Single Object Tracking With Fuzzy Least Squares Support Vector Machine.
Zhang, Shunli; Zhao, Sicong; Sui, Yao; Zhang, Li
2015-12-01
Single object tracking, in which a target is often initialized manually in the first frame and then is tracked and located automatically in the subsequent frames, is a hot topic in computer vision. The traditional tracking-by-detection framework, which often formulates tracking as a binary classification problem, has been widely applied and achieved great success in single object tracking. However, there are some potential issues in this formulation. For instance, the boundary between the positive and negative training samples is fuzzy, and the objectives of tracking and classification are inconsistent. In this paper, we attempt to address the above issues from the fuzzy system perspective and propose a novel tracking method by formulating tracking as a fuzzy classification problem. First, we introduce the fuzzy strategy into tracking and propose a novel fuzzy tracking framework, which can measure the importance of the training samples by assigning different memberships to them and offer more strict spatial constraints. Second, we develop a fuzzy least squares support vector machine (FLS-SVM) approach and employ it to implement a concrete tracker. In particular, the primal form, dual form, and kernel form of FLS-SVM are analyzed and the corresponding closed-form solutions are derived for efficient realizations. Besides, a least squares regression model is built to control the update adaptively, retaining the robustness of the appearance model. The experimental results demonstrate that our method can achieve comparable or superior performance to many state-of-the-art methods. PMID:26441419
Prediction of Pork Quality by Fuzzy Support Vector Machine Classifier
NASA Astrophysics Data System (ADS)
Zhang, Jianxi; Yu, Huaizhi; Wang, Jiamin
Existing objective methods to evaluate pork quality in general do not yield satisfactory results and their applications in meat industry are limited. In this study, fuzzy support vector machine (FSVM) method was developed to evaluate and predict pork quality rapidly and nondestructively. Firstly, the discrete wavelet transform (DWT) was used to eliminate the noise component in original spectrum and the new spectrum was reconstructed. Then, considering the characteristic variables still exist correlation and contain some redundant information, principal component analysis (PCA) was carried out. Lastly, FSVM was developed to differentiate and classify pork samples into different quality grades using the features from PCA. Jackknife tests on the working datasets indicated that the prediction accuracies were higher than other methods.
Miltiadis Alamaniotis; Vivek Agarwal
2014-10-01
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.
Liu, Zhong-bao; Gao, Yan-yun; Wang, Jian-zhen
2015-01-01
Support vector machine (SVM) with good leaning ability and generalization is widely used in the star spectra data classification. But when the scale of data becomes larger, the shortages of SVM appear: the calculation amount is quite large and the classification speed is too slow. In order to solve the above problems, twin support vector machine (TWSVM) was proposed by Jayadeva. The advantage of TSVM is that the time cost is reduced to 1/4 of that of SVM. While all the methods mentioned above only focus on the global characteristics and neglect the local characteristics. In view of this, an automatic classification method of star spectra data based on manifold fuzzy twin support vector machine (MF-TSVM) is proposed in this paper. In MF-TSVM, manifold-based discriminant analysis (MDA) is used to obtain the global and local characteristics of the input data and the fuzzy membership is introduced to reduce the influences of noise and singular data on the classification results. Comparative experiments with current classification methods, such as C-SVM and KNN, on the SDSS star spectra datasets verify the effectiveness of the proposed method. PMID:25993861
Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image.
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM(+) remote sensing image. This algorithm is applied to extract various types of lands of the city Da'an in northern China. Two multi-category strategies, namely "one-against-one" and "one-against-rest" for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
Khormali, Aminollah; Addeh, Jalil
2016-07-01
Unnatural patterns in the control charts can be associated with a specific set of assignable causes for process variation. Hence, pattern recognition is very useful in identifying the process problems. In this study, a multiclass SVM (SVM) based classifier is proposed because of the promising generalization capability of support vector machines. In the proposed method type-2 fuzzy c-means (T2FCM) clustering algorithm is used to make a SVM system more effective. The fuzzy support vector machine classifier suggested in this paper is composed of three main sub-networks: fuzzy classifier sub-network, SVM sub-network and optimization sub-network. In SVM training, the hyper-parameters plays a very important role in its recognition accuracy. Therefore, cuckoo optimization algorithm (COA) is proposed for selecting appropriate parameters of the classifier. Simulation results showed that the proposed system has very high recognition accuracy. PMID:27101724
Kher, Rahul; Pawar, Tanmay; Thakar, Vishvjit; Shah, Hitesh
2015-02-01
The use of wearable recorders for long-term monitoring of physiological parameters has increased in the last few years. The ambulatory electrocardiogram (A-ECG) signals of five healthy subjects with four body movements or physical activities (PA)-left arm up down, right arm up down, waist twisting and walking-have been recorded using a wearable ECG recorder. The classification of these four PAs has been performed using neuro-fuzzy classifier (NFC) and support vector machines (SVM). The PA classification is based on the distinct, time-frequency features of the extracted motion artifacts contained in recorded A-ECG signals. The motion artifacts in A-ECG signals have been separated first by the discrete wavelet transform (DWT) and the time-frequency features of these motion artifacts have then been extracted using the Gabor transform. The Gabor energy feature vectors have been fed to the NFC and SVM classifiers. Both the classifiers have achieved a PA classification accuracy of over 95% for all subjects. PMID:25641014
Fuzzy classifier based support vector regression framework for Poisson ratio determination
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2013-09-01
Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.
NASA Astrophysics Data System (ADS)
Zhou, Mandi; Shu, Jiong; Chen, Zhigang; Ji, Minhe
2012-11-01
Hyperspectral imagery has been widely used in terrain classification for its high resolution. Urban vegetation, known as an essential part of the urban ecosystem, can be difficult to discern due to high similarity of spectral signatures among some land-cover classes. In this paper, we investigate a hybrid approach of the genetic-algorithm tuned fuzzy support vector machine (GA-FSVM) technique and apply it to urban vegetation classification from aerial hyperspectral urban imagery. The approach adopts the genetic algorithm to optimize parameters of support vector machine, and employs the K-nearest neighbor algorithm to calculate the membership function for each fuzzy parameter, aiming to reduce the effects of the isolated and noisy samples. Test data come from push-broom hyperspectral imager (PHI) hyperspectral remote sensing image which partially covers a corner of the Shanghai World Exposition Park, while PHI is a hyper-spectral sensor developed by Shanghai Institute of Technical Physics. Experimental results show the GA-FSVM model generates overall accuracy of 71.2%, outperforming the maximum likelihood classifier with 49.4% accuracy and the artificial neural network method with 60.8% accuracy. It indicates GA-FSVM is a promising model for vegetation classification from hyperspectral urban data, and has good advantage in the application of classification involving abundant mixed pixels and small samples problem.
NASA Astrophysics Data System (ADS)
He, Tao; Sun, Yu-Jun; Xu, Ji-De; Wang, Xue-Jun; Hu, Chang-Ru
2014-01-01
Land use/cover (LUC) classification plays an important role in remote sensing and land change science. Because of the complexity of ground covers, LUC classification is still regarded as a difficult task. This study proposed a fusion algorithm, which uses support vector machines (SVM) and fuzzy k-means (FKM) clustering algorithms. The main scheme was divided into two steps. First, a clustering map was obtained from the original remote sensing image using FKM; simultaneously, a normalized difference vegetation index layer was extracted from the original image. Then, the classification map was generated by using an SVM classifier. Three different classification algorithms were compared, tested, and verified-parametric (maximum likelihood), nonparametric (SVM), and hybrid (unsupervised-supervised, fusion of SVM and FKM) classifiers, respectively. The proposed algorithm obtained the highest overall accuracy in our experiments.
Jaya, T; Dheeba, J; Singh, N Albert
2015-12-01
Diabetic retinopathy is a major cause of vision loss in diabetic patients. Currently, there is a need for making decisions using intelligent computer algorithms when screening a large volume of data. This paper presents an expert decision-making system designed using a fuzzy support vector machine (FSVM) classifier to detect hard exudates in fundus images. The optic discs in the colour fundus images are segmented to avoid false alarms using morphological operations and based on circular Hough transform. To discriminate between the exudates and the non-exudates pixels, colour and texture features are extracted from the images. These features are given as input to the FSVM classifier. The classifier analysed 200 retinal images collected from diabetic retinopathy screening programmes. The tests made on the retinal images show that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and features sets, the area under the receiver operating characteristic curve reached 0.9606, which corresponds to a sensitivity of 94.1% with a specificity of 90.0%. The results suggest that detecting hard exudates using FSVM contribute to computer-assisted detection of diabetic retinopathy and as a decision support system for ophthalmologists. PMID:25822397
Hayat, Maqsood; Tahir, Muhammad
2015-08-01
Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins. PMID:26054033
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet
2013-02-01
The purpose of the present study is to compare the prediction performances of three different approaches such as decision tree (DT), support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) for landslide susceptibility mapping at Penang Hill area, Malaysia. The necessary input parameters for the landslide susceptibility assessments were obtained from various sources. At first, landslide locations were identified by aerial photographs and field surveys and a total of 113 landslide locations were constructed. The study area contains 340,608 pixels while total 8403 pixels include landslides. The landslide inventory was randomly partitioned into two subsets: (1) part 1 that contains 50% (4000 landslide grid cells) was used in the training phase of the models; (2) part 2 is a validation dataset 50% (4000 landslide grid cells) for validation of three models and to confirm its accuracy. The digitally processed images of input parameters were combined in GIS. Finally, landslide susceptibility maps were produced, and the performances were assessed and discussed. Total fifteen landslide susceptibility maps were produced using DT, SVM and ANFIS based models, and the resultant maps were validated using the landslide locations. Prediction performances of these maps were checked by receiver operating characteristics (ROC) by using both success rate curve and prediction rate curve. The validation results showed that, area under the ROC curve for the fifteen models produced using DT, SVM and ANFIS varied from 0.8204 to 0.9421 for success rate curve and 0.7580 to 0.8307 for prediction rate curves, respectively. Moreover, the prediction curves revealed that model 5 of DT has slightly higher prediction performance (83.07), whereas the success rate showed that model 5 of ANFIS has better prediction (94.21) capability among all models. The results of this study showed that landslide susceptibility mapping in the Penang Hill area using the three approaches (e
Isomap based supporting vector machine
NASA Astrophysics Data System (ADS)
Liang, W. N.
2015-12-01
This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.
Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina
2012-08-15
Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then
Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina
2012-01-01
Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which
Multiscale hierarchical support vector clustering
NASA Astrophysics Data System (ADS)
Hansen, Michael Saas; Holm, David Alberg; Sjöstrand, Karl; Ley, Carsten Dan; Rowland, Ian John; Larsen, Rasmus
2008-03-01
Clustering is the preferred choice of method in many applications, and support vector clustering (SVC) has proven efficient for clustering noisy and high-dimensional data sets. A method for multiscale support vector clustering is demonstrated, using the recently emerged method for fast calculation of the entire regularization path of the support vector domain description. The method is illustrated on artificially generated examples, and applied for detecting blood vessels from high resolution time series of magnetic resonance imaging data. The obtained results are robust while the need for parameter estimation is reduced, compared to support vector clustering.
A neural support vector machine.
Jändel, Magnus
2010-06-01
Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested. PMID:20092978
Neighborhood Supported Model Level Fuzzy Aggregation for Moving Object Segmentation.
Chiranjeevi, Pojala; Sengupta, Somnath
2014-02-01
We propose a new algorithm for moving object detection in the presence of challenging dynamic background conditions. We use a set of fuzzy aggregated multifeature similarity measures applied on multiple models corresponding to multimodal backgrounds. The algorithm is enriched with a neighborhood-supported model initialization strategy for faster convergence. A model level fuzzy aggregation measure driven background model maintenance ensures more robustness. Similarity functions are evaluated between the corresponding elements of the current feature vector and the model feature vectors. Concepts from Sugeno and Choquet integrals are incorporated in our algorithm to compute fuzzy similarities from the ordered similarity function values for each model. Model updating and the foreground/background classification decision is based on the set of fuzzy integrals. Our proposed algorithm is shown to outperform other multi-model background subtraction algorithms. The proposed approach completely avoids explicit offline training to initialize background model and can be initialized with moving objects also. The feature space uses a combination of intensity and statistical texture features for better object localization and robustness. Our qualitative and quantitative studies illustrate the mitigation of varieties of challenging situations by our approach. PMID:24235250
Novel Applications of Intuitionistic Fuzzy Digraphs in Decision Support Systems
Sarwar, Mansoor
2014-01-01
Many problems of practical interest can be modeled and solved by using graph algorithms. In general, graph theory has a wide range of applications in diverse fields. In this paper, the intuitionistic fuzzy organizational and neural network models, intuitionistic fuzzy neurons in medical diagnosis, intuitionistic fuzzy digraphs in vulnerability assessment of gas pipeline networks, and intuitionistic fuzzy digraphs in travel time are presented as examples of intuitionistic fuzzy digraphs in decision support system. We have also designed and implemented the algorithms for these decision support systems. PMID:25045752
GAPS IN SUPPORT VECTOR OPTIMIZATION
STEINWART, INGO; HUSH, DON; SCOVEL, CLINT; LIST, NICOLAS
2007-01-29
We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.
Type-II Fuzzy Decision Support System for Fertilizer
Ashraf, Ather; Sarwar, Mansoor
2014-01-01
Type-II fuzzy sets are used to convey the uncertainties in the membership function of type-I fuzzy sets. Linguistic information in expert rules does not give any information about the geometry of the membership functions. These membership functions are mostly constructed through numerical data or range of classes. But there exists an uncertainty about the shape of the membership, that is, whether to go for a triangle membership function or a trapezoidal membership function. In this paper we use a type-II fuzzy set to overcome this uncertainty, and develop a fuzzy decision support system of fertilizers based on a type-II fuzzy set. This type-II fuzzy system takes cropping time and soil nutrients in the form of spatial surfaces as input, fuzzifies it using a type-II fuzzy membership function, and implies fuzzy rules on it in the fuzzy inference engine. The output of the fuzzy inference engine, which is in the form of interval value type-II fuzzy sets, reduced to an interval type-I fuzzy set, defuzzifies it to a crisp value and generates a spatial surface of fertilizers. This spatial surface shows the spatial trend of the required amount of fertilizer needed to cultivate a specific crop. The complexity of our algorithm is O(mnr), where m is the height of the raster, n is the width of the raster, and r is the number of expert rules. PMID:24892071
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
Natural evolution of neural support vector machines.
Jändel, Magnus
2011-01-01
Two different neural implementations of support vector machines are described and applied to one-shot trainable pattern recognition. The first model is based on oscillating associative memory and is mapped to the olfactory system. The second model is founded on competitive queuing memory originally employed for generating motor action sequences in the brain. Both models include forward pathways where a stream of support vectors is evoked from memory and merges with sensory input to produce support vector machine classifications. Misclassified events are imprinted as new support vector candidates. Support vector machine weights are tuned by virtual experimentation in sleep. Recalled training examples masquerade as sensor input and feedback from the classification process drives a learning process where support vector weights are optimized. For both support vector machine models it is demonstrated that there is a plausible evolutionary path from a simple hard-wired pattern recognizer to a full implementation of a biological kernel machine. Simple and individually beneficial modifications are accumulated in each step along this path. Neural support vector machines can apparently emerge by natural processes. PMID:21744220
TWSVR: Regression via Twin Support Vector Machine.
Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh
2016-02-01
Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets. PMID:26624223
Neuro-Fuzzy Support of Knowledge Management in Social Regulation
NASA Astrophysics Data System (ADS)
Petrovic-Lazarevic, Sonja; Coghill, Ken; Abraham, Ajith
2002-09-01
The aim of the paper is to demonstrate the neuro-fuzzy support of knowledge management in social regulation. Knowledge could be understood for social regulation purposes as explicit and tacit. Explicit knowledge relates to the community culture indicating how things work in the community based on social policies and procedures. Tacit knowledge is ethics and norms of the community. The former could be codified, stored and transferable in order to support decision making, while the latter being based on personal knowledge, experience and judgments is difficult to codify and store. Tacit knowledge expressed through linguistic information can be stored and used to support knowledge management in social regulation through the application of fuzzy and neuro-fuzzy logic.
An intelligent fuzzy decision support system for production management
Vojdani, N.
1996-11-01
In the near future the optimizing of production processes in terms of reducing order lead times, delivery times, inventory stocks and production costs, while increasing the flexibility, productivity and quality of all operations will become a matter of survival for many manufacturing enterprises. This paper presents an application using an intelligent fuzzy decision support system in production management. It is based on a goal oriented logistics index numbers system and ensures the competitive capacity of manufacturing enterprises by indicating the means to achieve management goals. The aim is to demonstrate the main properties of the fuzzy decision support system PROMAN.
Multiclass Reduced-Set Support Vector Machines
NASA Technical Reports Server (NTRS)
Tang, Benyang; Mazzoni, Dominic
2006-01-01
There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.
Improved image retrieval based on fuzzy colour feature vector
NASA Astrophysics Data System (ADS)
Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.
2013-03-01
One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.
[Rule induction algorithm for brain glioma using support vector machine].
Li, Guozheng; Yang, Jie; Wang, Jiaju; Geng, Daoying
2006-04-01
A new proposed data mining technique, support vector machine (SVM), is used to predict the degree of malignancy in brain glioma. Based on statistical learning theory, SVM realizes the principle of data dependent structure risk minimization, so it can depress the overfitting with better generalization performance, since the prediction in medical diagnosis often deals with a small sample. SVM based rule induction algorithm is implemented in comparison with other data mining techniques such as artificial neural networks, rule induction algorithm and fuzzy rule extraction algorithm based on fuzzy max-min neural networks (FRE-FMMNN) proposed recently. Computation results by 10 fold cross validation method show that SVM can get higher prediction accuracy than artificial neural networks and FRE-FMMNN, which implies SVM can get higher accuracy and more reliability. On the whole data sets, SVM gets one rule with the classification accuracy of 89.29%, while FRE-FMMNN gets two rules of 84. 64%, in which the rule got by SVM is of quantity relation and contains more information than the two rules by FRE-FMMNN. All the above show SVM is a potential algorithm for the medical diagnosis such as the prediction of the degree of malignancy in brain glioma. PMID:16706378
Automatic control of pressure support mechanical ventilation using fuzzy logic.
Nemoto, T; Hatzakis, G E; Thorpe, C W; Olivenstein, R; Dial, S; Bates, J H
1999-08-01
There is currently no universally accepted approach to weaning patients from mechanical ventilation, but there is clearly a feeling within the medical community that it may be possible to formulate the weaning process algorithmically in some manner. Fuzzy logic seems suited this task because of the way it so naturally represents the subjective human notions employed in much of medical decision-making. The purpose of the present study was to develop a fuzzy logic algorithm for controlling pressure support ventilation in patients in the intensive care unit, utilizing measurements of heart rate, tidal volume, breathing frequency, and arterial oxygen saturation. In this report we describe the fuzzy logic algorithm, and demonstrate its use retrospectively in 13 patients with severe chronic obstructive pulmonary disease, by comparing the decisions made by the algorithm with what actually transpired. The fuzzy logic recommendations agreed with the status quo to within 2 cm H(2)O an average of 76% of the time, and to within 4 cm H(2)O an average of 88% of the time (although in most of these instances no medical decisions were taken as to whether or not to change the level of ventilatory support). We also compared the predictions of our algorithm with those cases in which changes in pressure support level were actually made by an attending physician, and found that the physicians tended to reduce the support level somewhat more aggressively than the algorithm did. We conclude that our fuzzy algorithm has the potential to control the level of pressure support ventilation from ongoing measurements of a patient's vital signs. PMID:10430727
Flood Classification Using Support Vector Machines
NASA Astrophysics Data System (ADS)
Melsen, Lieke A.; Torfs, Paul J. J.; Brauer, Claudia C.
