generate new hypotheses pertaining to the properties of the region, its relation to the neighboring regions, and finally, the labels of the neighboring regions. In this paper, we present a unified methodology to characterize properties and spatial relationships of object regions in a digital image. The proposed methods can be used to arrive at more meaningful decisions about the contents of the scene.

  5. Stock and option portfolio using fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Sumarti, Novriana; Wahyudi, Nanang

    2014-03-01

    Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.

  6. Data-Mining-Based Coronary Heart Disease Risk Prediction Model Using Fuzzy Logic and Decision Tree

    PubMed Central

    Kim, Jaekwon; Lee, Jongsik

    2015-01-01

    Objectives The importance of the prediction of coronary heart disease (CHD) has been recognized in Korea; however, few studies have been conducted in this area. Therefore, it is necessary to develop a method for the prediction and classification of CHD in Koreans. Methods A model for CHD prediction must be designed according to rule-based guidelines. In this study, a fuzzy logic and decision tree (classification and regression tree [CART])-driven CHD prediction model was developed for Koreans. Datasets derived from the Korean National Health and Nutrition Examination Survey VI (KNHANES-VI) were utilized to generate the proposed model. Results The rules were generated using a decision tree technique, and fuzzy logic was applied to overcome problems associated with uncertainty in CHD prediction. Conclusions The accuracy and receiver operating characteristic (ROC) curve values of the propose systems were 69.51% and 0.594, proving that the proposed methods were more efficient than other models. PMID:26279953

  7. Adding memory processing behaviors to the fuzzy behaviorist-based navigation of mobile robots

    SciTech Connect

    Pin, F.G.; Bender, S.R.

    1996-05-01

    Most fuzzy logic-based reasoning schemes developed for robot control are fully reactive, i.e., the reasoning modules consist of fuzzy rule bases that represent direct mappings from the stimuli provided by the perception systems to the responses implemented by the motion controllers. Due to their totally reactive nature, such reasoning systems can encounter problems such as infinite loops and limit cycles. In this paper, we proposed an approach to remedy these problems by adding a memory and memory-related behaviors to basic reactive systems. Three major types of memory behaviors are addressed: memory creation, memory management, and memory utilization. These are first presented, and examples of their implementation for the recognition of limit cycles during the navigation of an autonomous robot in a priori unknown environments are then discussed.

  8. Multilayer cellular neural network and fuzzy C-mean classifiers: comparison and performance analysis

    NASA Astrophysics Data System (ADS)

    Trujillo San-Martin, Maite; Hlebarov, Vejen; Sadki, Mustapha

    2004-11-01

    Neural Networks and Fuzzy systems are considered two of the most important artificial intelligent algorithms which provide classification capabilities obtained through different learning schemas which capture knowledge and process it according to particular rule-based algorithms. These methods are especially suited to exploit the tolerance for uncertainty and vagueness in cognitive reasoning. By applying these methods with some relevant knowledge-based rules extracted using different data analysis tools, it is possible to obtain a robust classification performance for a wide range of applications. This paper will focus on non-destructive testing quality control systems, in particular, the study of metallic structures classification according to the corrosion time using a novel cellular neural network architecture, which will be explained in detail. Additionally, we will compare these results with the ones obtained using the Fuzzy C-means clustering algorithm and analyse both classifiers according to its classification capabilities.

  9. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    SciTech Connect

    Ondrej Linda; Todd Vollmer; Jason Wright; Milos Manic

    2011-04-01

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.

  10. Adaptive fuzzy logic restriction rules for error correction and safe stimulation patterns during functional electrical stimulation.

    PubMed

    Hansen, M; Haugland, M K

    2001-01-01

    Adaptive restriction rules based on fuzzy logic have been developed to eliminate errors and to increase stimulation safety in the foot-drop correction application, specifically when using adaptive logic networks to provide a stimulation control signal based on neural activity recorded from peripheral sensory nerve branches. The fuzzy rules were designed to increase flexibility and offer easier customization, compared to earlier versions of restriction rules. The rules developed quantified the duration of swing and stance phases into states of accepting or rejecting new transitions, based on the cyclic nature of gait and statistics on the current gait patterns. The rules were easy to custom design for a specific application, using linguistic terms to model the actions of the rules. The rules were tested using pre-recorded gait data processed through a gait event detector and proved to reduce detection delay and the number of errors, compared to conventional rules. PMID:11601442

  11. A knowledge-based approach to ECG interpretation using fuzzy logic.

    PubMed

    Kundu, M; Nasipuri, M; Basu, D K

    1998-01-01

    A rule-based expert system which uses generalized modus ponens (GMP) from fuzzy logic as a rule of inference is described here for classification of abnormalities related to rhythm disorder in the human heart, through interpretation of the patient's electrocardiographic (EGG) patterns. Application of GMP makes diagnosis of a wide range of variations in the input ECG patterns possible even if they differ from the patterns defined in the preconditions of the rules of the rulebase. The work shows how fuzzy logic with suitably drawn possibility distributions of variables of cardiological domain plays a significant role in making the expert system sensitive to finer variations of input ECG patterns, which are very common in bioelectric signals, without enhancing the size of the rulebase. PMID:18255941

  12. Accuracy enhancement in a fuzzy expert decision making system through appropriate determination of membership functions and its application in a medical diagnostic decision making system.

    PubMed

    Das, Suddhasattwa; Roy Chowdhury, Shubhajit; Saha, Hiranmay

    2012-06-01

    The paper attempts to improve the accuracy of a fuzzy expert decision making system by tuning the parameters of type-2 sigmoid membership functions of fuzzy input variables and hence determining the most appropriate type-1 membership function. The current work mathematically models the variability of human decision making process using type-2 fuzzy sets. Moreover, an index of accuracy of a fuzzy expert system has been proposed and determined analytically. It has also been ascertained that there exists only one rule in the rule base whose associated mapping for the ith linguistic variable maps to the same value as the maximum value of the membership function for the ith linguistic variable. The improvement in decision making accuracy was successfully verified in a medical diagnostic decision making system for renal diagnostic applications. Based on the accuracy estimations applied over a set of pathophysiological parameters, viz. body mass index, glucose, urea, creatinine, systolic and diastolic blood pressure, appropriate type-1 fuzzy sets of these parameters have been determined assuming normal distribution of type-1 membership function values in type-2 fuzzy sets. The type-1 fuzzy sets so determined have been used to develop an FPGA based smart processor. Using the processor, renal diagnosis of patients has been performed with an accuracy of 98.75%. PMID:21107889

  13. Using rule-based shot dose assignment in model-based MPC applications

    NASA Astrophysics Data System (ADS)

    Bork, Ingo; Buck, Peter; Wang, Lin; Müller, Uwe

    2014-10-01

    Shrinking feature sizes and the need for tighter CD (Critical Dimension) control require the introduction of new technologies in mask making processes. One of those methods is the dose assignment of individual shots on VSB (Variable Shaped Beam) mask writers to compensate CD non-linearity effects and improve dose edge slope. Using increased dose levels only for most critical features, generally only for the smallest CDs on a mask, the change in mask write time is minimal while the increase in image quality can be significant. This paper describes a method combining rule-based shot dose assignment with model-based shot size correction. This combination proves to be very efficient in correcting mask linearity errors while also improving dose edge slope of small features. Shot dose assignment is based on tables assigning certain dose levels to a range of feature sizes. The dose to feature size assignment is derived from mask measurements in such a way that shape corrections are kept to a minimum. For example, if a 50nm drawn line on mask results in a 45nm chrome line using nominal dose, a dose level is chosen which is closest to getting the line back on target. Since CD non-linearity is different for lines, line-ends and contacts, different tables are generated for the different shape categories. The actual dose assignment is done via DRC rules in a pre-processing step before executing the shape correction in the MPC engine. Dose assignment to line ends can be restricted to critical line/space dimensions since it might not be required for all line ends. In addition, adding dose assignment to a wide range of line ends might increase shot count which is undesirable. The dose assignment algorithm is very flexible and can be adjusted based on the type of layer and the best balance between accuracy and shot count. These methods can be optimized for the number of dose levels available for specific mask writers. The MPC engine now needs to be able to handle different dose

  14. Development of a rule-based algorithm for rice cultivation mapping using Landsat 8 time series

    NASA Astrophysics Data System (ADS)

    Karydas, Christos G.; Toukiloglou, Pericles; Minakou, Chara; Gitas, Ioannis Z.

    2015-06-01

    In the framework of ERMES project (FP7 66983), an algorithm for mapping rice cultivation extents using mediumhigh resolution satellite data was developed. ERMES (An Earth obseRvation Model based RicE information Service) aims to develop a prototype of downstream service for rice yield modelling based on a combination of Earth Observation and in situ data. The algorithm was designed as a set of rules applied on a time series of Landsat 8 images, acquired throughout the rice cultivation season of 2014 from the plain of Thessaloniki, Greece. The rules rely on the use of spectral indices, such as the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Normalized Seasonal Wetness Index (NSWI), extracted from the Landsat 8 dataset. The algorithm is subdivided into two phases: a) a hard classification phase, resulting in a binary map (rice/no-rice), where pixels are judged according to their performance in all the images of the time series, while index thresholds were defined after a trial and error approach; b) a soft classification phase, resulting in a fuzzy map, by assigning scores to the pixels which passed (as `rice') the first phase. Finally, a user-defined threshold of the fuzzy score will discriminate rice from no-rice pixels in the output map. The algorithm was tested in a subset of Thessaloniki plain against a set of selected field data. The results indicated an overall accuracy of the algorithm higher than 97%. The algorithm was also applied in a study are in Spain (Valencia) and a preliminary test indicated a similar performance, i.e. about 98%. Currently, the algorithm is being modified, so as to map rice extents early in the cultivation season (by the end of June), with a view to contribute more substantially to the rice yield prediction service of ERMES. Both algorithm modes (late and early) are planned to be tested in extra Mediterranean study areas, in Greece, Italy, and Spain.

  15. Fuzzy learning under and about an unfamiliar fuzzy teacher

    NASA Technical Reports Server (NTRS)

    Dasarathy, Belur V.

    1992-01-01

    This study addresses the problem of optimal parametric learning in unfamiliar fuzzy environments. Prior studies in the domain of unfamiliar environments, which employed either crisp or fuzzy approaches to model the uncertainty or imperfectness of the learning environment, assumed that the training sample labels provided by the unfamiliar teacher were crisp, even if not perfect. Here, the more realistic problem of fuzzy learning under an unfamiliar teacher who provides only fuzzy (instead of crisp) labels, is tackled by expanding the previously defined fuzzy membership concepts to include an additional component representative of the fuzziness of the teacher. The previously studied scenarios, namely, crisp and fuzzy learning under (crisp) unfamiliar teacher, can be looked upon as special cases of this new methodology. As under the earlier studies, the estimated membership functions can then be deployed during the ensuing classification decision phase to judiciously take into account the imperfectness of the learning environment. The study also offers some insight into the properties of several of these fuzzy membership function estimators by examining their behavior under certain specific scenarios.

  16. Probability and Relative Frequency

    NASA Astrophysics Data System (ADS)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  17. Hybrid OPC technique using model based and rule-based flows

    NASA Astrophysics Data System (ADS)

    Harb, Mohammed; Abdelghany, Hesham

    2013-04-01

    To transfer an electronic circuit from design to silicon, a lot of stages are involved in between. As technology evolves, the design shapes are getting closer to each other. Since the wavelength of the lithography process didn't get any better than 193nm, optical interference is a problem that needs to be accounted for by using Optical Proximity Correction (OPC) algorithms. In earlier technologies, simple OPC was applied to the design based on spatial rules. This is not the situation in the recent technologies anymore, since more optical interference took place with the intensive scaling down of the designs. Model-based OPC is a better solution now to produce accurate results, but this comes at the cost of the increased run time. Electronic Design Automation (EDA) companies compete to offer tools that provide both accuracy and run time efficiency. In this paper, we show that optimum usage of some of these tools can ensure OPC accuracy with better run time. The hybrid technique of OPC uses the classic rule-based OPC in a modern fashion to consider the optical parameters, instead of the spatial metrics only. Combined with conventional model-based OPC, the whole flow shows better results in terms of accuracy and run time.

  18. Overcoming rule-based rigidity and connectionist limitations through massively-parallel case-based reasoning

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net researchers for being excessively inflexible and sequential. On the other hand, the application of neural net techniques to the types of high-level cognitive processing studied in traditional artificial intelligence presents major problems as well. A promising way out of this impasse is to build neural net models that accomplish massively parallel case-based reasoning. Case-based reasoning, which has received much attention recently, is essentially the same as analogy-based reasoning, and avoids many of the problems leveled at traditional artificial intelligence. Further problems are avoided by doing many strands of case-based reasoning in parallel, and by implementing the whole system as a neural net. In addition, such a system provides an approach to some aspects of the problems of noise, uncertainty and novelty in reasoning systems. The current neural net system (Conposit), which performs standard rule-based reasoning, is being modified into a massively parallel case-based reasoning version.