2013-04-01
Lowland floods are in general considered to be less extreme than mountainous floods. In order to investigate this, seven lowland floods in the Netherlands were selected and compared to mountainous floods from the study of Marchi et al. (2010). Both a 2D and 3D approach of the statistical two-group classification method support vector machines (Cortes and Vapnik, 1995) were used to find a statistical difference between the two flood types. Support vector machines were able to draw a decision plane between the two flood types, misclassifying one out of seven lowland floods, and one out of 67 mountainous floods. The main difference between the two flood types can be found in the runoff coefficient (with lowland floods having a lower runoff coefficient than mountainous floods), the cumulative precipitation causing the flood (which was lower for lowland floods), and, obviously, the relief ratio. Support vector machines have proved to be useful for flood classification and might be applicable in future classification studies. References Cortes, C., and V. Vapnik. "Support-Vector Networks." Machine Learning 20: (1995) 273-297. Marchi, L., M. Borga, E. Preciso, and E. Gaume. "Characterisation of selected extreme flash floods in Europe and implications for flood risk management." Journal of Hydrology 394: (2010) 118-133.
Support vector machine for automatic pain recognition
NASA Astrophysics Data System (ADS)
Monwar, Md Maruf; Rezaei, Siamak
2009-02-01
Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.
Support Vector Machine-Based Endmember Extraction
Filippi, Anthony M; Archibald, Richard K
2009-01-01
Introduced in this paper is the utilization of Support Vector Machines (SVMs) to automatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality, and hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this Support Vector Machine-Based Endmember Extraction (SVM-BEE) algorithm has the capability of autonomously determining endmembers from multiple clusters with computational speed and accuracy, while maintaining a robust tolerance to noise.
Automated image segmentation using support vector machines
NASA Astrophysics Data System (ADS)
Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.
2007-03-01
Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.
Progressive Classification Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Kocurek, Michael
2009-01-01
An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user
Treatment of Geodetic Survey Data as Fuzzy Vectors
NASA Astrophysics Data System (ADS)
Navratil, G.; Heer, E.; Hahn, J.
2015-08-01
Geodetic survey data are typically analysed using the assumption that measurement errors can be modelled as noise. The least squares method models noise with the normal distribution and is based on the assumption that it selects measurements with the highest probability value (Ghilani, 2010, p. 179f). There are environment situations where no clear maximum for a measurement can be detected. This can happen, for example, if surveys take place in foggy conditions causing diffusion of light signals. This presents a problem for automated systems because the standard assumption of the least squares method does not hold. A measurement system trying to return a crisp value will produce an arbitrary value that lies within the area of maximum value. However repeating the measurement is unlikely to create a value following a normal distribution, which happens if measurement errors can be modelled as noise. In this article we describe a laboratory experiment that reproduces conditions similar to a foggy situation and present measurement data gathered from this setup. Furthermore we propose methods based on fuzzy set theory to evaluate the data from our measurement.
NASA Astrophysics Data System (ADS)
Welikanna, D. R.; Tamura, M.; Susaki, J.
2014-09-01
A Markov Random Field (MRF) model accounting for the classification uncertainty using multisource satellite images and an adaptive fuzzy class mean vector is proposed in this study. The work also highlights the initialization of the class values for an MRF based classification for synthetic aperture radar (SAR) images using optical data. The model uses the contextual information from the optical image pixels and the SAR pixel intensity with corresponding fuzzy grade of memberships respectively, in the classification mechanism. Sub pixel class fractions estimated using Singular Value Decomposition (SVD) from the optical image initializes the class arrangement for the MRF process. Pair-site interactions of the pixels are used to model the prior energy from the initial class arrangement. Fuzzy class mean vector from the SAR intensity pixels is calculated using Fuzzy C-means (FCM) partitioning. Conditional probability for each class was determined by a Gamma distribution for the SAR image. Simulated annealing (SA) to minimize the global energy was executed using a logarithmic and power-law combined annealing schedule. Proposed technique was tested using an Advanced Land Observation Satellite (ALOS) phased array type L-band SAR (PALSAR) and Advanced Visible and Near-Infrared Radiometer-2 (AVNIR-2) data set over a disaster effected urban region in Japan. Proposed method and the conventional MRF results were evaluated with neural network (NN) and support vector machine (SVM) based classifications. The results suggest the possible integration of an adaptive fuzzy class mean vector and multisource data is promising for imprecise class discrimination using a MRF based classification.
Support vector machines for spam categorization.
Drucker, H; Wu, D; Vapnik, V N
1999-01-01
We study the use of support vector machines (SVM's) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM's performed best when using binary features. For both data sets, boosting trees and SVM's had acceptable test performance in terms of accuracy and speed. However, SVM's had significantly less training time. PMID:18252607
Quantum optimization for training support vector machines.
Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo
2003-01-01
Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered. PMID:12850032
Support vector machine in machine condition monitoring and fault diagnosis
NASA Astrophysics Data System (ADS)
Widodo, Achmad; Yang, Bo-Suk
2007-08-01
Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.
When do support vector machines work fast?
Steinwart, I.; Scovel, James C.
2004-01-01
The authors establish learning rates to the Bayes risk for support vector machines (SVM's) with hinge loss. Since a theorem of Devroyte states that no learning algorithm can learn with a uniform rate to the Bayes risk for all probability distributions they have to restrict the class of considered distributions: in order to obtain fast rates they assume a noise condition recently proposed by Tsybakov and an approximation condition in terms of the distribution and the reproducing kernel Hilbert space used by the SVM. for Gaussian RBF kernels with varying widths they propose a geometric noise assumption on the distribution which ensures the approximation condition. This geometric assumption is not in terms of smoothness but describes the concentration of the marginal distribution near the decision boundary. In particular they are able to describe nontrivial classes of distributions for which SVM's using a Gaussian kernel can learn with almost linear rate.
Supernova Recognition using Support Vector Machines
Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris
2006-10-01
We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.
Privacy preserving RBF kernel support vector machine.
Li, Haoran; Xiong, Li; Ohno-Machado, Lucila; Jiang, Xiaoqian
2014-01-01
Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data and make full use of the available information. This often results in too much noise in the final outputs. We hypothesized that this situation can be alleviated by leveraging a small portion of open-consented data to improve utility without sacrificing privacy. We developed a hybrid privacy-preserving differentially private support vector machine (SVM) model that uses public data and private data together. Our model leverages the RBF kernel and can handle nonlinearly separable cases. Experiments showed that this approach outperforms two baselines: (1) SVMs that only use public data, and (2) differentially private SVMs that are built from private data. Our method demonstrated very close performance metrics compared to nonprivate SVMs trained on the private data. PMID:25013805
Support Vector Training of Protein Alignment Models
Joachims, Thorsten; Elber, Ron; Pillardy, Jaroslaw
2008-01-01
Abstract Sequence to structure alignment is an important step in homology modeling of protein structures. Incorporation of features such as secondary structure, solvent accessibility, or evolutionary information improve sequence to structure alignment accuracy, but conventional generative estimation techniques for alignment models impose independence assumptions that make these features difficult to include in a principled way. In this paper, we overcome this problem using a Support Vector Machine (SVM) method that provides a well-founded way of estimating complex alignment models with hundred of thousands of parameters. Furthermore, we show that the method can be trained using a variety of loss functions. In a rigorous empirical evaluation, the SVM algorithm outperforms the generative alignment method SSALN, a highly accurate generative alignment model that incorporates structural information. The alignment model learned by the SVM aligns 50% of the residues correctly and aligns over 70% of the residues within a shift of four positions. PMID:18707536
Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation
NASA Astrophysics Data System (ADS)
Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.
2008-02-01
Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.
Developing a Software for Fuzzy Group Decision Support System: A Case Study
ERIC Educational Resources Information Center
Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem
2009-01-01
The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…
Support vector machines for geophysical inversion
NASA Astrophysics Data System (ADS)
Kuzma, Heidi Anderson
This thesis explores what it means to replace classical non-linear geophysical inversion with computer learning via Support Vector Machines. Geophysical inverse problems are almost always ill-posed which means that many different models (i.e. descriptions of the earth) can be found to explain a given noisy or incomplete data set. Regularization and constraints encourage inversions to find physically realistic models. The set of preferred models needs to be defined a priori using as much geologic knowledge as is available. In inversion, it is assumed that data and a forward modeling process is known. The goal is to solve for a model. In the SVM paradigm, a series of models and associated data are known. The goal is to solve for a reverse modeling process. Starting with a series of initial models assembled using all available geologic information, synthetic data is created using the most realistic forward modeling program available. With the synthetic data as inputs and the known models as outputs, a Support Vector Machine is trained to approximate a local inverse to the forward modeling program. The advantages of this approach are that it is honest about the need to establish, a priori, the kinds of models that are reasonable in a particular field situation. There is no need to adjust the forward process to accommodate inversion, because SVMs can be easily modified to capture complicated, non-linear relationships. SVMs are transparent and require very little programming. If an SVM is trained using model/data pairs that are drawn from the same probability distribution that is implicit in the regularization of an inversion, then it will get very similar results to the inversion. Because SVMs can interpret as much data as desired so long as the conditions of an experiment do not change, they can be used to perform otherwise computationally expensive procedures. The SVMs in this paper are trained to emulate linear and non-linear seismic Amplitude Variation with Offset
Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition
NASA Astrophysics Data System (ADS)
Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto
Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.
NASA Astrophysics Data System (ADS)
Ng, Theam Foo; Pham, Tuan D.; Zhou, Xiaobo
2010-01-01
With the fast development of multi-dimensional data compression and pattern classification techniques, vector quantization (VQ) has become a system that allows large reduction of data storage and computational effort. One of the most recent VQ techniques that handle the poor estimation of vector centroids due to biased data from undersampling is to use fuzzy declustering-based vector quantization (FDVQ) technique. Therefore, in this paper, we are motivated to propose a justification of FDVQ based hidden Markov model (HMM) for investigating its effectiveness and efficiency in classification of genotype-image phenotypes. The performance evaluation and comparison of the recognition accuracy between a proposed FDVQ based HMM (FDVQ-HMM) and a well-known LBG (Linde, Buzo, Gray) vector quantization based HMM (LBG-HMM) will be carried out. The experimental results show that the performances of both FDVQ-HMM and LBG-HMM are almost similar. Finally, we have justified the competitiveness of FDVQ-HMM in classification of cellular phenotype image database by using hypotheses t-test. As a result, we have validated that the FDVQ algorithm is a robust and an efficient classification technique in the application of RNAi genome-wide screening image data.
Data selection using support vector regression
NASA Astrophysics Data System (ADS)
Richman, Michael B.; Leslie, Lance M.; Trafalis, Theodore B.; Mansouri, Hicham
2015-03-01
Geophysical data sets are growing at an ever-increasing rate, requiring computationally efficient data selection (thinning) methods to preserve essential information. Satellites, such as WindSat, provide large data sets for assessing the accuracy and computational efficiency of data selection techniques. A new data thinning technique, based on support vector regression (SVR), is developed and tested. To manage large on-line satellite data streams, observations from WindSat are formed into subsets by Voronoi tessellation and then each is thinned by SVR (TSVR). Three experiments are performed. The first confirms the viability of TSVR for a relatively small sample, comparing it to several commonly used data thinning methods (random selection, averaging and Barnes filtering), producing a 10% thinning rate (90% data reduction), low mean absolute errors (MAE) and large correlations with the original data. A second experiment, using a larger dataset, shows TSVR retrievals with MAE < 1 m s-1 and correlations ⩽ 0.98. TSVR was an order of magnitude faster than the commonly used thinning methods. A third experiment applies a two-stage pipeline to TSVR, to accommodate online data. The pipeline subsets reconstruct the wind field with the same accuracy as the second experiment, is an order of magnitude faster than the nonpipeline TSVR. Therefore, pipeline TSVR is two orders of magnitude faster than commonly used thinning methods that ingest the entire data set. This study demonstrates that TSVR pipeline thinning is an accurate and computationally efficient alternative to commonly used data selection techniques.
Classification SAR targets with support vector machine
NASA Astrophysics Data System (ADS)
Cao, Lanying
2007-02-01
With the development of Synthetic Aperture Radar (SAR) technology, automatic target recognition (ATR) is becoming increasingly important. In this paper, we proposed a 3-class target classification system in SAR images. The system is based on invariant wavelet moments and support vector machine (SVM) algorithm. It is a two-stage approach. The first stage is to extract and select a small set of wavelet invariant moment features to indicate target images. The wavelet invariant moments take both advantages of the wavelet inherent property of multi-resolution analysis and moment invariants quality of invariant to translation, scaling changes and rotation. The second stage is classification of targets with SVM algorithm. SVM is based on the principle of structural risk minimization (SRM), which has been shown better than the principle of empirical risk minimization (ERM) which is used by many conventional networks. To test the performance and efficiency of the proposed method, we performed experiments on invariant wavelet moments, different kernel functions, 2-class identification, and 3-class identification. Test results show that wavelet invariant moments indicate the target effectively; linear kernel function achieves better results than other kernel functions, and SVM classification approach performs better than conventional nearest distance approach.
Distributed semi-supervised support vector machines.
Scardapane, Simone; Fierimonte, Roberto; Di Lorenzo, Paolo; Panella, Massimo; Uncini, Aurelio
2016-08-01
The semi-supervised support vector machine (S(3)VM) is a well-known algorithm for performing semi-supervised inference under the large margin principle. In this paper, we are interested in the problem of training a S(3)VM when the labeled and unlabeled samples are distributed over a network of interconnected agents. In particular, the aim is to design a distributed training protocol over networks, where communication is restricted only to neighboring agents and no coordinating authority is present. Using a standard relaxation of the original S(3)VM, we formulate the training problem as the distributed minimization of a non-convex social cost function. To find a (stationary) solution in a distributed manner, we employ two different strategies: (i) a distributed gradient descent algorithm; (ii) a recently developed framework for In-Network Nonconvex Optimization (NEXT), which is based on successive convexifications of the original problem, interleaved by state diffusion steps. Our experimental results show that the proposed distributed algorithms have comparable performance with respect to a centralized implementation, while highlighting the pros and cons of the proposed solutions. To the date, this is the first work that paves the way toward the broad field of distributed semi-supervised learning over networks. PMID:27179615
Oilseed Rape Planting Area Extraction by Support Vector Machine Using Landsat TM Data
NASA Astrophysics Data System (ADS)
Wang, Yuan; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Liu, Zhanyu; Xu, Junfeng
One parametric classify (Maximum likelihood classify, MLC for short) and two non-parametric classifiers (Adaptive resonance theory mappings and Support vector machines, ARTMAP and SVM for short) were presented in this study. Base on the confusion matrix and the pixels fuzzy analysis, the nonparametric classifier may be a more preferable approach than the parametric classifier for some remote sensing applications and deserves further investigation. The ARTMAP classify represent much best than the rest of classify, especially for the grade of pure pixel (90-100% pureness), Kappa coefficients and overall accuracy were nearly 100%. The higher pureness the pixels were, the better classification accuracy was got.
NASA Astrophysics Data System (ADS)
Wu, Qi
2010-03-01
Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.
Support vector machines for automated gait classification.
Begg, Rezaul K; Palaniswami, Marimuthu; Owen, Brendan
2005-05-01
Ageing influences gait patterns causing constant threats to control of locomotor balance. Automated recognition of gait changes has many advantages including, early identification of at-risk gait and monitoring the progress of treatment outcomes. In this paper, we apply an artificial intelligence technique [support vector machines (SVM)] for the automatic recognition of young-old gait types from their respective gait-patterns. Minimum foot clearance (MFC) data of 30 young and 28 elderly participants were analyzed using a PEAK-2D motion analysis system during a 20-min continuous walk on a treadmill at self-selected walking speed. Gait features extracted from individual MFC histogram-plot and Poincaré-plot images were used to train the SVM. Cross-validation test results indicate that the generalization performance of the SVM was on average 83.3% (+/-2.9) to recognize young and elderly gait patterns, compared to a neural network's accuracy of 75.0+/-5.0%. A "hill-climbing" feature selection algorithm demonstrated that a small subset (3-5) of gait features extracted from MFC plots could differentiate the gait patterns with 90% accuracy. Performance of the gait classifier was evaluated using areas under the receiver operating characteristic plots. Improved performance of the classifier was evident when trained with reduced number of selected good features and with radial basis function kernel. These results suggest that SVMs can function as an efficient gait classifier for recognition of young and elderly gait patterns, and has the potential for wider applications in gait identification for falls-risk minimization in the elderly. PMID:15887532
Support Vector Machine Implementations for Classification & Clustering
Winters-Hilt, Stephen; Yelundur, Anil; McChesney, Charlie; Landry, Matthew
2006-01-01
Background We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes). Results Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information – to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described. PMID:17118147
Wu, Xiao-hong; Cai, Pei-qiang; Wu, Bin; Sun, Jun; Ji, Gang
2016-03-01
To solve the noisy sensitivity problem of fuzzy learning vector quantization (FLVQ), unsupervised possibilistic fuzzy learning vector quantization (UPFLVQ) was proposed based on unsupervised possibilistic fuzzy clustering (UPFC). UPFLVQ aimed to use fuzzy membership values and typicality values of UPFC to update the learning rate of learning vector quantization network and cluster centers. UPFLVQ is an unsupervised machine learning algorithm and it can be applied to classify without learning samples. UPFLVQ was used in the identification of lettuce varieties by near infrared spectroscopy (NIS). Short wave and long wave near infrared spectra of three types of lettuces were collected by FieldSpec@3 portable spectrometer in the wave-length range of 350-2 500 nm. When the near infrared spectra were compressed by principal component analysis (PCA), the first three principal components explained 97.50% of the total variance in near infrared spectra. After fuzzy c-means (FCM). clustering was performed for its cluster centers as the initial cluster centers of UPFLVQ, UPFLVQ could classify lettuce varieties with the terminal fuzzy membership values and typicality values. The experimental results showed that UPFLVQ together with NIS provided an effective method of identification of lettuce varieties with advantages such as fast testing, high accuracy rate and non-destructive characteristics. UPFLVQ is a clustering algorithm by combining UPFC and FLVQ, and it need not prepare any learning samples for the identification of lettuce varieties by NIS. UPFLVQ is suitable for linear separable data clustering and it provides a novel method for fast and nondestructive identification of lettuce varieties. PMID:27400511
NASA Astrophysics Data System (ADS)
Lin, Yong; Hu, Jiasheng; Wu, Kenan
2009-08-01
The vector fuzzy control iterative algorithm (VFCIA) is proposed for the design of phase-only sub-wavelength diffractive optical elements (SWDOEs) for beam shaping. The vector diffraction model put forward by Mansuripur is applied to relate the field distributions between the SWDOE plane and the output plane. Fuzzy control theory is used to decide the constraint method for each iterative process of the algorithm. We have designed a SWDOE that transforms a circular flat-top beam to a square irradiance pattern. Computer design results show that the SWDOE designed by the VFCIA can produce better results than the vector iterative algorithm (VIA). And the finite difference time-domain method (FDTD), a rigorous electromagnetic analysis technique, is used to analyze the designed SWDOE for further confirming the validity of the proposed method.
Fuzzy Neural Networks for Decision Support in Negotiation
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
2008-11-06
There is a large number of parameters which one can take into account when building a negotiation model. These parameters in general are uncertain, thus leading to models which represents them with fuzzy sets. On the other hand, the nature of these parameters makes them very difficult to model them with precise values. During negotiation, these parameters play an important role by altering the outcomes or changing the state of the negotiators. One reasonable way to model this procedure is to accept fuzzy relations (from theory or experience). The action of these relations to fuzzy sets, produce new fuzzy sets which describe now the new state of the system or the modified parameters. But, in the majority of these situations, the relations are multidimensional, leading to complicated models and exponentially increasing computational time. In this paper a solution to this problem is presented. The use of fuzzy neural networks is shown that it can substitute the use of fuzzy relations with comparable results. Finally a simple simulation is carried in order to test the new method.
Adlassnig, Klaus-Peter; Fehre, Karsten; Rappelsberger, Andrea
2015-01-01
This study's objective is to develop and use a scalable genuine technology platform for clinical decision support based on Arden Syntax, which was extended by fuzzy set theory and fuzzy logic. Arden Syntax is a widely recognized formal language for representing clinical and scientific knowledge in an executable format, and is maintained by Health Level Seven (HL7) International and approved by the American National Standards Institute (ANSI). Fuzzy set theory and logic permit the representation of knowledge and automated reasoning under linguistic and propositional uncertainty. These forms of uncertainty are a common feature of patients' medical data, the body of medical knowledge, and deductive clinical reasoning. PMID:26262410
SPIDERz: SuPport vector classification for IDEntifying Redshifts
NASA Astrophysics Data System (ADS)
Jones, Evan; Singal, J.
2016-08-01
SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.
NASA Astrophysics Data System (ADS)
Kentel, Elcin
2010-05-01
Estimating future river flows is essential in water resources planning and management. Artificial neural network (ANN) models have been extensively utilized for rainfall-runoff modeling in the last decade. One of the major weaknesses of artificial neural network models is that they may fail to generate good estimates for extreme events, i.e. events that do not occur at all or often enough in the training set. If reliable estimates can be distinguished from unreliable ones, the former can be used with greater confidence in planning and management of the water resources. A fuzzy c-means algorithm is developed to cluster the estimates of the artificial neural networks into reliable and less-reliable river flow values (Kentel, 2009). The proposed algorithm is only tested for a single case (i.e. Güvenç River, Turkey) and produced promising results. In this study, applicability of the fuzzy c-means algorithm for different catchments in Turkey is tested. Three flow gauging stations are selected at four different catchments in mid and south Turkey. First, an ANN is developed for each gauging station; then fuzzy c-means algorithm is used together with the outputs of ANN models to test the success of the clustering algorithm in identifying input vectors that are susceptible to produce unreliable estimates. Results obtained for 12 gauging stations are used to identify the drawbacks of fuzzy c-means algorithm and to suggest modifications to improve the algorithm. Key words: Future river flow estimation; Artificial Neural Network; fuzzy c-means clustering Kentel, E. (2009) "Estimation of River Flow by Artificial Neural Networks and Identification of Input Vectors Susceptible to Producing Unreliable Flow Estimates," Journal of Hydrology, 375, 481-488.
Bayesian clustering of fuzzy feature vectors using a quasi-likelihood approach.
Marttinen, Pekka; Tang, Jing; De Baets, Bernard; Dawyndt, Peter; Corander, Jukka
2009-01-01
Bayesian model-based classifiers, both unsupervised and supervised, have been studied extensively and their value and versatility have been demonstrated on a wide spectrum of applications within science and engineering. A majority of the classifiers are built on the assumption of intrinsic discreteness of the considered data features or on the discretization of them prior to the modeling. On the other hand, Gaussian mixture classifiers have also been utilized to a large extent for continuous features in the Bayesian framework. Often the primary reason for discretization in the classification context is the simplification of the analytical and numerical properties of the models. However, the discretization can be problematic due to its \\textit{ad hoc} nature and the decreased statistical power to detect the correct classes in the resulting procedure. We introduce an unsupervised classification approach for fuzzy feature vectors that utilizes a discrete model structure while preserving the continuous characteristics of data. This is achieved by replacing the ordinary likelihood by a binomial quasi-likelihood to yield an analytical expression for the posterior probability of a given clustering solution. The resulting model can be justified from an information-theoretic perspective. Our method is shown to yield highly accurate clusterings for challenging synthetic and empirical data sets. PMID:19029547
Surrogate-based Reliability Analysis Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Gang; Liu, Zhiqiang
2010-05-01
An approach of surrogate-based reliability analysis by support vector machine with Monte-Carlo simulation is proposed. The efficient sampling techniques, such as uniform design and Latin Hypercube sampling, are used, and the SVM is trained with the sample pairs of input and output data obtained by the finite element analysis. The trained SVM model, as a solver-surrogate model, is intended to approximate the real performance function. Considering the selection of parameters for SVM affects the learning performance of SVM strongly, the Genetic Algorithm (GA) is integrated to the construction of the SVM, by optimizing the relevant parameters. The influence of the parameters on SVM is discussed and a methodology is proposed for selecting the SVM model. Support Vector Classification (SVC) based and Support Vector Regression (SVR) based reliability analyses are studied. Some numerical examples demonstrate the efficiency and applicability of the proposed method.
NASA Astrophysics Data System (ADS)
Chang, Ming-Ching; Tao, Xiaodong
2010-03-01
Segmentation and representation of human brain cortex from Magnetic Resonance (MR) images is an important step for visualization and analysis in many neuro imaging applications. In this paper, we propose an automatic and fast algorithm to segment the brain cortex and to represent it as a geometric surface on which analysis can be carried out. The algorithm works on T1 weighted MR brain images with extracranial tissue removed. A fuzzy clustering algorithm with a parametric bias field model is applied to assign membership values of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to each voxel. The cortical boundaries, namely the WM-GM and GM-CSF boundary surfaces, are extracted as iso-surfaces of functions derived from these membership functions. The central surface (CS), which traces the peak values (or ridges) of the GM membership function, is then extracted using gradient vector diffusion. Our main contribution is to provide a generic, accurate, fast, yet fully-automatic approach to (i) produce a soft segmentation of the MR brain image with intensity field correction, (ii) extract both the boundary and the center of the cortex in a surface form, where the topology and geometry can be explicitly examined, and (iii) use the extracted surfaces to model the curvy, folding cortical volume, which allows an intuitive measurement of the thickness. As a demonstration, we compute cortical thickness from the surfaces and compare the results with what has been reported in the literature. The entire process from raw MR image to cortical surface reconstruction takes on average between five to ten minutes.
Identifying saltcedar with hyperspectral data and support vector machines
Technology Transfer Automated Retrieval System (TEKTRAN)
Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...
Support Vector Machines: Relevance Feedback and Information Retrieval.
ERIC Educational Resources Information Center
Drucker, Harris; Shahrary, Behzad; Gibbon, David C.
2002-01-01
Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…
Support vector machines classifiers of physical activities in preschoolers
Technology Transfer Automated Retrieval System (TEKTRAN)
The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...
Using of support vector machines for link spam detection
NASA Astrophysics Data System (ADS)
Sharapov, Ruslan V.; Sharapova, Ekaterina V.
2011-10-01
In this article we described methods of link spam detection with using of machine learning. We analyzed main factors of link spam, which helps to find them. There is algorithm of link spam detection, based on support vector machines. The methods of link spam detection shows good results
Diagnosis of Acute Coronary Syndrome with a Support Vector Machine.
Berikol, Göksu Bozdereli; Yildiz, Oktay; Özcan, I Türkay
2016-04-01
Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data. PMID:26815338
Feature clustering in direct eigen-vector data reduction using support vector machines
NASA Astrophysics Data System (ADS)
Riasati, Vahid R.; Gao, Wenhue
2012-06-01
Principal Component Analysis (PCA) has been used in a variety of applications like feature extraction for classification, data compression and dimensionality reduction. Often, a small set of principal components are sufficient to capture the largest variations in the data. As a result, the eigen-values of the data covariance matrix with the lowest magnitude are ignored (along with their corresponding eigen-vectors) and the remaining eigenvectors are used for a 'coarse' representation of the data. It is well known that this process of choosing a few principal components naturally induces a loss in information from a signal reconstruction standpoint. We propose a new technique to represent the data in terms of a new set of basis vectors where the high-frequency detail is preserved, at the expense of a 'feature-scale blurring'. In other words, the 'blurring' that occurs due to possible colinearities in the bases vectors is relative to the eigen-features' scales; this is inherently different from a systematic blurring function. Instead of thresholding the eigen-values, we retain all eigen-values, and apply thresholds on the components of each eigen-vector separately. The resulting basis vectors can no longer be interpreted as eigenvectors and will, in general, lose their orthogonality properties, but offer benefits in terms of preserving detail that is crucial for classification tasks. We test the merits of this new basis representation for magnitude synthetic aperture radar (SAR) Automatic Target Recognition (ATR). A feature vector is obtained by projecting a SAR image onto the aforementioned basis. Decision engines such as support vector machines (SVMs) are trained on example feature vectors per class and ultimately used to recognize the target class in real-time. Experimental validation are performed on the MSTAR database and involve comparisons against a PCA based ATR algorithm.
Fast support vector data descriptions for novelty detection.
Liu, Yi-Hung; Liu, Yan-Chen; Chen, Yen-Jen
2010-08-01
Support vector data description (SVDD) has become a very attractive kernel method due to its good results in many novelty detection problems. However, the decision function of SVDD is expressed in terms of the kernel expansion, which results in a run-time complexity linear in the number of support vectors. For applications where fast real-time response is needed, how to speed up the decision function is crucial. This paper aims at dealing with the issue of reducing the testing time complexity of SVDD. A method called fast SVDD (F-SVDD) is proposed. Unlike the traditional methods which all try to compress a kernel expansion into one with fewer terms, the proposed F-SVDD directly finds the preimage of a feature vector, and then uses a simple relationship between this feature vector and the SVDD sphere center to re-express the center with a single vector. The decision function of F-SVDD contains only one kernel term, and thus the decision boundary of F-SVDD is only spherical in the original space. Hence, the run-time complexity of the F-SVDD decision function is no longer linear in the support vectors, but is a constant, no matter how large the training set size is. In this paper, we also propose a novel direct preimage-finding method, which is noniterative and involves no free parameters. The unique preimage can be obtained in real time by the proposed direct method without taking trial-and-error. For demonstration, several real-world data sets and a large-scale data set, the extended MIT face data set, are used in experiments. In addition, a practical industry example regarding liquid crystal display micro-defect inspection is also used to compare the applicability of SVDD and our proposed F-SVDD when faced with mass data input. The results are very encouraging. PMID:20639178
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
Fuzzy Logic-Supported Detection of Complex Geospatial Features in a Web Service Environment
NASA Astrophysics Data System (ADS)
He, L. L.; Di, L. P.; Yue, P.; Zhang, M. D.
2013-10-01
Spatial relations among simple features can be used to characterize complex geospatial features. These spatial relations are often represented using linguistic terms such as near, which have inherent vagueness and imprecision. Fuzzy logic can be used to modeling fuzziness of the terms. Once simple features are extracted from remote sensing imagery, degree of satisfaction of spatial relations among these simple features can be derived to detect complex features. The derivation process can be performed in a distributed service environment, which benefits Earth science society in the last decade. Workflow-based service can provide ondemand uncertainty-aware discovery of complex features in a distributed environment. A use case on the complex facility detection illustrates the applicability of the fuzzy logic-supported service-oriented approach.
Clinical diagnosis support system based on case based fuzzy cognitive maps and semantic web.
Douali, Nassim; De Roo, Jos; Jaulent, Marie-Christine
2012-01-01
Incorrect or improper diagnostic tests uses have important implications for health outcomes and costs. Clinical Decision Support Systems purports to optimize the use of diagnostic tests in clinical practice. The computerized medical reasoning should not only focus on existing medical knowledge but also on physician's previous experiences and new knowledge. Such medical knowledge is vague and defines uncertain relationships between facts and diagnosis, in this paper, Case Based Fuzzy Cognitive Maps (CBFCM) are proposed as an evolution of Fuzzy Cognitive Maps. They allow more complete representation of knowledge since case-based fuzzy rules are introduced to improve diagnosis decision. We have developed a framework for interacting with patient's data and formalizing knowledge from Guidelines in the domain of Urinary Tract Infection. The conducted study allowed us to test cognitive approaches for implementing Guidelines with Semantic Web tools. The advantage of this approach is to enable the sharing and reuse of knowledge from Guidelines, physicians experiences and simplify maintenance. PMID:22874199
Fuzzy-supported estimator for HPO-AS process
Yin, M.T.; Yuan, W.; Stenstrom, M.K.
1999-02-01
Lack of real-time measurements is a major problem in the operation and control of the high-purity oxygen activated-sludge (HPO-AS) process. A real-time estimator using dissolved oxygen measurements in each stage and liquid flow rates was developed to estimate biomass and substrate concentrations, biomass growth, and decay rates. A fuzzy algorithm was used to estimate unmeasured variables, such as influent substrate and recycle biomass concentrations. The convergence of the algorithms used for the estimator is fast and stable, even with a large range of initial inputs and noisy dissolved oxygen measurements. The estimated results compare well with both plant data and synthetic results produced by a process model and corrupted with white noise. The difference in the predictions of single substrate and structure models is demonstrated. The estimator was tested successfully for certain types of process upsets, such as shock hydraulic loading and high diluted sludge volume index.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. PMID:20970303
Evolutionary Support Vector Machines for Transient Stability Monitoring
NASA Astrophysics Data System (ADS)
Dora Arul Selvi, B.; Kamaraj, N.
2012-03-01
Currently, power systems are in the need of fast and reliable contingency monitoring systems for the purpose of maintaining stability in the presence of deregulated and open market environment. In this paper, a quick and unfailing transient stability monitoring algorithm that considers both the symmetrical and unsymmetrical faults is presented. support vector machines (SVMs) are employed as pattern classifiers so as to construct fast relation mappings between the transient stability results and the selected input attributes using mutual information. The type of fault is recognized by a SVM classifier and the critical clearing time of the fault is estimated by a support vector regression machine. The SVM parameters are tuned by an elitist multi-objective non-dominated sorting genetic algorithm in such a manner that the best classification and regression performance are accomplished. To demonstrate the good potential of the scheme, IEEE 3 generator system and a South Indian Grid are utilized.
A novel support vector machine with globality-locality preserving.
Ma, Cheng-Long; Yuan, Yu-Bo
2014-01-01
Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM. PMID:25045750
NASA Astrophysics Data System (ADS)
Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.
2014-11-01
A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.
Classifier based on support vector machine for JET plasma configurationsa)
NASA Astrophysics Data System (ADS)
Dormido-Canto, S.; Farias, G.; Vega, J.; Dormido, R.; Sánchez, J.; Duro, N.; Vargas, H.; Murari, A.; Jet-Efda Contributors
2008-10-01
The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.
Feed-forward support vector machine without multipliers.
Anguita, Davide; Pischiutta, Stefano; Ridella, Sandro; Sterpi, Dario
2006-09-01
In this letter, we propose a coordinate rotation digital computer (CORDIC)-like algorithm for computing the feed-forward phase of a support vector machine (SVM) in fixed-point arithmetic, using only shift and add operations and avoiding resource-consuming multiplications. This result is obtained thanks to a hardware-friendly kernel, which greatly simplifies the SVM feed-forward phase computation and, at the same time, maintains good classification performance respect to the conventional Gaussian kernel. PMID:17001991
An unsupervised support vector method for change detection
NASA Astrophysics Data System (ADS)
Bovolo, F.; Camps-Valls, G.; Bruzzone, L.
2007-10-01
This paper formulates the problem of distinguishing changed from unchanged pixels in remote sensing images as a minimum enclosing ball (MEB) problem with changed pixels as target class. The definition of the sphere shaped decision boundary with minimal volume that embraces changed pixels is approached in the context the support vector formalism adopting a support vector domain description (SVDD) one-class classifier. The SVDD maps the data into a high dimensional feature space where the spherical support of the high dimensional distribution of changed pixels is computed. The proposed formulation of the SVDD uses both target and outlier samples for defining the MEB, and is included here in an unsupervised system for change detection. For this purpose, nearly certain examples for the classes of both targets (i.e., changed pixels) and outliers (i.e., unchanged pixels) for training are identified based on thresholding the magnitude of spectral change vectors. Experimental results obtained on two different multitemporal and multispectral remote sensing images pointed out the effectiveness of the proposed method.
Optimized support vector regression for drilling rate of penetration estimation
NASA Astrophysics Data System (ADS)
Bodaghi, Asadollah; Ansari, Hamid Reza; Gholami, Mahsa
2015-12-01
In the petroleum industry, drilling optimization involves the selection of operating conditions for achieving the desired depth with the minimum expenditure while requirements of personal safety, environment protection, adequate information of penetrated formations and productivity are fulfilled. Since drilling optimization is highly dependent on the rate of penetration (ROP), estimation of this parameter is of great importance during well planning. In this research, a novel approach called `optimized support vector regression' is employed for making a formulation between input variables and ROP. Algorithms used for optimizing the support vector regression are the genetic algorithm (GA) and the cuckoo search algorithm (CS). Optimization implementation improved the support vector regression performance by virtue of selecting proper values for its parameters. In order to evaluate the ability of optimization algorithms in enhancing SVR performance, their results were compared to the hybrid of pattern search and grid search (HPG) which is conventionally employed for optimizing SVR. The results demonstrated that the CS algorithm achieved further improvement on prediction accuracy of SVR compared to the GA and HPG as well. Moreover, the predictive model derived from back propagation neural network (BPNN), which is the traditional approach for estimating ROP, is selected for comparisons with CSSVR. The comparative results revealed the superiority of CSSVR. This study inferred that CSSVR is a viable option for precise estimation of ROP.
Weighted K-means support vector machine for cancer prediction.
Kim, SungHwan
2016-01-01
To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble techniques, which are known to improve accuracy, I directly adopt the boosting algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive performance, a range of simulation studies demonstrate that the weighted KM-SVM (and wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not limited to many popular classification rules. I applied the proposed methods to simulated data and two large-scale real applications in the TCGA pan-cancer methylation data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) increases accuracy of the classification model, and will facilitate disease diagnosis and clinical treatment decisions to benefit patients. A software package (wSVM) is publicly available at the R-project webpage (https://www.r-project.org). PMID:27512621
An improved method of fuzzy support degree based on uncertainty analysis
NASA Astrophysics Data System (ADS)
Huang, Yuan; Wu, Jing; Wu, Lihua; Sheng, Weidong
2015-10-01
Most multisensor association algorithms based on fuzzy set theory forms the opinion of fuzzy proposition using a simple triangular function. It does not take the randomness of measurements into account. Otherwise, the variance of sensors supposed to be known in the triangular function, but in fact the exact variance is difficult to acquire. This paper discuss about two situations with known and unknown variance of sensors. First, with known variance and known mean. This paper proposes a method, which use the probability ratio to calculate the fuzzy support degree. The interaction between the two objects is considered. Second, with unknown variance and known mean value, we replace the sample mean in the gray auto correlation function with the real sensor mean value to analysis the uncertainty which is the correlation coefficient between targets and measurements actually. In this way, it can deal with the case of small sample. Finally, form the opinion about the fuzzy proposition in terms of weighting the opinion of all the sensors based on the result of uncertainty analysis. Sufficient simulations on some typical scenarios are performed, and the results indicate that the method presented is efficient.
Scorebox extraction from mobile sports videos using Support Vector Machines
NASA Astrophysics Data System (ADS)
Kim, Wonjun; Park, Jimin; Kim, Changick
2008-08-01
Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.
Neural cell image segmentation method based on support vector machine
NASA Astrophysics Data System (ADS)
Niu, Shiwei; Ren, Kan
2015-10-01
In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
Improvements on ν-Twin Support Vector Machine.
Khemchandani, Reshma; Saigal, Pooja; Chandra, Suresh
2016-07-01
In this paper, we propose two novel binary classifiers termed as "Improvements on ν-Twin Support Vector Machine: Iν-TWSVM and Iν-TWSVM (Fast)" that are motivated by ν-Twin Support Vector Machine (ν-TWSVM). Similar to ν-TWSVM, Iν-TWSVM determines two nonparallel hyperplanes such that they are closer to their respective classes and are at least ρ distance away from the other class. The significant advantage of Iν-TWSVM over ν-TWSVM is that Iν-TWSVM solves one smaller-sized Quadratic Programming Problem (QPP) and one Unconstrained Minimization Problem (UMP); as compared to solving two related QPPs in ν-TWSVM. Further, Iν-TWSVM (Fast) avoids solving a smaller sized QPP and transforms it as a unimodal function, which can be solved using line search methods and similar to Iν-TWSVM, the other problem is solved as a UMP. Due to their novel formulation, the proposed classifiers are faster than ν-TWSVM and have comparable generalization ability. Iν-TWSVM also implements structural risk minimization (SRM) principle by introducing a regularization term, along with minimizing the empirical risk. The other properties of Iν-TWSVM, related to support vectors (SVs), are similar to that of ν-TWSVM. To test the efficacy of the proposed method, experiments have been conducted on a wide range of UCI and a skewed variation of NDC datasets. We have also given the application of Iν-TWSVM as a binary classifier for pixel classification of color images. PMID:27136663
Tea category classification using morphological characteristics and support vector machines
NASA Astrophysics Data System (ADS)
Li, X. L.; He, Y.; Qiu, Z. J.; Bao, Y. D.