  19. Classification of a set of vectors using self-organizing map- and rule-based technique

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Okaniwa, Kaishirou; Nosaka, Kenzaburou

    2005-02-01

    There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. We have a view for an object, and decide the next action (data selection, etc.) with our view. Such a series of actions constructs a sequence. Therefore, we propose a method which acquires a view as a vector from several words for a view, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc... These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. Such a vector can be classified by SOM (Self-Organizing Map). Hidden Markov Model (HMM) is a method to generate sequences. Therefore, we use HMM of which a state corresponds to the representative vector of user's view, and acquire sequences containing the change of user's view. We call it Vector-state Markov Model (VMM). We introduce the rough set theory as a rule-base technique, which plays a role of classifying the sets of data such as the sets of "Tour".

  20. Robust Unsupervised Arousal Rating: A Rule-Based Framework with Knowledge-Inspired Vocal Features

    PubMed Central

    Bone, Daniel; Lee, Chi-Chun; Narayanan, Shrikanth

    2015-01-01

    Studies in classifying affect from vocal cues have produced exceptional within-corpus results, especially for arousal (activation or stress); yet cross-corpora affect recognition has only recently garnered attention. An essential requirement of many behavioral studies is affect scoring that generalizes across different social contexts and data conditions. We present a robust, unsupervised (rule-based) method for providing a scale-continuous, bounded arousal rating operating on the vocal signal. The method incorporates just three knowledge-inspired features chosen based on empirical and theoretical evidence. It constructs a speaker’s baseline model for each feature separately, and then computes single-feature arousal scores. Lastly, it advantageously fuses the single-feature arousal scores into a final rating without knowledge of the true affect. The baseline data is preferably labeled as neutral, but some initial evidence is provided to suggest that no labeled data is required in certain cases. The proposed method is compared to a state-of-the-art supervised technique which employs a high-dimensional feature set. The proposed framework achieves highly-competitive performance with additional benefits. The measure is interpretable, scale-continuous as opposed to discrete, and can operate without any affective labeling. An accompanying Matlab tool is made available with the paper. PMID:25705327

  1. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    NASA Astrophysics Data System (ADS)

    Ahrens, R.; Harenberg, T.; Kalinin, S.; Mättig, P.; Sandhoff, M.; dos Santos, T.; Volkmer, F.

    2012-12-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based PanDA job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job's owner immedeatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehavior. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitoring data to provide job and site health summary information to users and admins is presented. Finally, the provision of a secure real-time control and steering channel to the job as extension of the presented monitoring software is considered and a possible model of such the control method is presented.

  2. Reliability and performance evaluation of systems containing embedded rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.

    1989-01-01

    A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.

  3. Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike; Rash, James; Erickson, John; Gracanin, Denis; Rouff, Chris

    2010-01-01

    Mathematically sound techniques are used to view a knowledge-based system (KBS) as a set of processes executing in parallel and being enabled in response to specific rules being fired. The set of processes can be manipulated, examined, analyzed, and used in a simulation. The tool that embodies this technology may warn developers of errors in their rules, but may also highlight rules (or sets of rules) in the system that are underspecified (or overspecified) and need to be corrected for the KBS to operate as intended. The rules embodied in a KBS specify the allowed situations, events, and/or results of the system they describe. In that sense, they provide a very abstract specification of a system. The system is implemented through the combination of the system specification together with an appropriate inference engine, independent of the algorithm used in that inference engine. Viewing the rule base as a major component of the specification, and choosing an appropriate specification notation to represent it, reveals how additional power can be derived from an approach to the knowledge-base system that involves analysis, simulation, and verification. This innovative approach requires no special knowledge of the rules, and allows a general approach where standardized analysis, verification, simulation, and model checking techniques can be applied to the KBS.

  4. Designing caption production rules based on face, text, and motion detection

    NASA Astrophysics Data System (ADS)

    Chapdelaine, C.; Beaulieu, M.; Gagnon, L.

    2008-02-01

    Producing off-line captions for the deaf and hearing impaired people is a labor-intensive task that can require up to 18 hours of production per hour of film. Captions are placed manually close to the region of interest but it must avoid masking human faces, texts or any moving objects that might be relevant to the story flow. Our goal is to use image processing techniques to reduce the off-line caption production process by automatically placing the captions on the proper consecutive frames. We implemented a computer-assisted captioning software tool which integrates detection of faces, texts and visual motion regions. The near frontal faces are detected using a cascade of weak classifier and tracked through a particle filter. Then, frames are scanned to perform text spotting and build a region map suitable for text recognition. Finally, motion mapping is based on the Lukas-Kanade optical flow algorithm and provides MPEG-7 motion descriptors. The combined detected items are then fed to a rule-based algorithm to determine the best captions localization for the related sequences of frames. This paper focuses on the defined rules to assist the human captioners and the results of a user evaluation for this approach.

  5. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  6. A UMLS-based Knowledge Acquisition Tool for Rule-based Clinical Decision Support System Development

    PubMed Central

    Achour, Soumeya L.; Dojat, Michel; Rieux, Claire; Bierling, Philippe; Lepage, Eric

    2001-01-01

    Decision support systems in the medical field have to be easily modified by medical experts themselves. The authors have designed a knowledge acquisition tool to facilitate the creation and maintenance of a knowledge base by the domain expert and its sharing and reuse by other institutions. The Unified Medical Language System (UMLS) contains the domain entities and constitutes the relations repository from which the expert builds, through a specific browser, the explicit domain ontology. The expert is then guided in creating the knowledge base according to the pre-established domain ontology and condition–action rule templates that are well adapted to several clinical decision-making processes. Corresponding medical logic modules are eventually generated. The application of this knowledge acquisition tool to the construction of a decision support system in blood transfusion demonstrates the value of such a pragmatic methodology for the design of rule-based clinical systems that rely on the highly progressive knowledge embedded in hospital information systems. PMID:11418542

  7. A rule-based expert system for chemical prioritization using effects-based chemical categories.

    PubMed

    Schmieder, P K; Kolanczyk, R C; Hornung, M W; Tapper, M A; Denny, J S; Sheedy, B R; Aladjov, H

    2014-01-01

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically transparent and meet the needs of a specific application, i.e. predict for all chemicals within two well-defined inventories (industrial chemicals used as pesticide inerts and antimicrobial pesticides). These chemicals all lack structural features associated with high affinity binders and thus any binding should be low affinity. Similar to the high-quality fathead minnow database upon which Veith QSARs were built, the ERES was derived from what has been termed gold standard data, systematically collected in assays optimized to detect even low affinity binding and maximizing confidence in the negatives determinations. The resultant logic-based decision tree ERES, determined to be a robust model, contains seven major nodes with multiple effects-based chemicals categories within each. Predicted results are presented in the context of empirical data within local chemical structural groups facilitating informed decision-making. Even using optimized detection assays, the ERES applied to two inventories of >600 chemicals resulted in only ~5% of the chemicals predicted to bind ER. PMID:24779615

  8. A Fuzzy-Decision Based Approach for Composite Event Detection in Wireless Sensor Networks

    PubMed Central

    Zhang, Shukui; Chen, Hao; Zhu, Qiaoming

    2014-01-01

    The event detection is one of the fundamental researches in wireless sensor networks (WSNs). Due to the consideration of various properties that reflect events status, the Composite event is more consistent with the objective world. Thus, the research of the Composite event becomes more realistic. In this paper, we analyze the characteristics of the Composite event; then we propose a criterion to determine the area of the Composite event and put forward a dominating set based network topology construction algorithm under random deployment. For the unreliability of partial data in detection process and fuzziness of the event definitions in nature, we propose a cluster-based two-dimensional τ-GAS algorithm and fuzzy-decision based composite event decision mechanism. In the case that the sensory data of most nodes are normal, the two-dimensional τ-GAS algorithm can filter the fault node data effectively and reduce the influence of erroneous data on the event determination. The Composite event judgment mechanism which is based on fuzzy-decision holds the superiority of the fuzzy-logic based algorithm; moreover, it does not need the support of a huge rule base and its computational complexity is small. Compared to CollECT algorithm and CDS algorithm, this algorithm improves the detection accuracy and reduces the traffic. PMID:25136690

  9. Intelligent synthesis of neuromusculoskeletal signals using fuzzy expert critics

    NASA Astrophysics Data System (ADS)

    Winters, Jack M.

    1996-05-01

    The problem of synthesizing large amounts of sensor data into a meaningful form represents one of the key challenges in making effective use of smart sensors/actuators that are distributed throughout a structure. This paper develops an engineering approach for addressing this problem, focusing on how large sets of neuromusculoskeletal measurements can be synthesized with approximate reasoning by experts and trained human observation to help extract and prioritize the most salient diagnostic findings, given a reasonably large set of strategic performance tasks. A key objective is to create an environment for intimate human- computer interaction, that optimally uses the capabilities of each. The best of two key conceptual frameworks are synthesized: initial design via rule-based fuzzy expert critic modules, followed by a gradual transition toward fuzzy neuro-optimization and neuro- classification modules. It is suggested that this provides a more reasonable approach not only for interactive near-real-time medical diagnosis assisted by a 'smart' computer, but also for developing the types of robust adaptive critics needed for advanced studies of principles underlying neuromotor control and skill acquisition.

  10. A hierarchical structure for representing and learning fuzzy rules

    NASA Technical Reports Server (NTRS)

    Yager, Ronald R.

    1993-01-01

    Yager provides an example in which the flat representation of fuzzy if-then rules leads to unsatisfactory results. Consider a rule base consisting to two rules: if U is 12 the V is 29; if U is (10-15) the V is (25-30). If U = 12 we would get V is G where G = (25-30). The application of the defuzzification process leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed. The problem with the technique used is that the most specific information was swamped by the less specific information. In this paper we shall provide for a new structure for the representation of fuzzy if-then rules. The representational form introduced here is called a Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming the problem illustrated in the previous example this HPS representation has an inherent capability to emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how human beings store information.

  11. Ability-Grouping and Academic Inequality: Evidence from Rule-Based Student Assignments. NBER Working Paper No. 14911

    ERIC Educational Resources Information Center

    Jackson, C. Kirabo

    2009-01-01

    In Trinidad and Tobago students are assigned to secondary schools after fifth grade based on achievement tests, leading to large differences in the school environments to which students of differing initial levels of achievement are exposed. Using both a regression discontinuity design and rule-based instrumental variables to address…

  12. g.infer: A GRASS GIS module for rule-based data-driven classification and workflow control.

    NASA Astrophysics Data System (ADS)

    Löwe, Peter

    2013-04-01

    This poster describes the internal architecture of the new GRASS GIS module g.infer [1] and demonstrates application scenarios . The new module for GRASS GIS Version 6.x and 7.x enables rule-based analysis and workflow management via data-driven inference processes based on the C Language Integrated Production System (CLIPS) [2]. g.infer uses the pyClips module [3] to provide an Python-based environment for CLIPS within the GRASS GIS environment for rule-based knowledge engineering. Application scenarios range from rule-based classification tasks, event-driven workflow-control to complex simulations for tasks such as Soil Erosion Monitoring and Disaster Early Warning [4]. References: [1] Löwe P.: Introducing the new GRASS module g.infer for data-driven rule-based applications, Vol.8 2012-08, Geoinformatics FCE CTU, ISSN 1802-2669 [2] http://clipsrules.sourceforge.net/ [3] http://pyclips.sourceforge.net/web/ [4] Löwe P.: A Spatial Decision Support System for Radar-metereology Data in South Africa, Transactions in GIS 2004, (2): 235-244

  13. Evolution and Probability.

    ERIC Educational Resources Information Center

    Bailey, David H.

    2000-01-01

    Some of the most impressive-sounding criticisms of the conventional theory of biological evolution involve probability. Presents a few examples of how probability should and should not be used in discussing evolution. (ASK)

  14. BIODEGRADATION PROBABILITY PROGRAM (BIODEG)

    EPA Science Inventory

    The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...

  15. Probability on a Budget.

    ERIC Educational Resources Information Center

    Ewbank, William A.; Ginther, John L.

    2002-01-01

    Describes how to use common dice numbered 1-6 for simple mathematical situations including probability. Presents a lesson using regular dice and specially marked dice to explore some of the concepts of probability. (KHR)

  16. Fuzzy Logic in Medicine and Bioinformatics

    PubMed Central

    Torres, Angela; Nieto, Juan J.

    2006-01-01

    The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes). PMID:16883057

  17. On fuzzy ideals of BL-algebras.

    PubMed

    Meng, Biao Long; Xin, Xiao Long

    2014-01-01

    In this paper we investigate further properties of fuzzy ideals of a BL-algebra. The notions of fuzzy prime ideals, fuzzy irreducible ideals, and fuzzy Gödel ideals of a BL-algebra are introduced and their several properties are investigated. We give a procedure to generate a fuzzy ideal by a fuzzy set. We prove that every fuzzy irreducible ideal is a fuzzy prime ideal but a fuzzy prime ideal may not be a fuzzy irreducible ideal and prove that a fuzzy prime ideal ω is a fuzzy irreducible ideal if and only if ω(0) = 1 and |Im(ω)| = 2. We give the Krull-Stone representation theorem of fuzzy ideals in BL-algebras. Furthermore, we prove that the lattice of all fuzzy ideals of a BL-algebra is a complete distributive lattice. Finally, it is proved that every fuzzy Boolean ideal is a fuzzy Gödel ideal, but the converse implication is not true. PMID:24892085

  18. Teaching Machines to Think Fuzzy

    ERIC Educational Resources Information Center

    Technology Teacher, 2004

    2004-01-01

    Fuzzy logic programs for computers make them more human. Computers can then think through messy situations and make smart decisions. It makes computers able to control things the way people do. Fuzzy logic has been used to control subway trains, elevators, washing machines, microwave ovens, and cars. Pretty much all the human has to do is push one…

  19. Fuzzy models for pattern recognition

    SciTech Connect

    Bezdek, James C.; Pal, Sankar K.

    1994-01-01

    FUZZY sets were introduced in 1965 by Lotfi Zadeh as a new way to represent vagueness in everyday life. They are a generalization of conventional set theory, one of the basic structures underlying computational mathematics and models. Computational pattern recognition has played a central role in the development of fuzzy models because fuzzy interpretations of data structures are a very natural and intuitively plausible way to formulate and solve various problems. Fuzzy control theory has also provided a wide variety of real, fielded system applications of fuzzy technology. We shall have little more to say about the growth of fuzzy models in control, except to the extent that pattern recognition algorithms and methods described in this book impact control systems. Collected here are many of the seminal papers in the field. There will be, of course, omissions that are neither by intent nor ignorance; we cannot reproduce all of the important papers that have helped in the evolution of fuzzy pattern recognition (there may be as many as five hundred) even in this narrow application domain. We will attempt, in each chapter introduction, to comment on some of the important papers that not been included and we ask both readers and authors to understand that a book such as this simply cannot {open_quotes}contain everything.{close_quotes} Our objective in Chapter 1 is to describe the basic structure of fuzzy sets theory as it applies to the major problems encountered in the design of a pattern recognition system.

  20. Fuzzy logic and adaptive neuro-fuzzy inference system for characterization of contaminant exposure through selected biomarkers in African catfish.

    PubMed

    Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C

    2013-03-01

    This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies. PMID:22752811

  1. Dependent Probability Spaces

    ERIC Educational Resources Information Center

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  2. Searching with probabilities

    SciTech Connect

    Palay, A.J.

    1985-01-01

    This book examines how probability distributions can be used as a knowledge representation technique. It presents a mechanism that can be used to guide a selective search algorithm to solve a variety of tactical chess problems. Topics covered include probabilities and searching the B algorithm and chess probabilities - in practice, examples, results, and future work.

  3. Generalized interval-valued fuzzy variable precision rough sets determined by fuzzy logical operators

    NASA Astrophysics Data System (ADS)

    Qing Hu, Bao

    2015-11-01

    The fuzzy rough set model and interval-valued fuzzy rough set model have been introduced to handle databases with real values and interval values, respectively. Variable precision rough set was advanced by Ziarko to overcome the shortcomings of misclassification and/or perturbation in Pawlak rough sets. By combining fuzzy rough set and variable precision rough set, a variety of fuzzy variable precision rough sets were studied, which cannot only handle numerical data, but are also less sensitive to misclassification. However, fuzzy variable precision rough sets cannot effectively handle interval-valued data-sets. Research into interval-valued fuzzy rough sets for interval-valued fuzzy data-sets has commenced; however, variable precision problems have not been considered in interval-valued fuzzy rough sets and generalized interval-valued fuzzy rough sets based on fuzzy logical operators nor have interval-valued fuzzy sets been considered in variable precision rough sets and fuzzy variable precision rough sets. These current models are incapable of wide application, especially on misclassification and/or perturbation and on interval-valued fuzzy data-sets. In this paper, these models are generalized to a more integrative approach that not only considers interval-valued fuzzy sets, but also variable precision. First, we review generalized interval-valued fuzzy rough sets based on two fuzzy logical operators: interval-valued fuzzy triangular norms and interval-valued fuzzy residual implicators. Second, we propose generalized interval-valued fuzzy variable precision rough sets based on the above two fuzzy logical operators. Finally, we confirm that some existing models, including rough sets, fuzzy variable precision rough sets, interval-valued fuzzy rough sets, generalized fuzzy rough sets and generalized interval-valued fuzzy variable precision rough sets based on fuzzy logical operators, are special cases of the proposed models.

  4. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zheng, Y. B.

    2012-07-01

    The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

  5. FCC – An automated rule-based processing tool for life science data

    PubMed Central

    2013-01-01

    Background Data processing in the bioinformatics field often involves the handling of diverse software programs in one workflow. The field is lacking a set of standards for file formats so that files have to be processed in different ways in order to make them compatible to different analysis programs. The problem is that mass spectrometry vendors at most provide only closed-source Windows libraries to programmatically access their proprietary binary formats. This prohibits the creation of an efficient and unified tool that fits all processing needs of the users. Therefore, researchers are spending a significant amount of time using GUI-based conversion and processing programs. Besides the time needed for manual usage, such programs also can show long running times for processing, because most of them make use of only a single CPU. In particular, algorithms to enhance data quality, e.g. peak picking or deconvolution of spectra, add waiting time for the users. Results To automate these processing tasks and let them run continuously without user interaction, we developed the FGCZ Converter Control (FCC) at the Functional Genomics Center Zurich (FGCZ) core facility. The FCC is a rule-based system for automated file processing that reduces the operation of diverse programs to a single configuration task. Using filtering rules for raw data files, the parameters for all tasks can be custom-tailored to the needs of every single researcher and processing can run automatically and efficiently on any number of servers in parallel using all available CPU resources. Conclusions FCC has been used intensively at FGCZ for processing more than hundred thousand mass spectrometry raw files so far. Since we know that many other research facilities have similar problems, we would like to report on our tool and the accompanying ideas for an efficient set-up for potential reuse. PMID:23311610

  6. Rule-Based Models of the Interplay between Genetic and Environmental Factors in Childhood Allergy

    PubMed Central

    Melén, Erik; Bergström, Anna; Torabi Moghadam, Behrooz; Pulkkinen, Ville; Acevedo, Nathalie; Orsmark Pietras, Christina; Ege, Markus; Braun-Fahrländer, Charlotte; Riedler, Josef; Doekes, Gert; Kabesch, Michael; van Hage, Marianne; Kere, Juha; Scheynius, Annika; Söderhäll, Cilla; Pershagen, Göran; Komorowski, Jan

    2013-01-01

    Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological

  7. Perceptual Learning Improves Adult Amblyopic Vision Through Rule-Based Cognitive Compensation

    PubMed Central

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2014-01-01

    Purpose. We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Methods. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Results. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). Conclusions. The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation. PMID:24550359

  8. In All Probability, Probability is not All

    ERIC Educational Resources Information Center

    Helman, Danny

    2004-01-01

    The national lottery is often portrayed as a game of pure chance with no room for strategy. This misperception seems to stem from the application of probability instead of expectancy considerations, and can be utilized to introduce the statistical concept of expectation.

  9. Water stress and foliar boron application altered seed nutrition in near-isogenic cotton lines expressing fuzzy and fuzzless seed phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research, conducted under well-watered conditions without fertilizer application showed that fuzzy cottonseed trait resulted in cottonseed nutrient differences between fuzzy (F) and fuzzless (N) cottonseed, probably due to the involvement of carbon metabolism and energy use in fuzz fiber de...

  10. Fuzzy θ-generalized semi-continuous and fuzzy θ-generalized semi-irresolute mappings

    NASA Astrophysics Data System (ADS)

    Wahab, Nurul Adilla Farhana Abdul; Salleh, Zabidin

    2015-10-01

    In this paper, some fuzzy generalized continuity are introduced and studied using the concept of fuzzy θ-generalized semi-closed sets namely fuzzy θ-generalized semi-continuity, fuzzy θ-generalized semi-irresolute and fuzzy θ-generalized semi-closed maps. Fuzzy θ-generalized semi-T1/2 spaces are also introduced and their characterizations are studied. Several interesting results are obtained.

  11. Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    PubMed Central

    Kriete, Andres; Bosl, William J.; Booker, Glenn

    2010-01-01

    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype. PMID:20585546

  12. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    NASA Astrophysics Data System (ADS)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  13. A Posteriori Transit Probabilities

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Gaudi, B. Scott

    2013-08-01

    Given the radial velocity (RV) detection of an unseen companion, it is often of interest to estimate the probability that the companion also transits the primary star. Typically, one assumes a uniform distribution for the cosine of the inclination angle i of the companion's orbit. This yields the familiar estimate for the prior transit probability of ~Rlowast/a, given the primary radius Rlowast and orbital semimajor axis a, and assuming small companions and a circular orbit. However, the posterior transit probability depends not only on the prior probability distribution of i but also on the prior probability distribution of the companion mass Mc, given a measurement of the product of the two (the minimum mass Mc sin i) from an RV signal. In general, the posterior can be larger or smaller than the prior transit probability. We derive analytic expressions for the posterior transit probability assuming a power-law form for the distribution of true masses, dΓ/dMcvpropMcα, for integer values -3 <= α <= 3. We show that for low transit probabilities, these probabilities reduce to a constant multiplicative factor fα of the corresponding prior transit probability, where fα in general depends on α and an assumed upper limit on the true mass. The prior and posterior probabilities are equal for α = -1. The posterior transit probability is ~1.5 times larger than the prior for α = -3 and is ~4/π times larger for α = -2, but is less than the prior for α>=0, and can be arbitrarily small for α > 1. We also calculate the posterior transit probability in different mass regimes for two physically-motivated mass distributions of companions around Sun-like stars. We find that for Jupiter-mass planets, the posterior transit probability is roughly equal to the prior probability, whereas the posterior is likely higher for Super-Earths and Neptunes (10 M⊕ - 30 M⊕) and Super-Jupiters (3 MJup - 10 MJup), owing to the predicted steep rise in the mass function toward smaller

  14. Fuzzy conceptual rainfall runoff models

    NASA Astrophysics Data System (ADS)

    Özelkan, Ertunga C.; Duckstein, Lucien

    2001-11-01

    A fuzzy conceptual rainfall-runoff (CRR) framework is proposed herein to deal with those parameter uncertainties of conceptual rainfall-runoff models, that are related to data and/or model structure: with every element of the rainfall-runoff model assumed to be possibly uncertain, taken here as being fuzzy. First, the conceptual rainfall-runoff system is fuzzified and then different operational modes are formulated using fuzzy rules; second, the parameter identification aspect is examined using fuzzy regression techniques. In particular, bi-objective and tri-objective fuzzy regression models are applied in the case of linear conceptual rainfall-runoff models so that the decision maker may be able to trade off prediction vagueness (uncertainty) and the embedding outliers. For the non-linear models, a fuzzy least squares regression framework is applied to derive the model parameters. The methodology is illustrated using: (1) a linear conceptual rainfall-runoff model; (2) an experimental two-parameter model; and (3) a simplified version of the Sacramento soil moisture accounting model of the US National Weather Services river forecast system (SAC-SMA) known as the six-parameter model. It is shown that the fuzzy logic framework enables the decision maker to gain insight about the model sensitivity and the uncertainty stemming from the elements of the CRR model.

  15. An Expert-System Engine With Operative Probabilities

    NASA Technical Reports Server (NTRS)

    Orlando, N. E.; Palmer, M. T.; Wallace, R. S.

    1986-01-01

    Program enables proof-of-concepts tests of expert systems under development. AESOP is rule-based inference engine for expert system, which makes decisions about particular situation given user-supplied hypotheses, rules, and answers to questions drawn from rules. If knowledge base containing hypotheses and rules governing environment is available to AESOP, almost any situation within that environment resolved by answering questions asked by AESOP. Questions answered with YES, NO, MAYBE, DON'T KNOW, DON'T CARE, or with probability factor ranging from 0 to 10. AESOP written in Franz LISP for interactive execution.