2008-11-01
Tea categories classification is an importance task for quality inspection. And traditional way for doing this by human is time-consuming, requirement of too much manual labor. This study proposed a method for discriminating green tea categories based on multi-spectral images technique. Four tea categories were selected for this study, and total of 243 multi-spectral images were collected using a common-aperture multi-spectral charged coupled device camera with three channels (550, 660 and 800 nm). A compound image which has the clearest outline of samples was process by combination of the three monochrome images (550, 660 and 800 nm). After image preprocessing, 18 morphometry parameters were obtained for each samples. The 18 parameters used including area, perimeter, centroid and eccentricity et al. To better understanding these parameters, principal component analysis was conducted on them, and score plot of the first three independent components was obtained. The first three components accounted for 99.02% of the variation of original 18 parameters. It can be found that the four tea categories were distributed in dense clusters respectively in score plot. But the boundaries among them were not clear, so a further discrimination must be developed. Three algorithms including support vector machines, artificial neural network and linear discriminant analysis were adopted for developed classification models based on the optimized 9 features. Wonderful result was obtained by support vector machines model with accuracy of 93.75% for prediction unknown samples in testing set. It can be concluded that it is an effective method to classification tea categories based on computer vision, and support vector machines is very specialized for development of classification model.
Gene classification using codon usage and support vector machines.
Ma, Jianmin; Nguyen, Minh N; Rajapakse, Jagath C
2009-01-01
A novel approach for gene classification, which adopts codon usage bias as input feature vector for classification by support vector machines (SVM) is proposed. The DNA sequence is first converted to a 59-dimensional feature vector where each element corresponds to the relative synonymous usage frequency of a codon. As the input to the classifier is independent of sequence length and variance, our approach is useful when the sequences to be classified are of different lengths, a condition that homology-based methods tend to fail. The method is demonstrated by using 1,841 Human Leukocyte Antigen (HLA) sequences which are classified into two major classes: HLA-I and HLA-II; each major class is further subdivided into sub-groups of HLA-I and HLA-II molecules. Using codon usage frequencies, binary SVM achieved accuracy rate of 99.3% for HLA major class classification and multi-class SVM achieved accuracy rates of 99.73% and 98.38% for sub-class classification of HLA-I and HLA-II molecules, respectively. The results show that gene classification based on codon usage bias is consistent with the molecular structures and biological functions of HLA molecules. PMID:19179707
Objective image quality assessment based on support vector regression.
Narwaria, Manish; Lin, Weisi
2010-03-01
Objective image quality estimation is useful in many visual processing systems, and is difficult to perform in line with the human perception. The challenge lies in formulating effective features and fusing them into a single number to predict the quality score. In this brief, we propose a new approach to address the problem, with the use of singular vectors out of singular value decomposition (SVD) as features for quantifying major structural information in images and then support vector regression (SVR) for automatic prediction of image quality. The feature selection with singular vectors is novel and general for gauging structural changes in images as a good representative of visual quality variations. The use of SVR exploits the advantages of machine learning with the ability to learn complex data patterns for an effective and generalized mapping of features into a desired score, in contrast with the oft-utilized feature pooling process in the existing image quality estimators; this is to overcome the difficulty of model parameter determination for such a system to emulate the related, complex human visual system (HVS) characteristics. Experiments conducted with three independent databases confirm the effectiveness of the proposed system in predicting image quality with better alignment with the HVS's perception than the relevant existing work. The tests with untrained distortions and databases further demonstrate the robustness of the system and the importance of the feature selection. PMID:20100674
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
Optimization of Support Vector Machine (SVM) for Object Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin
2012-01-01
The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.
Support vector machine classifiers for large data sets.
Gertz, E. M.; Griffin, J. D.
2006-01-31
This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.
Reinforced adaboost face detector using support vector machine
NASA Astrophysics Data System (ADS)
Jang, Jaeyoon; Yunkoo, C.; Jaehong, K.; Yoon, Hosub
2014-08-01
We propose a novel face detection algorithm in order to improve higher detection rate of face-detector than conventional haar - adaboost face detector. Our purposed method not only improves detection rate of a face but decreases the number of false-positive component. In order to get improved detection ability, we merged two classifiers: adaboost and support vector machine. Because SVM and Adaboost use different feature, they are complementary each other. We can get 2~4% improved performance using proposed method than previous our detector that is not applied proposed method. This method makes improved detector that shows better performance without algorithm replacement.
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
NASA Astrophysics Data System (ADS)
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation
Tang, Y.; Xu, L.
1995-12-01
Field orientation control and fuzzy logic control are designed for variable speed drive systems with a doubly fed machine in slip power recovery configuration. Laboratory implementation with a general purpose DSP (digital signal processing) system is described and experimental results are given. High performance potential of a slip power recovery system is realized with these advanced controls, while flexible reactive power control becomes possible, and compared to the ordinary variable speed drives with singly fed induction machine, power converter rating is reduced.
Surgical planning for horizontal strabismus using Support Vector Regression.
Almeida, João Dallyson Sousa de; Silva, Aristófanes Corrêa; Teixeira, Jorge Antonio Meireles; Paiva, Anselmo Cardoso; Gattass, Marcelo
2015-08-01
Strabismus is a pathology which affects about 4% of the population, causing esthetic problems (reversible at any age) and irreversible sensory disorders, altering the vision mechanism. Many techniques can be applied to settle the muscular balance, thus eliminating strabismus. However, when the conservative treatment is not enough, the surgical treatment is adopted, applying recoils or resections to the ocular muscles affected. The factors involved in the surgical strategy in cases of strabismus are complex, demanding both theoretical knowledge and experience from the surgeon. So, the present work proposes a methodology based on Support Vector Regression to help the physician with decision related to horizontal strabismus surgeries. The efficiency of the method at the indication of the surgical plan was evaluated through the average difference between the values that it provided and the values indicated by the specialists. In the planning of medial rectus muscles surgeries, the average error was 0.5mm for recoil and 0.7 for resection. For lateral rectus muscles, the mean error was 0.6 for recoil and 0.8 for resection. The results are promising and prove the feasibility of the use of Support Vector Regression in the indication of strabismus surgeries. PMID:26093785
Biologically relevant neural network architectures for support vector machines.
Jändel, Magnus
2014-01-01
Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme. PMID:24126252
Clifford support vector machines for classification, regression, and recurrence.
Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy
2010-11-01
This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids. PMID:20876017
Support Vector Machine Diagnosis of Acute Abdominal Pain
NASA Astrophysics Data System (ADS)
Björnsdotter, Malin; Nalin, Kajsa; Hansson, Lars-Erik; Malmgren, Helge
This study explores the feasibility of a decision-support system for patients seeking care for acute abdominal pain, and, specifically the diagnosis of acute diverticulitis. We used a linear support vector machine (SVM) to separate diverticulitis from all other reported cases of abdominal pain and from the important differential diagnosis non-specific abdominal pain (NSAP). On a database containing 3337 patients, the SVM obtained results comparable to those of the doctors in separating diverticulitis or NSAP from the remaining diseases. The distinction between diverticulitis and NSAP was, however, substantially improved by the SVM. For this patient group, the doctors achieved a sensitivity of 0.714 and a specificity of 0.963. When adjusted to the physicians' results, the SVM sensitivity/specificity was higher at 0.714/0.985 and 0.786/0.963 respectively. Age was found as the most important discriminative variable, closely followed by C-reactive protein level and lower left side pain.
Automated identification of biomedical article type using support Vector machines
NASA Astrophysics Data System (ADS)
Kim, In Cheol; Le, Daniel X.; Thoma, George R.
2011-01-01
Authors of short papers such as letters or editorials often express complementary opinions, and sometimes contradictory ones, on related work in previously published articles. The MEDLINE® citations for such short papers are required to list bibliographic data on these "commented on" articles in a "CON" field. The challenge is to automatically identify the CON articles referred to by the author of the short paper (called "Comment-in" or CIN paper). Our approach is to use support vector machines (SVM) to first classify a paper as either a CIN or a regular full-length article (which is exempt from this requirement), and then to extract from the CIN paper the bibliographic data of the CON articles. A solution to the first part of the problem, identifying CIN articles, is addressed here. We implement and compare the performance of two types of SVM, one with a linear kernel function and the other with a radial basis kernel function (RBF). Input feature vectors for the SVMs are created by combining four types of features based on statistics of words in the article title, words that suggest the article type (letter, correspondence, editorial), size of body text, and cue phrases. Experiments conducted on a set of online biomedical articles show that the SVM with a linear kernel function yields a significantly lower false negative error rate than the one with an RBF. Our experiments also show that the SVM with a linear kernel function achieves a significantly higher level of accuracy, and lower false positive and false negative error rates by using input feature vectors created by combining all four types of features rather than any single type.
Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
Komasi, Mehdi; Sharghi, Soroush
2016-01-01
Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process. PMID:27120649
Predictive based monitoring of nuclear plant component degradation using support vector regression
Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.
2015-02-01
Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component’s respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.
Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang
2015-01-01
This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450
Support Vector Machines for Non-linear Geophysical Inversion
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Rector, J. W.
2004-12-01
Classical non-linear geophysical inversion can be simulated using computer learning via Support Vector Machines. Geophysical inverse problems are almost always ill-posed which means that many different models (i.e. descriptions of the earth) can be found to explain a given noisy or incomplete data set. Regularization and constraints encourage inversions to find physically realistic models. The set of preferred models needs to be defined a priori using as much geologic knowledge as is available. In inversion, it is assumed that data and a forward modeling process is known. The goal is to solve for a model. In the SVM paradigm, a series of models and associated data are known. The goal is to solve for a reverse modeling process. Starting with a series of initial models assembled using all available geologic information, synthetic data is created using the most realistic forward modeling program available. With the synthetic data as inputs and the known models as outputs, a Support Vector Machine is trained to approximate a local inverse to the forward modeling program. The advantages of this approach are that it is honest about the need to establish, a priori, the kinds of models that are reasonable in a particular field situation. There is no need to adjust the forward process to accommodate inversion, because SVMs can be easily modified to capture complicated, non-linear relationships. SVMs are transparent and require very little programming. If an SVM is trained using model/data pairs that are drawn from the same probability distribution that is implicit in the regularization of an inversion, then it will get very similar results to the inversion. Because SVMs can interpret as much data as desired so long as the conditions of an experiment do not change, they can be used to perform otherwise computationally expensive procedures. Support Vector Machines are trained to emulate non-linear seismic Amplitude Variation with Offset (AVO) inversions, gravity inversions
Using support vector machines for anomalous change detonation
Theiler, James P; Steinwart, Ingo; Llamocca, Daniel
2010-01-01
We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at
A Longitudinal Support Vector Regression for Prediction of ALS Score
Du, Wei; Cheung, Huey; Goldberg, Ilya; Thambisetty, Madhav; Becker, Kevin; Johnson, Calvin A.
2015-01-01
Longitudinal studies play a key role in various fields, including epidemiology, clinical research, and genomic analysis. Currently, the most popular methods in longitudinal data analysis are model-driven regression approaches, which impose strong prior assumptions and are unable to scale to large problems in the manner of machine learning algorithms. In this work, we propose a novel longitudinal support vector regression (LSVR) algorithm that not only takes the advantage of one of the most popular machine learning methods, but also is able to model the temporal nature of longitudinal data by taking into account observational dependence within subjects. We test LSVR on publicly available data from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. Results suggest that LSVR is at a minimum competitive with favored machine learning methods and is able to outperform those methods in predicting ALS score one month in advance. PMID:27042700
Extended robust support vector machine based on financial risk minimization.
Takeda, Akiko; Fujiwara, Shuhei; Kanamori, Takafumi
2014-11-01
Financial risk measures have been used recently in machine learning. For example, ν-support vector machine ν-SVM) minimizes the conditional value at risk (CVaR) of margin distribution. The measure is popular in finance because of the subadditivity property, but it is very sensitive to a few outliers in the tail of the distribution. We propose a new classification method, extended robust SVM (ER-SVM), which minimizes an intermediate risk measure between the CVaR and value at risk (VaR) by expecting that the resulting model becomes less sensitive than ν-SVM to outliers. We can regard ER-SVM as an extension of robust SVM, which uses a truncated hinge loss. Numerical experiments imply the ER-SVM's possibility of achieving a better prediction performance with proper parameter setting. PMID:25058701
Improved Online Support Vector Machines Spam Filtering Using String Kernels
NASA Astrophysics Data System (ADS)
Amayri, Ola; Bouguila, Nizar
A major bottleneck in electronic communications is the enormous dissemination of spam emails. Developing of suitable filters that can adequately capture those emails and achieve high performance rate become a main concern. Support vector machines (SVMs) have made a large contribution to the development of spam email filtering. Based on SVMs, the crucial problems in email classification are feature mapping of input emails and the choice of the kernels. In this paper, we present thorough investigation of several distance-based kernels and propose the use of string kernels and prove its efficiency in blocking spam emails. We detail a feature mapping variants in text classification (TC) that yield improved performance for the standard SVMs in filtering task. Furthermore, to cope for realtime scenarios we propose an online active framework for spam filtering.
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Hu, Zhongyi; Xiong, Tao
2013-01-01
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425
Support vector regression for real-time flood stage forecasting
NASA Astrophysics Data System (ADS)
Yu, Pao-Shan; Chen, Shien-Tsung; Chang, I.-Fan
2006-09-01
SummaryFlood forecasting is an important non-structural approach for flood mitigation. The flood stage is chosen as the variable to be forecasted because it is practically useful in flood forecasting. The support vector machine, a novel artificial intelligence-based method developed from statistical learning theory, is adopted herein to establish a real-time stage forecasting model. The lags associated with the input variables are determined by applying the hydrological concept of the time of response, and a two-step grid search method is applied to find the optimal parameters, and thus overcome the difficulties in constructing the learning machine. Two structures of models used to perform multiple-hour-ahead stage forecasts are developed. Validation results from flood events in Lan-Yang River, Taiwan, revealed that the proposed models can effectively predict the flood stage forecasts one-to-six-hours ahead. Moreover, a sensitivity analysis was conducted on the lags associated with the input variables.
Intelligent Quality Prediction Using Weighted Least Square Support Vector Regression
NASA Astrophysics Data System (ADS)
Yu, Yaojun
A novel quality prediction method with mobile time window is proposed for small-batch producing process based on weighted least squares support vector regression (LS-SVR). The design steps and learning algorithm are also addressed. In the method, weighted LS-SVR is taken as the intelligent kernel, with which the small-batch learning is solved well and the nearer sample is set a larger weight, while the farther is set the smaller weight in the history data. A typical machining process of cutting bearing outer race is carried out and the real measured data are used to contrast experiment. The experimental results demonstrate that the prediction accuracy of the weighted LS-SVR based model is only 20%-30% that of the standard LS-SVR based one in the same condition. It provides a better candidate for quality prediction of small-batch producing process.
Aero-Engine Condition Monitoring Based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Chunxiao; Wang, Nan
The maintenance and management of civil aero-engine require advanced monitor approaches to estimate aero-engine performance and health in order to increase life of aero-engine and reduce maintenance costs. In this paper, we adopted support vector machine (SVM) regression approach to monitor an aero-engine health and condition by building monitoring models of main aero-engine performance parameters(EGT, N1, N2 and FF). The accuracy of nonlinear baseline models of performance parameters is tested and the maximum relative error does not exceed ±0.3%, which meets the engineering requirements. The results show that SVM nonlinear regression is an effective method in aero-engine monitoring.
Support Vector Machines for Hyperspectral Remote Sensing Classification
NASA Technical Reports Server (NTRS)
Gualtieri, J. Anthony; Cromp, R. F.
1998-01-01
The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.
Support Vector Machine with Ensemble Tree Kernel for Relation Extraction.
Liu, Xiaoyong; Fu, Hui; Du, Zhiguo
2016-01-01
Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966
Image replica detection based on support vector classifier
NASA Astrophysics Data System (ADS)
Maret, Y.; Dufaux, F.; Ebrahimi, T.
2005-08-01
In this paper, we propose a technique for image replica detection. By replica, we mean equivalent versions of a given reference image, e.g. after it has undergone operations such as compression, filtering or resizing. Applications of this technique include discovery of copyright infringement or detection of illicit content. The technique is based on the extraction of multiple features from an image, namely texture, color, and spatial distribution of colors. Similar features are then grouped into groups and the similarity between two images is given by several partial distances. The decision function to decide whether a test image is a replica of a given reference image is finally derived using Support Vector Classifier (SVC). In this paper, we show that this technique achieves good results on a large database of images. For instance, for a false negative rate of 5 % the system yields a false positive rate of only 6 " 10-5.
Support Vector Machine with Ensemble Tree Kernel for Relation Extraction
Fu, Hui; Du, Zhiguo
2016-01-01
Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966
Bullet Image Classification using Support Vector Machine (SVM)
NASA Astrophysics Data System (ADS)
Ratna S, Dwi; Setyono, Budi; Herdha, Tyara
2016-02-01
All Quality control of the bullet is usually done manually. Manual inspection process has some disadvantages for instance human error factor and the time inspection are relatively longer. In this study, defect detection and classification of bullets by using Support Vector Machine (SVM)has been done. The stages of classification of scheme bullets in this study include pre-processing, feature extraction with Principal Component Analysis (PCA) and classification of bullets by using SVM normalized. Performance of the proposed classification of scheme was tested using 80 images of bullets in which 40 images free of defects and 40 images with defect. The results show that the scheme can classify images of bullets with a 90% accuracy rate with test data in the form of 10 images free-defect and 10 image defects.
An assessment of support vector machines for land cover classification
Huang, C.; Davis, L.S.; Townshend, J.R.G.
2002-01-01
The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.
Finger vein image quality evaluation using support vector machines
NASA Astrophysics Data System (ADS)
Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2013-02-01
In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.
Material characterization via least squares support vector machines
NASA Astrophysics Data System (ADS)
Swaddiwudhipong, S.; Tho, K. K.; Liu, Z. S.; Hua, J.; Ooi, N. S. B.
2005-09-01
Analytical methods to interpret the load indentation curves are difficult to formulate and execute directly due to material and geometric nonlinearities as well as complex contact interactions. In the present study, a new approach based on the least squares support vector machines (LS-SVMs) is adopted in the characterization of materials obeying power law strain-hardening. The input data for training and verification of the LS-SVM model are obtained from 1000 large strain-large deformation finite element analyses which were carried out earlier to simulate indentation tests. The proposed LS-SVM model relates the characteristics of the indentation load-displacement curve directly to the elasto-plastic material properties without resorting to any iterative schemes. The tuned LS-SVM model is able to accurately predict the material properties when presented with new sets of load-indentation curves which were not used in the training and verification of the model.
HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2005-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Neural Network and Support Vector Machine Method for Optimization
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2007-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Segmentation of mosaicism in cervicographic images using support vector machines
NASA Astrophysics Data System (ADS)
Xue, Zhiyun; Long, L. Rodney; Antani, Sameer; Jeronimo, Jose; Thoma, George R.
2009-02-01
The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating a large digital repository of cervicographic images for the study of uterine cervix cancer prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, which is an important vascular feature used to visually assess the degree of cervical intraepithelial neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset annotated by medical experts (which circumvents the need for vascular structure extraction). We have evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility.
Application of Support Vector Machine to Forex Monitoring
NASA Astrophysics Data System (ADS)
Kamruzzaman, Joarder; Sarker, Ruhul A.
Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.
3D ultrasound image segmentation using wavelet support vector machines
Akbari, Hamed; Fei, Baowei
2012-01-01
Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy. Segmentation of the prostate on TRUS images has many applications. In this study, a three-dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D ultrasound-guided biopsy. Methods: This segmentation method utilizes a statistical shape, texture information, and intensity profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultrasound images in order to differentiate the prostate and nonprostate tissue. This method consists of a set of wavelet transforms for extraction of prostate texture features and a kernel-based support vector machine to classify the textures. The voxels around the surface of the prostate are labeled in sagittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles around the boundary between the tentatively labeled prostate and nonprostate tissue are compared to the prostate model. Consequently, the surfaces are modified based on the model intensity profiles. The segmented prostate is updated and compared to the shape model. These two steps are repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a variety of methods are used to evaluate the performance of the segmentation method. Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio is 90.3% ± 2.3% and that the sensitivity is 87.7% ± 4.9%. Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided prostate biopsy and can also be applied to other applications in the prostate. PMID:22755682
Complex support vector machines for regression and quaternary classification.
Bouboulis, Pantelis; Theodoridis, Sergios; Mavroforakis, Charalampos; Evaggelatou-Dalla, Leoni
2015-06-01
The paper presents a new framework for complex support vector regression (SVR) as well as Support Vector Machines (SVM) for quaternary classification. The method exploits the notion of widely linear estimation to model the input-out relation for complex-valued data and considers two cases: 1) the complex data are split into their real and imaginary parts and a typical real kernel is employed to map the complex data to a complexified feature space and 2) a pure complex kernel is used to directly map the data to the induced complex feature space. The recently developed Wirtinger's calculus on complex reproducing kernel Hilbert spaces is employed to compute the Lagrangian and derive the dual optimization problem. As one of our major results, we prove that any complex SVM/SVR task is equivalent with solving two real SVM/SVR tasks exploiting a specific real kernel, which is generated by the chosen complex kernel. In particular, the case of pure complex kernels leads to the generation of new kernels, which have not been considered before. In the classification case, the proposed framework inherently splits the complex space into four parts. This leads naturally to solving the four class-task (quaternary classification), instead of the typical two classes of the real SVM. In turn, this rationale can be used in a multiclass problem as a split-class scenario based on four classes, as opposed to the one-versus-all method; this can lead to significant computational savings. Experiments demonstrate the effectiveness of the proposed framework for regression and classification tasks that involve complex data. PMID:25095266
Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.
Kono, Shinya; Kitamura, Akira
2015-08-01
In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse. PMID:26738190
A Distributed Support Vector Machine Learning Over Wireless Sensor Networks.
Kim, Woojin; Stanković, Milos S; Johansson, Karl H; Kim, H Jin
2015-11-01
This paper is about fully-distributed support vector machine (SVM) learning over wireless sensor networks. With the concept of the geometric SVM, we propose to gossip the set of extreme points of the convex hull of local data set with neighboring nodes. It has the advantages of a simple communication mechanism and finite-time convergence to a common global solution. Furthermore, we analyze the scalability with respect to the amount of exchanged information and convergence time, with a specific emphasis on the small-world phenomenon. First, with the proposed naive convex hull algorithm, the message length remains bounded as the number of nodes increases. Second, by utilizing a small-world network, we have an opportunity to drastically improve the convergence performance with only a small increase in power consumption. These properties offer a great advantage when dealing with a large-scale network. Simulation and experimental results support the feasibility and effectiveness of the proposed gossip-based process and the analysis. PMID:26470063
Effective forecasting of hourly typhoon rainfall using support vector machines
NASA Astrophysics Data System (ADS)
Lin, Gwo-Fong; Chen, Guo-Rong; Wu, Ming-Chang; Chou, Yang-Ching
2009-08-01
Typhoon rainfall is one of the most difficult elements of the hydrologic cycle to forecast because of the high variability in space and time and the complex physical process. To obtain more effective forecasts of hourly typhoon rainfall, novel models with better ability are desired. On the basis of support vector machines (SVMs), which are a novel kind of neural networks (NNs), effective hourly typhoon rainfall forecasting models are constructed. As compared with backpropagation networks (BPNs), which are the most frequently used conventional NNs, SVMs have three advantages: (1) SVMs have better generalization ability, (2) the architectures and the weights of the SVMs are guaranteed to be unique and globally optimal, and (3) SVM is trained much more rapidly. An application is conducted to clearly demonstrate these three advantages. The results indicate that the proposed SVM-based models are better performed, robust, and efficient than the existing BPN-based models. To further improve the long lead time forecasting, typhoon characteristics are added as key input to the proposed models. The comparison between SVM-based models with and without typhoon characteristics confirms the significant improvement in forecasting performance due to the addition of typhoon characteristics for long lead time forecasting. The proposed SVM-based models are recommended as an alternative to the existing models. The proposed modeling technique is also expected to be useful to support reservoir operation systems and flood, landslide, debris flow, and other disaster warning systems.
Support vector machines classifiers of physical activities in preschoolers
Zhao, Wei; Adolph, Anne L; Puyau, Maurice R; Vohra, Firoz A; Butte, Nancy F; Zakeri, Issa F
2013-01-01
The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3–5 years old were asked to participate in a supervised protocol of physical activities while wearing a triaxial accelerometer. Accelerometer counts, steps, and position were obtained from the device. We applied K-means clustering to determine the number of natural groupings presented by the data. We used MLR and SVM to classify the six activity types. Using direct observation as the criterion method, the 10-fold cross-validation (CV) error rate was used to compare MLR and SVM classifiers, with and without sleep. Altogether, 58 classification models based on combinations of the accelerometer output variables were developed. In general, the SVM classifiers have a smaller 10-fold CV error rate than their MLR counterparts. Including sleep, a SVM classifier provided the best performance with a 10-fold CV error rate of 24.70%. Without sleep, a SVM classifier-based triaxial accelerometer counts, vector magnitude, steps, position, and 1- and 2-min lag and lead values achieved a 10-fold CV error rate of 20.16% and an overall classification error rate of 15.56%. SVM supersedes the classical classifier MLR in categorizing physical activities in preschool-aged children. Using accelerometer data, SVM can be used to correctly classify physical activities typical of preschool-aged children with an acceptable classification error rate. PMID:24303099
Papageorgiou, Elpiniki I; Huszka, Csaba; De Roo, Jos; Douali, Nassim; Jaulent, Marie-Christine; Colaert, Dirk
2013-12-01
This study aimed to focus on medical knowledge representation and reasoning using the probabilistic and fuzzy influence processes, implemented in the semantic web, for decision support tasks. Bayesian belief networks (BBNs) and fuzzy cognitive maps (FCMs), as dynamic influence graphs, were applied to handle the task of medical knowledge formalization for decision support. In order to perform reasoning on these knowledge models, a general purpose reasoning engine, EYE, with the necessary plug-ins was developed in the semantic web. The two formal approaches constitute the proposed decision support system (DSS) aiming to recognize the appropriate guidelines of a medical problem, and to propose easily understandable course of actions to guide the practitioners. The urinary tract infection (UTI) problem was selected as the proof-of-concept example to examine the proposed formalization techniques implemented in the semantic web. The medical guidelines for UTI treatment were formalized into BBN and FCM knowledge models. To assess the formal models' performance, 55 patient cases were extracted from a database and analyzed. The results showed that the suggested approaches formalized medical knowledge efficiently in the semantic web, and gave a front-end decision on antibiotics' suggestion for UTI. PMID:23953959
Fuzzy Based Decision Support System for Condition Assessment and Rating of Bridges
NASA Astrophysics Data System (ADS)
Srinivas, Voggu; Sasmal, Saptarshi; Karusala, Ramanjaneyulu
2016-06-01
In this work, a knowledge based decision support system has been developed to efficiently handle the issues such as distress diagnosis, assessment of damages and condition rating of existing bridges towards developing an exclusive and robust Bridge Management System (BMS) for sustainable bridges. The Knowledge Based Expert System (KBES) diagnoses the distresses and finds the cause of distress in the bridge by processing the data which are heuristic and combined with site inspection results, laboratory test results etc. The coupling of symbolic and numeric type of data has been successfully implemented in the expert system to strengthen its decision making process. Finally, the condition rating of the bridge is carried out using the assessment results obtained from the KBES and the information received from the bridge inspector. A systematic procedure has been developed using fuzzy mathematics for condition rating of bridges by combining the fuzzy weighted average and resolution identity technique. The proposed methodologies and the decision support system will facilitate in developing a robust and exclusive BMS for a network of bridges across the country and allow the bridge engineers and decision makers to carry out maintenance of bridges in a rational and systematic way.
Data filtering with support vector machines in geometric camera calibration.
Ergun, B; Kavzoglu, T; Colkesen, I; Sahin, C
2010-02-01
The use of non-metric digital cameras in close-range photogrammetric applications and machine vision has become a popular research agenda. Being an essential component of photogrammetric evaluation, camera calibration is a crucial stage for non-metric cameras. Therefore, accurate camera calibration and orientation procedures have become prerequisites for the extraction of precise and reliable 3D metric information from images. The lack of accurate inner orientation parameters can lead to unreliable results in the photogrammetric process. A camera can be well defined with its principal distance, principal point offset and lens distortion parameters. Different camera models have been formulated and used in close-range photogrammetry, but generally sensor orientation and calibration is performed with a perspective geometrical model by means of the bundle adjustment. In this study, support vector machines (SVMs) using radial basis function kernel is employed to model the distortions measured for Olympus Aspherical Zoom lens Olympus E10 camera system that are later used in the geometric calibration process. It is intended to introduce an alternative approach for the on-the-job photogrammetric calibration stage. Experimental results for DSLR camera with three focal length settings (9, 18 and 36 mm) were estimated using bundle adjustment with additional parameters, and analyses were conducted based on object point discrepancies and standard errors. Results show the robustness of the SVMs approach on the correction of image coordinates by modelling total distortions on-the-job calibration process using limited number of images. PMID:20174021
River stage prediction based on a distributed support vector regression
NASA Astrophysics Data System (ADS)
Wu, C. L.; Chau, K. W.; Li, Y. S.
2008-08-01
SummaryAn accurate and timely prediction of river flow flooding can provide time for the authorities to take pertinent flood protection measures such as evacuation. Various data-derived models including LR (linear regression), NNM (the nearest-neighbor method) ANN (artificial neural network) and SVR (support vector regression), have been successfully applied to water level prediction. Of them, SVR is particularly highly valued, because it has the advantage over many data-derived models in overcoming overfitting of training data. However, SVR is computationally time-consuming when used to solve large-size problems. In the context of river flow prediction, equipped with LR model as a benchmark and genetic algorithm-based ANN (ANN-GA) and NNM as counterparts, a novel distributed SVR (D-SVR) model is proposed in this study. It implements a local approximation to training data because partitioned original training data are independently fitted by each local SVR model. ANN-GA and LR models are also used to help determine input variables. A two-step GA algorithm is employed to find the optimal triplets ( C, ɛ, σ) for D-SVR model. The validation results reveal that the proposed D-SVR model can carry out the river flow prediction better in comparison with others, and dramatically reduce the training time compared with the conventional SVR model. The pivotal factor contributing to the performance of D-SVR may be that it implements a local approximation method and the principle of structural risk minimization.
Support Vector Machine algorithm for regression and classification
Yu, Chenggang; Zavaljevski, Nela
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by the capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.
Support vector machines for nuclear reactor state estimation
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.
Predicting Computer System Failures Using Support Vector Machines
Fulp, Errin W.; Fink, Glenn A.; Haack, Jereme N.
2008-12-07
Mitigating the impact of computer failure is possible if accurate failure predictions are provided. Resources, applications, and services can be scheduled around predicted failure and limit the impact. Such strategies are especially important for multi-computer systems, such as compute clusters, that experience a higher rate failure due to the large number of components. However providing accurate predictions with sufficient lead time remains a challenging problem. This paper describes a new spectrum-kernel Support Vector Machine (SVM) approach to predict failure events based on system log files. These files contain messages that represent a change of system state. While a single message in the file may not be sufficient for predicting failure, a sequence or pattern of messages may be. The approach described in this paper will use a sliding window (sub-sequence) of messages to predict the likelihood of failure. The frequency representation of the message sub-sequences observed are then used as input to the SVM that associates the messages to a class of failed or non-failed system. Experimental results using actual system log files from a Linux-based compute cluster indicate the proposed SVM approach can predict hard disk failure with an accuracy of 76% one day in advance.
Using support vector machines in the multivariate state estimation technique
Zavaljevski, N.; Gross, K.C.
1999-07-01
One approach to validate nuclear power plant (NPP) signals makes use of pattern recognition techniques. This approach often assumes that there is a set of signal prototypes that are continuously compared with the actual sensor signals. These signal prototypes are often computed based on empirical models with little or no knowledge about physical processes. A common problem of all data-based models is their limited ability to make predictions on the basis of available training data. Another problem is related to suboptimal training algorithms. Both of these potential shortcomings with conventional approaches to signal validation and sensor operability validation are successfully resolved by adopting a recently proposed learning paradigm called the support vector machine (SVM). The work presented here is a novel application of SVM for data-based modeling of system state variables in an NPP, integrated with a nonlinear, nonparametric technique called the multivariate state estimation technique (MSET), an algorithm developed at Argonne National Laboratory for a wide range of nuclear plant applications.
A support vector machine approach for detection of microcalcifications.
El-Naqa, Issam; Yang, Yongyi; Wernick, Miles N; Galatsanos, Nikolas P; Nishikawa, Robert M
2002-12-01
In this paper, we investigate an approach based on support vector machines (SVMs) for detection of microcalcification (MC) clusters in digital mammograms, and propose a successive enhancement learning scheme for improved performance. SVM is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate MC detection as a supervised-learning problem and apply SVM to develop the detection algorithm. We use the SVM to detect at each location in the image whether an MC is present or not. We tested the proposed method using a database of 76 clinical mammograms containing 1120 MCs. We use free-response receiver operating characteristic curves to evaluate detection performance, and compare the proposed algorithm with several existing methods. In our experiments, the proposed SVM framework outperformed all the other methods tested. In particular, a sensitivity as high as 94% was achieved by the SVM method at an error rate of one false-positive cluster per image. The ability of SVM to out perform several well-known methods developed for the widely studied problem of MC detection suggests that SVM is a promising technique for object detection in a medical imaging application. PMID:12588039
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms. PMID:26277005
Support vector classifiers via gradient systems with discontinuous righthand sides.
Ferreira, Leonardo V; Kaszkurewicz, Eugenius; Bhaya, Amit
2006-12-01
Gradient dynamical systems with discontinuous righthand sides are designed using Persidskii-type nonsmooth Lyapunov functions to work as support vector machines (SVMs) for the discrimination of nonseparable classes. The gradient systems are obtained from an exact penalty method applied to the constrained quadratic optimization problems, which are formulations of two well known SVMs. Global convergence of the trajectories of the gradient dynamical systems to the solution of the corresponding constrained problems is shown to be independent of the penalty parameters and of the parameters of the SVMs. The proposed gradient systems can be implemented as simple analog circuits as well as using standard software for integration of ODEs, and in order to use efficient integration methods with adaptive stepsize selection, the discontinuous terms are smoothed around a neighborhood of the discontinuity surface by means of the boundary layer technique. The scalability of the proposed gradient systems is also shown by means of an implementation using parallel computers, resulting in smaller processing times when compared with traditional SVM packages. PMID:17011165
Predicting full thickness skin sensitization using a support vector machine
Lee, Serom; Dong, David Xu; Jindal, Rohit; Maguire, Tim; Mitra, Bhaskar; Schloss, Rene; Yarmush, Martin
2015-01-01
To assess the public’s propensity for allergic contact dermatitis (ACD), many alternatives to in vivo chemical screening have been developed which generally incorporate a small panel of cell surface and secreted dendritic cell biomarkers. However, given the underlying complexity of ACD, one cell type and limited cellular metrics may be insufficient to predict contact sensitizers accurately. To identify a molecular signature that can further characterize sensitization, we developed a novel system using RealSkin, a full thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan’s cells. This system was used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA). Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were assessed, in concert with a 27-cytokine multi-plex screen and a functional chemotaxis assay. Data were analyzed with feature selection methods using ANOVA, hierarchical cluster analysis, and a support vector machine to identify the best molecular signature for sensitization. A panel consisting of IL-12, IL-9, VEGF, and IFN-γ predicted sensitization with over 90% accuracy using this co-culture system analysis. Thus, a multi-metric approach that has the potential to identify a molecular signature may be more predictive of contact sensitization. PMID:25025180
Fast and Accurate Support Vector Machines on Large Scale Systems
Vishnu, Abhinav; Narasimhan, Jayenthi; Holder, Larry; Kerbyson, Darren J.; Hoisie, Adolfy
2015-09-08
Support Vector Machines (SVM) is a supervised Machine Learning and Data Mining (MLDM) algorithm, which has become ubiquitous largely due to its high accuracy and obliviousness to dimensionality. The objective of SVM is to find an optimal boundary --- also known as hyperplane --- which separates the samples (examples in a dataset) of different classes by a maximum margin. Usually, very few samples contribute to the definition of the boundary. However, existing parallel algorithms use the entire dataset for finding the boundary, which is sub-optimal for performance reasons. In this paper, we propose a novel distributed memory algorithm to eliminate the samples which do not contribute to the boundary definition in SVM. We propose several heuristics, which range from early (aggressive) to late (conservative) elimination of the samples, such that the overall time for generating the boundary is reduced considerably. In a few cases, a sample may be eliminated (shrunk) pre-emptively --- potentially resulting in an incorrect boundary. We propose a scalable approach to synchronize the necessary data structures such that the proposed algorithm maintains its accuracy. We consider the necessary trade-offs of single/multiple synchronization using in-depth time-space complexity analysis. We implement the proposed algorithm using MPI and compare it with libsvm--- de facto sequential SVM software --- which we enhance with OpenMP for multi-core/many-core parallelism. Our proposed approach shows excellent efficiency using up to 4096 processes on several large datasets such as UCI HIGGS Boson dataset and Offending URL dataset.
Detection of Splice Sites Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika
Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.
Segmentation of multiple sclerosis lesions using support vector machines
NASA Astrophysics Data System (ADS)
Ferrari, Ricardo J.; Wei, Xingchang; Zhang, Yunyan; Scott, James N.; Mitchell, J. R.
2003-05-01
In this paper we present preliminary results to automatically segment multiple sclerosis (MS) lesions in multispectral magnetic resonance datasets using support vector machines (SVM). A total of eighteen studies (each composed of T1-, T2-weighted and FLAIR images) acquired from a 3T GE Signa scanner was analyzed. A neuroradiologist used a computer-assisted technique to identify all MS lesions in each study. These results were used later in the training and testing stages of the SVM classifier. A preprocessing stage including anisotropic diffusion filtering, non-uniformity intensity correction, and intensity tissue normalization was applied to the images. The SVM kernel used in this study was the radial basis function (RBF). The kernel parameter (γ) and the penalty value for the errors were determined by using a very loose stopping criterion for the SVM decomposition. Overall, a 5-fold cross-validation accuracy rate of 80% was achieved in the automatic classification of MS lesion voxels using the proposed SVM-RBF classifier.
End-user display calibration via support vector regression
NASA Astrophysics Data System (ADS)
Bastani, Behnam; Funt, Brian; Xiong, Weihua
2006-01-01
The technique of support vector regression (SVR) is applied to the color display calibration problem. Given a set of training data, SVR estimates a continuous-valued function encoding the fundamental interrelation between a given input and its corresponding output. This mapping can then be used to find an output value for a given input value not in the training data set. Here, SVR is applied directly to the display's non-linearized RGB digital input values to predict output CIELAB values. There are several different linear methods for calibrating different display technologies (GOG, Masking and Wyble). An advantage of using SVR for color calibration is that the end-user does not need to apply a different calibration model for each different display technology. We show that the same model can be used to calibrate CRT, LCD and DLP displays accurately. We also show that the accuracy of the model is comparable to that of the optimal linear transformation introduced by Funt et al.
An Equivalence Between Sparse Approximation and Support Vector Machines.
Girosi
1998-07-28
This article shows a relationship between two different approximation techniques: the support vector machines (SVM), proposed by V. Vapnik (1995) and a sparse approximation scheme that resembles the basis pursuit denoising algorithm (Chen, 1995; Chen, Donoho, and Saunders, 1995). SVM is a technique that can be derived from the structural risk minimization principle (Vapnik, 1982) and can be used to estimate the parameters of several different approximation schemes, including radial basis functions, algebraic and trigonometric polynomials, B-splines, and some forms of multilayer perceptrons. Basis pursuit denoising is a sparse approximation technique in which a function is reconstructed by using a small number of basis functions chosen from a large set (the dictionary). We show that if the data are noiseless, the modified version of basis pursuit denoising proposed in this article is equivalent to SVM in the following sense: if applied to the same data set, the two techniques give the same solution, which is obtained by solving the same quadratic programming problem. In the appendix, we present a derivation of the SVM technique in one framework of regularization theory, rather than statistical learning theory, establishing a connection between SVM, sparse approximation, and regularization theory. PMID:9698353
Support Vector Machine algorithm for regression and classification
Energy Science and Technology Software Center (ESTSC)
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. Amore » decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by the capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less
A duct mapping method using least squares support vector machines
NASA Astrophysics Data System (ADS)
Douvenot, RéMi; Fabbro, Vincent; Gerstoft, Peter; Bourlier, Christophe; Saillard, Joseph
2008-12-01
This paper introduces a "refractivity from clutter" (RFC) approach with an inversion method based on a pregenerated database. The RFC method exploits the information contained in the radar sea clutter return to estimate the refractive index profile. Whereas initial efforts are based on algorithms giving a good accuracy involving high computational needs, the present method is based on a learning machine algorithm in order to obtain a real-time system. This paper shows the feasibility of a RFC technique based on the least squares support vector machine inversion method by comparing it to a genetic algorithm on simulated and noise-free data, at 1 and 5 GHz. These data are simulated in the presence of ideal trilinear surface-based ducts. The learning machine is based on a pregenerated database computed using Latin hypercube sampling to improve the efficiency of the learning. The results show that little accuracy is lost compared to a genetic algorithm approach. The computational time of a genetic algorithm is very high, whereas the learning machine approach is real time. The advantage of a real-time RFC system is that it could work on several azimuths in near real time.