  16. A reduced-form intensity-based model under fuzzy environments

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Zhuang, Yaming

    2015-05-01

    The external shocks and internal contagion are the important sources of default events. However, the external shocks and internal contagion effect on the company is not observed, we cannot get the accurate size of the shocks. The information of investors relative to the default process exhibits a certain fuzziness. Therefore, using randomness and fuzziness to study such problems as derivative pricing or default probability has practical needs. But the idea of fuzzifying credit risk models is little exploited, especially in a reduced-form model. This paper proposes a new default intensity model with fuzziness and presents a fuzzy default probability and default loss rate, and puts them into default debt and credit derivative pricing. Finally, the simulation analysis verifies the rationality of the model. Using fuzzy numbers and random analysis one can consider more uncertain sources in the default process of default and investors' subjective judgment on the financial markets in a variety of fuzzy reliability so as to broaden the scope of possible credit spreads.

  17. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  18. Category Number Impacts Rule-Based but Not Information-Integration Category Learning: Further Evidence for Dissociable Category-Learning Systems

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Filoteo, J. Vincent; Hejl, Kelli D.; Ing, A. David

    2004-01-01

    Category number effects on rule-based and information-integration category learning were investigated. Category number affected accuracy and the distribution of best-fitting models in the rule-based task but had no effect on accuracy and little effect on the distribution of best-fining models in the information-integration task. In the 2 category…

  19. Entanglement entropy on fuzzy spaces

    SciTech Connect

    Dou, Djamel; Ydri, Badis

    2006-08-15

    We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.

  20. Fuzzy expert systems using CLIPS

    NASA Technical Reports Server (NTRS)

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  1. Using Bayesian Networks and Rule-Based Trending to Predict Patient Status in the Intensive Care Unit

    PubMed Central

    Crump, Cindy; Saxena, Sunil; Wilson, Bruce; Farrell, Patrick; Rafiq, Azhar; Silvers, Christine Tsien

    2009-01-01

    Multivariate Bayesian models trained with machine learning, in conjunction with rule-based time-series statistical techniques, are explored for the purpose of improving patient monitoring. Three vital sign data streams and known outcomes for 36 intensive care unit (ICU) patients were captured retrospectively and used to train a set of Bayesian net models and to construct time-series models. Models were validated on a reserved dataset from 16 additional patients. Receiver operating characteristic (ROC) curves were calculated. Area under the curve (AUC) was 91% for predicting improving outcome. The model’s AUC for predicting declining outcome increased from 70% to 85% when the model was indexed to personalized baselines for each patient. The rule-based trending and alerting system was accurate 100% of the time in alerting a subsequent decline in condition. These techniques promise to improve the monitoring of ICU patients with high-sensitivity alerts, fewer false alarms, and earlier intervention. PMID:20351835

  2. Architecture For The Optimization Of A Machining Process In Real Time Through Rule-Based Expert System

    NASA Astrophysics Data System (ADS)

    Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús

    2009-11-01

    Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.

  3. Normal forms of fuzzy middle and fuzzy contradictions.

    PubMed

    Turksen, I B; Kandel, A; Zhang, Y Q

    1999-01-01

    The expressions of "excluded middle" and "crisp contradiction" are reexamined starting with their original linguistic expressions which are first restated in propositional and then predicate forms. It is shown that, in order to generalize the truth tables and hence the normal forms, the membership assignments in predicate expressions must be separated from their truth qualification. In two-valued logic, there is no need to separate them from each other due to reductionist Aristotalean dichotomy. Whereas, in infinite (fuzzy) valued set and logic, the separation of membership assignments from their truth qualification forms the bases of a new reconstruction of the truth tables. The results obtained from these extended truth tables are reducible to their Boolean equivalents under the axioms of Boolean theory. Whereas, in fuzzy set and logic theory, we obtain a richer and more complex interpretations of the "fuzzy middle" and "fuzzy contradiction." PMID:18252295

  4. Fuzzy Thinking in Non-Fuzzy Situations: Understanding Students' Perspective.

    ERIC Educational Resources Information Center

    Zazkis, Rina

    1995-01-01

    In mathematics a true statement is always true, but some false statements are more false than others. Fuzzy logic provides a way of handling degrees of set membership and has implications for helping students appreciate logical thinking. (MKR)

  5. Evaluation of fuzzy inference systems using fuzzy least squares

    NASA Technical Reports Server (NTRS)

    Barone, Joseph M.

    1992-01-01

    Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.

  6. Fuzzy Content-Based Retrieval in Image Databases.

    ERIC Educational Resources Information Center

    Wu, Jian Kang; Narasimhalu, A. Desai

    1998-01-01

    Proposes a fuzzy-image database model and a concept of fuzzy space; describes fuzzy-query processing in fuzzy space and fuzzy indexing on complete fuzzy vectors; and uses an example image database, the computer-aided facial-image inference and retrieval system (CAFIIR), for explanation throughout. (Author/LRW)

  7. Oil palm fresh fruit bunch ripeness classification based on rule- based expert system of ROI image processing technique results

    NASA Astrophysics Data System (ADS)

    Alfatni, M. S. M.; Shariff, A. R. M.; Abdullah, M. Z.; Marhaban, M. H.; Shafie, S. B.; Bamiruddin, M. D.; Saaed, O. M. B.

    2014-06-01

    There is a processing need for a fast, easy and accurate classification system for oil palm fruit ripeness. Such a system will be invaluable to farmers and plantation managers who need to sell their oil palm fresh fruit bunch (FFB) for the mill as this will avoid disputes. In this paper,a new approach was developed under the name of expert rules-based systembased on the image processing techniques results of thethree different oil palm FFB region of interests (ROIs), namely; ROI1 (300x300 pixels), ROI2 (50x50 pixels) and ROI3 (100x100 pixels). The results show that the best rule-based ROIs for statistical colour feature extraction with k-nearest neighbors (KNN) classifier at 94% were chosen as well as the ROIs that indicated results higher than the rule-based outcome, such as the ROIs of statistical colour feature extraction with artificial neural network (ANN) classifier at 94%, were selected for further FFB ripeness inspection system.

  8. Can fuzzy logic bring complex problems into focus? Modeling imprecise factors in environmental policy

    SciTech Connect

    McKone, Thomas E.; Deshpande, Ashok W.

    2004-06-14

    In modeling complex environmental problems, we often fail to make precise statements about inputs and outcome. In this case the fuzzy logic method native to the human mind provides a useful way to get at these problems. Fuzzy logic represents a significant change in both the approach to and outcome of environmental evaluations. Risk assessment is currently based on the implicit premise that probability theory provides the necessary and sufficient tools for dealing with uncertainty and variability. The key advantage of fuzzy methods is the way they reflect the human mind in its remarkable ability to store and process information which is consistently imprecise, uncertain, and resistant to classification. Our case study illustrates the ability of fuzzy logic to integrate statistical measurements with imprecise health goals. But we submit that fuzzy logic and probability theory are complementary and not competitive. In the world of soft computing, fuzzy logic has been widely used and has often been the ''smart'' behind smart machines. But it will require more effort and case studies to establish its niche in risk assessment or other types of impact assessment. Although we often hear complaints about ''bright lines,'' could we adapt to a system that relaxes these lines to fuzzy gradations? Would decision makers and the public accept expressions of water or air quality goals in linguistic terms with computed degrees of certainty? Resistance is likely. In many regions, such as the US and European Union, it is likely that both decision makers and members of the public are more comfortable with our current system in which government agencies avoid confronting uncertainties by setting guidelines that are crisp and often fail to communicate uncertainty. But some day perhaps a more comprehensive approach that includes exposure surveys, toxicological data, epidemiological studies coupled with fuzzy modeling will go a long way in resolving some of the conflict, divisiveness

  9. A Fuzzy Query Mechanism for Human Resource Websites

    NASA Astrophysics Data System (ADS)

    Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih

    Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.

  10. Fuzzy logic components for iterative deconvolution systems

    NASA Astrophysics Data System (ADS)

    Northan, Brian M.

    2013-02-01

    Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.

  11. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  12. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  13. Dynamical tachyons on fuzzy spheres

    SciTech Connect

    Berenstein, David; Trancanelli, Diego

    2011-05-15

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set up a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.

  14. Current projects in Fuzzy Control

    NASA Technical Reports Server (NTRS)

    Sugeno, Michio

    1990-01-01

    Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.

  15. Dynamical tachyons on fuzzy spheres

    NASA Astrophysics Data System (ADS)

    Berenstein, David; Trancanelli, Diego

    2011-05-01

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set up a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.

  16. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  17. Single-case probabilities

    NASA Astrophysics Data System (ADS)

    Miller, David

    1991-12-01

    The propensity interpretation of probability, bred by Popper in 1957 (K. R. Popper, in Observation and Interpretation in the Philosophy of Physics, S. Körner, ed. (Butterworth, London, 1957, and Dover, New York, 1962), p. 65; reprinted in Popper Selections, D. W. Miller, ed. (Princeton University Press, Princeton, 1985), p. 199) from pure frequency stock, is the only extant objectivist account that provides any proper understanding of single-case probabilities as well as of probabilities in ensembles and in the long run. In Sec. 1 of this paper I recall salient points of the frequency interpretations of von Mises and of Popper himself, and in Sec. 2 I filter out from Popper's numerous expositions of the propensity interpretation its most interesting and fertile strain. I then go on to assess it. First I defend it, in Sec. 3, against recent criticisms (P. Humphreys, Philos. Rev. 94, 557 (1985); P. Milne, Erkenntnis 25, 129 (1986)) to the effect that conditional [or relative] probabilities, unlike absolute probabilities, can only rarely be made sense of as propensities. I then challenge its predominance, in Sec. 4, by outlining a rival theory: an irreproachably objectivist theory of probability, fully applicable to the single case, that interprets physical probabilities as instantaneous frequencies.

  18. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    network flow problems in the past, where nodes represent physical locations and edges represent the means by which information or vehicles travel between those locations. In space system architecting, expressing the physical locations (low-Earth orbit, low-lunar orbit, etc.) and steady states (interplanetary trajectory) as nodes and the different means of moving between the nodes (propulsive maneuvers, etc.) as edges formulates a mathematical representation of this design space. The selection of a given system architecture using graph theory entails defining the paths that the systems take through the space system architecture graph. A path through the graph is defined as a list of edges that are traversed, which in turn defines functions performed by the system. A structure to compactly represent this information is a matrix, called the system map, in which the column indices are associated with the systems that exist and row indices are associated with the edges, or functions, to which each system has access. Several contributions have been added to the state of the art in space system architecture analysis. The framework adds the capability to rapidly explore the design space without the need to limit trade options or the need for user interaction during the exploration process. The unique mathematical representation of a system architecture, through the use of the adjacency, incidence, and system map matrices, enables automated design space exploration using stochastic optimization processes. The innovative rule-based graph traversal algorithm ensures functional feasibility of each system architecture that is analyzed, and the automatic generation of the system hierarchy eliminates the need for the user to manually determine the relationships between systems during or before the design space exploration process. Finally, the rapid evaluation of system architectures for various mission types enables analysis of the system architecture design space for multiple

  19. A simple rule based model for scheduling farm management operations in SWAT

    NASA Astrophysics Data System (ADS)

    Schürz, Christoph; Mehdi, Bano; Schulz, Karsten

    2016-04-01

    For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the

  20. A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.

    ERIC Educational Resources Information Center

    Chen, Ruey-Shun; Hu, Yi-Chung

    2003-01-01

    Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)

  1. Lorentzian fuzzy spheres

    NASA Astrophysics Data System (ADS)

    Chaney, A.; Lu, Lei; Stern, A.

    2015-09-01

    We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch singularities appear only after taking the commutative limit. The commutative limit of these solutions corresponds to a sphere embedded in Minkowski space. This "sphere" has several novel features. The induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become tachyonic for a range of the parameters of the theory.

  2. Probability with Roulette

    ERIC Educational Resources Information Center

    Marshall, Jennings B.

    2007-01-01

    This article describes how roulette can be used to teach basic concepts of probability. Various bets are used to illustrate the computation of expected value. A betting system shows variations in patterns that often appear in random events.

  3. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  4. Fuzzy tuning B-spline curve

    NASA Astrophysics Data System (ADS)

    Fatah, Abd.; Rozaimi

    2015-12-01

    In this paper, we will discuss about the construction of fuzzy tuning B-spline curve based on fuzzy set theory. The concept of fuzzy tuning in designing this B-spline curve is based on the uncertain knots values which has to be defined first and then the result will be blended together with B-spline function which exists in users presumption in deciding the best knots value of tuning. Therefore, fuzzy set theory especially fuzzy number concepts are used to define the uncertain knots values and then it will be become fuzzy knots values. The Result by using different values of fuzzy knots for constructing a fuzzy tuning of B-spline curves will be illustrated.