Automatic inspection of textured surfaces by support vector machines
NASA Astrophysics Data System (ADS)
Jahanbin, Sina; Bovik, Alan C.; Pérez, Eduardo; Nair, Dinesh
2009-08-01
Automatic inspection of manufactured products with natural looking textures is a challenging task. Products such as tiles, textile, leather, and lumber project image textures that cannot be modeled as periodic or otherwise regular; therefore, a stochastic modeling of local intensity distribution is required. An inspection system to replace human inspectors should be flexible in detecting flaws such as scratches, cracks, and stains occurring in various shapes and sizes that have never been seen before. A computer vision algorithm is proposed in this paper that extracts local statistical features from grey-level texture images decomposed with wavelet frames into subbands of various orientations and scales. The local features extracted are second order statistics derived from grey-level co-occurrence matrices. Subsequently, a support vector machine (SVM) classifier is trained to learn a general description of normal texture from defect-free samples. This algorithm is implemented in LabVIEW and is capable of processing natural texture images in real-time.
Analysis of metabolomic data using support vector machines.
Mahadevan, Sankar; Shah, Sirish L; Marrie, Thomas J; Slupsky, Carolyn M
2008-10-01
Metabolomics is an emerging field providing insight into physiological processes. It is an effective tool to investigate disease diagnosis or conduct toxicological studies by observing changes in metabolite concentrations in various biofluids. Multivariate statistical analysis is generally employed with nuclear magnetic resonance (NMR) or mass spectrometry (MS) data to determine differences between groups (for instance diseased vs healthy). Characteristic predictive models may be built based on a set of training data, and these models are subsequently used to predict whether new test data falls under a specific class. In this study, metabolomic data is obtained by doing a (1)H NMR spectroscopy on urine samples obtained from healthy subjects (male and female) and patients suffering from Streptococcus pneumoniae. We compare the performance of traditional PLS-DA multivariate analysis to support vector machines (SVMs), a technique widely used in genome studies on two case studies: (1) a case where nearly complete distinction may be seen (healthy versus pneumonia) and (2) a case where distinction is more ambiguous (male versus female). We show that SVMs are superior to PLS-DA in both cases in terms of predictive accuracy with the least number of features. With fewer number of features, SVMs are able to give better predictive model when compared to that of PLS-DA. PMID:18767870
Clustering by Fuzzy Neural Gas and Evaluation of Fuzzy Clusters
Geweniger, Tina; Fischer, Lydia; Kaden, Marika; Lange, Mandy; Villmann, Thomas
2013-01-01
We consider some modifications of the neural gas algorithm. First, fuzzy assignments as known from fuzzy c-means and neighborhood cooperativeness as known from self-organizing maps and neural gas are combined to obtain a basic Fuzzy Neural Gas. Further, a kernel variant and a simulated annealing approach are derived. Finally, we introduce a fuzzy extension of the ConnIndex to obtain an evaluation measure for clusterings based on fuzzy vector quantization. PMID:24396342
Ensemble Feature Learning of Genomic Data Using Support Vector Machine
Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.
2016-01-01
The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923
Support Vector Machines for Petrophysical Modelling and Lithoclassification
NASA Astrophysics Data System (ADS)
Al-Anazi, Ammal Fannoush Khalifah
2011-12-01
Given increasing challenges of oil and gas production from partially depleted conventional or unconventional reservoirs, reservoir characterization is a key element of the reservoir development workflow. Reservoir characterization impacts well placement, injection and production strategies, and field management. Reservoir characterization projects point and line data to a large three-dimensional volume. The relationship between variables, e.g. porosity and permeability, is often established by regression yet the complexities between measured variables often lead to poor correlation coefficients between the regressed variables. Recent advances in machine learning methods have provided attractive alternatives for constructing interpretation models of rock properties in heterogeneous reservoirs. Here, Support Vector Machines (SVMs), a class of a learning machine that is formulated to output regression models and classifiers of competitive generalization capability, has been explored to determine its capabilities for determining the relationship, both in regression and in classification, between reservoir rock properties. This thesis documents research on the capability of SVMs to model petrophysical and elastic properties in heterogeneous sandstone and carbonate reservoirs. Specifically, the capabilities of SVM regression and classification has been examined and compared to neural network-based methods, namely multilayered neural networks, radial basis function neural networks, general regression neural networks, probabilistic neural networks, and linear discriminant analysis. The petrophysical properties that have been evaluated include porosity, permeability, Poisson's ratio and Young's modulus. Statistical error analysis reveals that the SVM method yields comparable or superior predictions of petrophysical and elastic rock properties and classification of the lithology compared to neural networks. The SVM method also shows uniform prediction capability under the
Support vector machine for day ahead electricity price forecasting
NASA Astrophysics Data System (ADS)
Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti
2015-05-01
Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.
Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan
2015-10-01
The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.
Quantifying Changes in Intrinsic Molecular Motion Using Support Vector Machines.
Leighty, Ralph E; Varma, Sameer
2013-02-12
The ensemble of three-dimensional (3-D) configurations exhibited by a molecule, that is, its intrinsic motion, can be altered by several environmental factors, and also by the binding of other molecules. Quantification of such induced changes in intrinsic motion is important because it provides a basis for relating thermodynamic changes to changes in molecular motion. This task is, however, challenging because it requires comparing two high-dimensional data sets. Traditionally, when analyzing molecular simulations, this problem is circumvented by first reducing the dimensions of the two ensembles separately, and then comparing summary statistics from the two ensembles against each other. However, since dimensionality reduction is carried out prior to ensemble comparison, such strategies are susceptible to artifactual biases from information loss. Here, we introduce a method based on support vector machines that yields a normalized quantitative estimate for the difference between two ensembles after comparing them directly against one another. While this method can be applied to any molecular system, including nonbiological molecules and crystals, here, we show how it can be applied to identify the specific regions of a paramyxovirus G protein that are affected by the binding of its preferred human receptor, Ephrin B2. This protein-protein interaction initiates the fusion of the virus with the host cell. Specifically, for every residue in the G protein, we obtain separately a quantitative difference between the ensemble of configurations they sample in the presence and in the absence of Ephrin B2. These ensembles were generated using molecular dynamics simulations. Rank-ordering and then mapping the residues that undergo the greatest change in motion onto the 3-D structure of the G protein reveals that they are clustered primarily on a single contiguous facet of the protein and include the set that is known experimentally to play a vital role in regulating viral
Prediction of cell penetrating peptides by support vector machines.
Sanders, William S; Johnston, C Ian; Bridges, Susan M; Burgess, Shane C; Willeford, Kenneth O
2011-07-01
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating. PMID:21779156
Cloud Detection of Optical Satellite Images Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Lee, Kuan-Yi; Lin, Chao-Hung
2016-06-01
Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection
Fuzzy Content-Based Retrieval in Image Databases.
ERIC Educational Resources Information Center
Wu, Jian Kang; Narasimhalu, A. Desai
1998-01-01
Proposes a fuzzy-image database model and a concept of fuzzy space; describes fuzzy-query processing in fuzzy space and fuzzy indexing on complete fuzzy vectors; and uses an example image database, the computer-aided facial-image inference and retrieval system (CAFIIR), for explanation throughout. (Author/LRW)
Classification of Regional Ionospheric Disturbances Based on Support Vector Machines
NASA Astrophysics Data System (ADS)
Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil
2016-07-01
Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification
NASA Astrophysics Data System (ADS)
Jemai, Olfa; Ejbali, Ridha; Zaied, Mourad; Ben Amar, Chokri
2015-02-01
This paper aims at developing a novel approach for speech recognition based on wavelet network learnt by fast wavelet transform (FWN) including a fuzzy decision support system (FDSS). Our contributions reside in, first, proposing a novel learning algorithm for speech recognition based on the fast wavelet transform (FWT) which has many advantages compared to other algorithms and in which major problems of the previous works to compute connection weights were solved. They were determined by a direct solution which requires computing matrix inversion, which may be intensive. However, the new algorithm was realized by the iterative application of FWT to compute connection weights. Second, proposing a new classification way for this speech recognition system. It operated a human reasoning mode employing a FDSS to compute similarity degrees between test and training signals. Extensive empirical experiments were conducted to compare the proposed approach with other approaches. Obtained results show that the new speech recognition system has a better performance than previously established ones.
NASA Astrophysics Data System (ADS)
Argoneto, Pierluigi; Renna, Paolo
2016-02-01
This paper proposes a Framework for Capacity Sharing in Cloud Manufacturing (FCSCM) able to support the capacity sharing issue among independent firms. The success of geographical distributed plants depends strongly on the use of opportune tools to integrate their resources and demand forecast in order to gather a specific production objective. The framework proposed is based on two different tools: a cooperative game algorithm, based on the Gale-Shapley model, and a fuzzy engine. The capacity allocation policy takes into account the utility functions of the involved firms. It is shown how the capacity allocation policy proposed induces all firms to report truthfully their information about their requirements. A discrete event simulation environment has been developed to test the proposed FCSCM. The numerical results show the drastic reduction of unsatisfied capacity obtained by the model of cooperation implemented in this work.
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Gris, I.
2012-12-01
The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of researchers to be aware of resources that might benefit them. Even when aware, it can be difficult to understand enough about those resources to become potential adopters or re-users. Often scientific data and emerging technologies have little documentation, especially about the context of their use. The VLC tackles this challenge by providing mechanisms for individuals and groups of researchers to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design research that leverages those resources; and c) develop initial work plans. The VLC aims to support the "fuzzy front end" of innovation, where novel ideas emerge and there is the greatest potential for impact on research design. It is during the fuzzy front end that conceptual collisions across disciplines and exposure to diverse perspectives provide opportunity for creative thinking that can lead to inventive outcomes. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support researchers in different ways: 1. Innovation Marketplace: supports users as they try to understand what research is being conducted, who is conducting it, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports users as they organize their
Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter
2007-01-01
Medical problems involve different types of variables and data, which have to be processed, analyzed and synthesized in order to reach a decision and/or conclude to a diagnosis. Usually, information and data set are both symbolic and numeric but most of the well-known data analysis methods deal with only one kind of data. Even when fuzzy approaches are considered, which are not depended on the scales of variables, usually only numeric data is considered. The medical decision support methods usually are accessed in only one type of available data. Thus, sophisticated methods have been proposed such as integrated hybrid learning approaches to process symbolic and numeric data for the decision support tasks. Fuzzy Cognitive Maps (FCM) is an efficient modelling method, which is based on human knowledge and experience and it can handle with uncertainty and it is constructed by extracted knowledge in the form of fuzzy rules. The FCM model can be enhanced if a fuzzy rule base (IF-THEN rules) is available. This rule base could be derived by a number of machine learning and knowledge extraction methods. Here it is introduced a hybrid attempt to handle situations with different types of available medical and/or clinical data and with difficulty to handle them for decision support tasks using soft computing techniques. PMID:18002176
Chanda, Emmanuel; Mukonka, Victor Munyongwe; Mthembu, David; Kamuliwo, Mulakwa; Coetzer, Sarel; Shinondo, Cecilia Jill
2012-01-01
Geographic information systems (GISs) with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS) has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control. PMID:22548086
Technology Transfer Automated Retrieval System (TEKTRAN)
A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...
A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong
Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.
2012-01-01
Background Meningitis is characterized by an inflammation of the meninges, or the membranes surrounding the brain and spinal cord. Early diagnosis and treatment is crucial for a positive outcome, yet identifying meningitis is a complex process involving an array of signs and symptoms and multiple causal factors which require novel solutions to support clinical decision-making. In this work, we explore the potential of fuzzy cognitive map to assist in the modeling of meningitis, as a support tool for physicians in the accurate diagnosis and treatment of the condition. Methods Fuzzy cognitive mapping (FCM) is a method for analysing and depicting human perception of a given system. FCM facilitates the development of a conceptual model which is not limited by exact values and measurements and thus is well suited to representing relatively unstructured knowledge and associations expressed in imprecise terms. A team of doctors (physicians), comprising four paediatricians, was formed to define the multifarious signs and symptoms associated with meningitis and to identify risk factors integral to its causality, as indicators used by clinicians to identify the presence or absence of meningitis in patients. The FCM model, consisting of 20 concept nodes, has been designed by the team of paediatricians in collaborative dialogue with the research team. Results The paediatricians were supplied with a form containing various input parameters to be completed at the time of diagnosing meningitis among infants and children. The paediatricians provided information on a total of 56 patient cases amongst children whose age ranged from 2 months to 7 years. The physicians’ decision to diagnose meningitis was available for each individual case which was used as the outcome measure for evaluating the model. The FCM was trained using 40 cases with an accuracy of 95%, and later 16 test cases were used to analyze the accuracy and reliability of the model. The system produced the results
Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine
NASA Astrophysics Data System (ADS)
Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung
Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.
A Decision Support System for Do Predictionbased on Fuzzy Model and Neural Network
NASA Astrophysics Data System (ADS)
Wang, Ruimei; Liu, Qigen; He, Youyuan; Fu, Zetian
Dissolved oxygen (DO) concentration plays a very important role in fish life and aquaculture, but DO prediction is very difficult. So a decision support system for DO prediction based on fuzzy model and neural network was attempted. The paper was based on vast monitored data, every day detecting for two years, in aquaculture pond in North China for two years. This is a preliminary attempt towards a wider use of Artificial Neural Networks in the management of aquaculture water quality. It proposes a model to be used effectively in prediction of DO concentration in aquaculture. This is really a crucial task, especially during the long dry summer months. The prediction of potential risk due to low DO is also very important. This data volume was divided in the training subset comprising of 106 cases and in the testing subset containing 26 cases. The input parameters are sunlight, wind speed, temperature, water temperature, air pressure, pH value and NH-NH3. Consequently three structural and seven dynamic factors are considered. After several and extended training-testing efforts a Modular Artificial Neural Network was determined to be the optimal one.
NASA Astrophysics Data System (ADS)
Jankowski, Stanisław; Będkowski, Janusz; Danilewicz, Przemysław; Szymański, Zbigniew
2008-01-01
We propose new approach for defect centers parameters extraction in semi-insulating GaAs. The experimental data is obtained by high-resolution photoinduced transient spectroscopy (HR-PITS). Two algorithms have been introduced: support vector machine - sequential minimal optimization (SVM-SMO) and relevance vector machine (RVM). Those methods perform the approximation of the Laplace surface. The advantages of proposed methods are: good accuracy of approximation, low complexity, excellent generalization. We developed SVM-RVM-PITS system, which enables graphical representation of Laplace surface, defining local area for defect parameter extraction, choosing the SVM or RVM method for approximation, calculation of the Arrhenius line factors and finally the parameters of the defect centers.
Zargham, M.R.
1995-06-01
Recently, fuzzy logic has been applied to many areas, such as process control, image understanding, robots, expert systems, and decision support systems. This paper will explain the basic concepts of fuzzy logic and its application in different fields. The steps to design a control system will be explained in detail. Fuzzy control is the first successful industrial application of fuzzy logic. A fuzzy controller is able to control systems which previously could only be controlled by skilled operators. In recent years Japan has achieved significant progress in this area and has applied it to variety of products such as cruise control for cars, video cameras, rice cookers, washing machines, etc.
Building Ultra-Low False Alarm Rate Support Vector Classifier Ensembles Using Random Subspaces
Chen, B Y; Lemmond, T D; Hanley, W G
2008-10-06
This paper presents the Cost-Sensitive Random Subspace Support Vector Classifier (CS-RS-SVC), a new learning algorithm that combines random subspace sampling and bagging with Cost-Sensitive Support Vector Classifiers to more effectively address detection applications burdened by unequal misclassification requirements. When compared to its conventional, non-cost-sensitive counterpart on a two-class signal detection application, random subspace sampling is shown to very effectively leverage the additional flexibility offered by the Cost-Sensitive Support Vector Classifier, yielding a more than four-fold increase in the detection rate at a false alarm rate (FAR) of zero. Moreover, the CS-RS-SVC is shown to be fairly robust to constraints on the feature subspace dimensionality, enabling reductions in computation time of up to 82% with minimal performance degradation.
EVALUATION FOR JUDGMENT CRITERIA OF REPAIR ON CIVIL ENGINEERING STRUCTURE BY SUPPORT VECTOR MACHINE
NASA Astrophysics Data System (ADS)
Yuki, Kazunori; Kobayashi, Hiroki; Ohishi, Hiroyuki; Sugimoto, Hiroyuki; Iida, Takeshi; Furukawa, Kohei
In this study, setting method for judgment criteria for repair of civil engineering structures is analyzed by the use of inspection and repair record of expansion joint of bridges with the Support Vector Machine. The Support Vector Machine is a technique used to apply for setting of risk degree of disasters on natural slopes. However it is needed that effective exclusion method of noise data has to be considered to apply for the analysis of the setting method. Therefore the noise data is excluded objectively in order that high confidence data can be extracted from the record. In this way setting the method can be developed. As a result of this study, it can be shown that the setting method by Support Vector Machine is effective as a tool for maintenance management plan of civil engineering structures since the method has a high integrity with evaluation by professional engineer.
Testing of the Support Vector Machine for Binary-Class Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew
2011-01-01
The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results
Automated Classification of Epiphyses in the Distal Radius and Ulna using a Support Vector Machine.
Wang, Ya-hui; Liu, Tai-ang; Wei, Hua; Wan, Lei; Ying, Chong-liang; Zhu, Guang-you
2016-03-01
The aim of this study was to automatically classify epiphyses in the distal radius and ulna using a support vector machine (SVM) and to examine the accuracy of the epiphyseal growth grades generated by the support vector machine. X-ray images of distal radii and ulnae were collected from 140 Chinese teenagers aged between 11.0 and 19.0 years. Epiphyseal growth of the two elements was classified into five grades. Features of each element were extracted using a histogram of oriented gradient (HOG), and models were established using support vector classification (SVC). The prediction results and the validity of the models were evaluated with a cross-validation test and independent test for accuracy (PA ). Our findings suggest that this new technique for epiphyseal classification was successful and that an automated technique using an SVM is reliable and feasible, with a relative high accuracy for the models. PMID:27404614
Bayesian data assimilation provides rapid decision support for vector-borne diseases.
Jewell, Chris P; Brown, Richard G
2015-07-01
Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host-vector-pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. PMID:26136225
NASA Astrophysics Data System (ADS)
Ortiz-García, E. G.; Salcedo-Sanz, S.; Pérez-Bellido, A. M.; Gascón-Moreno, J.; Portilla-Figueras, A.
In this paper we present the application of a support vector regression algorithm to a real problem of maximum daily tropospheric ozone forecast. The support vector regression approach proposed is hybridized with an heuristic for optimal selection of hyper-parameters. The prediction of maximum daily ozone is carried out in all the station of the air quality monitoring network of Madrid. In the paper we analyze how the ozone prediction depends on meteorological variables such as solar radiation and temperature, and also we perform a comparison against the results obtained using a multi-layer perceptron neural network in the same prediction problem.
Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun
2016-01-01
Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656
Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun
2016-01-01
Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656
NASA Astrophysics Data System (ADS)
Ghaffarian, Saman; Gökaşar, Ilgın
2016-01-01
This study presents an approach for the automatic detection of vehicles using very high-resolution images and road vector data. Initially, road vector data and aerial images are integrated to extract road regions. Then, the extracted road/street region is clustered using an automatic histogram-based fuzzy C-means algorithm, and edge pixels are detected using the Canny edge detector. In order to automatically detect vehicles, we developed a local perceptual grouping approach based on fusion of edge detection and clustering outputs. To provide the locality, an ellipse is generated using characteristics of the candidate clusters individually. Then, ratio of edge pixels to nonedge pixels in the corresponding ellipse is computed to distinguish the vehicles. Finally, a point-merging rule is conducted to merge the points that satisfy a predefined threshold and are supposed to denote the same vehicles. The experimental validation of the proposed method was carried out on six very high-resolution aerial images that illustrate two highways, two shadowed roads, a crowded narrow street, and a street in a dense urban area with crowded parked vehicles. The evaluation of the results shows that our proposed method performed 86% and 83% in overall correctness and completeness, respectively.
Bayesian data assimilation provides rapid decision support for vector-borne diseases
Jewell, Chris P.; Brown, Richard G.
2015-01-01
Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host–vector–pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. PMID:26136225
A divide-and-combine method for large scale nonparallel support vector machines.
Tian, Yingjie; Ju, Xuchan; Shi, Yong
2016-03-01
Nonparallel Support Vector Machine (NPSVM) which is more flexible and has better generalization than typical SVM is widely used for classification. Although some methods and toolboxes like SMO and libsvm for NPSVM are used, NPSVM is hard to scale up when facing millions of samples. In this paper, we propose a divide-and-combine method for large scale nonparallel support vector machine (DCNPSVM). In the division step, DCNPSVM divide samples into smaller sub-samples aiming at solving smaller subproblems independently. We theoretically and experimentally prove that the objective function value, solutions, and support vectors solved by DCNPSVM are close to the objective function value, solutions, and support vectors of the whole NPSVM problem. In the combination step, the sub-solutions combined as initial iteration points are used to solve the whole problem by global coordinate descent which converges quickly. In order to balance the accuracy and efficiency, we adopt a multi-level structure which outperforms state-of-the-art methods. Moreover, our DCNPSVM can tackle unbalance problems efficiently by tuning the parameters. Experimental results on lots of large data sets show the effectiveness of our method in memory usage, classification accuracy and time consuming. PMID:26690682
Technology Transfer Automated Retrieval System (TEKTRAN)
This study evaluated linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and support vector machine (SVM) techniques for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems and riparian areas throughout the southern ...
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...
Support Vector Machine applied to predict the zoonotic potential of E. coli O157 cattle isolates
Technology Transfer Automated Retrieval System (TEKTRAN)
Methods based on sequence data analysis facilitate the tracking of disease outbreaks, allow relationships between strains to be reconstructed and virulence factors to be identified. However, these methods are used postfactum after an outbreak has happened. Here, we show that support vector machine a...
NASA Astrophysics Data System (ADS)
Salas-Gonzalez, D.; Górriz, J. M.; Ramírez, J.; López, M.; Álvarez, I.; Segovia, F.; Chaves, R.; Puntonet, C. G.
2010-05-01
This paper presents a computer-aided diagnosis technique for improving the accuracy of early diagnosis of Alzheimer-type dementia. The proposed methodology is based on the selection of voxels which present Welch's t-test between both classes, normal and Alzheimer images, greater than a given threshold. The mean and standard deviation of intensity values are calculated for selected voxels. They are chosen as feature vectors for two different classifiers: support vector machines with linear kernel and classification trees. The proposed methodology reaches greater than 95% accuracy in the classification task.
Using a Support Vector Machine (SVM) to Improve Generalization Ability of Load Model Parameters
Ma, Jian; Dong, Zhao Yang; Zhang, Pei
2009-04-24
Load modeling plays an important role in power system stability analysis and planning studies. The parameters of load models may experience variations in different application situations. Choosing appropriate parameters is critical for dynamic simulation and stability studies in power system. This paper presents a method to select the parameters with good generalization ability based on a given large number of available parameters that have been identified from dynamic simulation data in different scenarios. Principal component analysis is used to extract the major features of the given parameter sets. Reduced feature vectors are obtained by mapping the given parameter sets into principal component space. Then support vectors are found by implementing a classification problem. Load model parameters based on the obtained support vectors are built to reflect the dynamic property of the load. All of the given parameter sets were identified from simulation data based on the New England 10-machine 39-bus system, by taking into account different situations, such as load types, fault locations, fault types, and fault clearing time. The parameters obtained by support vector machine have good generalization capability, and can represent the load more accurately in most situations.
Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat
2015-01-01
Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. PMID:25282095
NASA Astrophysics Data System (ADS)
Ceryan, Nurcihan
2014-12-01
The uniaxial compressive strength (UCS) of intact rocks is an important and pertinent property for characterizing a rock mass. It is known that standard UCS tests are destructive, expensive and time-consuming task, which is particularly true for thinly bedded, highly fractured, foliated, highly porous and weak rocks. Consequently, prediction models have become an attractive alternative for engineering geologists. In the last several years, a new, alternative kernel-based technique, support vector machines (SVMs), has been popular in modeling studies. Despite superior SVM performance, this technique has certain significant, practical drawbacks. Hence, the relevance vector machines (RVMs) approach has been proposed to recast the main ideas underlying SVMs in a Bayesian context. The primary purpose of this study is to examine the applicability and capability of RVM and SVM models for predicting the UCS of volcanic rocks from NE Turkey and comparing its performance with ANN models. In these models, the porosity and P-durability index representing microstructural variables are the input parameters. The study results indicate that these methods can successfully predict the UCS for the volcanic rocks. The SVM and RVM performed better than the ANN model. When these kernel based models are considered, RVM model found successful in terms of statistical performance criterions (e.g., performance index, PI values for training and testing data are computed as 1.579 and 1.449). These values for SVM are 1.509 and 1.307. Although SVM and RVM models are powerful techniques, the RVM run time was considerably faster, and it yielded the highest accuracy.
Viral vector tropism for supporting cells in the developing murine cochlea.
Sheffield, Abraham M; Gubbels, Samuel P; Hildebrand, Michael S; Newton, Stephen S; Chiorini, John A; Di Pasquale, Giovanni; Smith, Richard J H
2011-07-01
Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear. PMID:21530627
Color Image Watermarking Scheme Based on Efficient Preprocessing and Support Vector Machines
NASA Astrophysics Data System (ADS)
Fındık, Oğuz; Bayrak, Mehmet; Babaoğlu, Ismail; Çomak, Emre
This paper suggests a new block based watermarking technique utilizing preprocessing and support vector machine (PPSVMW) to protect color image's intellectual property rights. Binary test set is employed here to train support vector machine (SVM). Before adding binary data into the original image, blocks have been separated into two parts to train SVM for better accuracy. Watermark's 1 valued bits were randomly added into the first block part and 0 into the second block part. Watermark is embedded by modifying the blue channel pixel value in the middle of each block so that watermarked image could be composed. SVM was trained with set-bits and three other features which are averages of the differences of pixels in three distinct shapes extracted from each block, and hence without the need of original image, it could be extracted. The results of PPSVMW technique proposed in this study were compared with those of the Tsai's technique. Our technique was proved to be more efficient.
Li, Shaoxin; Guo, Zhouyi; Liu, Zhiming
2015-01-01
Prostate cancer is one of the most common malignancies of the older males worldwide. Early diagnosis and treatment are important to improve the survival of patients. Recently, we developed a new method for prostate cancer screening: by measuring the serum surface-enhanced Raman spectroscopy of prostate cancer patients and normal subjects, combining with classification algorithms of support vector machines, the measured surface-enhanced Raman spectroscopy spectra are successfully classified with accuracy of 98.1%. Although the practical application faces several difficulties, we believe that this label-free serum surface-enhanced Raman spectroscopy analysis technique combined with support vector machine diagnostic algorithms will become a powerful tool for noninvasive prostate cancer screening in the future. PMID:25525666
Wen, Congcong; Wang, Zhiyi; Zhang, Meiling; Wang, Shuanghu; Geng, Peiwu; Sun, Fa; Chen, Mengchun; Lin, Guanyang; Hu, Lufeng; Ma, Jianshe; Wang, Xianqin
2016-01-01
Paraquat is quick-acting and non-selective, killing green plant tissue on contact; it is also toxic to human beings and animals. In this study, we developed a urine metabonomic method by gas chromatography-mass spectrometry to evaluate the effect of acute paraquat poisoning on rats. Pattern recognition analysis, including both partial least squares discriminate analysis and principal component analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the levels of benzeneacetic acid and hexadecanoic acid of the acute paraquat poisoning group (intragastric administration 36 mg/kg) increased, while the levels of butanedioic acid, pentanedioic acid, altronic acid decreased. Based on these urinary metabolomics data, support vector machine was applied to discriminate the metabolomic change of paraquat groups from the control group, which achieved 100% classification accuracy. In conclusion, metabonomic method combined with support vector machine can be used as a useful diagnostic tool in paraquat-poisoned rats. PMID:26419410
nu-Anomica: A Fast Support Vector Based Novelty Detection Technique
NASA Technical Reports Server (NTRS)
Das, Santanu; Bhaduri, Kanishka; Oza, Nikunj C.; Srivastava, Ashok N.
2009-01-01
In this paper we propose nu-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In -Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one-class Support Vector Machines while reducing both the training time and the test time by 5 - 20 times.
Support vector machine based IS/OS disruption detection from SD-OCT images
NASA Astrophysics Data System (ADS)
Wang, Liyun; Zhu, Weifang; Liao, Jianping; Xiang, Dehui; Jin, Chao; Chen, Haoyu; Chen, Xinjian
2014-03-01
In this paper, we sought to find a method to detect the Inner Segment /Outer Segment (IS/OS)disruption region automatically. A novel support vector machine (SVM) based method was proposed for IS/OS disruption detection. The method includes two parts: training and testing. During the training phase, 7 features from the region around the fovea are calculated. Support vector machine (SVM) is utilized as the classification method. In the testing phase, the training model derived is utilized to classify the disruption and non-disruption region of the IS/OS, and calculate the accuracy separately. The proposed method was tested on 9 patients' SD-OCT images using leave-one-out strategy. The preliminary results demonstrated the feasibility and efficiency of the proposed method.
Identification of comment-on sentences in online biomedical documents using support vector machines
NASA Astrophysics Data System (ADS)
Kim, In Cheol; Le, Daniel X.; Thoma, George R.
2007-01-01
MEDLINE (R) is the premier bibliographic online database of the National Library of Medicine, containing approximately 14 million citations and abstracts from over 4,800 biomedical journals. This paper presents an automated method based on support vector machines to identify a "comment-on" list, which is a field in a MEDLINE citation denoting previously published articles commented on by a given article. For comparative study, we also introduce another method based on scoring functions that estimate the significance of each sentence in a given article. Preliminary experiments conducted on HTML-formatted online biomedical documents collected from 24 different journal titles show that the support vector machine with polynomial kernel function performs best in terms of recall and F-measure rates.
Interpreting linear support vector machine models with heat map molecule coloring
2011-01-01
Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031
Performance evaluation of a FPGA implementation of a digital rotation support vector machine
NASA Astrophysics Data System (ADS)
Lamela, Horacio; Gimeno, Jesús; Jiménez, Matías; Ruiz, Marta
2008-04-01
In this paper we provide a simple and fast hardware implementation for a Support Vector Machine (SVM). By using the CORDIC algorithm and implementing a 2-based exponential kernel that allows us to simplify operations, we overcome the problems caused by too many internal multiplications found in the classification process, both while applying the Kernel formula and later on multiplying by the weights. We show a simple example of classification with the algorithm and analyze the classification speed and accuracy.
Optical diagnosis of colon and cervical cancer by support vector machine
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Dey, Rajib; Das, Nandan K.; Pradhan, Sanjay; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.; Mohanty, Samarendra
2016-05-01
A probabilistic robust diagnostic algorithm is very much essential for successful cancer diagnosis by optical spectroscopy. We report here support vector machine (SVM) classification to better discriminate the colon and cervical cancer tissues from normal tissues based on elastic scattering spectroscopy. The efficacy of SVM based classification with different kernel has been tested on multifractal parameters like Hurst exponent, singularity spectrum width in order to classify the cancer tissues.
NASA Astrophysics Data System (ADS)
Lv, Jie; Yan, Zhenguo; Wei, Jingyi
2014-11-01
Accurate retrieval of crop chlorophyll content is of great importance for crop growth monitoring, crop stress situations, and the crop yield estimation. This study focused on retrieval of rice chlorophyll content from data through radiative transfer model inversion. A field campaign was carried out in September 2009 in the farmland of ChangChun, Jinlin province, China. A different set of 10 sites of the same species were used in 2009 for validation of methodologies. Reflectance of rice was collected using ASD field spectrometer for the solar reflective wavelengths (350-2500 nm), chlorophyll content of rice was measured by SPAD-502 chlorophyll meter. Each sample sites was recorded with a Global Position System (GPS).Firstly, the PROSPECT radiative transfer model was inverted using support vector machine in order to link rice spectrum and the corresponding chlorophyll content. Secondly, genetic algorithms were adopted to select parameters of support vector machine, then support vector machine was trained the training data set, in order to establish leaf chlorophyll content estimation model. Thirdly, a validation data set was established based on hyperspectral data, and the leaf chlorophyll content estimation model was applied to the validation data set to estimate leaf chlorophyll content of rice in the research area. Finally, the outcome of the inversion was evaluated using the calculated R2 and RMSE values with the field measurements. The results of the study highlight the significance of support vector machine in estimating leaf chlorophyll content of rice. Future research will concentrated on the view of the definition of satellite images and the selection of the best measurement configuration for accurate estimation of rice characteristics.
Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression
NASA Astrophysics Data System (ADS)
Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.
2010-01-01
In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.
Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses.
Feng, Yunlong; Yang, Yuning; Huang, Xiaolin; Mehrkanoon, Siamak; Suykens, Johan A K
2016-06-01
This letter addresses the robustness problem when learning a large margin classifier in the presence of label noise. In our study, we achieve this purpose by proposing robustified large margin support vector machines. The robustness of the proposed robust support vector classifiers (RSVC), which is interpreted from a weighted viewpoint in this work, is due to the use of nonconvex classification losses. Besides the robustness, we also show that the proposed RSCV is simultaneously smooth, which again benefits from using smooth classification losses. The idea of proposing RSVC comes from M-estimation in statistics since the proposed robust and smooth classification losses can be taken as one-sided cost functions in robust statistics. Its Fisher consistency property and generalization ability are also investigated. Besides the robustness and smoothness, another nice property of RSVC lies in the fact that its solution can be obtained by solving weighted squared hinge loss-based support vector machine problems iteratively. We further show that in each iteration, it is a quadratic programming problem in its dual space and can be solved by using state-of-the-art methods. We thus propose an iteratively reweighted type algorithm and provide a constructive proof of its convergence to a stationary point. Effectiveness of the proposed classifiers is verified on both artificial and real data sets. PMID:27137357
Qi, Bin; Zhao, Chunhui; Yin, Guisheng
2014-05-01
The support vector machine (SVM) is a widely used approach for high-dimensional data classification. Traditionally, SVMs use features from the spectral bands of hyperspectral images with each feature contributing equally to the classification. In practical applications, although affected by noise, slight contributions can also be obtained from deteriorated bands. Thus, compared with feature reduction or equal assignment of weights to all the features, feature weighting is a trade-off choice. In this study, we examined two approaches to assigning weights to SVM features to increase the overall classification accuracy: (1) "CSC-SVM" refers to a support vector machine with compactness and a separation coefficient feature weighting algorithm, and (2) "SE-SVM" refers to a support vector machine with a similarity entropy feature weighting algorithm. Analyses were conducted on a public data set with nine selected land-cover classes. In comparison with traditional SVMs and other classical feature weighting algorithms, the proposed weighting algorithms increase the overall classification accuracy, and even better results could be obtained with few training samples. PMID:24921869
NASA Astrophysics Data System (ADS)
Luo, Wei-Ping; Li, Hong-Qi; Shi, Ning
2016-06-01
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semisupervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
NASA Astrophysics Data System (ADS)
Na'imi, S. R.; Shadizadeh, S. R.; Riahi, M. A.; Mirzakhanian, M.
2014-08-01
Porosity and fluid saturation distributions are crucial properties of hydrocarbon reservoirs and are involved in almost all calculations related to reservoir and production. True measurements of these parameters derived from laboratory measurements, are only available at the isolated localities of a reservoir and also are expensive and time-consuming. Therefore, employing other methodologies which have stiffness, simplicity, and cheapness is needful. Support Vector Regression approach is a moderately novel method for doing functional estimation in regression problems. Contrary to conventional neural networks which minimize the error on the training data by the use of usual Empirical Risk Minimization principle, Support Vector Regression minimizes an upper bound on the anticipated risk by means of the Structural Risk Minimization principle. This difference which is the destination in statistical learning causes greater ability of this approach for generalization tasks. In this study, first, appropriate seismic attributes which have an underlying dependency with reservoir porosity and water saturation are extracted. Subsequently, a non-linear support vector regression algorithm is utilized to obtain quantitative formulation between porosity and water saturation parameters and selected seismic attributes. For an undrilled reservoir, in which there are no sufficient core and log data, it is moderately possible to characterize hydrocarbon bearing formation by means of this method.
Online Support Vector Regression with Varying Parameters for Time-Dependent Data
Omitaomu, Olufemi A; Jeong, Myong K; Badiru, Adedeji B
2011-01-01
Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.
Shirk, Paul D; Furlong, Richard B
2016-01-01
A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus that are involved in integration of the densovirus in insect cell chromosomes and a promoter/enhancer system that results in high levels of expression. The plasmid also contains two markers that permit selection of transformed insect cells by antibiotic resistance or by cell-sorting for fluorescent protein expression. Transformation of Bombyx mori Bm5 or Spodoptera frugiperda Sf9 cultured cells with the pDP9 vectors results in the integration of the pDP9 plasmid into genomic DNA of Bm5 and Sf9 cells. pDP9 contains a multiple cloning site (MCS) 3' of the densoviral P9 promoter and insertion of a protein coding sequence within the MCS results in high level expression by pDP9 transformed cells. P9 driven transcription in the pDP9 transformed Sf9 cells produced foreign gene transcript levels that were 30 fold higher than actin 3 driven transgenes and equivalent to hr5IE1 driven transgenes. The pDP9 vector transformation results in the efficient selection of clones for assessment of promoter activity. PMID:26794473
2013-01-01
This study proposes the promotion of environmental protection education among communities as a solution to the serious problems of high energy consumption and carbon emissions around the world. Environmental protection education has direct and lasting influences on everyone in society; therefore, it is helpful in our fight against many serious problems caused by high energy consumption. In this study, the Delphi method and the fuzzy logic theory are used to develop a quantizing assessment model based on qualitative analysis. This model can be used to assess the results and influences of community residents' participation in environmental protection education on green community development. In addition, it can be used to provide references for governing authorities in their decision making of green community development policies. PMID:24363614
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos
2015-01-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging.
Gaonkar, Bilwaj; T Shinohara, Russell; Davatzikos, Christos
2015-08-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier's decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.
Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu
2016-08-01
Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity. PMID:25222957
Neutron-gamma discrimination based on the support vector machine method
NASA Astrophysics Data System (ADS)
Yu, Xunzhen; Zhu, Jingjun; Lin, ShinTed; Wang, Li; Xing, Haoyang; Zhang, Caixun; Xia, Yuxi; Liu, Shukui; Yue, Qian; Wei, Weiwei; Du, Qiang; Tang, Changjian
2015-03-01
In this study, the combination of the support vector machine (SVM) method with the moment analysis method (MAM) is proposed and utilized to perform neutron/gamma (n/γ) discrimination of the pulses from an organic liquid scintillator (OLS). Neutron and gamma events, which can be firmly separated on the scatter plot drawn by the charge comparison method (CCM), are detected to form the training data set and the test data set for the SVM, and the MAM is used to create the feature vectors for individual events in the data sets. Compared to the traditional methods, such as CCM, the proposed method can not only discriminate the neutron and gamma signals, even at lower energy levels, but also provide the corresponding classification accuracy for each event, which is useful in validating the discrimination. Meanwhile, the proposed method can also offer a predication of the classification for the under-energy-limit events.