  5. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  6. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.

    PubMed

    Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K

    2008-07-01

    A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made. PMID:18632325

  7. The Lattices of Group Fuzzy Congruences and Normal Fuzzy Subsemigroups on E-Inversive Semigroups

    PubMed Central

    Wang, Shoufeng

    2014-01-01

    The aim of this paper is to investigate the lattices of group fuzzy congruences and normal fuzzy subsemigroups on E-inversive semigroups. We prove that group fuzzy congruences and normal fuzzy subsemigroups determined each other in E-inversive semigroups. Moreover, we show that the set of group t-fuzzy congruences and the set of normal subsemigroups with tip t in a given E-inversive semigroup form two mutually isomorphic modular lattices for every t∈ [0,1]. PMID:24892045

  8. Incorporating ''fuzzy'' data and logical relations in the design of expert systems for nuclear reactors

    SciTech Connect

    Guth, M.A.S.

    1987-01-01

    This paper applies the method of assigning probability in Dempster-Shafer Theory (DST) to the components of rule-based expert systems used in the control of nuclear reactors. Probabilities are assigned to premises, consequences, and rules themselves. This paper considers how uncertainty can propagate through a system of Boolean equations, such as fault trees or expert systems. The probability masses assigned to primary initiating events in the expert system can be derived from observing a nuclear reactor in operation or based on engineering knowledge of the reactor parts. Use of DST mass assignments offers greater flexibility to the construction of expert systems.

  9. Consistent linguistic fuzzy preference relations method with ranking fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Ridzuan, Siti Amnah Mohd; Mohamad, Daud; Kamis, Nor Hanimah

    2014-12-01

    Multi-Criteria Decision Making (MCDM) methods have been developed to help decision makers in selecting the best criteria or alternatives from the options given. One of the well known methods in MCDM is the Consistent Fuzzy Preference Relation (CFPR) method, essentially utilizes a pairwise comparison approach. This method was later improved to cater subjectivity in the data by using fuzzy set, known as the Consistent Linguistic Fuzzy Preference Relations (CLFPR). The CLFPR method uses the additive transitivity property in the evaluation of pairwise comparison matrices. However, the calculation involved is lengthy and cumbersome. To overcome this problem, a method of defuzzification was introduced by researchers. Nevertheless, the defuzzification process has a major setback where some information may lose due to the simplification process. In this paper, we propose a method of CLFPR that preserves the fuzzy numbers form throughout the process. In obtaining the desired ordering result, a method of ranking fuzzy numbers is utilized in the procedure. This improved procedure for CLFPR is implemented to a case study to verify its effectiveness. This method is useful for solving decision making problems and can be applied to many areas of applications.

  10. Fuzzy logic and neural networks

    SciTech Connect

    Loos, J.R.

    1994-11-01

    Combine fuzzy logic`s fuzzy sets, fuzzy operators, fuzzy inference, and fuzzy rules - like defuzzification - with neural networks and you can arrive at very unfuzzy real-time control. Fuzzy logic, cursed with a very whimsical title, simply means multivalued logic, which includes not only the conventional two-valued (true/false) crisp logic, but also the logic of three or more values. This means one can assign logic values of true, false, and somewhere in between. This is where fuzziness comes in. Multi-valued logic avoids the black-and-white, all-or-nothing assignment of true or false to an assertion. Instead, it permits the assignment of shades of gray. When assigning a value of true or false to an assertion, the numbers typically used are {open_quotes}1{close_quotes} or {open_quotes}0{close_quotes}. This is the case for programmed systems. If {open_quotes}0{close_quotes} means {open_quotes}false{close_quotes} and {open_quotes}1{close_quotes} means {open_quotes}true,{close_quotes} then {open_quotes}shades of gray{close_quotes} are any numbers between 0 and 1. Therefore, {open_quotes}nearly true{close_quotes} may be represented by 0.8 or 0.9, {open_quotes}nearly false{close_quotes} may be represented by 0.1 or 0.2, and {close_quotes}your guess is as good as mine{close_quotes} may be represented by 0.5. The flexibility available to one is limitless. One can associate any meaning, such as {open_quotes}nearly true{close_quotes}, to any value of any granularity, such as 0.9999. 2 figs.

  11. A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room

    NASA Astrophysics Data System (ADS)

    Fu, Libi; Song, Weiguo; Lo, Siuming

    2016-08-01

    Many mass events in recent years have highlighted the importance of research on pedestrian evacuation dynamics. A number of models have been developed to analyze crowd behavior under evacuation situations. However, few focus on pedestrians' decision-making with respect to uncertainty, vagueness and imprecision. In this paper, a discrete evacuation model defined on the cellular space is proposed according to the fuzzy theory which is able to describe imprecise and subjective information. Pedestrians' percept information and various characteristics are regarded as fuzzy input. Then fuzzy inference systems with rule bases, which resemble human reasoning, are established to obtain fuzzy output that decides pedestrians' movement direction. This model is tested in two scenarios, namely in a single-exit room with and without obstacles. Simulation results reproduce some classic dynamics phenomena discovered in real building evacuation situations, and are consistent with those in other models and experiments. It is hoped that this study will enrich movement rules and approaches in traditional cellular automaton models for evacuation dynamics.

  12. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  13. Design of an adaptive fuzzy sliding mode control for uncertain discrete-time nonlinear systems based on noisy measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshio

    2016-02-01

    This paper presents the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain discrete-time nonlinear dynamic systems. The dynamic systems are described by a discrete-time state equation with nonlinear uncertainties, and the uncertainties include the modelling errors and the external disturbances to be unknown but nonlinear with the bounded properties. The states are measured by the restriction of measurement sensors and the contamination with independent measurement noises. The nonlinear uncertainties are approximated by using the fuzzy IF-THEN rules based on the universal approximation theorem, and the approximation error is compensated by adding an adaptive complementary term to the proposed AFSMC. The fuzzy inference approach based on the extended single input rule modules is proposed to reduce the number of the fuzzy IF-THEN rules. The estimates for the un-measurable states and the adjustable parameters are obtained by using the weighted least squares estimator and its simplified one. It is proved that under some conditions the estimation errors will remain in the vicinity of zero as time increases, and the states are ultimately bounded subject to the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of a simple numerical system.

  14. Experimental Probability in Elementary School

    ERIC Educational Resources Information Center

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  15. Fuzzy image processing in sun sensor

    NASA Technical Reports Server (NTRS)

    Mobasser, S.; Liebe, C. C.; Howard, A.

    2003-01-01

    This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.

  16. Forecasting Enrollments with Fuzzy Time Series.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  17. Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, Bieng-Zih; Lewis, Charles; Lin, Zsay-Shing

    2005-04-01

    The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the gamma-ray log reading, the separation between the spherically focused resistivity and the deep very-enhanced resistivity curves, and the borehole compensated sonic log reading. The output variable is groundwater formation lithology. All linguistic variables are based on five linguistic terms with a trapezoidal membership function. In this study, 50 data sets are clustered into 40 training sets and 10 testing sets for constructing the fuzzy lithology system and validating the ability of system prediction, respectively. The rule-based database containing 12 fuzzy lithology rules is developed from the training data sets, and the rule strength is weighted. A Madani inference system and the bisector of area defuzzification method are used for fuzzy inference and defuzzification. The success of training performance and the prediction ability were both 90%, with the calculated correlation of training and testing equal to 0.925 and 0.928, respectively. Well logs and core data from a clastic aquifer (depths 100-198 m) in the Shui-Lin area of west-central Taiwan are used for testing the system's construction. Comparison of results from core analysis, well logging and the fuzzy lithology system indicates that even though the well logging method can easily define a permeable sand formation, distinguishing between silts and sands and determining grain size variation in sands is more subjective. These shortcomings can be improved by a fuzzy lithology system that is able to yield more objective decisions than some conventional methods of log interpretation.

  18. Application of fuzzy evidence theory in a photo-electric measurement system

    NASA Astrophysics Data System (ADS)

    Song, Jianxun; Xiong, Maotao; Zhang, Jin; Wu, Qinzhang

    2009-05-01

    The photo-electric measurement system is a kind of high-precision measurement system for trajectory parameters and object identity parameters, and it can acquire the image information of flying objects by CCD camera. Due to subject to some kinds of reasons, the feature information of image is not integrated and imprecise, and it has uncertainty and fuzzy in some degree. The Dempster-Shafer evidence theory is an important approach of uncertainty reasoning. With evidences fused, the uncertainty of the feature information of the object is declined gradually by Dempster combination rule, so it can achieve the aim of object detection and object recognition. The conception of fuzzy mass is expanded in the way of the relation of absolute membership on the basis of normal mass conception. The fuzzy theory is very suitable for the description and processing of uncertainty to evidences in D-S evidence theory, so the Basic Probability Assignment Function (BPAF) of D-S evidence theory can be acquired according to fuzzy theory, and it resolves crucial problem in D-S evidence theory. It is shown that data fusion method of fuzzy evidence theory can deal with uncertainty and the fuzzy of photo-electric measurement system according to the analysis of theory and the result of experimentation, and it has a bright future in photo-electric measurement systems.

  19. Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation

    NASA Astrophysics Data System (ADS)

    Ito, A. M.; Takayama, A.; Oda, Y.; Tamura, T.; Kobayashi, R.; Hattori, T.; Ogata, S.; Ohno, N.; Kajita, S.; Yajima, M.; Noiri, Y.; Yoshimoto, Y.; Saito, S.; Takamura, S.; Murashima, T.; Miyamoto, M.; Nakamura, H.

    2015-07-01

    For the purposes of long-term use of tungsten divertor walls, the formation process of the fuzzy tungsten nanostructure induced by exposure to the helium plasma was studied. In the present paper, the fuzzy nanostructure's formation has been successfully reproduced by the new hybrid simulation method in which the deformation of the tungsten material due to pressure of the helium bubbles was simulated by the molecular dynamics and the diffusion of the helium atoms was simulated by the random walk based on the Monte Carlo method. By the simulation results, the surface height of the fuzzy nanostructure increased only when helium retention was under the steady state. It was proven that the growth of the fuzzy nanostructure was brought about by bursting of the helium bubbles. Moreover, we suggest the following key formation mechanisms of the fuzzy nanostructure: (1) lifting in which the surface lifted up by the helium bubble changes into a convexity, (2) bursting by which the region of the helium bubble changes into a concavity, and (3) the difference of the probability of helium retention by which the helium bubbles tend to appear under the concavity. Consequently, the convex-concave surface structure was enhanced and grew to create the fuzzy nanostructure.

  20. Application of a rule-based knowledge system using CLIPS for the taxonomy of selected Opuntia species

    NASA Technical Reports Server (NTRS)

    Heymans, Bart C.; Onema, Joel P.; Kuti, Joseph O.

    1991-01-01

    A rule based knowledge system was developed in CLIPS (C Language Integrated Production System) for identifying Opuntia species in the family Cactaceae, which contains approx. 1500 different species. This botanist expert tool system is capable of identifying selected Opuntia plants from the family level down to the species level when given some basic characteristics of the plants. Many plants are becoming of increasing importance because of their nutrition and human health potential, especially in the treatment of diabetes mellitus. The expert tool system described can be extremely useful in an unequivocal identification of many useful Opuntia species.

  1. Acceptance, values, and probability.

    PubMed

    Steel, Daniel

    2015-10-01

    This essay makes a case for regarding personal probabilities used in Bayesian analyses of confirmation as objects of acceptance and rejection. That in turn entails that personal probabilities are subject to the argument from inductive risk, which aims to show non-epistemic values can legitimately influence scientific decisions about which hypotheses to accept. In a Bayesian context, the argument from inductive risk suggests that value judgments can influence decisions about which probability models to accept for likelihoods and priors. As a consequence, if the argument from inductive risk is sound, then non-epistemic values can affect not only the level of evidence deemed necessary to accept a hypothesis but also degrees of confirmation themselves. PMID:26386533

  2. Fuzzy logic of Aristotelian forms

    SciTech Connect

    Perlovsky, L.I.

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.

  3. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  4. The case for lower probabilities as measures of uncertainty

    SciTech Connect

    Tonn, B. ); Wagner, C. . Dept. of Mathematics)

    1991-01-01

    This paper presents the case for using lower probabilities as measures of uncertainty in expert systems. A debate has raged within the artificial intelligence community for years about how to represent uncertainty in expert systems. Several camps have emerged. One camp has focused on developing alternatives to probability theory, such as certainty factors, fuzzy sets, and endorsements. A second camp has focused on retrofitting classical, additive probability, for example, by developing a cautious approach to probabilistic reasoning and interpreting probability within a possible worlds framework. This paper falls into a third camp, which encompasses generalizations of probability theory. The most discussed generalization is known as Dempster-Shafer Theory, which is based on the combined work of Dempster and Shafer. Lower probabilities are actually a substantial generalization of DST. This paper has two parts. The first presents the definitions of lower probabilities, DST, and additive probability. This section includes a discussion of capacities, the most general type of uncertainty measure. The purpose of this section is to show the differences among the uncertainty measures.