Huang, Chun-Rong; Chen, Yan-Ting; Chen, Wei-Ying; Cheng, Hsiu-Chi; Sheu, Bor-Shyang
2016-03-01
A new computer-aided diagnosis method is proposed to diagnose the gastroesophageal reflux disease (GERD) from endoscopic images of the esophageal-gastric junction. To avoid the interferences of different endoscope devices and automatic camera white balance adjustment, heterogeneous descriptors computed from heterogeneous color models are used to represent endoscopic images. Instead of concatenating these descriptors to a super vector, a hierarchical heterogeneous descriptor fusion support vector machine (HHDF-SVM) framework is proposed to simultaneously apply heterogeneous descriptors for GERD diagnosis and overcome the curse of dimensionality problem. During validation, heterogeneous descriptors are extracted from test endoscopic images at first. The classification result is obtained by using HHDF-SVM with heterogeneous descriptors. As shown in the experiments, our method can automatically diagnose GERD without any manual selection of region of interest and achieve better accuracy compared to states-of-the-art methods. PMID:26276981
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
Seismic interpretation using Support Vector Machines implemented on Graphics Processing Units
Kuzma, H A; Rector, J W; Bremer, D
2006-06-22
Support Vector Machines (SVMs) estimate lithologic properties of rock formations from seismic data by interpolating between known models using synthetically generated model/data pairs. SVMs are related to kriging and radial basis function neural networks. In our study, we train an SVM to approximate an inverse to the Zoeppritz equations. Training models are sampled from distributions constructed from well-log statistics. Training data is computed via a physically realistic forward modeling algorithm. In our experiments, each training data vector is a set of seismic traces similar to a 2-d image. The SVM returns a model given by a weighted comparison of the new data to each training data vector. The method of comparison is given by a kernel function which implicitly transforms data into a high-dimensional feature space and performs a dot-product. The feature space of a Gaussian kernel is made up of sines and cosines and so is appropriate for band-limited seismic problems. Training an SVM involves estimating a set of weights from the training model/data pairs. It is designed to be an easy problem; at worst it is a quadratic programming problem on the order of the size of the training set. By implementing the slowest part of our SVM algorithm on a graphics processing unit (GPU), we improve the speed of the algorithm by two orders of magnitude. Our SVM/GPU combination achieves results that are similar to those of conventional iterative inversion in fractions of the time.
Webb-Robertson, Bobbie-Jo M.
2009-05-06
Accurate identification of peptides is a current challenge in mass spectrometry (MS) based proteomics. The standard approach uses a search routine to compare tandem mass spectra to a database of peptides associated with the target organism. These database search routines yield multiple metrics associated with the quality of the mapping of the experimental spectrum to the theoretical spectrum of a peptide. The structure of these results make separating correct from false identifications difficult and has created a false identification problem. Statistical confidence scores are an approach to battle this false positive problem that has led to significant improvements in peptide identification. We have shown that machine learning, specifically support vector machine (SVM), is an effective approach to separating true peptide identifications from false ones. The SVM-based peptide statistical scoring method transforms a peptide into a vector representation based on database search metrics to train and validate the SVM. In practice, following the database search routine, a peptides is denoted in its vector representation and the SVM generates a single statistical score that is then used to classify presence or absence in the sample
Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine
NASA Technical Reports Server (NTRS)
Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)
2002-01-01
The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.
Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression
NASA Technical Reports Server (NTRS)
Xie, Xiaosu; Liu, W. Timothy; Tang, Benyang
2007-01-01
An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin
2012-01-01
To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.
Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Abdallah, Chaouki T. (University of New Mexico, Albuquerque, NM); Rohwer, Judd Andrew
2003-02-01
The paper presents a multiclass, multilabel implementation of least squares support vector machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system, the algorithm's capabilities and performance must be evaluated. Specifically, for classification algorithms, a high confidence level must exist along with a technique to tag misclassifications automatically. The presented learning algorithm includes error control and validation steps for generating statistics on the multiclass evaluation path and the signal subspace dimension. The error statistics provide a confidence level for the classification accuracy.
Application of Multi-Sensor Information Fusion Method Based on Rough Sets and Support Vector Machine
NASA Astrophysics Data System (ADS)
Xue, Jinxue; Wang, Guohu; Wang, Xiaoqiang; Cui, Fengkui
In order to improve the precision and date processing speed of multi-sensor information fusion, a kind of multi-sensor data fusion process algorithm has been studied in this paper. First, based on rough set theory (RS) to attribute reduction the parameter set, we use the advantages of rough set theory in dealing with large amount of data to eliminate redundant information. Then, the data can be trained and classified by Support Vector Machine (SYM). Experimental results showed that this method can improve the speed and accuracy of multi-sensor fusion system.
Land cover classification by support vector machine: training set size and selection issues.
NASA Astrophysics Data System (ADS)
Mathur, A.; Foody, G.
The accuracy of land cover maps derived via supervised classification is often insufficient for operational applications. One of the important reasons for this is associated with the inputs to supervised classification analyses, especially the training data. The aim of this poster paper is to highlight the effect of variation in training set size on classification accuracy with respect to a series of supervised classifiers with particular regard to identifying an approach to allow accurate classification from small training sets. The classifiers investigated are the widely used maximum-likelihood classifier (MLC), feedforward artificial neural networks (ANN), decision trees (DT) and support vector machines (SVM). An advanced pattern recognition technique that has recently attracted the attention of the remote sensing community is support vector machines (SVM). A key attraction of the SVM based approach to classification is that it seeks to fit an optimal hyperplane between the classes and since it uses only the training samples that lie at the edge of the class distributions in feature space it may require only a small training sample. The potential of SVM classification was demonstrated from a series of analyses that classified land cover from imagery of Feltwell, Norfolk, U.K. All four classifiers were able to classify land cover accurately, each > 90% correct. However, for training sets ranging in size from 15 to 100 samples per-class, the highest accuracy was derived from the SVM. Moreover, inspection of the number of support vectors used in each SVM classification indicated a potential to reduce training set size without any negative impact on classification accuracy. This requires a means to intelligently identify training samples and the second part of this poster focuses on one such approach, based on the use of ancillary data on soil type to direct training site acquisition. It is shown that with information on soil type, training sample acquisition can be
Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study
NASA Astrophysics Data System (ADS)
Al-Anazi, A. F.; Gates, I. D.
2010-12-01
In wells with limited log and core data, porosity, a fundamental and essential property to characterize reservoirs, is challenging to estimate by conventional statistical methods from offset well log and core data in heterogeneous formations. Beyond simple regression, neural networks have been used to develop more accurate porosity correlations. Unfortunately, neural network-based correlations have limited generalization ability and global correlations for a field are usually less accurate compared to local correlations for a sub-region of the reservoir. In this paper, support vector machines are explored as an intelligent technique to correlate porosity to well log data. Recently, support vector regression (SVR), based on the statistical learning theory, have been proposed as a new intelligence technique for both prediction and classification tasks. The underlying formulation of support vector machines embodies the structural risk minimization (SRM) principle which has been shown to be superior to the traditional empirical risk minimization (ERM) principle employed by conventional neural networks and classical statistical methods. This new formulation uses margin-based loss functions to control model complexity independently of the dimensionality of the input space, and kernel functions to project the estimation problem to a higher dimensional space, which enables the solution of more complex nonlinear problem optimization methods to exist for a globally optimal solution. SRM minimizes an upper bound on the expected risk using a margin-based loss function ( ɛ-insensitivity loss function for regression) in contrast to ERM which minimizes the error on the training data. Unlike classical learning methods, SRM, indexed by margin-based loss function, can also control model complexity independent of dimensionality. The SRM inductive principle is designed for statistical estimation with finite data where the ERM inductive principle provides the optimal solution (the
Tian, Pan; Hu, Jie; Qi, Jin; Xia, Peng; Peng, Ying-Hong
2015-01-01
Applications of neural machine interfaces have received increased attention during the last decades. It is crucial to realize the continuous control of prosthetic devices based on biological signals. In order to deal with the highly nonlinear relationship between the Electromyography (EMG) signals and motion, this study presents a novel decoding approach which employs multi-output support vector regression (M-SVR). The proposed M-SVR is compared with other popular regression techniques and the experimental results demonstrate the effectiveness of M-SVR in hand continuous movement trajectory reconstruction. PMID:26406051
Automatic classification of 3D segmented CT data using data fusion and support vector machine
NASA Astrophysics Data System (ADS)
Osman, Ahmad; Kaftandjian, Valérie; Hassler, Ulf
2011-07-01
The three dimensional X-ray computed tomography (3D-CT) has proved its successful usage as inspection method in non destructive testing. The generated 3D volume using high efficiency reconstruction algorithms contains all the inner structures of the inspected part. Segmentation of this volume reveals suspicious regions which need to be classified into defects or false alarms. This paper deals with the classification step using data fusion theory and support vector machine. Results achieved are very promising and prove the effectiveness of the data fusion theory as a method to build stronger classifier.
Bidding strategy with forecast technology based on support vector machine in the electricity market
NASA Astrophysics Data System (ADS)
Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Wan, Qiulan; Zhou, Jian
2008-06-01
The participants in the electricity market are concerned very much with the market price evolution. Various technologies have been developed for price forecasting. The SVM (Support Vector Machine) has shown its good performance in market price forecasting. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecasting accuracy, with which the rejection risk is defined. The other takes into account the impact of the producer’s own bid. The risks associated with the bidding are controlled by the parameter settings. The proposed approaches have been tested on a numerical example.
Li, Min; Zhou, Tong; Song, Yanan
2016-07-01
A grain size characterization method based on energy attenuation coefficient spectrum and support vector regression (SVR) is proposed. First, the spectra of the first and second back-wall echoes are cut into several frequency bands to calculate the energy attenuation coefficient spectrum. Second, the frequency band that is sensitive to grain size variation is determined. Finally, a statistical model between the energy attenuation coefficient in the sensitive frequency band and average grain size is established through SVR. Experimental verification is conducted on austenitic stainless steel. The average relative error of the predicted grain size is 5.65%, which is better than that of conventional methods. PMID:26995732
Eyebrows Identity Authentication Based on Wavelet Transform and Support Vector Machines
NASA Astrophysics Data System (ADS)
Jun-bin, CAO; Haitao, Yang; Lili, Ding
In order to study the novel biometric of eyebrow,,this paper presents an Eyebrows identity authentication based on wavelet transform and support vector machines. The features of the eyebrows image are extracted by wavelet transform, and then classifies them based on SVM. Verification results of the experiment on an eyebrow database taken from 100 of self-built personal demonstrate the effectiveness of the system. The system has a lower FAR 0.22%and FRR 28% Therefore, eyebrow recongnition may possibly apply to personal identification.
Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
Singh, Amardeep S. G.; Schmoll, Tilman; Leitgeb, Rainer A.
2011-01-01
When processing Doppler optical coherence tomography images, there is a need to segment the Doppler signatures of the vessels. This can be used for visualization, for finding the center point of the flow areas or to facilitate the quantitative analysis of the vessel flow. We propose the use of a support-vector machine classifier in order to segment the flow. It uses the phase values of the Doppler image as well as texture information. We show that superior results compared to conventional simple threshold-based methods can be achieved in conditions of significant phase noise, which inhibit the use of a simple threshold of the phase values. PMID:21559144
A Radio Visibility Data Auto-Flag Method Based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Dai, H. M.; Mei, Y.; Wang, W.; Deng, H.; Wang, F.
2016-01-01
The Mingantu Ultrawide Spectral Radioheliograph (MUSER) has entered the trial observation stage. After the construction of data acquisition and real-time storage system, it is urgent to automatically flag and eliminate abnormal visibility data so as to improve the image quality. In this paper, according to the observational records, we create a credible visibility set, and further obtain a corresponding model by using support vector machine (SVM) technology. The results show that the SVM is a robust approach to flag the MUSER visibility data, and could reach the accuracy of about 86%. Meanwhile, the approach would not be affected by solar activities such as flare eruptions.
NASA Astrophysics Data System (ADS)
Paneque-Gálvez, Jaime; Mas, Jean-François; Moré, Gerard; Cristóbal, Jordi; Orta-Martínez, Martí; Luz, Ana Catarina; Guèze, Maximilien; Macía, Manuel J.; Reyes-García, Victoria
2013-08-01
Land use/cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land use/cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims at establishing an efficient classification approach to accurately map all broad land use/cover classes in a large, heterogeneous tropical area, as a basis for further studies (e.g., land use/cover change, deforestation and forest degradation). Specifically, we first compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbor and four different support vector machines - SVM), and hybrid (unsupervised-supervised) classifiers, using hard and soft (fuzzy) accuracy assessments. We then assess, using the maximum likelihood algorithm, what textural indices from the gray-level co-occurrence matrix lead to greater classification improvements at the spatial resolution of Landsat imagery (30 m), and rank them accordingly. Finally, we use the textural index that provides the most accurate classification results to evaluate whether its usefulness varies significantly with the classifier used. We classified imagery corresponding to dry and wet seasons and found that SVM classifiers outperformed all the rest. We also found that the use of some textural indices, but particularly homogeneity and entropy, can significantly improve classifications. We focused on the use of the homogeneity index, which has so far been neglected in land use/cover classification efforts, and found that this index along with reflectance bands significantly increased the overall accuracy of all the classifiers, but particularly of SVM. We observed that improvements in producer's and user's accuracies through the inclusion of homogeneity were different
Climate Change, Public Health, and Decision Support: The New Threat of Vector-borne Disease
NASA Astrophysics Data System (ADS)
Grant, F.; Kumar, S.
2011-12-01
Climate change and vector-borne diseases constitute a massive threat to human development. It will not be enough to cut emissions of greenhouse gases-the tide of the future has already been established. Climate change and vector-borne diseases are already undermining the world's efforts to reduce extreme poverty. It is in the best interests of the world leaders to think in terms of concerted global actions, but adaptation and mitigation must be accomplished within the context of local community conditions, resources, and needs. Failure to act will continue to consign developed countries to completely avoidable health risks and significant expense. Failure to act will also reduce poorest of the world's population-some 2.6 billion people-to a future of diminished opportunity. Northrop Grumman has taken significant steps forward to develop the tools needed to assess climate change impacts on public health, collect relevant data for decision making, model projections at regional and local levels; and, deliver information and knowledge to local and regional stakeholders. Supporting these tools is an advanced enterprise architecture consisting of high performance computing, GIS visualization, and standards-based architecture. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. For the present climate WRF was forced with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model 20th century simulation. For the 21th century climate, we used an ECHAM5 simulation with the Special Report on Emissions (SRES) A1B emissions scenario. WRF was run in nested mode at spatial resolution of 108 km, 36 km and 12 km and 28 vertical levels
Vasslides, James M; Jensen, Olaf P
2016-01-15
Ecosystem-based approaches, including integrated ecosystem assessments, are a popular methodology being used to holistically address management issues in social-ecological systems worldwide. In this study we utilized fuzzy logic cognitive mapping to develop conceptual models of a complex estuarine system among four stakeholder groups. The average number of categories in an individual map was not significantly different among groups, and there were no significant differences between the groups in the average complexity or density indices of the individual maps. When ordered by their complexity scores, eight categories contributed to the top four rankings of the stakeholder groups, with six of the categories shared by at least half of the groups. While non-metric multidimensional scaling (nMDS) analysis displayed a high degree of overlap between the individual models across groups, there was also diversity within each stakeholder group. These findings suggest that while all of the stakeholders interviewed perceive the subject ecosystem as a complex series of social and ecological interconnections, there are a core set of components that are present in most of the groups' models that are crucial in managing the system towards some desired outcome. However, the variability in the connections between these core components and the rest of the categories influences the exact nature of these outcomes. Understanding the reasons behind these differences will be critical to developing a shared conceptual model that will be acceptable to all stakeholder groups and can serve as the basis for an integrated ecosystem assessment. PMID:26520042
NASA Astrophysics Data System (ADS)
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease. PMID:26328567
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
Samad-Soltani, Taha; Ghanei, Mostafa; Langarizadeh, Mostafa
2015-01-01
Background: Chronic Obstructive Pulmonary Disease (COPD) is the most common known complication of exposure to mustard gas. Thus, all clinical guidelines have provided some recommendation for diagnosis, clinical management and treatment of this disease. Decision support systems are used to increase the acceptance of clinical guidelines. The purpose of this research is to develop a CDSS to determine the severity of COPD in chemical injured victims. Objectives: Development of a decision support system to determine the severity of COPD. Patients and Methods: First, the variables influencing to determining the severity of the disease was classified through studying the clinical guidelines. Then, the fuzzy model was implemented. To testing the system, the data from 50 patients were used. Results: the overall accuracy in determining the severity of the injury is equal to 92%, these indicators reflect the proper functioning of the system to assist the physician regarding the diagnosis of chronic obstructive pulmonary disease and determining its severity. Conclusions: The CDSS has efficient results and satisfactory performance. Although, the medical expert systems cannot be expected to provide 100 percent correct responses, however, they can be useful in the areas of patient management, diagnosis and treatment planning. PMID:26236078
NASA Astrophysics Data System (ADS)
Ribes, S.; Voicu, I.; Girault, J. M.; Fournier, M.; Perrotin, F.; Tranquart, F.; Kouamé, D.
2011-03-01
Electronic fetal monitoring may be required during the whole pregnancy to closely monitor specific fetal and maternal disorders. Currently used methods suffer from many limitations and are not sufficient to evaluate fetal asphyxia. Fetal activity parameters such as movements, heart rate and associated parameters are essential indicators of the fetus well being, and no current device gives a simultaneous and sufficient estimation of all these parameters to evaluate the fetus well-being. We built for this purpose, a multi-transducer-multi-gate Doppler system and developed dedicated signal processing techniques for fetal activity parameter extraction in order to investigate fetus's asphyxia or well-being through fetal activity parameters. To reach this goal, this paper shows preliminary feasibility of separating normal and compromised fetuses using our system. To do so, data set consisting of two groups of fetal signals (normal and compromised) has been established and provided by physicians. From estimated parameters an instantaneous Manning-like score, referred to as ultrasonic score was introduced and was used together with movements, heart rate and associated parameters in a classification process using Support Vector Machines (SVM) method. The influence of the fetal activity parameters and the performance of the SVM were evaluated using the computation of sensibility, specificity, percentage of support vectors and total classification accuracy. We showed our ability to separate the data into two sets : normal fetuses and compromised fetuses and obtained an excellent matching with the clinical classification performed by physician.
Prediction of water quality index in constructed wetlands using support vector machine.
Mohammadpour, Reza; Shaharuddin, Syafiq; Chang, Chun Kiat; Zakaria, Nor Azazi; Ab Ghani, Aminuddin; Chan, Ngai Weng
2015-04-01
Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2)) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations. PMID:25408070
Agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)
Archibald, Richard K; Filippi, Anthony M; Bhaduri, Budhendra L; Bright, Eddie A
2009-01-01
Extracting endmembers from remotely sensed images of vegetated areas can present difficulties. In this research, we applied a recently developed endmember-extraction algorithm based on Support Vector Machines (SVMs) to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically and effectively estimate endmembers; synthetic data and a geologic scene were previously analyzed. Here we compared the efficacies of the SVM-BEE and N-FINDR algorithms in extracting endmembers from a predominantly agricultural scene. SVM-BEE was able to estimate vegetation and other endmembers for all classes in the image, which N-FINDR failed to do. Classifications based on SVM-BEE endmembers were markedly more accurate compared with those based on N-FINDR endmembers.
Research on multi-class classification of support vector data description
NASA Astrophysics Data System (ADS)
Shen, Minghua; Xiao, Huaitie; Fu, Qiang
2007-11-01
Support Vector Data Description (SVDD) is a one-class classification method developed in recent years. It has been used in many fields because of its good performance and high executive efficiency when there are only one-class training samples. It has been proven that SVDD has less support vector numbers, less optimization time and faster testing speed than those of two-class classifier such as SVM. At present, researches and acquirable literatures about SVDD multi-class classification are little, which restricts the SVDD application. One SVDD multi-class classification algorithm is proposed in the paper. Based on minimum distance classification rule, the misclassification in multi-class classification is well solved and by applying the threshold strategy the rejection in multi-class classification is greatly alleviated. Finally, by classifying range profiles of three targets, the effect of kernel function parameter and SNR on the proposed algorithm is investigated and the effectiveness of the algorithm is testified by quantities of experiments.