  5. Construction of fuzzy S{sup 4}

    SciTech Connect

    Abe, Yasuhiro

    2004-12-15

    We construct a fuzzy S{sup 4}, utilizing the fact that CP{sup 3} is an S{sup 2} bundle over S{sup 4}. We find that the fuzzy S{sup 4} can be described by a block-diagonal form whose embedding square matrix represents a fuzzy CP{sup 3}. We discuss some pending issues on fuzzy S{sup 4}, i.e., precise matrix-function correspondence, associativity of the algebra, and, etc. Similarly, we also obtain a fuzzy S{sup 8}, using the fact that CP{sup 7} is a CP{sup 3} bundle over S{sup 8}.

  6. Parallel Fuzzy Segmentation of Multiple Objects.

    PubMed

    Garduño, Edgar; Herman, Gabor T

    2008-01-01

    The usefulness of fuzzy segmentation algorithms based on fuzzy connectedness principles has been established in numerous publications. New technologies are capable of producing larger-and-larger datasets and this causes the sequential implementations of fuzzy segmentation algorithms to be time-consuming. We have adapted a sequential fuzzy segmentation algorithm to multi-processor machines. We demonstrate the efficacy of such a distributed fuzzy segmentation algorithm by testing it with large datasets (of the order of 50 million points/voxels/items): a speed-up factor of approximately five over the sequential implementation seems to be the norm. PMID:19444333

  7. Effect of noise on chaotic fuzzy mappings

    SciTech Connect

    Zardecki, A.

    1996-03-01

    Chaotic mappings in the space of fuzzy sets induced by mappings of the underlying reference set are investigated. Different fuzzification schemes are considered and their impact on the resultant iterated fuzzy set, under a quadratic mapping, is studied numerically. The fuzzy set mapping is described in terms of the mapping of level cuts, resulting from the resolution theorem for fuzzy sets. In the two-dimensional case, a generalized notion, given as a fuzzy set, of the Hausdorff dimension is formulated. An example, based on the Henon Mapping, is provided.

  8. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  9. Varga: On Probability.

    ERIC Educational Resources Information Center

    Varga, Tamas

    This booklet resulted from a 1980 visit by the author, a Hungarian mathematics educator, to the Teachers' Center Project at Southern Illinois University at Edwardsville. Included are activities and problems that make probablility concepts accessible to young children. The topics considered are: two probability games; choosing two beads; matching…

  10. Application of Quantum Probability

    NASA Astrophysics Data System (ADS)

    Bohdalová, Mária; Kalina, Martin; Nánásiová, Ol'ga

    2009-03-01

    This is the first attempt to smooth time series using estimators with applying quantum probability with causality (non-commutative s-maps on an othomodular lattice). In this context it means that we use non-symmetric covariance matrix to construction of our estimator.

  11. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  12. Fuzzy reliability analysis of structures by using the method of fuzzy optimization

    SciTech Connect

    Hu, Y.; Chen, B.

    1996-12-31

    There are two kinds of uncertainties in safety assessment of engineering structures. One is of the nature of randomness, and the other fuzziness. Fuzzy uncertainties exist in defining certain structural performances, conditions, parameters, and their interrelationships. The theory of fuzzy sets should be employed to cope with the fuzzy uncertainties. In this paper, a general definition for structural failure considering the fuzzy uncertainties is introduced firstly. Failure of the structure is modelled by a fuzzy event, and described by the membership function. The limit state surface is then replaced by a fuzzy limit state zone, in which every point represents a state belonging to the failure with a certain degree of membership. Then a fuzzy optimization problem for solving the reliability index is formulated. In classical structural reliability theory, the reliability index is defined by the minimum distance from the limit state surface to the origin of the standard normal variable space. It can be evaluated by solving an optimization problem. When the fuzzy uncertainties are taken into consideration, the crisp limit state surface becomes a fuzzy limit state zone. In this case, a corresponding fuzzy optimization problem can be formulated. Fuzzy reliability index can be obtained by solving the fuzzy optimization problem by an iterative procedure with some criteria base on the fuzzy decision-making. Numerical examples are given in the paper.

  13. Fuzzy sensitivity analysis for reliability assessment of building structures

    NASA Astrophysics Data System (ADS)

    Kala, Zdeněk

    2016-06-01

    The mathematical concept of fuzzy sensitivity analysis, which studies the effects of the fuzziness of input fuzzy numbers on the fuzziness of the output fuzzy number, is described in the article. The output fuzzy number is evaluated using Zadeh's general extension principle. The contribution of stochastic and fuzzy uncertainty in reliability analysis tasks of building structures is discussed. The algorithm of fuzzy sensitivity analysis is an alternative to stochastic sensitivity analysis in tasks in which input and output variables are considered as fuzzy numbers.

  14. ANGY: A Rule-Based Expert System for Automatic Segmentation of Coronary Vessels From Digital Subtracted Angiograms.

    PubMed

    Stansfield, S A

    1986-02-01

    This paper details the design and implementation of ANGY, a rule-based expert system in the domain of medical image processing. Given a subtracted digital angiogram of the chest, ANGY identifies and isolates the coronary vessels, while ignoring any nonvessel structures which may have arisen from noise, variations in background contrast, imperfect subtraction, and irrelevent anatomical detail. The overall system is modularized into three stages: the preprocessing stage and the two stages embodied in the expert itself. In the preprocessing stage, low-level image processing routines written in C are used to create a segmented representation of the input image. These routines are applied sequentially. The expert system is rule-based and is written in OPS5 and LISP. It is separated into two stages: The low-level image processing stage embodies a domain-independent knowledge of segmentation, grouping, and shape analysis. Working with both edges and regions, it determines such relations as parallel and adjacent and attempts to refine the segmentation begun by the preprocessing. The high-level medical stage embodies a domain-dependent knowledge of cardiac anatomy and physiology. Applying this knowledge to the objects and relations determined in the preceding two stages, it identifies those objects which are vessels and eliminates all others. PMID:21869337

  15. Discovering fuzzy spatial association rules

    NASA Astrophysics Data System (ADS)

    Kacar, Esen; Cicekli, Nihan K.

    2002-03-01

    Discovering interesting, implicit knowledge and general relationships in geographic information databases is very important to understand and use these spatial data. One of the methods for discovering this implicit knowledge is mining spatial association rules. A spatial association rule is a rule indicating certain association relationships among a set of spatial and possibly non-spatial predicates. In the mining process, data is organized in a hierarchical manner. However, in real-world applications it may not be possible to construct a crisp structure for this data, instead some fuzzy structures should be used. Fuzziness, i.e. partial belonging of an item to more than one sub-item in the hierarchy, could be applied to the data itself, and also to the hierarchy of spatial relations. This paper shows that, strong association rules can be mined from large spatial databases using fuzzy concept and spatial relation hierarchies.

  16. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  17. Spatiotemporal fuzzy based climate forecasting for Australia

    NASA Astrophysics Data System (ADS)

    Montazerolghaem, M.; Vervoort, R. W.; Minasny, B.; McBratney, A.

    2012-12-01

    major advantage of this method is its flexibility, which allows analyst to have clear view regarding weather variability over time and space. Correspondingly, it will assist the analyst to interact with the model by adding new rules based on expert knowledge of climate conditions and variability. Improvements in this model are currently under investigation. This study and model results may well be significant because they consider both local climate feedbacks and the continental drivers in time series format.

  18. Expert systems and fuzzy systems

    SciTech Connect

    Negoita, C.

    1985-01-01

    This book examines the design of the expert computer system and how fuzzy systems can be used to deal with imprecise information. As the author explores the effects of semantic systems on decision support systems, he asserts that the utilization of fuzzy set theory can help an expert system draw from its knowledge base more efficiently and therefore make more accurate and reliable decisions. The book includes realistic status reports in approximate reasoning and knowledge representation that are supported by a ''theory of categories'' mathematical approach. The differences between symbolic and semantic manipulation are outline, and detailed information is given on the actual theory of knowledge-based systems.

  19. The semantics of fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1991-01-01

    Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.

  20. Fuzzy simulation in concurrent engineering

    NASA Technical Reports Server (NTRS)

    Kraslawski, A.; Nystrom, L.

    1992-01-01

    Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.

  1. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural

  2. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.

    PubMed

    Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu

    2015-05-01

    This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems. PMID:25137736

  3. A fuzzy control design case: The fuzzy PLL

    NASA Technical Reports Server (NTRS)

    Teodorescu, H. N.; Bogdan, I.

    1992-01-01

    The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.

  4. Fuzzy set applications in engineering optimization: Multilevel fuzzy optimization

    NASA Technical Reports Server (NTRS)

    Diaz, Alejandro R.

    1989-01-01

    A formulation for multilevel optimization with fuzzy objective functions is presented. With few exceptions, formulations for fuzzy optimization have dealt with a one-level problem in which the objective is the membership function of a fuzzy set formed by the fuzzy intersection of other sets. In the problem examined here, the goal set G is defined in a more general way, using an aggregation operator H that allows arbitrary combinations of set operations (union, intersection, addition) on the individual sets Gi. This is a straightforward extension of the standard form, but one that makes possible the modeling of interesting evaluation strategies. A second, more important departure from the standard form will be the construction of a multilevel problem analogous to the design decomposition problem in optimization. This arrangement facilitates the simulation of a system design process in which different components of the system are designed by different teams, and different levels of design detail become relevant at different time stages in the process: global design features early, local features later in the process.

  5. Waste Package Misload Probability

    SciTech Connect

    J.K. Knudsen

    2001-11-20

    The objective of this calculation is to calculate the probability of occurrence for fuel assembly (FA) misloads (i.e., Fa placed in the wrong location) and FA damage during FA movements. The scope of this calculation is provided by the information obtained from the Framatome ANP 2001a report. The first step in this calculation is to categorize each fuel-handling events that occurred at nuclear power plants. The different categories are based on FAs being damaged or misloaded. The next step is to determine the total number of FAs involved in the event. Using the information, a probability of occurrence will be calculated for FA misload and FA damage events. This calculation is an expansion of preliminary work performed by Framatome ANP 2001a.

  6. Three dimensional pattern recognition using feature-based indexing and rule-based search

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Kyu

    In flexible automated manufacturing, robots can perform routine operations as well as recover from atypical events, provided that process-relevant information is available to the robot controller. Real time vision is among the most versatile sensing tools, yet the reliability of machine-based scene interpretation can be questionable. The effort described here is focused on the development of machine-based vision methods to support autonomous nuclear fuel manufacturing operations in hot cells. This thesis presents a method to efficiently recognize 3D objects from 2D images based on feature-based indexing. Object recognition is the identification of correspondences between parts of a current scene and stored views of known objects, using chains of segments or indexing vectors. To create indexed object models, characteristic model image features are extracted during preprocessing. Feature vectors representing model object contours are acquired from several points of view around each object and stored. Recognition is the process of matching stored views with features or patterns detected in a test scene. Two sets of algorithms were developed, one for preprocessing and indexed database creation, and one for pattern searching and matching during recognition. At recognition time, those indexing vectors with the highest match probability are retrieved from the model image database, using a nearest neighbor search algorithm. The nearest neighbor search predicts the best possible match candidates. Extended searches are guided by a search strategy that employs knowledge-base (KB) selection criteria. The knowledge-based system simplifies the recognition process and minimizes the number of iterations and memory usage. Novel contributions include the use of a feature-based indexing data structure together with a knowledge base. Both components improve the efficiency of the recognition process by improved structuring of the database of object features and reducing data base size

  7. Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

    NASA Astrophysics Data System (ADS)

    Mehmanpazir, Farhad; Asadi, Shahrokh

    2016-07-01

    The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for

  8. Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curt; Finsterle, Stefan; Jordan, Preston; Zhang, Keni

    2008-11-01

    Leakage of CO{sub 2} and brine along faults at geologic carbon sequestration (GCS) sites is a primary concern for storage integrity. The focus of this study is on the estimation of the probability of leakage along faults or fractures. This leakage probability is controlled by the probability of a connected network of conduits existing at a given site, the probability of this network encountering the CO{sub 2} plume, and the probability of this network intersecting environmental resources that may be impacted by leakage. This work is designed to fit into a risk assessment and certification framework that uses compartments to represent vulnerable resources such as potable groundwater, health and safety, and the near-surface environment. The method we propose includes using percolation theory to estimate the connectivity of the faults, and generating fuzzy rules from discrete fracture network simulations to estimate leakage probability. By this approach, the probability of CO{sub 2} escaping into a compartment for a given system can be inferred from the fuzzy rules. The proposed method provides a quick way of estimating the probability of CO{sub 2} or brine leaking into a compartment. In addition, it provides the uncertainty range of the estimated probability.

  9. Adaptively Managing Wildlife for Climate Change: A Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Prato, Tony

    2011-07-01

    Wildlife managers have little or no control over climate change. However, they may be able to alleviate potential adverse impacts of future climate change by adaptively managing wildlife for climate change. In particular, wildlife managers can evaluate the efficacy of compensatory management actions (CMAs) in alleviating potential adverse impacts of future climate change on wildlife species using probability-based or fuzzy decision rules. Application of probability-based decision rules requires managers to specify certain probabilities, which is not possible when they are uncertain about the relationships between observed and true ecological conditions for a species. Under such uncertainty, the efficacy of CMAs can be evaluated and the best CMA selected using fuzzy decision rules. The latter are described and demonstrated using three constructed cases that assume: (1) a single ecological indicator (e.g., population size for a species) in a single time period; (2) multiple ecological indicators for a species in a single time period; and (3) multiple ecological conditions for a species in multiple time periods.

  10. Incorporating Adaptive Local Information Into Fuzzy Clustering for Image Segmentation.

    PubMed

    Liu, Guoying; Zhang, Yun; Wang, Aimin

    2015-11-01

    Fuzzy c-means (FCM) clustering with spatial constraints has attracted great attention in the field of image segmentation. However, most of the popular techniques fail to resolve misclassification problems due to the inaccuracy of their spatial models. This paper presents a new unsupervised FCM-based image segmentation method by paying closer attention to the selection of local information. In this method, region-level local information is incorporated into the fuzzy clustering procedure to adaptively control the range and strength of interactive pixels. First, a novel dissimilarity function is established by combining region-based and pixel-based distance functions together, in order to enhance the relationship between pixels which have similar local characteristics. Second, a novel prior probability function is developed by integrating the differences between neighboring regions into the mean template of the fuzzy membership function, which adaptively selects local spatial constraints by a tradeoff weight depending upon whether a pixel belongs to a homogeneous region or not. Through incorporating region-based information into the spatial constraints, the proposed method strengthens the interactions between pixels within the same region and prevents over smoothing across region boundaries. Experimental results over synthetic noise images, natural color images, and synthetic aperture radar images show that the proposed method achieves more accurate segmentation results, compared with five state-of-the-art image segmentation methods. PMID:26186787

  11. Fuzzy modeling of analytical redundancy for sensor failure detection

    SciTech Connect

    Tsai, T.M.; Chou, H.P. )

    1991-01-01

    Failure detection and isolation (FDI) in dynamic systems may be accomplished by testing the consistency of the system via analytically redundant relations. The redundant relation is basically a mathematical model relating system inputs and dissimilar sensor outputs from which information is extracted and subsequently examined for the presence of failure signatures. Performance of the approach is often jeopardized by inherent modeling error and noise interference. To mitigate such effects, techniques such as Kalman filtering, auto-regression-moving-average (ARMA) modeling in conjunction with probability tests are often employed. These conventional techniques treat the stochastic nature of uncertainties in a deterministic manner to generate best-estimated model and sensor outputs by minimizing uncertainties. In this paper, the authors present a different approach by treating the effect of uncertainties with fuzzy numbers. Coefficients in redundant relations derived from first-principle physical models are considered as fuzzy parameters and on-line updated according to system behaviors. Failure detection is accomplished by examining the possibility that a sensor signal occurred in an estimated fuzzy domain. To facilitate failure isolation, individual FDI monitors are designed for each interested sensor.

  12. Fuzzy coordinator in control problems

    NASA Technical Reports Server (NTRS)

    Rueda, A.; Pedrycz, W.

    1992-01-01

    In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.

  13. Soft computing and fuzzy logic

    SciTech Connect

    Zadeh, L.A.

    1994-12-31

    Soft computing is a collection of methodologies that aim to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness, and low solution cost. Its principal constituents are fuzzy logic, neuro-computing, and probabilistic reasoning. Soft computing is likely to play an increasingly important role in many application areas, including software engineering. The role model for soft computing is the human mind.

  14. Fuzzy control system for a mobile robot

    SciTech Connect

    Hai Quan Dai; Dalton, G.R.; Tulenko, J. )

    1992-01-01

    Since the first fuzzy logic control system was proposed by Mamdani, many studies have been carried out on industrial process and real-time controls. The key problem for the application of fuzzy logic control is to find a suitable set of fuzzy control rules. Three common modes of deriving fuzzy control rules are often distinguished and mentioned: (1) expert experience and knowledge; (2) modeling operator control actions; and (3) modeling a process. In cases where an operator's skill is important, it is very useful to derive fuzzy control rules by modeling an operator's control actions. It is possible to model an operator's control behaviors in terms of fuzzy implications using the input-output data concerned with his/her control actions. The authors use the model obtained in this way as the basis for a fuzzy controller. The authors use a finite number of fuzzy or approximate control rules. To control a robot in a cluttered reactor environment, it is desirable to combine all the methods. In this paper, the authors describe a general algorithm for a mobile robot control system with fuzzy logic reasoning. They discuss the way that knowledge of fuzziness will be represented in this control system. They also describe a simulation program interface to the K2A Cybermation mobile robot to be used to demonstrate the control system.

  15. Fuzzy tree automata and syntactic pattern recognition.

    PubMed

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems. PMID:21869062

  16. Simple fuzzy logic estimation of flow forecast uncertainty

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan

    2010-05-01

    Fuzzy logic is recognized as useful tool to support for decision making under uncertainty. As such some methods for reservoir operation or real time flood management were developed. Maskey (2004) describes method of model uncertainty assessment based on qualitative expert judgement and its representation in fuzzy space. It is based on categorical judging of the quality and importance of selected model parameters (processes). The method was modified in order to reflect varying uncertainty of single model realization (forecast) with respect to inputting precipitation forecast (QPF). Two model uncertainty parameters were distinguish: 1) QPF, 2) model uncertainty due to concept and parameters. The approach was tested and applied for Černá river basin (127 km2) in southern Bohemia for the period from January 2008. Aqualog forecasting system (SAC-SMA implemented) is used for real time forecasting within the basin. It provides deterministic QPF based (NWP ALADIN) forecast with 48 h lead time. The aim of the study was to estimate the uncertainty of the forecast using simple fuzzy procedure. QPF uncertainty dominates the total uncertainty of hydrological forecast in condition of the Czech Republic. Therefore an evaluation of QPF performance was done for the basin. Based on detected quantiles of relative difference the fuzzy expression of QPF exceedance probability was done to represent the quality of QPF parameter. We further assumed that the importance of QPF parameter is proportional to its quality. Model uncertainty was qualitatively estimated to be moderate both in quality and importance. Than the fuzzy sum of both parameters was computed. The output is than fitted to deterministic flow forecast using the highest forecasted flow and its known reference in fuzzy space (determined according to QPF performance evaluation). The case study provided promising results in the meaning of Brier skill score (0.24) as well as in comparison of forecasted to expected distribution

  17. Medical concepts related to individual risk are better explained with "plausibility" rather than "probability"

    PubMed Central

    Grossi, Enzo

    2005-01-01

    Background The concept of risk has pervaded medical literature in the last decades and has become a familiar topic, and the concept of probability, linked to binary logic approach, is commonly applied in epidemiology and clinical medicine. The application of probability theory to groups of individuals is quite straightforward but can pose communication challenges at individual level. Few articles by the way have tried to focus the concept of "risk" at the individual subject level rather than at population level. Discussion The author has reviewed the conceptual framework which has led to the use of probability theory in the medical field in a time when the principal causes of death were represented by acute disease often of infective origin. In the present scenario, in which chronic degenerative disease dominate and there are smooth transitions between health and disease the use of fuzzy logic rather than binary logic would be more appropriate. The use of fuzzy logic in which more than two possible truth-value assignments are allowed overcomes the trap of probability theory when dealing with uncertain outcomes, thereby making the meaning of a certain prognostic statement easier to understand by the patient. Summary At individual subject level the recourse to the term plausibility, related to fuzzy logic, would help the physician to communicate to the patient more efficiently in comparison with the term probability, related to binary logic. This would represent an evident advantage for the transfer of medical evidences to individual subjects. PMID:16188041

  18. Trade-offs between fuel economy and NOx emissions using fuzzy logic control.

    SciTech Connect

    Rousseau, Aymeric; Saglini, Sylvain; Jakov, Michael; Gray, Donald; Hardy, Keith

    2002-08-19

    The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by evaluating advanced automotive technologies in a systems context. ANL has developed a unique set of compatible simulation tools and test equipment to perform an integrated systems analysis project from modeling through hardware testing and validation. This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides of Nitrogen (NOx) emissions in a so-called ''pre-transmission'' parallel hybrid powertrain. The powertrain configuration (in simulation and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously Variable Transmission (CVT) and an electric drive motor coupled to the CVT input shaft. The trade-off is studied in a simulated environment using PSAT{copyright} with different controllers (fuzzy logic and rule based) and engine models (neural network and steady state models developed from ANL data).

  19. Using custom-designed VLSI fuzzy inferencing chips for the autonomous navigation of a mobile robot

    SciTech Connect

    Pin, F.G.; Pattay, R.S. ); Watanabe, Hiroyuki; Symon, J. . Dept. of Computer Science)

    1991-01-01

    Two types of computer boards including custom-designed VLSI fuzzy inferencing chips have been developed to add a qualitative reasoning capability to the real-time control of autonomous mobile robots. The design and operation of these boards are first described and an example of their use for the autonomous navigation of mobile robot is presented. The development of qualitative reasoning schemes emulating human-like navigation in apriori unknown environments is discussed. An approach using superposition of elemental sensor-based behaviors is shown to alloy easy development and testing of the inferencing rule base, while providing for progressive addition of behaviors to resolve situations of increasing complexity. The efficiency of such schemes, which can consist of as little as a dozen qualitative rules, is illustrated in experiments involving an autonomous mobile robot navigating on the basis of very sparse and inaccurate sensor data. 17 refs., 6 figs.

  20. Fuzzy epsilon filters for removal of thermal and speckle noise from gray-scale images

    NASA Astrophysics Data System (ADS)

    Bessai, H. J.

    1994-11-01

    This paper develops constructions of filters for semi-automatic enhancement of still images. It emphasizes the joint application of linear and nonlinear filtering techniques. The decision which filter type is to be activated predominantly depends on perceptual criteria. These means of judging are readily described in terms of linguistic variables, i.e., the user is relieved from the tedious task of evaluating noise statistics. The decision process itself is supported by standard fuzzy reasoning techniques and corrected updates of the crisp outputs are available on a user-defined frame-by-frame or window-by-window basis. Thus, both handling of the filter tools and the individual filtering depth (gain, bandwidth, etc.) are controlled by a common rule base. Experiments with noisy grayscale images demonstrate that compared to non-joint methods, the proposed solution results in acceptable scene interpretation and clear identification of originally concealed objects.

  1. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  2. Selecting supplier combination based on fuzzy multicriteria analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhi-Qiu; Luo, Xin-Xing; Chen, Xiao-Hong; Yang, Wu-E.

    2015-07-01

    Existing multicriteria analysis (MCA) methods are probably ineffective in selecting a supplier combination. Thus, an MCA-based fuzzy 0-1 programming method is introduced. The programming relates to a simple MCA matrix that is used to select a single supplier. By solving the programming, the most feasible combination of suppliers is selected. Importantly, this result differs from selecting suppliers one by one according to a single-selection order, which is used to rank sole suppliers in existing MCA methods. An example highlights such difference and illustrates the proposed method.

  3. Applications of fuzzy ranking methods to risk-management decisions

    NASA Astrophysics Data System (ADS)

    Mitchell, Harold A.; Carter, James C., III

    1993-12-01

    The Department of Energy is making significant improvements to its nuclear facilities as a result of more stringent regulation, internal audits, and recommendations from external review groups. A large backlog of upgrades has resulted. Currently, a prioritization method is being utilized which relies on a matrix of potential consequence and probability of occurrence. The attributes of the potential consequences considered include likelihood, exposure, public health and safety, environmental impact, site personnel safety, public relations, legal liability, and business loss. This paper describes an improved method which utilizes fuzzy multiple attribute decision methods to rank proposed improvement projects.

  4. A Rule-based Computer System to Facilitate Public Health Surveillance during the 2002 Olympic Winter Games

    PubMed Central

    Gundlapalli, Adi V.; Olson, Jonathan; Smith, Sean P.; Baza, Michael; Hausam, Robert R.; Eutropius, Louise J.; Pestotnik, Stanley L.; Duncan, Karen; Staggers, Nancy; Pincetl, Pierre; Samore, Matthew H.

    2002-01-01

    We describe our preliminary experience in using a computer rule-based system to assist real-time public health surveillance. The rules operated on HL7 messages transmitted by hospital information systems and included laboratory test ordering, results, radiology reports, emergency room & outpatient clinic visits and hospital admissions. Data elements were mapped to standard vocabularies and then run through the inference engine, in a data-driven process. The aim of the system was to detect events of possible public health significance, as well as reportable infectious diseases. The program has been actively used by the University-based infection control team, beginning with the 2002 Olympic Winter Games. It represents a novel surveillance system that uses objective, quantifiable events to support monitoring of community populations.

  5. Probability mapping of contaminants

    SciTech Connect

    Rautman, C.A.; Kaplan, P.G.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.

    1994-04-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).

  6. Measurement Uncertainty and Probability

    NASA Astrophysics Data System (ADS)

    Willink, Robin

    2013-02-01

    Part I. Principles: 1. Introduction; 2. Foundational ideas in measurement; 3. Components of error or uncertainty; 4. Foundational ideas in probability and statistics; 5. The randomization of systematic errors; 6. Beyond the standard confidence interval; Part II. Evaluation of Uncertainty: 7. Final preparation; 8. Evaluation using the linear approximation; 9. Evaluation without the linear approximations; 10. Uncertainty information fit for purpose; Part III. Related Topics: 11. Measurement of vectors and functions; 12. Why take part in a measurement comparison?; 13. Other philosophies; 14. An assessment of objective Bayesian methods; 15. A guide to the expression of uncertainty in measurement; 16. Measurement near a limit - an insoluble problem?; References; Index.

  7. Analysis and exploration of the use of rule-based algorithms and consensus methods for the inferral of haplotypes.

    PubMed Central

    Orzack, Steven Hecht; Gusfield, Daniel; Olson, Jeffrey; Nesbitt, Steven; Subrahmanyan, Lakshman; Stanton, Vincent P

    2003-01-01

    The difficulty of experimental determination of haplotypes from phase-unknown genotypes has stimulated the development of nonexperimental inferral methods. One well-known approach for a group of unrelated individuals involves using the trivially deducible haplotypes (those found in individuals with zero or one heterozygous sites) and a set of rules to infer the haplotypes underlying ambiguous genotypes (those with two or more heterozygous sites). Neither the manner in which this "rule-based" approach should be implemented nor the accuracy of this approach has been adequately assessed. We implemented eight variations of this approach that differed in how a reference list of haplotypes was derived and in the rules for the analysis of ambiguous genotypes. We assessed the accuracy of these variations by comparing predicted and experimentally determined haplotypes involving nine polymorphic sites in the human apolipoprotein E (APOE) locus. The eight variations resulted in substantial differences in the average number of correctly inferred haplotype pairs. More than one set of inferred haplotype pairs was found for each of the variations we analyzed, implying that the rule-based approach is not sufficient by itself for haplotype inferral, despite its appealing simplicity. Accordingly, we explored consensus methods in which multiple inferrals for a given ambiguous genotype are combined to generate a single inferral; we show that the set of these "consensus" inferrals for all ambiguous genotypes is more accurate than the typical single set of inferrals chosen at random. We also use a consensus prediction to divide ambiguous genotypes into those whose algorithmic inferral is certain or almost certain and those whose less certain inferral makes molecular inferral preferable. PMID:14573498

  8. Analysis and exploration of the use of rule-based algorithms and consensus methods for the inferral of haplotypes.

    PubMed

    Orzack, Steven Hecht; Gusfield, Daniel; Olson, Jeffrey; Nesbitt, Steven; Subrahmanyan, Lakshman; Stanton, Vincent P

    2003-10-01

    The difficulty of experimental determination of haplotypes from phase-unknown genotypes has stimulated the development of nonexperimental inferral methods. One well-known approach for a group of unrelated individuals involves using the trivially deducible haplotypes (those found in individuals with zero or one heterozygous sites) and a set of rules to infer the haplotypes underlying ambiguous genotypes (those with two or more heterozygous sites). Neither the manner in which this "rule-based" approach should be implemented nor the accuracy of this approach has been adequately assessed. We implemented eight variations of this approach that differed in how a reference list of haplotypes was derived and in the rules for the analysis of ambiguous genotypes. We assessed the accuracy of these variations by comparing predicted and experimentally determined haplotypes involving nine polymorphic sites in the human apolipoprotein E (APOE) locus. The eight variations resulted in substantial differences in the average number of correctly inferred haplotype pairs. More than one set of inferred haplotype pairs was found for each of the variations we analyzed, implying that the rule-based approach is not sufficient by itself for haplotype inferral, despite its appealing simplicity. Accordingly, we explored consensus methods in which multiple inferrals for a given ambiguous genotype are combined to generate a single inferral; we show that the set of these "consensus" inferrals for all ambiguous genotypes is more accurate than the typical single set of inferrals chosen at random. We also use a consensus prediction to divide ambiguous genotypes into those whose algorithmic inferral is certain or almost certain and those whose less certain inferral makes molecular inferral preferable. PMID:14573498

  9. Spatial Pattern Dynamics of 3D Stem Cell Loss of Pluripotency via Rules-Based Computational Modeling

    PubMed Central

    White, Douglas E.; Kinney, Melissa A.; McDevitt, Todd C.; Kemp, Melissa L.

    2013-01-01

    Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into cells from all germ lineages, making them a potentially robust cell source for regenerative medicine therapies, but difficulties in predicting and controlling ESC differentiation currently limit the development of therapies and applications from such cells. A common approach to induce the differentiation of ESCs in vitro is via the formation of multicellular aggregates known as embryoid bodies (EBs), yet cell fate specification within EBs is generally considered an ill-defined and poorly controlled process. Thus, the objective of this study was to use rules-based cellular modeling to provide insight into which processes influence initial cell fate transitions in 3-dimensional microenvironments. Mouse embryonic stem cells (D3 cell line) were differentiated to examine the temporal and spatial patterns associated with loss of pluripotency as measured through Oct4 expression. Global properties of the multicellular aggregates were accurately recapitulated by a physics-based aggregation simulation when compared to experimentally measured physical parameters of EBs. Oct4 expression patterns were analyzed by confocal microscopy over time and compared to simulated trajectories of EB patterns. The simulations demonstrated that loss of Oct4 can be modeled as a binary process, and that associated patterns can be explained by a set of simple rules that combine baseline stochasticity with intercellular communication. Competing influences between Oct4+ and Oct4− neighbors result in the observed patterns of pluripotency loss within EBs, establishing the utility of rules-based modeling for hypothesis generation of underlying ESC differentiation processes. Importantly, the results indicate that the rules dominate the emergence of patterns independent of EB structure, size, or cell division. In combination with strategies to engineer cellular microenvironments, this type of modeling approach is a

  10. Combining non-precise historical information with instrumental measurements for flood frequency estimation: a fuzzy Bayesian approach

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Kiss, Andrea; Viglione, Alberto; Blöschl, Günter

    2016-04-01

    Efforts of the historical environmental extremes community during the last decades have resulted in the obtention of long time series of historical floods, which in some cases range longer than 500 years in the past. In hydrological engineering, historical floods are useful because they give additional information which improves the estimates of discharges with low annual exceedance probabilities, i.e. with high return periods, and additionally might reduce the uncertainty in those estimates. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but in most of the cases, the information related to historical floods is given, quantitatively, in a non-precise manner. This work presents an approach on how to deal with the non-precise historical floods, by linking the descriptions in historical records to fuzzy numbers representing discharges. These fuzzy historical discharges are then introduced in a formal Bayesian inference framework, taking into account the arithmetics of non-precise numbers modelled by fuzzy logic theory, to obtain a fuzzy version of the flood frequency curve combining the fuzzy historical flood events and the instrumental data for a given location. Two case studies are selected from the historical literature, representing different facets of the fuzziness present in the historical sources. The results from the cases studies are given in the form of the fuzzy estimates of the flood frequency curves together with the fuzzy 5% and 95% Bayesian credibility bounds for these curves. The presented fuzzy Bayesian inference framework provides a flexible methodology to propagate in an explicit way the imprecision from the historical records into the flood frequency estimate, which allows to assess the effect that the incorporation of non-precise historical information can have in the flood frequency regime.

  11. A methodology for exploiting the tolerance for imprecision in genetic fuzzy systems and its application to characterization of rotor blade leading edge materials

    NASA Astrophysics Data System (ADS)

    Sánchez, Luciano; Couso, Inés; Palacios, Ana M.; Palacios, José L.

    2013-05-01

    A methodology for obtaining fuzzy rule-based models from uncertain data is proposed. The granularity of the linguistic discretization is decided with the help of a new estimation of the mutual information between ill-known random variables, and a combination of boosting and genetic algorithms is used for discovering new rules. This methodology has been applied to predict whether the coating of an helicopter rotor blade is adequate, considering the shear adhesion strength of ice to different materials. The discovered knowledge is intended to increase the level of post-processing interpretation accuracy of experimental data obtained during the evaluation of ice-phobic materials for rotorcraft applications.

  12. Combinational reasoning of quantitative fuzzy topological relations for simple fuzzy regions.

    PubMed

    Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi

    2015-01-01

    In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452

  13. Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions

    PubMed Central

    Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi

    2015-01-01

    In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452

  14. Analysis of inventory difference using fuzzy controllers

    SciTech Connect

    Zardecki, A.

    1994-08-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.

  15. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  16. Predictive fuzzy controller for robotic motion control

    SciTech Connect

    Huang, S.J.; Hu, C.F.

    1995-12-31

    A system output prediction strategy incorporated with a fuzzy controller is proposed to manipulate the robotic motion control. Usually, the current position and velocity errors are used to operate the fuzzy logic controller for picking out a corresponding rule. When the system has fast planning speed or time varying behavior, the required tracking accuracy is difficult to achieve by adjusting the fuzzy rules. In order to improve the position control accuracy and system robustness for the industrial application, the current position error in the fuzzy rules look-up table is substituted by the predictive position error of the next step by using the grey predictive algorithm. This idea is implemented on a five degrees of freedom robot. The experimental results show that this fuzzy controller has effectively improve the system performance and achieved the facilitation of fuzzy controller implementation.

  17. Fuzzy multiple linear regression: A computational approach

    NASA Technical Reports Server (NTRS)

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  18. A fuzzy expert system design for analysis of body sounds and design of an unique electronic stethoscope (development of HILSA kit).

    PubMed

    Kumar, B Hema

    2007-01-15

    In this paper we have developed a fuzzy expert system (FES) for different sounds produced by different organs in the human body. We have also constructed a unique electronic stethoscope. The human body sounds produced by different organs like heart, lungs and intestine were analyzed. The doctor provided the data and relation between variables chosen for each organ sound. Using this information a rule base for fuzzy expert system was built. Such FES helps the medical doctor in arriving at appropriate decision in different difficult clinical situations. The examination of body sounds was done using conventional stethoscope (CS) and electronic stethoscope (ES), which was uniquely designed for this study. We have found that unique stethoscope developed by us is far superior to conventional stethoscope by its overall performance. PMID:16735115

  19. Emptiness Formation Probability

    NASA Astrophysics Data System (ADS)

    Crawford, Nicholas; Ng, Stephen; Starr, Shannon

    2016-08-01

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order {exp(-c L^{d+1})} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the {d=1} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case {d ≥ 2} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  20. Quantifying favorableness for occurrence of a mineral deposit type using fuzzy logic; an example from Arizona

    USGS Publications Warehouse

    Gettings, Mark E.; Bultman, Mark W.

    1993-01-01

    An application of possibility theory from fuzzy logic to the quantification of favorableness for quartz-carbonate vein deposits in the southern Santa Rita Mountains of southeastern Arizona is described. Three necessary but probably not sufficient conditions for the formation of these deposits were defined as the occurrence of carbonate berain rocks within hypabyssal depths, significant fracturing of the rocks, and proximity to a felsic intrusive. The quality of data available to evaluate these conditions is variable over the study area. The possibility of each condition was represented as a fuzzy set enumerated over the area. The intersection of the sets measures the degree of simultaneous occurrence of hte necessary factors and provides a measure of the possibility of deposit occurrence. Using fuzzy set technicques, the effect of one or more fuzzy sets relative to the others in the intersection can be controlled and logical combinations of the sets can be used to impose a time sequential constraint on the necessary conditions. Other necessary conditions, and supplementary conditions such as variable data quality or intensity of exploration can be included in the analysis by their proper representation as fuzzy sets.